2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mman.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/tty.h>
19 #include <linux/vt_kern.h> /* For unblank_screen() */
20 #include <linux/compiler.h>
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
31 #include <asm/segment.h>
32 #include <asm/pgalloc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/proto.h>
36 #include <asm-generic/sections.h>
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
46 #define PF_PROT (1<<0)
47 #define PF_WRITE (1<<1)
48 #define PF_USER (1<<2)
49 #define PF_RSVD (1<<3)
50 #define PF_INSTR (1<<4)
52 static inline int notify_page_fault(struct pt_regs
*regs
)
57 /* kprobe_running() needs smp_processor_id() */
59 if (!user_mode_vm(regs
)) {
61 if (!user_mode(regs
)) {
64 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
84 * Opcode checker based on code by Richard Brunner
86 static int is_prefetch(struct pt_regs
*regs
, unsigned long addr
,
87 unsigned long error_code
)
92 unsigned char *max_instr
;
95 * If it was a exec (instruction fetch) fault on NX page, then
96 * do not ignore the fault:
98 if (error_code
& PF_INSTR
)
101 instr
= (unsigned char *)convert_ip_to_linear(current
, regs
);
102 max_instr
= instr
+ 15;
104 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE
)
107 while (scan_more
&& instr
< max_instr
) {
108 unsigned char opcode
;
109 unsigned char instr_hi
;
110 unsigned char instr_lo
;
112 if (probe_kernel_address(instr
, opcode
))
115 instr_hi
= opcode
& 0xf0;
116 instr_lo
= opcode
& 0x0f;
123 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
124 * In X86_64 long mode, the CPU will signal invalid
125 * opcode if some of these prefixes are present so
126 * X86_64 will never get here anyway
128 scan_more
= ((instr_lo
& 7) == 0x6);
133 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
134 * Need to figure out under what instruction mode the
135 * instruction was issued. Could check the LDT for lm,
136 * but for now it's good enough to assume that long
137 * mode only uses well known segments or kernel.
139 scan_more
= (!user_mode(regs
)) || (regs
->cs
== __USER_CS
);
143 /* 0x64 thru 0x67 are valid prefixes in all modes. */
144 scan_more
= (instr_lo
& 0xC) == 0x4;
147 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
148 scan_more
= !instr_lo
|| (instr_lo
>>1) == 1;
151 /* Prefetch instruction is 0x0F0D or 0x0F18 */
154 if (probe_kernel_address(instr
, opcode
))
156 prefetch
= (instr_lo
== 0xF) &&
157 (opcode
== 0x0D || opcode
== 0x18);
167 static void force_sig_info_fault(int si_signo
, int si_code
,
168 unsigned long address
, struct task_struct
*tsk
)
172 info
.si_signo
= si_signo
;
174 info
.si_code
= si_code
;
175 info
.si_addr
= (void __user
*)address
;
176 force_sig_info(si_signo
, &info
, tsk
);
180 static int bad_address(void *p
)
183 return probe_kernel_address((unsigned long *)p
, dummy
);
187 static void dump_pagetable(unsigned long address
)
190 __typeof__(pte_val(__pte(0))) page
;
193 page
= ((__typeof__(page
) *) __va(page
))[address
>> PGDIR_SHIFT
];
194 #ifdef CONFIG_X86_PAE
195 printk("*pdpt = %016Lx ", page
);
196 if ((page
>> PAGE_SHIFT
) < max_low_pfn
197 && page
& _PAGE_PRESENT
) {
199 page
= ((__typeof__(page
) *) __va(page
))[(address
>> PMD_SHIFT
)
200 & (PTRS_PER_PMD
- 1)];
201 printk(KERN_CONT
"*pde = %016Lx ", page
);
205 printk("*pde = %08lx ", page
);
209 * We must not directly access the pte in the highpte
210 * case if the page table is located in highmem.
211 * And let's rather not kmap-atomic the pte, just in case
212 * it's allocated already.
214 if ((page
>> PAGE_SHIFT
) < max_low_pfn
215 && (page
& _PAGE_PRESENT
)
216 && !(page
& _PAGE_PSE
)) {
218 page
= ((__typeof__(page
) *) __va(page
))[(address
>> PAGE_SHIFT
)
219 & (PTRS_PER_PTE
- 1)];
220 printk("*pte = %0*Lx ", sizeof(page
)*2, (u64
)page
);
224 #else /* CONFIG_X86_64 */
230 pgd
= (pgd_t
*)read_cr3();
232 pgd
= __va((unsigned long)pgd
& PHYSICAL_PAGE_MASK
);
233 pgd
+= pgd_index(address
);
234 if (bad_address(pgd
)) goto bad
;
235 printk("PGD %lx ", pgd_val(*pgd
));
236 if (!pgd_present(*pgd
)) goto ret
;
238 pud
= pud_offset(pgd
, address
);
239 if (bad_address(pud
)) goto bad
;
240 printk("PUD %lx ", pud_val(*pud
));
241 if (!pud_present(*pud
) || pud_large(*pud
))
244 pmd
= pmd_offset(pud
, address
);
245 if (bad_address(pmd
)) goto bad
;
246 printk("PMD %lx ", pmd_val(*pmd
));
247 if (!pmd_present(*pmd
) || pmd_large(*pmd
)) goto ret
;
249 pte
= pte_offset_kernel(pmd
, address
);
250 if (bad_address(pte
)) goto bad
;
251 printk("PTE %lx", pte_val(*pte
));
261 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
263 unsigned index
= pgd_index(address
);
269 pgd_k
= init_mm
.pgd
+ index
;
271 if (!pgd_present(*pgd_k
))
275 * set_pgd(pgd, *pgd_k); here would be useless on PAE
276 * and redundant with the set_pmd() on non-PAE. As would
280 pud
= pud_offset(pgd
, address
);
281 pud_k
= pud_offset(pgd_k
, address
);
282 if (!pud_present(*pud_k
))
285 pmd
= pmd_offset(pud
, address
);
286 pmd_k
= pmd_offset(pud_k
, address
);
287 if (!pmd_present(*pmd_k
))
289 if (!pmd_present(*pmd
)) {
290 set_pmd(pmd
, *pmd_k
);
291 arch_flush_lazy_mmu_mode();
293 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
299 static const char errata93_warning
[] =
300 KERN_ERR
"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
301 KERN_ERR
"******* Working around it, but it may cause SEGVs or burn power.\n"
302 KERN_ERR
"******* Please consider a BIOS update.\n"
303 KERN_ERR
"******* Disabling USB legacy in the BIOS may also help.\n";
306 /* Workaround for K8 erratum #93 & buggy BIOS.
307 BIOS SMM functions are required to use a specific workaround
308 to avoid corruption of the 64bit RIP register on C stepping K8.
309 A lot of BIOS that didn't get tested properly miss this.
310 The OS sees this as a page fault with the upper 32bits of RIP cleared.
311 Try to work around it here.
312 Note we only handle faults in kernel here.
313 Does nothing for X86_32
315 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
319 if (address
!= regs
->ip
)
321 if ((address
>> 32) != 0)
323 address
|= 0xffffffffUL
<< 32;
324 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
325 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
327 printk(errata93_warning
);
338 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
339 * addresses >4GB. We catch this in the page fault handler because these
340 * addresses are not reachable. Just detect this case and return. Any code
341 * segment in LDT is compatibility mode.
343 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
346 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) &&
353 void do_invalid_op(struct pt_regs
*, unsigned long);
355 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
357 #ifdef CONFIG_X86_F00F_BUG
360 * Pentium F0 0F C7 C8 bug workaround.
362 if (boot_cpu_data
.f00f_bug
) {
363 nr
= (address
- idt_descr
.address
) >> 3;
366 do_invalid_op(regs
, 0);
374 static void show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
375 unsigned long address
)
378 if (!oops_may_print())
382 #ifdef CONFIG_X86_PAE
383 if (error_code
& PF_INSTR
) {
385 pte_t
*pte
= lookup_address(address
, &level
);
387 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
388 printk(KERN_CRIT
"kernel tried to execute "
389 "NX-protected page - exploit attempt? "
390 "(uid: %d)\n", current
->uid
);
394 printk(KERN_ALERT
"BUG: unable to handle kernel ");
395 if (address
< PAGE_SIZE
)
396 printk(KERN_CONT
"NULL pointer dereference");
398 printk(KERN_CONT
"paging request");
400 printk(KERN_CONT
" at %08lx\n", address
);
402 printk(KERN_CONT
" at %016lx\n", address
);
404 printk(KERN_ALERT
"IP:");
405 printk_address(regs
->ip
, 1);
406 dump_pagetable(address
);
410 static noinline
void pgtable_bad(unsigned long address
, struct pt_regs
*regs
,
411 unsigned long error_code
)
413 unsigned long flags
= oops_begin();
414 struct task_struct
*tsk
;
416 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
417 current
->comm
, address
);
418 dump_pagetable(address
);
420 tsk
->thread
.cr2
= address
;
421 tsk
->thread
.trap_no
= 14;
422 tsk
->thread
.error_code
= error_code
;
423 if (__die("Bad pagetable", regs
, error_code
))
425 oops_end(flags
, regs
, SIGKILL
);
429 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
431 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
433 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
440 * Handle a spurious fault caused by a stale TLB entry. This allows
441 * us to lazily refresh the TLB when increasing the permissions of a
442 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
443 * expensive since that implies doing a full cross-processor TLB
444 * flush, even if no stale TLB entries exist on other processors.
445 * There are no security implications to leaving a stale TLB when
446 * increasing the permissions on a page.
448 static int spurious_fault(unsigned long address
,
449 unsigned long error_code
)
456 /* Reserved-bit violation or user access to kernel space? */
457 if (error_code
& (PF_USER
| PF_RSVD
))
460 pgd
= init_mm
.pgd
+ pgd_index(address
);
461 if (!pgd_present(*pgd
))
464 pud
= pud_offset(pgd
, address
);
465 if (!pud_present(*pud
))
469 return spurious_fault_check(error_code
, (pte_t
*) pud
);
471 pmd
= pmd_offset(pud
, address
);
472 if (!pmd_present(*pmd
))
476 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
478 pte
= pte_offset_kernel(pmd
, address
);
479 if (!pte_present(*pte
))
482 return spurious_fault_check(error_code
, pte
);
487 * Handle a fault on the vmalloc or module mapping area
490 * Handle a fault on the vmalloc area
492 * This assumes no large pages in there.
494 static int vmalloc_fault(unsigned long address
)
497 unsigned long pgd_paddr
;
501 * Synchronize this task's top level page-table
502 * with the 'reference' page table.
504 * Do _not_ use "current" here. We might be inside
505 * an interrupt in the middle of a task switch..
507 pgd_paddr
= read_cr3();
508 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
511 pte_k
= pte_offset_kernel(pmd_k
, address
);
512 if (!pte_present(*pte_k
))
516 pgd_t
*pgd
, *pgd_ref
;
517 pud_t
*pud
, *pud_ref
;
518 pmd_t
*pmd
, *pmd_ref
;
519 pte_t
*pte
, *pte_ref
;
521 /* Make sure we are in vmalloc area */
522 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
525 /* Copy kernel mappings over when needed. This can also
526 happen within a race in page table update. In the later
529 pgd
= pgd_offset(current
->mm
?: &init_mm
, address
);
530 pgd_ref
= pgd_offset_k(address
);
531 if (pgd_none(*pgd_ref
))
534 set_pgd(pgd
, *pgd_ref
);
536 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
538 /* Below here mismatches are bugs because these lower tables
541 pud
= pud_offset(pgd
, address
);
542 pud_ref
= pud_offset(pgd_ref
, address
);
543 if (pud_none(*pud_ref
))
545 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
547 pmd
= pmd_offset(pud
, address
);
548 pmd_ref
= pmd_offset(pud_ref
, address
);
549 if (pmd_none(*pmd_ref
))
551 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
553 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
554 if (!pte_present(*pte_ref
))
556 pte
= pte_offset_kernel(pmd
, address
);
557 /* Don't use pte_page here, because the mappings can point
558 outside mem_map, and the NUMA hash lookup cannot handle
560 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
566 int show_unhandled_signals
= 1;
569 * This routine handles page faults. It determines the address,
570 * and the problem, and then passes it off to one of the appropriate
576 void __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
578 struct task_struct
*tsk
;
579 struct mm_struct
*mm
;
580 struct vm_area_struct
*vma
;
581 unsigned long address
;
589 * We can fault from pretty much anywhere, with unknown IRQ state.
591 trace_hardirqs_fixup();
595 prefetchw(&mm
->mmap_sem
);
597 /* get the address */
598 address
= read_cr2();
600 si_code
= SEGV_MAPERR
;
602 if (notify_page_fault(regs
))
606 * We fault-in kernel-space virtual memory on-demand. The
607 * 'reference' page table is init_mm.pgd.
609 * NOTE! We MUST NOT take any locks for this case. We may
610 * be in an interrupt or a critical region, and should
611 * only copy the information from the master page table,
614 * This verifies that the fault happens in kernel space
615 * (error_code & 4) == 0, and that the fault was not a
616 * protection error (error_code & 9) == 0.
619 if (unlikely(address
>= TASK_SIZE
)) {
621 if (unlikely(address
>= TASK_SIZE64
)) {
623 if (!(error_code
& (PF_RSVD
|PF_USER
|PF_PROT
)) &&
624 vmalloc_fault(address
) >= 0)
627 /* Can handle a stale RO->RW TLB */
628 if (spurious_fault(address
, error_code
))
632 * Don't take the mm semaphore here. If we fixup a prefetch
633 * fault we could otherwise deadlock.
635 goto bad_area_nosemaphore
;
640 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
641 fault has been handled. */
642 if (regs
->flags
& (X86_EFLAGS_IF
|VM_MASK
))
646 * If we're in an interrupt, have no user context or are running in an
647 * atomic region then we must not take the fault.
649 if (in_atomic() || !mm
)
650 goto bad_area_nosemaphore
;
651 #else /* CONFIG_X86_64 */
652 if (likely(regs
->flags
& X86_EFLAGS_IF
))
655 if (unlikely(error_code
& PF_RSVD
))
656 pgtable_bad(address
, regs
, error_code
);
659 * If we're in an interrupt, have no user context or are running in an
660 * atomic region then we must not take the fault.
662 if (unlikely(in_atomic() || !mm
))
663 goto bad_area_nosemaphore
;
666 * User-mode registers count as a user access even for any
667 * potential system fault or CPU buglet.
669 if (user_mode_vm(regs
))
670 error_code
|= PF_USER
;
673 /* When running in the kernel we expect faults to occur only to
674 * addresses in user space. All other faults represent errors in the
675 * kernel and should generate an OOPS. Unfortunately, in the case of an
676 * erroneous fault occurring in a code path which already holds mmap_sem
677 * we will deadlock attempting to validate the fault against the
678 * address space. Luckily the kernel only validly references user
679 * space from well defined areas of code, which are listed in the
682 * As the vast majority of faults will be valid we will only perform
683 * the source reference check when there is a possibility of a deadlock.
684 * Attempt to lock the address space, if we cannot we then validate the
685 * source. If this is invalid we can skip the address space check,
686 * thus avoiding the deadlock.
688 if (!down_read_trylock(&mm
->mmap_sem
)) {
689 if ((error_code
& PF_USER
) == 0 &&
690 !search_exception_tables(regs
->ip
))
691 goto bad_area_nosemaphore
;
692 down_read(&mm
->mmap_sem
);
695 vma
= find_vma(mm
, address
);
698 if (vma
->vm_start
<= address
)
700 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
702 if (error_code
& PF_USER
) {
704 * Accessing the stack below %sp is always a bug.
705 * The large cushion allows instructions like enter
706 * and pusha to work. ("enter $65535,$31" pushes
707 * 32 pointers and then decrements %sp by 65535.)
709 if (address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)
712 if (expand_stack(vma
, address
))
715 * Ok, we have a good vm_area for this memory access, so
719 si_code
= SEGV_ACCERR
;
721 switch (error_code
& (PF_PROT
|PF_WRITE
)) {
722 default: /* 3: write, present */
724 case PF_WRITE
: /* write, not present */
725 if (!(vma
->vm_flags
& VM_WRITE
))
729 case PF_PROT
: /* read, present */
731 case 0: /* read, not present */
732 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
740 * If for any reason at all we couldn't handle the fault,
741 * make sure we exit gracefully rather than endlessly redo
744 fault
= handle_mm_fault(mm
, vma
, address
, write
);
745 if (unlikely(fault
& VM_FAULT_ERROR
)) {
746 if (fault
& VM_FAULT_OOM
)
748 else if (fault
& VM_FAULT_SIGBUS
)
752 if (fault
& VM_FAULT_MAJOR
)
759 * Did it hit the DOS screen memory VA from vm86 mode?
761 if (v8086_mode(regs
)) {
762 unsigned long bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
764 tsk
->thread
.screen_bitmap
|= 1 << bit
;
767 up_read(&mm
->mmap_sem
);
771 * Something tried to access memory that isn't in our memory map..
772 * Fix it, but check if it's kernel or user first..
775 up_read(&mm
->mmap_sem
);
777 bad_area_nosemaphore
:
778 /* User mode accesses just cause a SIGSEGV */
779 if (error_code
& PF_USER
) {
781 * It's possible to have interrupts off here.
786 * Valid to do another page fault here because this one came
789 if (is_prefetch(regs
, address
, error_code
))
792 if (is_errata100(regs
, address
))
795 if (show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
) &&
796 printk_ratelimit()) {
799 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
801 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
803 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
804 tsk
->comm
, task_pid_nr(tsk
), address
, regs
->ip
,
805 regs
->sp
, error_code
);
806 print_vma_addr(" in ", regs
->ip
);
810 tsk
->thread
.cr2
= address
;
811 /* Kernel addresses are always protection faults */
812 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
813 tsk
->thread
.trap_no
= 14;
814 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
);
818 if (is_f00f_bug(regs
, address
))
822 /* Are we prepared to handle this kernel fault? */
823 if (fixup_exception(regs
))
828 * Valid to do another page fault here, because if this fault
829 * had been triggered by is_prefetch fixup_exception would have
833 * Hall of shame of CPU/BIOS bugs.
835 if (is_prefetch(regs
, address
, error_code
))
838 if (is_errata93(regs
, address
))
842 * Oops. The kernel tried to access some bad page. We'll have to
843 * terminate things with extreme prejudice.
848 flags
= oops_begin();
851 show_fault_oops(regs
, error_code
, address
);
853 tsk
->thread
.cr2
= address
;
854 tsk
->thread
.trap_no
= 14;
855 tsk
->thread
.error_code
= error_code
;
858 die("Oops", regs
, error_code
);
862 if (__die("Oops", regs
, error_code
))
864 /* Executive summary in case the body of the oops scrolled away */
865 printk(KERN_EMERG
"CR2: %016lx\n", address
);
866 oops_end(flags
, regs
, SIGKILL
);
870 * We ran out of memory, or some other thing happened to us that made
871 * us unable to handle the page fault gracefully.
874 up_read(&mm
->mmap_sem
);
875 if (is_global_init(tsk
)) {
878 down_read(&mm
->mmap_sem
);
885 printk("VM: killing process %s\n", tsk
->comm
);
886 if (error_code
& PF_USER
)
887 do_group_exit(SIGKILL
);
891 up_read(&mm
->mmap_sem
);
893 /* Kernel mode? Handle exceptions or die */
894 if (!(error_code
& PF_USER
))
897 /* User space => ok to do another page fault */
898 if (is_prefetch(regs
, address
, error_code
))
901 tsk
->thread
.cr2
= address
;
902 tsk
->thread
.error_code
= error_code
;
903 tsk
->thread
.trap_no
= 14;
904 force_sig_info_fault(SIGBUS
, BUS_ADRERR
, address
, tsk
);
907 DEFINE_SPINLOCK(pgd_lock
);
910 void vmalloc_sync_all(void)
914 * Note that races in the updates of insync and start aren't
915 * problematic: insync can only get set bits added, and updates to
916 * start are only improving performance (without affecting correctness
919 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
920 static unsigned long start
= TASK_SIZE
;
921 unsigned long address
;
923 if (SHARED_KERNEL_PMD
)
926 BUILD_BUG_ON(TASK_SIZE
& ~PGDIR_MASK
);
927 for (address
= start
; address
>= TASK_SIZE
; address
+= PGDIR_SIZE
) {
928 if (!test_bit(pgd_index(address
), insync
)) {
932 spin_lock_irqsave(&pgd_lock
, flags
);
933 list_for_each_entry(page
, &pgd_list
, lru
) {
934 if (!vmalloc_sync_one(page_address(page
),
938 spin_unlock_irqrestore(&pgd_lock
, flags
);
940 set_bit(pgd_index(address
), insync
);
942 if (address
== start
&& test_bit(pgd_index(address
), insync
))
943 start
= address
+ PGDIR_SIZE
;
945 #else /* CONFIG_X86_64 */
947 * Note that races in the updates of insync and start aren't
948 * problematic: insync can only get set bits added, and updates to
949 * start are only improving performance (without affecting correctness
952 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
953 static unsigned long start
= VMALLOC_START
& PGDIR_MASK
;
954 unsigned long address
;
956 for (address
= start
; address
<= VMALLOC_END
; address
+= PGDIR_SIZE
) {
957 if (!test_bit(pgd_index(address
), insync
)) {
958 const pgd_t
*pgd_ref
= pgd_offset_k(address
);
962 if (pgd_none(*pgd_ref
))
964 spin_lock_irqsave(&pgd_lock
, flags
);
965 list_for_each_entry(page
, &pgd_list
, lru
) {
967 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
969 set_pgd(pgd
, *pgd_ref
);
971 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
973 spin_unlock_irqrestore(&pgd_lock
, flags
);
974 set_bit(pgd_index(address
), insync
);
976 if (address
== start
)
977 start
= address
+ PGDIR_SIZE
;
979 /* Check that there is no need to do the same for the modules area. */
980 BUILD_BUG_ON(!(MODULES_VADDR
> __START_KERNEL
));
981 BUILD_BUG_ON(!(((MODULES_END
- 1) & PGDIR_MASK
) ==
982 (__START_KERNEL
& PGDIR_MASK
)));