1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc
= 1;
54 static int hardware_ecc
= 0;
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static int clock_stop
= 1;
60 static const int clock_stop
= 0;
64 /* new oob placement block for use with hardware ecc generation
67 static struct nand_ecclayout nand_hw_eccoob
= {
73 /* controller and mtd information */
75 struct s3c2410_nand_info
;
77 struct s3c2410_nand_mtd
{
79 struct nand_chip chip
;
80 struct s3c2410_nand_set
*set
;
81 struct s3c2410_nand_info
*info
;
91 /* overview of the s3c2410 nand state */
93 struct s3c2410_nand_info
{
95 struct nand_hw_control controller
;
96 struct s3c2410_nand_mtd
*mtds
;
97 struct s3c2410_platform_nand
*platform
;
100 struct device
*device
;
101 struct resource
*area
;
104 void __iomem
*sel_reg
;
107 unsigned long save_sel
;
108 unsigned long clk_rate
;
110 enum s3c_cpu_type cpu_type
;
112 #ifdef CONFIG_CPU_FREQ
113 struct notifier_block freq_transition
;
117 /* conversion functions */
119 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
121 return container_of(mtd
, struct s3c2410_nand_mtd
, mtd
);
124 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
126 return s3c2410_nand_mtd_toours(mtd
)->info
;
129 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
131 return platform_get_drvdata(dev
);
134 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
136 return dev
->dev
.platform_data
;
139 static inline int allow_clk_stop(struct s3c2410_nand_info
*info
)
144 /* timing calculations */
146 #define NS_IN_KHZ 1000000
148 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
152 result
= (wanted
* clk
) / NS_IN_KHZ
;
155 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
158 printk("%d ns is too big for current clock rate %ld\n", wanted
, clk
);
168 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
170 /* controller setup */
172 static int s3c2410_nand_setrate(struct s3c2410_nand_info
*info
)
174 struct s3c2410_platform_nand
*plat
= info
->platform
;
175 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
176 int tacls
, twrph0
, twrph1
;
177 unsigned long clkrate
= clk_get_rate(info
->clk
);
178 unsigned long set
, cfg
, mask
;
181 /* calculate the timing information for the controller */
183 info
->clk_rate
= clkrate
;
184 clkrate
/= 1000; /* turn clock into kHz for ease of use */
187 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
188 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
189 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
191 /* default timings */
197 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
198 dev_err(info
->device
, "cannot get suitable timings\n");
202 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
203 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
), twrph1
, to_ns(twrph1
, clkrate
));
205 switch (info
->cpu_type
) {
207 mask
= (S3C2410_NFCONF_TACLS(3) |
208 S3C2410_NFCONF_TWRPH0(7) |
209 S3C2410_NFCONF_TWRPH1(7));
210 set
= S3C2410_NFCONF_EN
;
211 set
|= S3C2410_NFCONF_TACLS(tacls
- 1);
212 set
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
213 set
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
218 mask
= (S3C2410_NFCONF_TACLS(tacls_max
- 1) |
219 S3C2410_NFCONF_TWRPH0(7) |
220 S3C2410_NFCONF_TWRPH1(7));
222 set
= S3C2440_NFCONF_TACLS(tacls
- 1);
223 set
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
224 set
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
228 /* keep compiler happy */
234 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
236 local_irq_save(flags
);
238 cfg
= readl(info
->regs
+ S3C2410_NFCONF
);
241 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
243 local_irq_restore(flags
);
248 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
)
252 ret
= s3c2410_nand_setrate(info
);
256 switch (info
->cpu_type
) {
263 /* enable the controller and de-assert nFCE */
265 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
273 static void s3c2410_nand_select_chip(struct mtd_info
*mtd
, int chip
)
275 struct s3c2410_nand_info
*info
;
276 struct s3c2410_nand_mtd
*nmtd
;
277 struct nand_chip
*this = mtd
->priv
;
283 if (chip
!= -1 && allow_clk_stop(info
))
284 clk_enable(info
->clk
);
286 cur
= readl(info
->sel_reg
);
289 cur
|= info
->sel_bit
;
291 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
292 dev_err(info
->device
, "invalid chip %d\n", chip
);
296 if (info
->platform
!= NULL
) {
297 if (info
->platform
->select_chip
!= NULL
)
298 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
301 cur
&= ~info
->sel_bit
;
304 writel(cur
, info
->sel_reg
);
306 if (chip
== -1 && allow_clk_stop(info
))
307 clk_disable(info
->clk
);
310 /* s3c2410_nand_hwcontrol
312 * Issue command and address cycles to the chip
315 static void s3c2410_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
318 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
320 if (cmd
== NAND_CMD_NONE
)
324 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
326 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
329 /* command and control functions */
331 static void s3c2440_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
334 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
336 if (cmd
== NAND_CMD_NONE
)
340 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
342 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
345 /* s3c2410_nand_devready()
347 * returns 0 if the nand is busy, 1 if it is ready
350 static int s3c2410_nand_devready(struct mtd_info
*mtd
)
352 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
353 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
356 static int s3c2440_nand_devready(struct mtd_info
*mtd
)
358 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
359 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
362 static int s3c2412_nand_devready(struct mtd_info
*mtd
)
364 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
365 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
368 /* ECC handling functions */
370 static int s3c2410_nand_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
371 u_char
*read_ecc
, u_char
*calc_ecc
)
373 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
374 unsigned int diff0
, diff1
, diff2
;
375 unsigned int bit
, byte
;
377 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
379 diff0
= read_ecc
[0] ^ calc_ecc
[0];
380 diff1
= read_ecc
[1] ^ calc_ecc
[1];
381 diff2
= read_ecc
[2] ^ calc_ecc
[2];
383 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
385 read_ecc
[0], read_ecc
[1], read_ecc
[2],
386 calc_ecc
[0], calc_ecc
[1], calc_ecc
[2],
387 diff0
, diff1
, diff2
);
389 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
390 return 0; /* ECC is ok */
392 /* sometimes people do not think about using the ECC, so check
393 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
394 * the error, on the assumption that this is an un-eccd page.
396 if (read_ecc
[0] == 0xff && read_ecc
[1] == 0xff && read_ecc
[2] == 0xff
397 && info
->platform
->ignore_unset_ecc
)
400 /* Can we correct this ECC (ie, one row and column change).
401 * Note, this is similar to the 256 error code on smartmedia */
403 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
404 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
405 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
406 /* calculate the bit position of the error */
408 bit
= ((diff2
>> 3) & 1) |
412 /* calculate the byte position of the error */
414 byte
= ((diff2
<< 7) & 0x100) |
415 ((diff1
<< 0) & 0x80) |
416 ((diff1
<< 1) & 0x40) |
417 ((diff1
<< 2) & 0x20) |
418 ((diff1
<< 3) & 0x10) |
419 ((diff0
>> 4) & 0x08) |
420 ((diff0
>> 3) & 0x04) |
421 ((diff0
>> 2) & 0x02) |
422 ((diff0
>> 1) & 0x01);
424 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
427 dat
[byte
] ^= (1 << bit
);
431 /* if there is only one bit difference in the ECC, then
432 * one of only a row or column parity has changed, which
433 * means the error is most probably in the ECC itself */
435 diff0
|= (diff1
<< 8);
436 diff0
|= (diff2
<< 16);
438 if ((diff0
& ~(1<<fls(diff0
))) == 0)
446 * These allow the s3c2410 and s3c2440 to use the controller's ECC
447 * generator block to ECC the data as it passes through]
450 static void s3c2410_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
452 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
455 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
456 ctrl
|= S3C2410_NFCONF_INITECC
;
457 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
460 static void s3c2412_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
462 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
465 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
466 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
, info
->regs
+ S3C2440_NFCONT
);
469 static void s3c2440_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
471 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
474 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
475 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
478 static int s3c2410_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
480 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
482 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
483 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
484 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
486 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__
,
487 ecc_code
[0], ecc_code
[1], ecc_code
[2]);
492 static int s3c2412_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
494 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
495 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
498 ecc_code
[1] = ecc
>> 8;
499 ecc_code
[2] = ecc
>> 16;
501 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code
[0], ecc_code
[1], ecc_code
[2]);
506 static int s3c2440_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, u_char
*ecc_code
)
508 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
509 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
512 ecc_code
[1] = ecc
>> 8;
513 ecc_code
[2] = ecc
>> 16;
515 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
& 0xffffff);
520 /* over-ride the standard functions for a little more speed. We can
521 * use read/write block to move the data buffers to/from the controller
524 static void s3c2410_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
526 struct nand_chip
*this = mtd
->priv
;
527 readsb(this->IO_ADDR_R
, buf
, len
);
530 static void s3c2440_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
532 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
533 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
/ 4);
536 static void s3c2410_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
538 struct nand_chip
*this = mtd
->priv
;
539 writesb(this->IO_ADDR_W
, buf
, len
);
542 static void s3c2440_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
544 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
545 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
/ 4);
548 /* cpufreq driver support */
550 #ifdef CONFIG_CPU_FREQ
552 static int s3c2410_nand_cpufreq_transition(struct notifier_block
*nb
,
553 unsigned long val
, void *data
)
555 struct s3c2410_nand_info
*info
;
556 unsigned long newclk
;
558 info
= container_of(nb
, struct s3c2410_nand_info
, freq_transition
);
559 newclk
= clk_get_rate(info
->clk
);
561 if ((val
== CPUFREQ_POSTCHANGE
&& newclk
< info
->clk_rate
) ||
562 (val
== CPUFREQ_PRECHANGE
&& newclk
> info
->clk_rate
)) {
563 s3c2410_nand_setrate(info
);
569 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
571 info
->freq_transition
.notifier_call
= s3c2410_nand_cpufreq_transition
;
573 return cpufreq_register_notifier(&info
->freq_transition
,
574 CPUFREQ_TRANSITION_NOTIFIER
);
577 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
579 cpufreq_unregister_notifier(&info
->freq_transition
,
580 CPUFREQ_TRANSITION_NOTIFIER
);
584 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
589 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
594 /* device management functions */
596 static int s3c2410_nand_remove(struct platform_device
*pdev
)
598 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
600 platform_set_drvdata(pdev
, NULL
);
605 s3c2410_nand_cpufreq_deregister(info
);
607 /* Release all our mtds and their partitions, then go through
608 * freeing the resources used
611 if (info
->mtds
!= NULL
) {
612 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
615 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
616 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
617 nand_release(&ptr
->mtd
);
623 /* free the common resources */
625 if (info
->clk
!= NULL
&& !IS_ERR(info
->clk
)) {
626 if (!allow_clk_stop(info
))
627 clk_disable(info
->clk
);
631 if (info
->regs
!= NULL
) {
636 if (info
->area
!= NULL
) {
637 release_resource(info
->area
);
647 #ifdef CONFIG_MTD_PARTITIONS
648 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
649 struct s3c2410_nand_mtd
*mtd
,
650 struct s3c2410_nand_set
*set
)
653 return add_mtd_device(&mtd
->mtd
);
655 if (set
->nr_partitions
> 0 && set
->partitions
!= NULL
) {
656 return add_mtd_partitions(&mtd
->mtd
, set
->partitions
, set
->nr_partitions
);
659 return add_mtd_device(&mtd
->mtd
);
662 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
663 struct s3c2410_nand_mtd
*mtd
,
664 struct s3c2410_nand_set
*set
)
666 return add_mtd_device(&mtd
->mtd
);
670 /* s3c2410_nand_init_chip
672 * init a single instance of an chip
675 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
676 struct s3c2410_nand_mtd
*nmtd
,
677 struct s3c2410_nand_set
*set
)
679 struct nand_chip
*chip
= &nmtd
->chip
;
680 void __iomem
*regs
= info
->regs
;
682 chip
->write_buf
= s3c2410_nand_write_buf
;
683 chip
->read_buf
= s3c2410_nand_read_buf
;
684 chip
->select_chip
= s3c2410_nand_select_chip
;
685 chip
->chip_delay
= 50;
688 chip
->controller
= &info
->controller
;
690 switch (info
->cpu_type
) {
692 chip
->IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
693 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
694 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
695 chip
->cmd_ctrl
= s3c2410_nand_hwcontrol
;
696 chip
->dev_ready
= s3c2410_nand_devready
;
700 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
701 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
702 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
703 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
704 chip
->dev_ready
= s3c2440_nand_devready
;
705 chip
->read_buf
= s3c2440_nand_read_buf
;
706 chip
->write_buf
= s3c2440_nand_write_buf
;
710 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
711 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
712 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
713 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
714 chip
->dev_ready
= s3c2412_nand_devready
;
716 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
717 dev_info(info
->device
, "System booted from NAND\n");
722 chip
->IO_ADDR_R
= chip
->IO_ADDR_W
;
725 nmtd
->mtd
.priv
= chip
;
726 nmtd
->mtd
.owner
= THIS_MODULE
;
730 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
731 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
732 chip
->ecc
.mode
= NAND_ECC_HW
;
734 switch (info
->cpu_type
) {
736 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
737 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
741 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
742 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
746 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
747 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
752 chip
->ecc
.mode
= NAND_ECC_SOFT
;
755 if (set
->ecc_layout
!= NULL
)
756 chip
->ecc
.layout
= set
->ecc_layout
;
758 if (set
->disable_ecc
)
759 chip
->ecc
.mode
= NAND_ECC_NONE
;
762 /* s3c2410_nand_update_chip
764 * post-probe chip update, to change any items, such as the
765 * layout for large page nand
768 static void s3c2410_nand_update_chip(struct s3c2410_nand_info
*info
,
769 struct s3c2410_nand_mtd
*nmtd
)
771 struct nand_chip
*chip
= &nmtd
->chip
;
773 dev_dbg(info
->device
, "chip %p => page shift %d\n",
774 chip
, chip
->page_shift
);
777 /* change the behaviour depending on wether we are using
778 * the large or small page nand device */
780 if (chip
->page_shift
> 10) {
781 chip
->ecc
.size
= 256;
784 chip
->ecc
.size
= 512;
786 chip
->ecc
.layout
= &nand_hw_eccoob
;
791 /* s3c2410_nand_probe
793 * called by device layer when it finds a device matching
794 * one our driver can handled. This code checks to see if
795 * it can allocate all necessary resources then calls the
796 * nand layer to look for devices
799 static int s3c24xx_nand_probe(struct platform_device
*pdev
,
800 enum s3c_cpu_type cpu_type
)
802 struct s3c2410_platform_nand
*plat
= to_nand_plat(pdev
);
803 struct s3c2410_nand_info
*info
;
804 struct s3c2410_nand_mtd
*nmtd
;
805 struct s3c2410_nand_set
*sets
;
806 struct resource
*res
;
812 pr_debug("s3c2410_nand_probe(%p)\n", pdev
);
814 info
= kmalloc(sizeof(*info
), GFP_KERNEL
);
816 dev_err(&pdev
->dev
, "no memory for flash info\n");
821 memset(info
, 0, sizeof(*info
));
822 platform_set_drvdata(pdev
, info
);
824 spin_lock_init(&info
->controller
.lock
);
825 init_waitqueue_head(&info
->controller
.wq
);
827 /* get the clock source and enable it */
829 info
->clk
= clk_get(&pdev
->dev
, "nand");
830 if (IS_ERR(info
->clk
)) {
831 dev_err(&pdev
->dev
, "failed to get clock\n");
836 clk_enable(info
->clk
);
838 /* allocate and map the resource */
840 /* currently we assume we have the one resource */
841 res
= pdev
->resource
;
842 size
= res
->end
- res
->start
+ 1;
844 info
->area
= request_mem_region(res
->start
, size
, pdev
->name
);
846 if (info
->area
== NULL
) {
847 dev_err(&pdev
->dev
, "cannot reserve register region\n");
852 info
->device
= &pdev
->dev
;
853 info
->platform
= plat
;
854 info
->regs
= ioremap(res
->start
, size
);
855 info
->cpu_type
= cpu_type
;
857 if (info
->regs
== NULL
) {
858 dev_err(&pdev
->dev
, "cannot reserve register region\n");
863 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
865 /* initialise the hardware */
867 err
= s3c2410_nand_inithw(info
);
871 sets
= (plat
!= NULL
) ? plat
->sets
: NULL
;
872 nr_sets
= (plat
!= NULL
) ? plat
->nr_sets
: 1;
874 info
->mtd_count
= nr_sets
;
876 /* allocate our information */
878 size
= nr_sets
* sizeof(*info
->mtds
);
879 info
->mtds
= kmalloc(size
, GFP_KERNEL
);
880 if (info
->mtds
== NULL
) {
881 dev_err(&pdev
->dev
, "failed to allocate mtd storage\n");
886 memset(info
->mtds
, 0, size
);
888 /* initialise all possible chips */
892 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++) {
893 pr_debug("initialising set %d (%p, info %p)\n", setno
, nmtd
, info
);
895 s3c2410_nand_init_chip(info
, nmtd
, sets
);
897 nmtd
->scan_res
= nand_scan_ident(&nmtd
->mtd
,
898 (sets
) ? sets
->nr_chips
: 1);
900 if (nmtd
->scan_res
== 0) {
901 s3c2410_nand_update_chip(info
, nmtd
);
902 nand_scan_tail(&nmtd
->mtd
);
903 s3c2410_nand_add_partition(info
, nmtd
, sets
);
910 err
= s3c2410_nand_cpufreq_register(info
);
912 dev_err(&pdev
->dev
, "failed to init cpufreq support\n");
916 if (allow_clk_stop(info
)) {
917 dev_info(&pdev
->dev
, "clock idle support enabled\n");
918 clk_disable(info
->clk
);
921 pr_debug("initialised ok\n");
925 s3c2410_nand_remove(pdev
);
935 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
937 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
940 info
->save_sel
= readl(info
->sel_reg
);
942 /* For the moment, we must ensure nFCE is high during
943 * the time we are suspended. This really should be
944 * handled by suspending the MTDs we are using, but
945 * that is currently not the case. */
947 writel(info
->save_sel
| info
->sel_bit
, info
->sel_reg
);
949 if (!allow_clk_stop(info
))
950 clk_disable(info
->clk
);
956 static int s3c24xx_nand_resume(struct platform_device
*dev
)
958 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
962 clk_enable(info
->clk
);
963 s3c2410_nand_inithw(info
);
965 /* Restore the state of the nFCE line. */
967 sel
= readl(info
->sel_reg
);
968 sel
&= ~info
->sel_bit
;
969 sel
|= info
->save_sel
& info
->sel_bit
;
970 writel(sel
, info
->sel_reg
);
972 if (allow_clk_stop(info
))
973 clk_disable(info
->clk
);
980 #define s3c24xx_nand_suspend NULL
981 #define s3c24xx_nand_resume NULL
984 /* driver device registration */
986 static int s3c2410_nand_probe(struct platform_device
*dev
)
988 return s3c24xx_nand_probe(dev
, TYPE_S3C2410
);
991 static int s3c2440_nand_probe(struct platform_device
*dev
)
993 return s3c24xx_nand_probe(dev
, TYPE_S3C2440
);
996 static int s3c2412_nand_probe(struct platform_device
*dev
)
998 return s3c24xx_nand_probe(dev
, TYPE_S3C2412
);
1001 static struct platform_driver s3c2410_nand_driver
= {
1002 .probe
= s3c2410_nand_probe
,
1003 .remove
= s3c2410_nand_remove
,
1004 .suspend
= s3c24xx_nand_suspend
,
1005 .resume
= s3c24xx_nand_resume
,
1007 .name
= "s3c2410-nand",
1008 .owner
= THIS_MODULE
,
1012 static struct platform_driver s3c2440_nand_driver
= {
1013 .probe
= s3c2440_nand_probe
,
1014 .remove
= s3c2410_nand_remove
,
1015 .suspend
= s3c24xx_nand_suspend
,
1016 .resume
= s3c24xx_nand_resume
,
1018 .name
= "s3c2440-nand",
1019 .owner
= THIS_MODULE
,
1023 static struct platform_driver s3c2412_nand_driver
= {
1024 .probe
= s3c2412_nand_probe
,
1025 .remove
= s3c2410_nand_remove
,
1026 .suspend
= s3c24xx_nand_suspend
,
1027 .resume
= s3c24xx_nand_resume
,
1029 .name
= "s3c2412-nand",
1030 .owner
= THIS_MODULE
,
1034 static int __init
s3c2410_nand_init(void)
1036 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1038 platform_driver_register(&s3c2412_nand_driver
);
1039 platform_driver_register(&s3c2440_nand_driver
);
1040 return platform_driver_register(&s3c2410_nand_driver
);
1043 static void __exit
s3c2410_nand_exit(void)
1045 platform_driver_unregister(&s3c2412_nand_driver
);
1046 platform_driver_unregister(&s3c2440_nand_driver
);
1047 platform_driver_unregister(&s3c2410_nand_driver
);
1050 module_init(s3c2410_nand_init
);
1051 module_exit(s3c2410_nand_exit
);
1053 MODULE_LICENSE("GPL");
1054 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1055 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1056 MODULE_ALIAS("platform:s3c2410-nand");
1057 MODULE_ALIAS("platform:s3c2412-nand");
1058 MODULE_ALIAS("platform:s3c2440-nand");