MIPS: handle write_combine in pci_mmap_page_range
[linux-2.6/linux-loongson.git] / mm / sparse.c
blobda432d9f0ae825eb4e050ed8168c1600c6a793da
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
17 * Permanent SPARSEMEM data:
19 * 1) mem_section - memory sections, mem_map's for valid memory
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 ____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 ____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
42 int page_to_nid(struct page *page)
44 return section_to_node_table[page_to_section(page)];
46 EXPORT_SYMBOL(page_to_nid);
48 static void set_section_nid(unsigned long section_nr, int nid)
50 section_to_node_table[section_nr] = nid;
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr, int nid)
56 #endif
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 struct mem_section *section = NULL;
62 unsigned long array_size = SECTIONS_PER_ROOT *
63 sizeof(struct mem_section);
65 if (slab_is_available())
66 section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 else
68 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
70 if (section)
71 memset(section, 0, array_size);
73 return section;
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 static DEFINE_SPINLOCK(index_init_lock);
79 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 struct mem_section *section;
81 int ret = 0;
83 if (mem_section[root])
84 return -EEXIST;
86 section = sparse_index_alloc(nid);
87 if (!section)
88 return -ENOMEM;
90 * This lock keeps two different sections from
91 * reallocating for the same index
93 spin_lock(&index_init_lock);
95 if (mem_section[root]) {
96 ret = -EEXIST;
97 goto out;
100 mem_section[root] = section;
101 out:
102 spin_unlock(&index_init_lock);
103 return ret;
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 return 0;
110 #endif
113 * Although written for the SPARSEMEM_EXTREME case, this happens
114 * to also work for the flat array case because
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
117 int __section_nr(struct mem_section* ms)
119 unsigned long root_nr;
120 struct mem_section* root;
122 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 if (!root)
125 continue;
127 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 break;
131 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
140 static inline unsigned long sparse_encode_early_nid(int nid)
142 return (nid << SECTION_NID_SHIFT);
145 static inline int sparse_early_nid(struct mem_section *section)
147 return (section->section_mem_map >> SECTION_NID_SHIFT);
150 /* Validate the physical addressing limitations of the model */
151 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
152 unsigned long *end_pfn)
154 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
160 if (*start_pfn > max_sparsemem_pfn) {
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *start_pfn = max_sparsemem_pfn;
166 *end_pfn = max_sparsemem_pfn;
167 } else if (*end_pfn > max_sparsemem_pfn) {
168 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
169 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
170 *start_pfn, *end_pfn, max_sparsemem_pfn);
171 WARN_ON_ONCE(1);
172 *end_pfn = max_sparsemem_pfn;
176 /* Record a memory area against a node. */
177 void __init memory_present(int nid, unsigned long start, unsigned long end)
179 unsigned long pfn;
181 start &= PAGE_SECTION_MASK;
182 mminit_validate_memmodel_limits(&start, &end);
183 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
184 unsigned long section = pfn_to_section_nr(pfn);
185 struct mem_section *ms;
187 sparse_index_init(section, nid);
188 set_section_nid(section, nid);
190 ms = __nr_to_section(section);
191 if (!ms->section_mem_map)
192 ms->section_mem_map = sparse_encode_early_nid(nid) |
193 SECTION_MARKED_PRESENT;
198 * Only used by the i386 NUMA architecures, but relatively
199 * generic code.
201 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
202 unsigned long end_pfn)
204 unsigned long pfn;
205 unsigned long nr_pages = 0;
207 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
208 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
209 if (nid != early_pfn_to_nid(pfn))
210 continue;
212 if (pfn_present(pfn))
213 nr_pages += PAGES_PER_SECTION;
216 return nr_pages * sizeof(struct page);
220 * Subtle, we encode the real pfn into the mem_map such that
221 * the identity pfn - section_mem_map will return the actual
222 * physical page frame number.
224 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
226 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
230 * Decode mem_map from the coded memmap
232 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
234 /* mask off the extra low bits of information */
235 coded_mem_map &= SECTION_MAP_MASK;
236 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
239 static int __meminit sparse_init_one_section(struct mem_section *ms,
240 unsigned long pnum, struct page *mem_map,
241 unsigned long *pageblock_bitmap)
243 if (!present_section(ms))
244 return -EINVAL;
246 ms->section_mem_map &= ~SECTION_MAP_MASK;
247 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
248 SECTION_HAS_MEM_MAP;
249 ms->pageblock_flags = pageblock_bitmap;
251 return 1;
254 unsigned long usemap_size(void)
256 unsigned long size_bytes;
257 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
258 size_bytes = roundup(size_bytes, sizeof(unsigned long));
259 return size_bytes;
262 #ifdef CONFIG_MEMORY_HOTPLUG
263 static unsigned long *__kmalloc_section_usemap(void)
265 return kmalloc(usemap_size(), GFP_KERNEL);
267 #endif /* CONFIG_MEMORY_HOTPLUG */
269 #ifdef CONFIG_MEMORY_HOTREMOVE
270 static unsigned long * __init
271 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
273 unsigned long section_nr;
276 * A page may contain usemaps for other sections preventing the
277 * page being freed and making a section unremovable while
278 * other sections referencing the usemap retmain active. Similarly,
279 * a pgdat can prevent a section being removed. If section A
280 * contains a pgdat and section B contains the usemap, both
281 * sections become inter-dependent. This allocates usemaps
282 * from the same section as the pgdat where possible to avoid
283 * this problem.
285 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
286 return alloc_bootmem_section(usemap_size(), section_nr);
289 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
291 unsigned long usemap_snr, pgdat_snr;
292 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
293 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
294 struct pglist_data *pgdat = NODE_DATA(nid);
295 int usemap_nid;
297 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
298 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
299 if (usemap_snr == pgdat_snr)
300 return;
302 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
303 /* skip redundant message */
304 return;
306 old_usemap_snr = usemap_snr;
307 old_pgdat_snr = pgdat_snr;
309 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
310 if (usemap_nid != nid) {
311 printk(KERN_INFO
312 "node %d must be removed before remove section %ld\n",
313 nid, usemap_snr);
314 return;
317 * There is a circular dependency.
318 * Some platforms allow un-removable section because they will just
319 * gather other removable sections for dynamic partitioning.
320 * Just notify un-removable section's number here.
322 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
323 pgdat_snr, nid);
324 printk(KERN_CONT
325 " have a circular dependency on usemap and pgdat allocations\n");
327 #else
328 static unsigned long * __init
329 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
331 return NULL;
334 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
337 #endif /* CONFIG_MEMORY_HOTREMOVE */
339 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
341 unsigned long *usemap;
342 struct mem_section *ms = __nr_to_section(pnum);
343 int nid = sparse_early_nid(ms);
345 usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
346 if (usemap)
347 return usemap;
349 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
350 if (usemap) {
351 check_usemap_section_nr(nid, usemap);
352 return usemap;
355 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
356 nid = 0;
358 printk(KERN_WARNING "%s: allocation failed\n", __func__);
359 return NULL;
362 #ifndef CONFIG_SPARSEMEM_VMEMMAP
363 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
365 struct page *map;
367 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
368 if (map)
369 return map;
371 map = alloc_bootmem_pages_node(NODE_DATA(nid),
372 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
373 return map;
375 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
377 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
379 struct page *map;
380 struct mem_section *ms = __nr_to_section(pnum);
381 int nid = sparse_early_nid(ms);
383 map = sparse_mem_map_populate(pnum, nid);
384 if (map)
385 return map;
387 printk(KERN_ERR "%s: sparsemem memory map backing failed "
388 "some memory will not be available.\n", __func__);
389 ms->section_mem_map = 0;
390 return NULL;
393 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
397 * Allocate the accumulated non-linear sections, allocate a mem_map
398 * for each and record the physical to section mapping.
400 void __init sparse_init(void)
402 unsigned long pnum;
403 struct page *map;
404 unsigned long *usemap;
405 unsigned long **usemap_map;
406 int size;
409 * map is using big page (aka 2M in x86 64 bit)
410 * usemap is less one page (aka 24 bytes)
411 * so alloc 2M (with 2M align) and 24 bytes in turn will
412 * make next 2M slip to one more 2M later.
413 * then in big system, the memory will have a lot of holes...
414 * here try to allocate 2M pages continously.
416 * powerpc need to call sparse_init_one_section right after each
417 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
419 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
420 usemap_map = alloc_bootmem(size);
421 if (!usemap_map)
422 panic("can not allocate usemap_map\n");
424 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
425 if (!present_section_nr(pnum))
426 continue;
427 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
430 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
431 if (!present_section_nr(pnum))
432 continue;
434 usemap = usemap_map[pnum];
435 if (!usemap)
436 continue;
438 map = sparse_early_mem_map_alloc(pnum);
439 if (!map)
440 continue;
442 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
443 usemap);
446 vmemmap_populate_print_last();
448 free_bootmem(__pa(usemap_map), size);
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 #ifdef CONFIG_SPARSEMEM_VMEMMAP
453 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
454 unsigned long nr_pages)
456 /* This will make the necessary allocations eventually. */
457 return sparse_mem_map_populate(pnum, nid);
459 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
461 return; /* XXX: Not implemented yet */
463 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
466 #else
467 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
469 struct page *page, *ret;
470 unsigned long memmap_size = sizeof(struct page) * nr_pages;
472 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
473 if (page)
474 goto got_map_page;
476 ret = vmalloc(memmap_size);
477 if (ret)
478 goto got_map_ptr;
480 return NULL;
481 got_map_page:
482 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
483 got_map_ptr:
484 memset(ret, 0, memmap_size);
486 return ret;
489 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
490 unsigned long nr_pages)
492 return __kmalloc_section_memmap(nr_pages);
495 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
497 if (is_vmalloc_addr(memmap))
498 vfree(memmap);
499 else
500 free_pages((unsigned long)memmap,
501 get_order(sizeof(struct page) * nr_pages));
504 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
506 unsigned long maps_section_nr, removing_section_nr, i;
507 int magic;
509 for (i = 0; i < nr_pages; i++, page++) {
510 magic = atomic_read(&page->_mapcount);
512 BUG_ON(magic == NODE_INFO);
514 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
515 removing_section_nr = page->private;
518 * When this function is called, the removing section is
519 * logical offlined state. This means all pages are isolated
520 * from page allocator. If removing section's memmap is placed
521 * on the same section, it must not be freed.
522 * If it is freed, page allocator may allocate it which will
523 * be removed physically soon.
525 if (maps_section_nr != removing_section_nr)
526 put_page_bootmem(page);
529 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
531 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
533 struct page *usemap_page;
534 unsigned long nr_pages;
536 if (!usemap)
537 return;
539 usemap_page = virt_to_page(usemap);
541 * Check to see if allocation came from hot-plug-add
543 if (PageSlab(usemap_page)) {
544 kfree(usemap);
545 if (memmap)
546 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
547 return;
551 * The usemap came from bootmem. This is packed with other usemaps
552 * on the section which has pgdat at boot time. Just keep it as is now.
555 if (memmap) {
556 struct page *memmap_page;
557 memmap_page = virt_to_page(memmap);
559 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
560 >> PAGE_SHIFT;
562 free_map_bootmem(memmap_page, nr_pages);
567 * returns the number of sections whose mem_maps were properly
568 * set. If this is <=0, then that means that the passed-in
569 * map was not consumed and must be freed.
571 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
572 int nr_pages)
574 unsigned long section_nr = pfn_to_section_nr(start_pfn);
575 struct pglist_data *pgdat = zone->zone_pgdat;
576 struct mem_section *ms;
577 struct page *memmap;
578 unsigned long *usemap;
579 unsigned long flags;
580 int ret;
583 * no locking for this, because it does its own
584 * plus, it does a kmalloc
586 ret = sparse_index_init(section_nr, pgdat->node_id);
587 if (ret < 0 && ret != -EEXIST)
588 return ret;
589 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
590 if (!memmap)
591 return -ENOMEM;
592 usemap = __kmalloc_section_usemap();
593 if (!usemap) {
594 __kfree_section_memmap(memmap, nr_pages);
595 return -ENOMEM;
598 pgdat_resize_lock(pgdat, &flags);
600 ms = __pfn_to_section(start_pfn);
601 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
602 ret = -EEXIST;
603 goto out;
606 ms->section_mem_map |= SECTION_MARKED_PRESENT;
608 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
610 out:
611 pgdat_resize_unlock(pgdat, &flags);
612 if (ret <= 0) {
613 kfree(usemap);
614 __kfree_section_memmap(memmap, nr_pages);
616 return ret;
619 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
621 struct page *memmap = NULL;
622 unsigned long *usemap = NULL;
624 if (ms->section_mem_map) {
625 usemap = ms->pageblock_flags;
626 memmap = sparse_decode_mem_map(ms->section_mem_map,
627 __section_nr(ms));
628 ms->section_mem_map = 0;
629 ms->pageblock_flags = NULL;
632 free_section_usemap(memmap, usemap);
634 #endif