2 * MUSB OTG driver host support
4 * Copyright 2005 Mentor Graphics Corporation
5 * Copyright (C) 2005-2006 by Texas Instruments
6 * Copyright (C) 2006-2007 Nokia Corporation
7 * Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
23 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
26 * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
30 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/errno.h>
42 #include <linux/init.h>
43 #include <linux/list.h>
45 #include "musb_core.h"
46 #include "musb_host.h"
49 /* MUSB HOST status 22-mar-2006
51 * - There's still lots of partial code duplication for fault paths, so
52 * they aren't handled as consistently as they need to be.
54 * - PIO mostly behaved when last tested.
55 * + including ep0, with all usbtest cases 9, 10
56 * + usbtest 14 (ep0out) doesn't seem to run at all
57 * + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
58 * configurations, but otherwise double buffering passes basic tests.
59 * + for 2.6.N, for N > ~10, needs API changes for hcd framework.
61 * - DMA (CPPI) ... partially behaves, not currently recommended
62 * + about 1/15 the speed of typical EHCI implementations (PCI)
63 * + RX, all too often reqpkt seems to misbehave after tx
64 * + TX, no known issues (other than evident silicon issue)
66 * - DMA (Mentor/OMAP) ...has at least toggle update problems
68 * - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
69 * starvation ... nothing yet for TX, interrupt, or bulk.
71 * - Not tested with HNP, but some SRP paths seem to behave.
73 * NOTE 24-August-2006:
75 * - Bulk traffic finally uses both sides of hardware ep1, freeing up an
76 * extra endpoint for periodic use enabling hub + keybd + mouse. That
77 * mostly works, except that with "usbnet" it's easy to trigger cases
78 * with "ping" where RX loses. (a) ping to davinci, even "ping -f",
79 * fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
80 * although ARP RX wins. (That test was done with a full speed link.)
85 * NOTE on endpoint usage:
87 * CONTROL transfers all go through ep0. BULK ones go through dedicated IN
88 * and OUT endpoints ... hardware is dedicated for those "async" queue(s).
89 * (Yes, bulk _could_ use more of the endpoints than that, and would even
92 * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
93 * So far that scheduling is both dumb and optimistic: the endpoint will be
94 * "claimed" until its software queue is no longer refilled. No multiplexing
95 * of transfers between endpoints, or anything clever.
99 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
100 struct urb
*urb
, int is_out
,
101 u8
*buf
, u32 offset
, u32 len
);
104 * Clear TX fifo. Needed to avoid BABBLE errors.
106 static void musb_h_tx_flush_fifo(struct musb_hw_ep
*ep
)
108 void __iomem
*epio
= ep
->regs
;
113 csr
= musb_readw(epio
, MUSB_TXCSR
);
114 while (csr
& MUSB_TXCSR_FIFONOTEMPTY
) {
116 DBG(3, "Host TX FIFONOTEMPTY csr: %02x\n", csr
);
118 csr
|= MUSB_TXCSR_FLUSHFIFO
;
119 musb_writew(epio
, MUSB_TXCSR
, csr
);
120 csr
= musb_readw(epio
, MUSB_TXCSR
);
121 if (WARN(retries
-- < 1,
122 "Could not flush host TX%d fifo: csr: %04x\n",
129 static void musb_h_ep0_flush_fifo(struct musb_hw_ep
*ep
)
131 void __iomem
*epio
= ep
->regs
;
135 /* scrub any data left in the fifo */
137 csr
= musb_readw(epio
, MUSB_TXCSR
);
138 if (!(csr
& (MUSB_CSR0_TXPKTRDY
| MUSB_CSR0_RXPKTRDY
)))
140 musb_writew(epio
, MUSB_TXCSR
, MUSB_CSR0_FLUSHFIFO
);
141 csr
= musb_readw(epio
, MUSB_TXCSR
);
145 WARN(!retries
, "Could not flush host TX%d fifo: csr: %04x\n",
148 /* and reset for the next transfer */
149 musb_writew(epio
, MUSB_TXCSR
, 0);
153 * Start transmit. Caller is responsible for locking shared resources.
154 * musb must be locked.
156 static inline void musb_h_tx_start(struct musb_hw_ep
*ep
)
160 /* NOTE: no locks here; caller should lock and select EP */
162 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
163 txcsr
|= MUSB_TXCSR_TXPKTRDY
| MUSB_TXCSR_H_WZC_BITS
;
164 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
166 txcsr
= MUSB_CSR0_H_SETUPPKT
| MUSB_CSR0_TXPKTRDY
;
167 musb_writew(ep
->regs
, MUSB_CSR0
, txcsr
);
172 static inline void musb_h_tx_dma_start(struct musb_hw_ep
*ep
)
176 /* NOTE: no locks here; caller should lock and select EP */
177 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
178 txcsr
|= MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_WZC_BITS
;
179 if (is_cppi_enabled())
180 txcsr
|= MUSB_TXCSR_DMAMODE
;
181 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
185 * Start the URB at the front of an endpoint's queue
186 * end must be claimed from the caller.
188 * Context: controller locked, irqs blocked
191 musb_start_urb(struct musb
*musb
, int is_in
, struct musb_qh
*qh
)
195 void __iomem
*mbase
= musb
->mregs
;
196 struct urb
*urb
= next_urb(qh
);
197 void *buf
= urb
->transfer_buffer
;
199 struct musb_hw_ep
*hw_ep
= qh
->hw_ep
;
200 unsigned pipe
= urb
->pipe
;
201 u8 address
= usb_pipedevice(pipe
);
202 int epnum
= hw_ep
->epnum
;
204 /* initialize software qh state */
208 /* gather right source of data */
210 case USB_ENDPOINT_XFER_CONTROL
:
211 /* control transfers always start with SETUP */
214 musb
->ep0_stage
= MUSB_EP0_START
;
215 buf
= urb
->setup_packet
;
218 case USB_ENDPOINT_XFER_ISOC
:
221 offset
= urb
->iso_frame_desc
[0].offset
;
222 len
= urb
->iso_frame_desc
[0].length
;
224 default: /* bulk, interrupt */
225 /* actual_length may be nonzero on retry paths */
226 buf
= urb
->transfer_buffer
+ urb
->actual_length
;
227 len
= urb
->transfer_buffer_length
- urb
->actual_length
;
230 DBG(4, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
231 qh
, urb
, address
, qh
->epnum
,
232 is_in
? "in" : "out",
233 ({char *s
; switch (qh
->type
) {
234 case USB_ENDPOINT_XFER_CONTROL
: s
= ""; break;
235 case USB_ENDPOINT_XFER_BULK
: s
= "-bulk"; break;
236 case USB_ENDPOINT_XFER_ISOC
: s
= "-iso"; break;
237 default: s
= "-intr"; break;
239 epnum
, buf
+ offset
, len
);
241 /* Configure endpoint */
242 if (is_in
|| hw_ep
->is_shared_fifo
)
246 musb_ep_program(musb
, epnum
, urb
, !is_in
, buf
, offset
, len
);
248 /* transmit may have more work: start it when it is time */
252 /* determine if the time is right for a periodic transfer */
254 case USB_ENDPOINT_XFER_ISOC
:
255 case USB_ENDPOINT_XFER_INT
:
256 DBG(3, "check whether there's still time for periodic Tx\n");
257 frame
= musb_readw(mbase
, MUSB_FRAME
);
258 /* FIXME this doesn't implement that scheduling policy ...
259 * or handle framecounter wrapping
261 if ((urb
->transfer_flags
& URB_ISO_ASAP
)
262 || (frame
>= urb
->start_frame
)) {
263 /* REVISIT the SOF irq handler shouldn't duplicate
264 * this code; and we don't init urb->start_frame...
269 qh
->frame
= urb
->start_frame
;
270 /* enable SOF interrupt so we can count down */
271 DBG(1, "SOF for %d\n", epnum
);
272 #if 1 /* ifndef CONFIG_ARCH_DAVINCI */
273 musb_writeb(mbase
, MUSB_INTRUSBE
, 0xff);
279 DBG(4, "Start TX%d %s\n", epnum
,
280 hw_ep
->tx_channel
? "dma" : "pio");
282 if (!hw_ep
->tx_channel
)
283 musb_h_tx_start(hw_ep
);
284 else if (is_cppi_enabled() || tusb_dma_omap())
285 musb_h_tx_dma_start(hw_ep
);
289 /* caller owns controller lock, irqs are blocked */
291 __musb_giveback(struct musb
*musb
, struct urb
*urb
, int status
)
292 __releases(musb
->lock
)
293 __acquires(musb
->lock
)
295 DBG(({ int level
; switch (status
) {
299 /* common/boring faults */
310 "complete %p %pF (%d), dev%d ep%d%s, %d/%d\n",
311 urb
, urb
->complete
, status
,
312 usb_pipedevice(urb
->pipe
),
313 usb_pipeendpoint(urb
->pipe
),
314 usb_pipein(urb
->pipe
) ? "in" : "out",
315 urb
->actual_length
, urb
->transfer_buffer_length
318 usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb
), urb
);
319 spin_unlock(&musb
->lock
);
320 usb_hcd_giveback_urb(musb_to_hcd(musb
), urb
, status
);
321 spin_lock(&musb
->lock
);
324 /* for bulk/interrupt endpoints only */
326 musb_save_toggle(struct musb_hw_ep
*ep
, int is_in
, struct urb
*urb
)
328 struct usb_device
*udev
= urb
->dev
;
330 void __iomem
*epio
= ep
->regs
;
333 /* FIXME: the current Mentor DMA code seems to have
334 * problems getting toggle correct.
337 if (is_in
|| ep
->is_shared_fifo
)
343 csr
= musb_readw(epio
, MUSB_TXCSR
);
344 usb_settoggle(udev
, qh
->epnum
, 1,
345 (csr
& MUSB_TXCSR_H_DATATOGGLE
)
348 csr
= musb_readw(epio
, MUSB_RXCSR
);
349 usb_settoggle(udev
, qh
->epnum
, 0,
350 (csr
& MUSB_RXCSR_H_DATATOGGLE
)
355 /* caller owns controller lock, irqs are blocked */
356 static struct musb_qh
*
357 musb_giveback(struct musb_qh
*qh
, struct urb
*urb
, int status
)
359 struct musb_hw_ep
*ep
= qh
->hw_ep
;
360 struct musb
*musb
= ep
->musb
;
361 int is_in
= usb_pipein(urb
->pipe
);
362 int ready
= qh
->is_ready
;
364 /* save toggle eagerly, for paranoia */
366 case USB_ENDPOINT_XFER_BULK
:
367 case USB_ENDPOINT_XFER_INT
:
368 musb_save_toggle(ep
, is_in
, urb
);
370 case USB_ENDPOINT_XFER_ISOC
:
371 if (status
== 0 && urb
->error_count
)
377 __musb_giveback(musb
, urb
, status
);
378 qh
->is_ready
= ready
;
380 /* reclaim resources (and bandwidth) ASAP; deschedule it, and
381 * invalidate qh as soon as list_empty(&hep->urb_list)
383 if (list_empty(&qh
->hep
->urb_list
)) {
384 struct list_head
*head
;
391 /* clobber old pointers to this qh */
392 if (is_in
|| ep
->is_shared_fifo
)
396 qh
->hep
->hcpriv
= NULL
;
400 case USB_ENDPOINT_XFER_CONTROL
:
401 case USB_ENDPOINT_XFER_BULK
:
402 /* fifo policy for these lists, except that NAKing
403 * should rotate a qh to the end (for fairness).
406 head
= qh
->ring
.prev
;
413 case USB_ENDPOINT_XFER_ISOC
:
414 case USB_ENDPOINT_XFER_INT
:
415 /* this is where periodic bandwidth should be
416 * de-allocated if it's tracked and allocated;
417 * and where we'd update the schedule tree...
428 * Advance this hardware endpoint's queue, completing the specified urb and
429 * advancing to either the next urb queued to that qh, or else invalidating
430 * that qh and advancing to the next qh scheduled after the current one.
432 * Context: caller owns controller lock, irqs are blocked
435 musb_advance_schedule(struct musb
*musb
, struct urb
*urb
,
436 struct musb_hw_ep
*hw_ep
, int is_in
)
440 if (is_in
|| hw_ep
->is_shared_fifo
)
445 if (urb
->status
== -EINPROGRESS
)
446 qh
= musb_giveback(qh
, urb
, 0);
448 qh
= musb_giveback(qh
, urb
, urb
->status
);
450 if (qh
!= NULL
&& qh
->is_ready
) {
451 DBG(4, "... next ep%d %cX urb %p\n",
452 hw_ep
->epnum
, is_in
? 'R' : 'T',
454 musb_start_urb(musb
, is_in
, qh
);
458 static u16
musb_h_flush_rxfifo(struct musb_hw_ep
*hw_ep
, u16 csr
)
460 /* we don't want fifo to fill itself again;
461 * ignore dma (various models),
462 * leave toggle alone (may not have been saved yet)
464 csr
|= MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_RXPKTRDY
;
465 csr
&= ~(MUSB_RXCSR_H_REQPKT
466 | MUSB_RXCSR_H_AUTOREQ
467 | MUSB_RXCSR_AUTOCLEAR
);
469 /* write 2x to allow double buffering */
470 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
471 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
473 /* flush writebuffer */
474 return musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
478 * PIO RX for a packet (or part of it).
481 musb_host_packet_rx(struct musb
*musb
, struct urb
*urb
, u8 epnum
, u8 iso_err
)
489 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
490 void __iomem
*epio
= hw_ep
->regs
;
491 struct musb_qh
*qh
= hw_ep
->in_qh
;
492 int pipe
= urb
->pipe
;
493 void *buffer
= urb
->transfer_buffer
;
495 /* musb_ep_select(mbase, epnum); */
496 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
497 DBG(3, "RX%d count %d, buffer %p len %d/%d\n", epnum
, rx_count
,
498 urb
->transfer_buffer
, qh
->offset
,
499 urb
->transfer_buffer_length
);
502 if (usb_pipeisoc(pipe
)) {
504 struct usb_iso_packet_descriptor
*d
;
511 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
512 buf
= buffer
+ d
->offset
;
514 if (rx_count
> length
) {
519 DBG(2, "** OVERFLOW %d into %d\n", rx_count
, length
);
523 urb
->actual_length
+= length
;
524 d
->actual_length
= length
;
528 /* see if we are done */
529 done
= (++qh
->iso_idx
>= urb
->number_of_packets
);
532 buf
= buffer
+ qh
->offset
;
533 length
= urb
->transfer_buffer_length
- qh
->offset
;
534 if (rx_count
> length
) {
535 if (urb
->status
== -EINPROGRESS
)
536 urb
->status
= -EOVERFLOW
;
537 DBG(2, "** OVERFLOW %d into %d\n", rx_count
, length
);
541 urb
->actual_length
+= length
;
542 qh
->offset
+= length
;
544 /* see if we are done */
545 done
= (urb
->actual_length
== urb
->transfer_buffer_length
)
546 || (rx_count
< qh
->maxpacket
)
547 || (urb
->status
!= -EINPROGRESS
);
549 && (urb
->status
== -EINPROGRESS
)
550 && (urb
->transfer_flags
& URB_SHORT_NOT_OK
)
551 && (urb
->actual_length
552 < urb
->transfer_buffer_length
))
553 urb
->status
= -EREMOTEIO
;
556 musb_read_fifo(hw_ep
, length
, buf
);
558 csr
= musb_readw(epio
, MUSB_RXCSR
);
559 csr
|= MUSB_RXCSR_H_WZC_BITS
;
560 if (unlikely(do_flush
))
561 musb_h_flush_rxfifo(hw_ep
, csr
);
563 /* REVISIT this assumes AUTOCLEAR is never set */
564 csr
&= ~(MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_H_REQPKT
);
566 csr
|= MUSB_RXCSR_H_REQPKT
;
567 musb_writew(epio
, MUSB_RXCSR
, csr
);
573 /* we don't always need to reinit a given side of an endpoint...
574 * when we do, use tx/rx reinit routine and then construct a new CSR
575 * to address data toggle, NYET, and DMA or PIO.
577 * it's possible that driver bugs (especially for DMA) or aborting a
578 * transfer might have left the endpoint busier than it should be.
579 * the busy/not-empty tests are basically paranoia.
582 musb_rx_reinit(struct musb
*musb
, struct musb_qh
*qh
, struct musb_hw_ep
*ep
)
586 /* NOTE: we know the "rx" fifo reinit never triggers for ep0.
587 * That always uses tx_reinit since ep0 repurposes TX register
588 * offsets; the initial SETUP packet is also a kind of OUT.
591 /* if programmed for Tx, put it in RX mode */
592 if (ep
->is_shared_fifo
) {
593 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
594 if (csr
& MUSB_TXCSR_MODE
) {
595 musb_h_tx_flush_fifo(ep
);
596 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
597 musb_writew(ep
->regs
, MUSB_TXCSR
,
598 csr
| MUSB_TXCSR_FRCDATATOG
);
602 * Clear the MODE bit (and everything else) to enable Rx.
603 * NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
605 if (csr
& MUSB_TXCSR_DMAMODE
)
606 musb_writew(ep
->regs
, MUSB_TXCSR
, MUSB_TXCSR_DMAMODE
);
607 musb_writew(ep
->regs
, MUSB_TXCSR
, 0);
609 /* scrub all previous state, clearing toggle */
611 csr
= musb_readw(ep
->regs
, MUSB_RXCSR
);
612 if (csr
& MUSB_RXCSR_RXPKTRDY
)
613 WARNING("rx%d, packet/%d ready?\n", ep
->epnum
,
614 musb_readw(ep
->regs
, MUSB_RXCOUNT
));
616 musb_h_flush_rxfifo(ep
, MUSB_RXCSR_CLRDATATOG
);
619 /* target addr and (for multipoint) hub addr/port */
620 if (musb
->is_multipoint
) {
621 musb_write_rxfunaddr(ep
->target_regs
, qh
->addr_reg
);
622 musb_write_rxhubaddr(ep
->target_regs
, qh
->h_addr_reg
);
623 musb_write_rxhubport(ep
->target_regs
, qh
->h_port_reg
);
626 musb_writeb(musb
->mregs
, MUSB_FADDR
, qh
->addr_reg
);
628 /* protocol/endpoint, interval/NAKlimit, i/o size */
629 musb_writeb(ep
->regs
, MUSB_RXTYPE
, qh
->type_reg
);
630 musb_writeb(ep
->regs
, MUSB_RXINTERVAL
, qh
->intv_reg
);
631 /* NOTE: bulk combining rewrites high bits of maxpacket */
632 musb_writew(ep
->regs
, MUSB_RXMAXP
, qh
->maxpacket
);
637 static bool musb_tx_dma_program(struct dma_controller
*dma
,
638 struct musb_hw_ep
*hw_ep
, struct musb_qh
*qh
,
639 struct urb
*urb
, u32 offset
, u32 length
)
641 struct dma_channel
*channel
= hw_ep
->tx_channel
;
642 void __iomem
*epio
= hw_ep
->regs
;
643 u16 pkt_size
= qh
->maxpacket
;
647 #ifdef CONFIG_USB_INVENTRA_DMA
648 if (length
> channel
->max_len
)
649 length
= channel
->max_len
;
651 csr
= musb_readw(epio
, MUSB_TXCSR
);
652 if (length
> pkt_size
) {
654 csr
|= MUSB_TXCSR_AUTOSET
656 | MUSB_TXCSR_DMAENAB
;
659 csr
&= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAMODE
);
660 csr
|= MUSB_TXCSR_DMAENAB
; /* against programmer's guide */
662 channel
->desired_mode
= mode
;
663 musb_writew(epio
, MUSB_TXCSR
, csr
);
665 if (!is_cppi_enabled() && !tusb_dma_omap())
668 channel
->actual_len
= 0;
671 * TX uses "RNDIS" mode automatically but needs help
672 * to identify the zero-length-final-packet case.
674 mode
= (urb
->transfer_flags
& URB_ZERO_PACKET
) ? 1 : 0;
677 qh
->segsize
= length
;
679 if (!dma
->channel_program(channel
, pkt_size
, mode
,
680 urb
->transfer_dma
+ offset
, length
)) {
681 dma
->channel_release(channel
);
682 hw_ep
->tx_channel
= NULL
;
684 csr
= musb_readw(epio
, MUSB_TXCSR
);
685 csr
&= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
);
686 musb_writew(epio
, MUSB_TXCSR
, csr
| MUSB_TXCSR_H_WZC_BITS
);
693 * Program an HDRC endpoint as per the given URB
694 * Context: irqs blocked, controller lock held
696 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
697 struct urb
*urb
, int is_out
,
698 u8
*buf
, u32 offset
, u32 len
)
700 struct dma_controller
*dma_controller
;
701 struct dma_channel
*dma_channel
;
703 void __iomem
*mbase
= musb
->mregs
;
704 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
705 void __iomem
*epio
= hw_ep
->regs
;
709 if (!is_out
|| hw_ep
->is_shared_fifo
)
714 packet_sz
= qh
->maxpacket
;
716 DBG(3, "%s hw%d urb %p spd%d dev%d ep%d%s "
717 "h_addr%02x h_port%02x bytes %d\n",
718 is_out
? "-->" : "<--",
719 epnum
, urb
, urb
->dev
->speed
,
720 qh
->addr_reg
, qh
->epnum
, is_out
? "out" : "in",
721 qh
->h_addr_reg
, qh
->h_port_reg
,
724 musb_ep_select(mbase
, epnum
);
726 /* candidate for DMA? */
727 dma_controller
= musb
->dma_controller
;
728 if (is_dma_capable() && epnum
&& dma_controller
) {
729 dma_channel
= is_out
? hw_ep
->tx_channel
: hw_ep
->rx_channel
;
731 dma_channel
= dma_controller
->channel_alloc(
732 dma_controller
, hw_ep
, is_out
);
734 hw_ep
->tx_channel
= dma_channel
;
736 hw_ep
->rx_channel
= dma_channel
;
741 /* make sure we clear DMAEnab, autoSet bits from previous run */
743 /* OUT/transmit/EP0 or IN/receive? */
749 csr
= musb_readw(epio
, MUSB_TXCSR
);
751 /* disable interrupt in case we flush */
752 int_txe
= musb_readw(mbase
, MUSB_INTRTXE
);
753 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
& ~(1 << epnum
));
755 /* general endpoint setup */
757 /* flush all old state, set default */
758 musb_h_tx_flush_fifo(hw_ep
);
761 * We must not clear the DMAMODE bit before or in
762 * the same cycle with the DMAENAB bit, so we clear
763 * the latter first...
765 csr
&= ~(MUSB_TXCSR_H_NAKTIMEOUT
768 | MUSB_TXCSR_FRCDATATOG
769 | MUSB_TXCSR_H_RXSTALL
771 | MUSB_TXCSR_TXPKTRDY
773 csr
|= MUSB_TXCSR_MODE
;
775 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 1))
776 csr
|= MUSB_TXCSR_H_WR_DATATOGGLE
777 | MUSB_TXCSR_H_DATATOGGLE
;
779 csr
|= MUSB_TXCSR_CLRDATATOG
;
781 musb_writew(epio
, MUSB_TXCSR
, csr
);
782 /* REVISIT may need to clear FLUSHFIFO ... */
783 csr
&= ~MUSB_TXCSR_DMAMODE
;
784 musb_writew(epio
, MUSB_TXCSR
, csr
);
785 csr
= musb_readw(epio
, MUSB_TXCSR
);
787 /* endpoint 0: just flush */
788 musb_h_ep0_flush_fifo(hw_ep
);
791 /* target addr and (for multipoint) hub addr/port */
792 if (musb
->is_multipoint
) {
793 musb_write_txfunaddr(mbase
, epnum
, qh
->addr_reg
);
794 musb_write_txhubaddr(mbase
, epnum
, qh
->h_addr_reg
);
795 musb_write_txhubport(mbase
, epnum
, qh
->h_port_reg
);
796 /* FIXME if !epnum, do the same for RX ... */
798 musb_writeb(mbase
, MUSB_FADDR
, qh
->addr_reg
);
800 /* protocol/endpoint/interval/NAKlimit */
802 musb_writeb(epio
, MUSB_TXTYPE
, qh
->type_reg
);
803 if (can_bulk_split(musb
, qh
->type
))
804 musb_writew(epio
, MUSB_TXMAXP
,
806 | ((hw_ep
->max_packet_sz_tx
/
807 packet_sz
) - 1) << 11);
809 musb_writew(epio
, MUSB_TXMAXP
,
811 musb_writeb(epio
, MUSB_TXINTERVAL
, qh
->intv_reg
);
813 musb_writeb(epio
, MUSB_NAKLIMIT0
, qh
->intv_reg
);
814 if (musb
->is_multipoint
)
815 musb_writeb(epio
, MUSB_TYPE0
,
819 if (can_bulk_split(musb
, qh
->type
))
820 load_count
= min((u32
) hw_ep
->max_packet_sz_tx
,
823 load_count
= min((u32
) packet_sz
, len
);
825 if (dma_channel
&& musb_tx_dma_program(dma_controller
,
826 hw_ep
, qh
, urb
, offset
, len
))
830 /* PIO to load FIFO */
831 qh
->segsize
= load_count
;
832 musb_write_fifo(hw_ep
, load_count
, buf
);
835 /* re-enable interrupt */
836 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
);
842 if (hw_ep
->rx_reinit
) {
843 musb_rx_reinit(musb
, qh
, hw_ep
);
845 /* init new state: toggle and NYET, maybe DMA later */
846 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 0))
847 csr
= MUSB_RXCSR_H_WR_DATATOGGLE
848 | MUSB_RXCSR_H_DATATOGGLE
;
851 if (qh
->type
== USB_ENDPOINT_XFER_INT
)
852 csr
|= MUSB_RXCSR_DISNYET
;
855 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
857 if (csr
& (MUSB_RXCSR_RXPKTRDY
859 | MUSB_RXCSR_H_REQPKT
))
860 ERR("broken !rx_reinit, ep%d csr %04x\n",
863 /* scrub any stale state, leaving toggle alone */
864 csr
&= MUSB_RXCSR_DISNYET
;
867 /* kick things off */
869 if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel
) {
870 /* candidate for DMA */
872 dma_channel
->actual_len
= 0L;
875 /* AUTOREQ is in a DMA register */
876 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
877 csr
= musb_readw(hw_ep
->regs
,
880 /* unless caller treats short rx transfers as
881 * errors, we dare not queue multiple transfers.
883 dma_ok
= dma_controller
->channel_program(
884 dma_channel
, packet_sz
,
885 !(urb
->transfer_flags
887 urb
->transfer_dma
+ offset
,
890 dma_controller
->channel_release(
892 hw_ep
->rx_channel
= NULL
;
895 csr
|= MUSB_RXCSR_DMAENAB
;
899 csr
|= MUSB_RXCSR_H_REQPKT
;
900 DBG(7, "RXCSR%d := %04x\n", epnum
, csr
);
901 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
902 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
908 * Service the default endpoint (ep0) as host.
909 * Return true until it's time to start the status stage.
911 static bool musb_h_ep0_continue(struct musb
*musb
, u16 len
, struct urb
*urb
)
914 u8
*fifo_dest
= NULL
;
916 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
917 struct musb_qh
*qh
= hw_ep
->in_qh
;
918 struct usb_ctrlrequest
*request
;
920 switch (musb
->ep0_stage
) {
922 fifo_dest
= urb
->transfer_buffer
+ urb
->actual_length
;
923 fifo_count
= min_t(size_t, len
, urb
->transfer_buffer_length
-
925 if (fifo_count
< len
)
926 urb
->status
= -EOVERFLOW
;
928 musb_read_fifo(hw_ep
, fifo_count
, fifo_dest
);
930 urb
->actual_length
+= fifo_count
;
931 if (len
< qh
->maxpacket
) {
932 /* always terminate on short read; it's
933 * rarely reported as an error.
935 } else if (urb
->actual_length
<
936 urb
->transfer_buffer_length
)
940 request
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
942 if (!request
->wLength
) {
943 DBG(4, "start no-DATA\n");
945 } else if (request
->bRequestType
& USB_DIR_IN
) {
946 DBG(4, "start IN-DATA\n");
947 musb
->ep0_stage
= MUSB_EP0_IN
;
951 DBG(4, "start OUT-DATA\n");
952 musb
->ep0_stage
= MUSB_EP0_OUT
;
957 fifo_count
= min_t(size_t, qh
->maxpacket
,
958 urb
->transfer_buffer_length
-
961 fifo_dest
= (u8
*) (urb
->transfer_buffer
962 + urb
->actual_length
);
963 DBG(3, "Sending %d byte%s to ep0 fifo %p\n",
965 (fifo_count
== 1) ? "" : "s",
967 musb_write_fifo(hw_ep
, fifo_count
, fifo_dest
);
969 urb
->actual_length
+= fifo_count
;
974 ERR("bogus ep0 stage %d\n", musb
->ep0_stage
);
982 * Handle default endpoint interrupt as host. Only called in IRQ time
983 * from musb_interrupt().
985 * called with controller irqlocked
987 irqreturn_t
musb_h_ep0_irq(struct musb
*musb
)
992 void __iomem
*mbase
= musb
->mregs
;
993 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
994 void __iomem
*epio
= hw_ep
->regs
;
995 struct musb_qh
*qh
= hw_ep
->in_qh
;
996 bool complete
= false;
997 irqreturn_t retval
= IRQ_NONE
;
999 /* ep0 only has one queue, "in" */
1002 musb_ep_select(mbase
, 0);
1003 csr
= musb_readw(epio
, MUSB_CSR0
);
1004 len
= (csr
& MUSB_CSR0_RXPKTRDY
)
1005 ? musb_readb(epio
, MUSB_COUNT0
)
1008 DBG(4, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
1009 csr
, qh
, len
, urb
, musb
->ep0_stage
);
1011 /* if we just did status stage, we are done */
1012 if (MUSB_EP0_STATUS
== musb
->ep0_stage
) {
1013 retval
= IRQ_HANDLED
;
1017 /* prepare status */
1018 if (csr
& MUSB_CSR0_H_RXSTALL
) {
1019 DBG(6, "STALLING ENDPOINT\n");
1022 } else if (csr
& MUSB_CSR0_H_ERROR
) {
1023 DBG(2, "no response, csr0 %04x\n", csr
);
1026 } else if (csr
& MUSB_CSR0_H_NAKTIMEOUT
) {
1027 DBG(2, "control NAK timeout\n");
1029 /* NOTE: this code path would be a good place to PAUSE a
1030 * control transfer, if another one is queued, so that
1031 * ep0 is more likely to stay busy. That's already done
1032 * for bulk RX transfers.
1034 * if (qh->ring.next != &musb->control), then
1035 * we have a candidate... NAKing is *NOT* an error
1037 musb_writew(epio
, MUSB_CSR0
, 0);
1038 retval
= IRQ_HANDLED
;
1042 DBG(6, "aborting\n");
1043 retval
= IRQ_HANDLED
;
1045 urb
->status
= status
;
1048 /* use the proper sequence to abort the transfer */
1049 if (csr
& MUSB_CSR0_H_REQPKT
) {
1050 csr
&= ~MUSB_CSR0_H_REQPKT
;
1051 musb_writew(epio
, MUSB_CSR0
, csr
);
1052 csr
&= ~MUSB_CSR0_H_NAKTIMEOUT
;
1053 musb_writew(epio
, MUSB_CSR0
, csr
);
1055 musb_h_ep0_flush_fifo(hw_ep
);
1058 musb_writeb(epio
, MUSB_NAKLIMIT0
, 0);
1061 musb_writew(epio
, MUSB_CSR0
, 0);
1064 if (unlikely(!urb
)) {
1065 /* stop endpoint since we have no place for its data, this
1066 * SHOULD NEVER HAPPEN! */
1067 ERR("no URB for end 0\n");
1069 musb_h_ep0_flush_fifo(hw_ep
);
1074 /* call common logic and prepare response */
1075 if (musb_h_ep0_continue(musb
, len
, urb
)) {
1076 /* more packets required */
1077 csr
= (MUSB_EP0_IN
== musb
->ep0_stage
)
1078 ? MUSB_CSR0_H_REQPKT
: MUSB_CSR0_TXPKTRDY
;
1080 /* data transfer complete; perform status phase */
1081 if (usb_pipeout(urb
->pipe
)
1082 || !urb
->transfer_buffer_length
)
1083 csr
= MUSB_CSR0_H_STATUSPKT
1084 | MUSB_CSR0_H_REQPKT
;
1086 csr
= MUSB_CSR0_H_STATUSPKT
1087 | MUSB_CSR0_TXPKTRDY
;
1089 /* flag status stage */
1090 musb
->ep0_stage
= MUSB_EP0_STATUS
;
1092 DBG(5, "ep0 STATUS, csr %04x\n", csr
);
1095 musb_writew(epio
, MUSB_CSR0
, csr
);
1096 retval
= IRQ_HANDLED
;
1098 musb
->ep0_stage
= MUSB_EP0_IDLE
;
1100 /* call completion handler if done */
1102 musb_advance_schedule(musb
, urb
, hw_ep
, 1);
1108 #ifdef CONFIG_USB_INVENTRA_DMA
1110 /* Host side TX (OUT) using Mentor DMA works as follows:
1112 - if queue was empty, Program Endpoint
1113 - ... which starts DMA to fifo in mode 1 or 0
1115 DMA Isr (transfer complete) -> TxAvail()
1116 - Stop DMA (~DmaEnab) (<--- Alert ... currently happens
1117 only in musb_cleanup_urb)
1118 - TxPktRdy has to be set in mode 0 or for
1119 short packets in mode 1.
1124 /* Service a Tx-Available or dma completion irq for the endpoint */
1125 void musb_host_tx(struct musb
*musb
, u8 epnum
)
1133 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1134 void __iomem
*epio
= hw_ep
->regs
;
1135 struct musb_qh
*qh
= hw_ep
->is_shared_fifo
? hw_ep
->in_qh
1138 void __iomem
*mbase
= musb
->mregs
;
1139 struct dma_channel
*dma
;
1143 musb_ep_select(mbase
, epnum
);
1144 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1146 /* with CPPI, DMA sometimes triggers "extra" irqs */
1148 DBG(4, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1153 dma
= is_dma_capable() ? hw_ep
->tx_channel
: NULL
;
1154 DBG(4, "OUT/TX%d end, csr %04x%s\n", epnum
, tx_csr
,
1155 dma
? ", dma" : "");
1157 /* check for errors */
1158 if (tx_csr
& MUSB_TXCSR_H_RXSTALL
) {
1159 /* dma was disabled, fifo flushed */
1160 DBG(3, "TX end %d stall\n", epnum
);
1162 /* stall; record URB status */
1165 } else if (tx_csr
& MUSB_TXCSR_H_ERROR
) {
1166 /* (NON-ISO) dma was disabled, fifo flushed */
1167 DBG(3, "TX 3strikes on ep=%d\n", epnum
);
1169 status
= -ETIMEDOUT
;
1171 } else if (tx_csr
& MUSB_TXCSR_H_NAKTIMEOUT
) {
1172 DBG(6, "TX end=%d device not responding\n", epnum
);
1174 /* NOTE: this code path would be a good place to PAUSE a
1175 * transfer, if there's some other (nonperiodic) tx urb
1176 * that could use this fifo. (dma complicates it...)
1177 * That's already done for bulk RX transfers.
1179 * if (bulk && qh->ring.next != &musb->out_bulk), then
1180 * we have a candidate... NAKing is *NOT* an error
1182 musb_ep_select(mbase
, epnum
);
1183 musb_writew(epio
, MUSB_TXCSR
,
1184 MUSB_TXCSR_H_WZC_BITS
1185 | MUSB_TXCSR_TXPKTRDY
);
1190 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1191 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1192 (void) musb
->dma_controller
->channel_abort(dma
);
1195 /* do the proper sequence to abort the transfer in the
1196 * usb core; the dma engine should already be stopped.
1198 musb_h_tx_flush_fifo(hw_ep
);
1199 tx_csr
&= ~(MUSB_TXCSR_AUTOSET
1200 | MUSB_TXCSR_DMAENAB
1201 | MUSB_TXCSR_H_ERROR
1202 | MUSB_TXCSR_H_RXSTALL
1203 | MUSB_TXCSR_H_NAKTIMEOUT
1206 musb_ep_select(mbase
, epnum
);
1207 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1208 /* REVISIT may need to clear FLUSHFIFO ... */
1209 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1210 musb_writeb(epio
, MUSB_TXINTERVAL
, 0);
1215 /* second cppi case */
1216 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1217 DBG(4, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1221 if (is_dma_capable() && dma
&& !status
) {
1223 * DMA has completed. But if we're using DMA mode 1 (multi
1224 * packet DMA), we need a terminal TXPKTRDY interrupt before
1225 * we can consider this transfer completed, lest we trash
1226 * its last packet when writing the next URB's data. So we
1227 * switch back to mode 0 to get that interrupt; we'll come
1228 * back here once it happens.
1230 if (tx_csr
& MUSB_TXCSR_DMAMODE
) {
1232 * We shouldn't clear DMAMODE with DMAENAB set; so
1233 * clear them in a safe order. That should be OK
1234 * once TXPKTRDY has been set (and I've never seen
1235 * it being 0 at this moment -- DMA interrupt latency
1236 * is significant) but if it hasn't been then we have
1237 * no choice but to stop being polite and ignore the
1238 * programmer's guide... :-)
1240 * Note that we must write TXCSR with TXPKTRDY cleared
1241 * in order not to re-trigger the packet send (this bit
1242 * can't be cleared by CPU), and there's another caveat:
1243 * TXPKTRDY may be set shortly and then cleared in the
1244 * double-buffered FIFO mode, so we do an extra TXCSR
1245 * read for debouncing...
1247 tx_csr
&= musb_readw(epio
, MUSB_TXCSR
);
1248 if (tx_csr
& MUSB_TXCSR_TXPKTRDY
) {
1249 tx_csr
&= ~(MUSB_TXCSR_DMAENAB
|
1250 MUSB_TXCSR_TXPKTRDY
);
1251 musb_writew(epio
, MUSB_TXCSR
,
1252 tx_csr
| MUSB_TXCSR_H_WZC_BITS
);
1254 tx_csr
&= ~(MUSB_TXCSR_DMAMODE
|
1255 MUSB_TXCSR_TXPKTRDY
);
1256 musb_writew(epio
, MUSB_TXCSR
,
1257 tx_csr
| MUSB_TXCSR_H_WZC_BITS
);
1260 * There is no guarantee that we'll get an interrupt
1261 * after clearing DMAMODE as we might have done this
1262 * too late (after TXPKTRDY was cleared by controller).
1263 * Re-read TXCSR as we have spoiled its previous value.
1265 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1269 * We may get here from a DMA completion or TXPKTRDY interrupt.
1270 * In any case, we must check the FIFO status here and bail out
1271 * only if the FIFO still has data -- that should prevent the
1272 * "missed" TXPKTRDY interrupts and deal with double-buffered
1275 if (tx_csr
& (MUSB_TXCSR_FIFONOTEMPTY
| MUSB_TXCSR_TXPKTRDY
)) {
1276 DBG(2, "DMA complete but packet still in FIFO, "
1277 "CSR %04x\n", tx_csr
);
1282 if (!status
|| dma
|| usb_pipeisoc(pipe
)) {
1284 length
= dma
->actual_len
;
1286 length
= qh
->segsize
;
1287 qh
->offset
+= length
;
1289 if (usb_pipeisoc(pipe
)) {
1290 struct usb_iso_packet_descriptor
*d
;
1292 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1293 d
->actual_length
= length
;
1295 if (++qh
->iso_idx
>= urb
->number_of_packets
) {
1305 /* see if we need to send more data, or ZLP */
1306 if (qh
->segsize
< qh
->maxpacket
)
1308 else if (qh
->offset
== urb
->transfer_buffer_length
1309 && !(urb
->transfer_flags
1313 offset
= qh
->offset
;
1314 length
= urb
->transfer_buffer_length
- offset
;
1319 /* urb->status != -EINPROGRESS means request has been faulted,
1320 * so we must abort this transfer after cleanup
1322 if (urb
->status
!= -EINPROGRESS
) {
1325 status
= urb
->status
;
1330 urb
->status
= status
;
1331 urb
->actual_length
= qh
->offset
;
1332 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_OUT
);
1334 } else if (usb_pipeisoc(pipe
) && dma
) {
1335 if (musb_tx_dma_program(musb
->dma_controller
, hw_ep
, qh
, urb
,
1338 } else if (tx_csr
& MUSB_TXCSR_DMAENAB
) {
1339 DBG(1, "not complete, but DMA enabled?\n");
1344 * PIO: start next packet in this URB.
1346 * REVISIT: some docs say that when hw_ep->tx_double_buffered,
1347 * (and presumably, FIFO is not half-full) we should write *two*
1348 * packets before updating TXCSR; other docs disagree...
1350 if (length
> qh
->maxpacket
)
1351 length
= qh
->maxpacket
;
1352 musb_write_fifo(hw_ep
, length
, urb
->transfer_buffer
+ offset
);
1353 qh
->segsize
= length
;
1355 musb_ep_select(mbase
, epnum
);
1356 musb_writew(epio
, MUSB_TXCSR
,
1357 MUSB_TXCSR_H_WZC_BITS
| MUSB_TXCSR_TXPKTRDY
);
1361 #ifdef CONFIG_USB_INVENTRA_DMA
1363 /* Host side RX (IN) using Mentor DMA works as follows:
1365 - if queue was empty, ProgramEndpoint
1366 - first IN token is sent out (by setting ReqPkt)
1367 LinuxIsr -> RxReady()
1368 /\ => first packet is received
1369 | - Set in mode 0 (DmaEnab, ~ReqPkt)
1370 | -> DMA Isr (transfer complete) -> RxReady()
1371 | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
1372 | - if urb not complete, send next IN token (ReqPkt)
1373 | | else complete urb.
1375 ---------------------------
1377 * Nuances of mode 1:
1378 * For short packets, no ack (+RxPktRdy) is sent automatically
1379 * (even if AutoClear is ON)
1380 * For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
1381 * automatically => major problem, as collecting the next packet becomes
1382 * difficult. Hence mode 1 is not used.
1385 * All we care about at this driver level is that
1386 * (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
1387 * (b) termination conditions are: short RX, or buffer full;
1388 * (c) fault modes include
1389 * - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
1390 * (and that endpoint's dma queue stops immediately)
1391 * - overflow (full, PLUS more bytes in the terminal packet)
1393 * So for example, usb-storage sets URB_SHORT_NOT_OK, and would
1394 * thus be a great candidate for using mode 1 ... for all but the
1395 * last packet of one URB's transfer.
1400 /* Schedule next QH from musb->in_bulk and move the current qh to
1401 * the end; avoids starvation for other endpoints.
1403 static void musb_bulk_rx_nak_timeout(struct musb
*musb
, struct musb_hw_ep
*ep
)
1405 struct dma_channel
*dma
;
1407 void __iomem
*mbase
= musb
->mregs
;
1408 void __iomem
*epio
= ep
->regs
;
1409 struct musb_qh
*cur_qh
, *next_qh
;
1412 musb_ep_select(mbase
, ep
->epnum
);
1413 dma
= is_dma_capable() ? ep
->rx_channel
: NULL
;
1415 /* clear nak timeout bit */
1416 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1417 rx_csr
|= MUSB_RXCSR_H_WZC_BITS
;
1418 rx_csr
&= ~MUSB_RXCSR_DATAERROR
;
1419 musb_writew(epio
, MUSB_RXCSR
, rx_csr
);
1421 cur_qh
= first_qh(&musb
->in_bulk
);
1423 urb
= next_urb(cur_qh
);
1424 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1425 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1426 musb
->dma_controller
->channel_abort(dma
);
1427 urb
->actual_length
+= dma
->actual_len
;
1428 dma
->actual_len
= 0L;
1430 musb_save_toggle(ep
, 1, urb
);
1432 /* move cur_qh to end of queue */
1433 list_move_tail(&cur_qh
->ring
, &musb
->in_bulk
);
1435 /* get the next qh from musb->in_bulk */
1436 next_qh
= first_qh(&musb
->in_bulk
);
1438 /* set rx_reinit and schedule the next qh */
1440 musb_start_urb(musb
, 1, next_qh
);
1445 * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
1446 * and high-bandwidth IN transfer cases.
1448 void musb_host_rx(struct musb
*musb
, u8 epnum
)
1451 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1452 void __iomem
*epio
= hw_ep
->regs
;
1453 struct musb_qh
*qh
= hw_ep
->in_qh
;
1455 void __iomem
*mbase
= musb
->mregs
;
1458 bool iso_err
= false;
1461 struct dma_channel
*dma
;
1463 musb_ep_select(mbase
, epnum
);
1466 dma
= is_dma_capable() ? hw_ep
->rx_channel
: NULL
;
1470 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1473 if (unlikely(!urb
)) {
1474 /* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
1475 * usbtest #11 (unlinks) triggers it regularly, sometimes
1476 * with fifo full. (Only with DMA??)
1478 DBG(3, "BOGUS RX%d ready, csr %04x, count %d\n", epnum
, val
,
1479 musb_readw(epio
, MUSB_RXCOUNT
));
1480 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1486 DBG(5, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
1487 epnum
, rx_csr
, urb
->actual_length
,
1488 dma
? dma
->actual_len
: 0);
1490 /* check for errors, concurrent stall & unlink is not really
1492 if (rx_csr
& MUSB_RXCSR_H_RXSTALL
) {
1493 DBG(3, "RX end %d STALL\n", epnum
);
1495 /* stall; record URB status */
1498 } else if (rx_csr
& MUSB_RXCSR_H_ERROR
) {
1499 DBG(3, "end %d RX proto error\n", epnum
);
1502 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1504 } else if (rx_csr
& MUSB_RXCSR_DATAERROR
) {
1506 if (USB_ENDPOINT_XFER_ISOC
!= qh
->type
) {
1507 DBG(6, "RX end %d NAK timeout\n", epnum
);
1509 /* NOTE: NAKing is *NOT* an error, so we want to
1510 * continue. Except ... if there's a request for
1511 * another QH, use that instead of starving it.
1513 * Devices like Ethernet and serial adapters keep
1514 * reads posted at all times, which will starve
1515 * other devices without this logic.
1517 if (usb_pipebulk(urb
->pipe
)
1519 && !list_is_singular(&musb
->in_bulk
)) {
1520 musb_bulk_rx_nak_timeout(musb
, hw_ep
);
1523 musb_ep_select(mbase
, epnum
);
1524 rx_csr
|= MUSB_RXCSR_H_WZC_BITS
;
1525 rx_csr
&= ~MUSB_RXCSR_DATAERROR
;
1526 musb_writew(epio
, MUSB_RXCSR
, rx_csr
);
1530 DBG(4, "RX end %d ISO data error\n", epnum
);
1531 /* packet error reported later */
1536 /* faults abort the transfer */
1538 /* clean up dma and collect transfer count */
1539 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1540 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1541 (void) musb
->dma_controller
->channel_abort(dma
);
1542 xfer_len
= dma
->actual_len
;
1544 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1545 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1550 if (unlikely(dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
)) {
1551 /* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
1552 ERR("RX%d dma busy, csr %04x\n", epnum
, rx_csr
);
1556 /* thorough shutdown for now ... given more precise fault handling
1557 * and better queueing support, we might keep a DMA pipeline going
1558 * while processing this irq for earlier completions.
1561 /* FIXME this is _way_ too much in-line logic for Mentor DMA */
1563 #ifndef CONFIG_USB_INVENTRA_DMA
1564 if (rx_csr
& MUSB_RXCSR_H_REQPKT
) {
1565 /* REVISIT this happened for a while on some short reads...
1566 * the cleanup still needs investigation... looks bad...
1567 * and also duplicates dma cleanup code above ... plus,
1568 * shouldn't this be the "half full" double buffer case?
1570 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1571 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1572 (void) musb
->dma_controller
->channel_abort(dma
);
1573 xfer_len
= dma
->actual_len
;
1577 DBG(2, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum
, rx_csr
,
1578 xfer_len
, dma
? ", dma" : "");
1579 rx_csr
&= ~MUSB_RXCSR_H_REQPKT
;
1581 musb_ep_select(mbase
, epnum
);
1582 musb_writew(epio
, MUSB_RXCSR
,
1583 MUSB_RXCSR_H_WZC_BITS
| rx_csr
);
1586 if (dma
&& (rx_csr
& MUSB_RXCSR_DMAENAB
)) {
1587 xfer_len
= dma
->actual_len
;
1589 val
&= ~(MUSB_RXCSR_DMAENAB
1590 | MUSB_RXCSR_H_AUTOREQ
1591 | MUSB_RXCSR_AUTOCLEAR
1592 | MUSB_RXCSR_RXPKTRDY
);
1593 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, val
);
1595 #ifdef CONFIG_USB_INVENTRA_DMA
1596 if (usb_pipeisoc(pipe
)) {
1597 struct usb_iso_packet_descriptor
*d
;
1599 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1600 d
->actual_length
= xfer_len
;
1602 /* even if there was an error, we did the dma
1603 * for iso_frame_desc->length
1605 if (d
->status
!= EILSEQ
&& d
->status
!= -EOVERFLOW
)
1608 if (++qh
->iso_idx
>= urb
->number_of_packets
)
1614 /* done if urb buffer is full or short packet is recd */
1615 done
= (urb
->actual_length
+ xfer_len
>=
1616 urb
->transfer_buffer_length
1617 || dma
->actual_len
< qh
->maxpacket
);
1620 /* send IN token for next packet, without AUTOREQ */
1622 val
|= MUSB_RXCSR_H_REQPKT
;
1623 musb_writew(epio
, MUSB_RXCSR
,
1624 MUSB_RXCSR_H_WZC_BITS
| val
);
1627 DBG(4, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum
,
1628 done
? "off" : "reset",
1629 musb_readw(epio
, MUSB_RXCSR
),
1630 musb_readw(epio
, MUSB_RXCOUNT
));
1634 } else if (urb
->status
== -EINPROGRESS
) {
1635 /* if no errors, be sure a packet is ready for unloading */
1636 if (unlikely(!(rx_csr
& MUSB_RXCSR_RXPKTRDY
))) {
1638 ERR("Rx interrupt with no errors or packet!\n");
1640 /* FIXME this is another "SHOULD NEVER HAPPEN" */
1643 /* do the proper sequence to abort the transfer */
1644 musb_ep_select(mbase
, epnum
);
1645 val
&= ~MUSB_RXCSR_H_REQPKT
;
1646 musb_writew(epio
, MUSB_RXCSR
, val
);
1650 /* we are expecting IN packets */
1651 #ifdef CONFIG_USB_INVENTRA_DMA
1653 struct dma_controller
*c
;
1658 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
1660 DBG(2, "RX%d count %d, buffer 0x%x len %d/%d\n",
1663 + urb
->actual_length
,
1665 urb
->transfer_buffer_length
);
1667 c
= musb
->dma_controller
;
1669 if (usb_pipeisoc(pipe
)) {
1671 struct usb_iso_packet_descriptor
*d
;
1673 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1679 if (rx_count
> d
->length
) {
1681 status
= -EOVERFLOW
;
1684 DBG(2, "** OVERFLOW %d into %d\n",\
1685 rx_count
, d
->length
);
1691 buf
= urb
->transfer_dma
+ d
->offset
;
1694 buf
= urb
->transfer_dma
+
1698 dma
->desired_mode
= 0;
1700 /* because of the issue below, mode 1 will
1701 * only rarely behave with correct semantics.
1703 if ((urb
->transfer_flags
&
1705 && (urb
->transfer_buffer_length
-
1708 dma
->desired_mode
= 1;
1709 if (rx_count
< hw_ep
->max_packet_sz_rx
) {
1711 dma
->bDesiredMode
= 0;
1713 length
= urb
->transfer_buffer_length
;
1717 /* Disadvantage of using mode 1:
1718 * It's basically usable only for mass storage class; essentially all
1719 * other protocols also terminate transfers on short packets.
1722 * An extra IN token is sent at the end of the transfer (due to AUTOREQ)
1723 * If you try to use mode 1 for (transfer_buffer_length - 512), and try
1724 * to use the extra IN token to grab the last packet using mode 0, then
1725 * the problem is that you cannot be sure when the device will send the
1726 * last packet and RxPktRdy set. Sometimes the packet is recd too soon
1727 * such that it gets lost when RxCSR is re-set at the end of the mode 1
1728 * transfer, while sometimes it is recd just a little late so that if you
1729 * try to configure for mode 0 soon after the mode 1 transfer is
1730 * completed, you will find rxcount 0. Okay, so you might think why not
1731 * wait for an interrupt when the pkt is recd. Well, you won't get any!
1734 val
= musb_readw(epio
, MUSB_RXCSR
);
1735 val
&= ~MUSB_RXCSR_H_REQPKT
;
1737 if (dma
->desired_mode
== 0)
1738 val
&= ~MUSB_RXCSR_H_AUTOREQ
;
1740 val
|= MUSB_RXCSR_H_AUTOREQ
;
1741 val
|= MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAENAB
;
1743 musb_writew(epio
, MUSB_RXCSR
,
1744 MUSB_RXCSR_H_WZC_BITS
| val
);
1746 /* REVISIT if when actual_length != 0,
1747 * transfer_buffer_length needs to be
1750 ret
= c
->channel_program(
1752 dma
->desired_mode
, buf
, length
);
1755 c
->channel_release(dma
);
1756 hw_ep
->rx_channel
= NULL
;
1758 /* REVISIT reset CSR */
1761 #endif /* Mentor DMA */
1764 done
= musb_host_packet_rx(musb
, urb
,
1766 DBG(6, "read %spacket\n", done
? "last " : "");
1771 urb
->actual_length
+= xfer_len
;
1772 qh
->offset
+= xfer_len
;
1774 if (urb
->status
== -EINPROGRESS
)
1775 urb
->status
= status
;
1776 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_IN
);
1780 /* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
1781 * the software schedule associates multiple such nodes with a given
1782 * host side hardware endpoint + direction; scheduling may activate
1783 * that hardware endpoint.
1785 static int musb_schedule(
1792 int best_end
, epnum
;
1793 struct musb_hw_ep
*hw_ep
= NULL
;
1794 struct list_head
*head
= NULL
;
1796 /* use fixed hardware for control and bulk */
1797 if (qh
->type
== USB_ENDPOINT_XFER_CONTROL
) {
1798 head
= &musb
->control
;
1799 hw_ep
= musb
->control_ep
;
1803 /* else, periodic transfers get muxed to other endpoints */
1806 * We know this qh hasn't been scheduled, so all we need to do
1807 * is choose which hardware endpoint to put it on ...
1809 * REVISIT what we really want here is a regular schedule tree
1810 * like e.g. OHCI uses.
1815 for (epnum
= 1, hw_ep
= musb
->endpoints
+ 1;
1816 epnum
< musb
->nr_endpoints
;
1820 if (is_in
|| hw_ep
->is_shared_fifo
) {
1821 if (hw_ep
->in_qh
!= NULL
)
1823 } else if (hw_ep
->out_qh
!= NULL
)
1826 if (hw_ep
== musb
->bulk_ep
)
1830 diff
= hw_ep
->max_packet_sz_rx
- qh
->maxpacket
;
1832 diff
= hw_ep
->max_packet_sz_tx
- qh
->maxpacket
;
1834 if (diff
>= 0 && best_diff
> diff
) {
1839 /* use bulk reserved ep1 if no other ep is free */
1840 if (best_end
< 0 && qh
->type
== USB_ENDPOINT_XFER_BULK
) {
1841 hw_ep
= musb
->bulk_ep
;
1843 head
= &musb
->in_bulk
;
1845 head
= &musb
->out_bulk
;
1847 /* Enable bulk RX NAK timeout scheme when bulk requests are
1848 * multiplexed. This scheme doen't work in high speed to full
1849 * speed scenario as NAK interrupts are not coming from a
1850 * full speed device connected to a high speed device.
1851 * NAK timeout interval is 8 (128 uframe or 16ms) for HS and
1852 * 4 (8 frame or 8ms) for FS device.
1854 if (is_in
&& qh
->dev
)
1856 (USB_SPEED_HIGH
== qh
->dev
->speed
) ? 8 : 4;
1858 } else if (best_end
< 0) {
1864 hw_ep
= musb
->endpoints
+ best_end
;
1865 DBG(4, "qh %p periodic slot %d\n", qh
, best_end
);
1868 idle
= list_empty(head
);
1869 list_add_tail(&qh
->ring
, head
);
1873 qh
->hep
->hcpriv
= qh
;
1875 musb_start_urb(musb
, is_in
, qh
);
1879 static int musb_urb_enqueue(
1880 struct usb_hcd
*hcd
,
1884 unsigned long flags
;
1885 struct musb
*musb
= hcd_to_musb(hcd
);
1886 struct usb_host_endpoint
*hep
= urb
->ep
;
1888 struct usb_endpoint_descriptor
*epd
= &hep
->desc
;
1893 /* host role must be active */
1894 if (!is_host_active(musb
) || !musb
->is_active
)
1897 spin_lock_irqsave(&musb
->lock
, flags
);
1898 ret
= usb_hcd_link_urb_to_ep(hcd
, urb
);
1899 qh
= ret
? NULL
: hep
->hcpriv
;
1902 spin_unlock_irqrestore(&musb
->lock
, flags
);
1904 /* DMA mapping was already done, if needed, and this urb is on
1905 * hep->urb_list now ... so we're done, unless hep wasn't yet
1906 * scheduled onto a live qh.
1908 * REVISIT best to keep hep->hcpriv valid until the endpoint gets
1909 * disabled, testing for empty qh->ring and avoiding qh setup costs
1910 * except for the first urb queued after a config change.
1915 /* Allocate and initialize qh, minimizing the work done each time
1916 * hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
1918 * REVISIT consider a dedicated qh kmem_cache, so it's harder
1919 * for bugs in other kernel code to break this driver...
1921 qh
= kzalloc(sizeof *qh
, mem_flags
);
1923 spin_lock_irqsave(&musb
->lock
, flags
);
1924 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1925 spin_unlock_irqrestore(&musb
->lock
, flags
);
1931 INIT_LIST_HEAD(&qh
->ring
);
1934 qh
->maxpacket
= le16_to_cpu(epd
->wMaxPacketSize
);
1936 /* no high bandwidth support yet */
1937 if (qh
->maxpacket
& ~0x7ff) {
1942 qh
->epnum
= usb_endpoint_num(epd
);
1943 qh
->type
= usb_endpoint_type(epd
);
1945 /* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
1946 qh
->addr_reg
= (u8
) usb_pipedevice(urb
->pipe
);
1948 /* precompute rxtype/txtype/type0 register */
1949 type_reg
= (qh
->type
<< 4) | qh
->epnum
;
1950 switch (urb
->dev
->speed
) {
1954 case USB_SPEED_FULL
:
1960 qh
->type_reg
= type_reg
;
1962 /* Precompute RXINTERVAL/TXINTERVAL register */
1964 case USB_ENDPOINT_XFER_INT
:
1966 * Full/low speeds use the linear encoding,
1967 * high speed uses the logarithmic encoding.
1969 if (urb
->dev
->speed
<= USB_SPEED_FULL
) {
1970 interval
= max_t(u8
, epd
->bInterval
, 1);
1974 case USB_ENDPOINT_XFER_ISOC
:
1975 /* ISO always uses logarithmic encoding */
1976 interval
= min_t(u8
, epd
->bInterval
, 16);
1979 /* REVISIT we actually want to use NAK limits, hinting to the
1980 * transfer scheduling logic to try some other qh, e.g. try
1983 * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
1985 * The downside of disabling this is that transfer scheduling
1986 * gets VERY unfair for nonperiodic transfers; a misbehaving
1987 * peripheral could make that hurt. That's perfectly normal
1988 * for reads from network or serial adapters ... so we have
1989 * partial NAKlimit support for bulk RX.
1991 * The upside of disabling it is simpler transfer scheduling.
1995 qh
->intv_reg
= interval
;
1997 /* precompute addressing for external hub/tt ports */
1998 if (musb
->is_multipoint
) {
1999 struct usb_device
*parent
= urb
->dev
->parent
;
2001 if (parent
!= hcd
->self
.root_hub
) {
2002 qh
->h_addr_reg
= (u8
) parent
->devnum
;
2004 /* set up tt info if needed */
2006 qh
->h_port_reg
= (u8
) urb
->dev
->ttport
;
2007 if (urb
->dev
->tt
->hub
)
2009 (u8
) urb
->dev
->tt
->hub
->devnum
;
2010 if (urb
->dev
->tt
->multi
)
2011 qh
->h_addr_reg
|= 0x80;
2016 /* invariant: hep->hcpriv is null OR the qh that's already scheduled.
2017 * until we get real dma queues (with an entry for each urb/buffer),
2018 * we only have work to do in the former case.
2020 spin_lock_irqsave(&musb
->lock
, flags
);
2022 /* some concurrent activity submitted another urb to hep...
2023 * odd, rare, error prone, but legal.
2028 ret
= musb_schedule(musb
, qh
,
2029 epd
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
);
2033 /* FIXME set urb->start_frame for iso/intr, it's tested in
2034 * musb_start_urb(), but otherwise only konicawc cares ...
2037 spin_unlock_irqrestore(&musb
->lock
, flags
);
2041 spin_lock_irqsave(&musb
->lock
, flags
);
2042 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
2043 spin_unlock_irqrestore(&musb
->lock
, flags
);
2051 * abort a transfer that's at the head of a hardware queue.
2052 * called with controller locked, irqs blocked
2053 * that hardware queue advances to the next transfer, unless prevented
2055 static int musb_cleanup_urb(struct urb
*urb
, struct musb_qh
*qh
, int is_in
)
2057 struct musb_hw_ep
*ep
= qh
->hw_ep
;
2058 void __iomem
*epio
= ep
->regs
;
2059 unsigned hw_end
= ep
->epnum
;
2060 void __iomem
*regs
= ep
->musb
->mregs
;
2064 musb_ep_select(regs
, hw_end
);
2066 if (is_dma_capable()) {
2067 struct dma_channel
*dma
;
2069 dma
= is_in
? ep
->rx_channel
: ep
->tx_channel
;
2071 status
= ep
->musb
->dma_controller
->channel_abort(dma
);
2073 "abort %cX%d DMA for urb %p --> %d\n",
2074 is_in
? 'R' : 'T', ep
->epnum
,
2076 urb
->actual_length
+= dma
->actual_len
;
2080 /* turn off DMA requests, discard state, stop polling ... */
2082 /* giveback saves bulk toggle */
2083 csr
= musb_h_flush_rxfifo(ep
, 0);
2085 /* REVISIT we still get an irq; should likely clear the
2086 * endpoint's irq status here to avoid bogus irqs.
2087 * clearing that status is platform-specific...
2089 } else if (ep
->epnum
) {
2090 musb_h_tx_flush_fifo(ep
);
2091 csr
= musb_readw(epio
, MUSB_TXCSR
);
2092 csr
&= ~(MUSB_TXCSR_AUTOSET
2093 | MUSB_TXCSR_DMAENAB
2094 | MUSB_TXCSR_H_RXSTALL
2095 | MUSB_TXCSR_H_NAKTIMEOUT
2096 | MUSB_TXCSR_H_ERROR
2097 | MUSB_TXCSR_TXPKTRDY
);
2098 musb_writew(epio
, MUSB_TXCSR
, csr
);
2099 /* REVISIT may need to clear FLUSHFIFO ... */
2100 musb_writew(epio
, MUSB_TXCSR
, csr
);
2101 /* flush cpu writebuffer */
2102 csr
= musb_readw(epio
, MUSB_TXCSR
);
2104 musb_h_ep0_flush_fifo(ep
);
2107 musb_advance_schedule(ep
->musb
, urb
, ep
, is_in
);
2111 static int musb_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
2113 struct musb
*musb
= hcd_to_musb(hcd
);
2115 struct list_head
*sched
;
2116 unsigned long flags
;
2119 DBG(4, "urb=%p, dev%d ep%d%s\n", urb
,
2120 usb_pipedevice(urb
->pipe
),
2121 usb_pipeendpoint(urb
->pipe
),
2122 usb_pipein(urb
->pipe
) ? "in" : "out");
2124 spin_lock_irqsave(&musb
->lock
, flags
);
2125 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
2133 /* Any URB not actively programmed into endpoint hardware can be
2134 * immediately given back; that's any URB not at the head of an
2135 * endpoint queue, unless someday we get real DMA queues. And even
2136 * if it's at the head, it might not be known to the hardware...
2138 * Otherwise abort current transfer, pending dma, etc.; urb->status
2139 * has already been updated. This is a synchronous abort; it'd be
2140 * OK to hold off until after some IRQ, though.
2142 if (!qh
->is_ready
|| urb
->urb_list
.prev
!= &qh
->hep
->urb_list
)
2146 case USB_ENDPOINT_XFER_CONTROL
:
2147 sched
= &musb
->control
;
2149 case USB_ENDPOINT_XFER_BULK
:
2151 if (usb_pipein(urb
->pipe
))
2152 sched
= &musb
->in_bulk
;
2154 sched
= &musb
->out_bulk
;
2158 /* REVISIT when we get a schedule tree, periodic
2159 * transfers won't always be at the head of a
2160 * singleton queue...
2167 /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
2168 if (ret
< 0 || (sched
&& qh
!= first_qh(sched
))) {
2169 int ready
= qh
->is_ready
;
2173 __musb_giveback(musb
, urb
, 0);
2174 qh
->is_ready
= ready
;
2176 /* If nothing else (usually musb_giveback) is using it
2177 * and its URB list has emptied, recycle this qh.
2179 if (ready
&& list_empty(&qh
->hep
->urb_list
)) {
2180 qh
->hep
->hcpriv
= NULL
;
2181 list_del(&qh
->ring
);
2185 ret
= musb_cleanup_urb(urb
, qh
, urb
->pipe
& USB_DIR_IN
);
2187 spin_unlock_irqrestore(&musb
->lock
, flags
);
2191 /* disable an endpoint */
2193 musb_h_disable(struct usb_hcd
*hcd
, struct usb_host_endpoint
*hep
)
2195 u8 epnum
= hep
->desc
.bEndpointAddress
;
2196 unsigned long flags
;
2197 struct musb
*musb
= hcd_to_musb(hcd
);
2198 u8 is_in
= epnum
& USB_DIR_IN
;
2201 struct list_head
*sched
;
2203 spin_lock_irqsave(&musb
->lock
, flags
);
2210 case USB_ENDPOINT_XFER_CONTROL
:
2211 sched
= &musb
->control
;
2213 case USB_ENDPOINT_XFER_BULK
:
2216 sched
= &musb
->in_bulk
;
2218 sched
= &musb
->out_bulk
;
2222 /* REVISIT when we get a schedule tree, periodic transfers
2223 * won't always be at the head of a singleton queue...
2229 /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
2231 /* kick first urb off the hardware, if needed */
2233 if (!sched
|| qh
== first_qh(sched
)) {
2236 /* make software (then hardware) stop ASAP */
2238 urb
->status
= -ESHUTDOWN
;
2241 musb_cleanup_urb(urb
, qh
, urb
->pipe
& USB_DIR_IN
);
2243 /* Then nuke all the others ... and advance the
2244 * queue on hw_ep (e.g. bulk ring) when we're done.
2246 while (!list_empty(&hep
->urb_list
)) {
2248 urb
->status
= -ESHUTDOWN
;
2249 musb_advance_schedule(musb
, urb
, qh
->hw_ep
, is_in
);
2252 /* Just empty the queue; the hardware is busy with
2253 * other transfers, and since !qh->is_ready nothing
2254 * will activate any of these as it advances.
2256 while (!list_empty(&hep
->urb_list
))
2257 __musb_giveback(musb
, next_urb(qh
), -ESHUTDOWN
);
2260 list_del(&qh
->ring
);
2264 spin_unlock_irqrestore(&musb
->lock
, flags
);
2267 static int musb_h_get_frame_number(struct usb_hcd
*hcd
)
2269 struct musb
*musb
= hcd_to_musb(hcd
);
2271 return musb_readw(musb
->mregs
, MUSB_FRAME
);
2274 static int musb_h_start(struct usb_hcd
*hcd
)
2276 struct musb
*musb
= hcd_to_musb(hcd
);
2278 /* NOTE: musb_start() is called when the hub driver turns
2279 * on port power, or when (OTG) peripheral starts.
2281 hcd
->state
= HC_STATE_RUNNING
;
2282 musb
->port1_status
= 0;
2286 static void musb_h_stop(struct usb_hcd
*hcd
)
2288 musb_stop(hcd_to_musb(hcd
));
2289 hcd
->state
= HC_STATE_HALT
;
2292 static int musb_bus_suspend(struct usb_hcd
*hcd
)
2294 struct musb
*musb
= hcd_to_musb(hcd
);
2296 if (musb
->xceiv
.state
== OTG_STATE_A_SUSPEND
)
2299 if (is_host_active(musb
) && musb
->is_active
) {
2300 WARNING("trying to suspend as %s is_active=%i\n",
2301 otg_state_string(musb
), musb
->is_active
);
2307 static int musb_bus_resume(struct usb_hcd
*hcd
)
2309 /* resuming child port does the work */
2313 const struct hc_driver musb_hc_driver
= {
2314 .description
= "musb-hcd",
2315 .product_desc
= "MUSB HDRC host driver",
2316 .hcd_priv_size
= sizeof(struct musb
),
2317 .flags
= HCD_USB2
| HCD_MEMORY
,
2319 /* not using irq handler or reset hooks from usbcore, since
2320 * those must be shared with peripheral code for OTG configs
2323 .start
= musb_h_start
,
2324 .stop
= musb_h_stop
,
2326 .get_frame_number
= musb_h_get_frame_number
,
2328 .urb_enqueue
= musb_urb_enqueue
,
2329 .urb_dequeue
= musb_urb_dequeue
,
2330 .endpoint_disable
= musb_h_disable
,
2332 .hub_status_data
= musb_hub_status_data
,
2333 .hub_control
= musb_hub_control
,
2334 .bus_suspend
= musb_bus_suspend
,
2335 .bus_resume
= musb_bus_resume
,
2336 /* .start_port_reset = NULL, */
2337 /* .hub_irq_enable = NULL, */