MIPS: handle write_combine in pci_mmap_page_range
[linux-2.6/linux-loongson.git] / mm / vmalloc.c
blobfab19876b4d178986979c2b5d2cb353285507b46
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
27 #include <linux/pfn.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 pte_t *pte;
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 pmd_t *pmd;
50 unsigned long next;
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 pud_t *pud;
64 unsigned long next;
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 pgd_t *pgd;
78 unsigned long next;
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 pte_t *pte;
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 pmd_t *pmd;
120 unsigned long next;
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 pud_t *pud;
137 unsigned long next;
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 break;
172 } while (pgd++, addr = next, addr != end);
174 if (unlikely(err))
175 return err;
176 return nr;
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 pgprot_t prot, struct page **pages)
182 int ret;
184 ret = vmap_page_range_noflush(start, end, prot, pages);
185 flush_cache_vmap(start, end);
186 return ret;
189 static inline int is_vmalloc_or_module_addr(const void *x)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr = (unsigned long)x;
198 if (addr >= MODULES_VADDR && addr < MODULES_END)
199 return 1;
200 #endif
201 return is_vmalloc_addr(x);
205 * Walk a vmap address to the struct page it maps.
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
209 unsigned long addr = (unsigned long) vmalloc_addr;
210 struct page *page = NULL;
211 pgd_t *pgd = pgd_offset_k(addr);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
219 if (!pgd_none(*pgd)) {
220 pud_t *pud = pud_offset(pgd, addr);
221 if (!pud_none(*pud)) {
222 pmd_t *pmd = pmd_offset(pud, addr);
223 if (!pmd_none(*pmd)) {
224 pte_t *ptep, pte;
226 ptep = pte_offset_map(pmd, addr);
227 pte = *ptep;
228 if (pte_present(pte))
229 page = pte_page(pte);
230 pte_unmap(ptep);
234 return page;
236 EXPORT_SYMBOL(vmalloc_to_page);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
245 EXPORT_SYMBOL(vmalloc_to_pfn);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
254 struct vmap_area {
255 unsigned long va_start;
256 unsigned long va_end;
257 unsigned long flags;
258 struct rb_node rb_node; /* address sorted rbtree */
259 struct list_head list; /* address sorted list */
260 struct list_head purge_list; /* "lazy purge" list */
261 void *private;
262 struct rcu_head rcu_head;
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
271 struct rb_node *n = vmap_area_root.rb_node;
273 while (n) {
274 struct vmap_area *va;
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
285 return NULL;
288 static void __insert_vmap_area(struct vmap_area *va)
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
294 while (*p) {
295 struct vmap_area *tmp;
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
331 struct vmap_area *va;
332 struct rb_node *n;
333 unsigned long addr;
334 int purged = 0;
336 BUG_ON(!size);
337 BUG_ON(size & ~PAGE_MASK);
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
344 retry:
345 addr = ALIGN(vstart, align);
347 spin_lock(&vmap_area_lock);
348 if (addr + size - 1 < addr)
349 goto overflow;
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
367 } while (n);
369 if (!first)
370 goto found;
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
380 while (addr + size > first->va_start && addr + size <= vend) {
381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 if (addr + size - 1 < addr)
383 goto overflow;
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
392 found:
393 if (addr + size > vend) {
394 overflow:
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
401 if (printk_ratelimit())
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
405 return ERR_PTR(-EBUSY);
408 BUG_ON(addr & (align-1));
410 va->va_start = addr;
411 va->va_end = addr + size;
412 va->flags = 0;
413 __insert_vmap_area(va);
414 spin_unlock(&vmap_area_lock);
416 return va;
419 static void rcu_free_va(struct rcu_head *head)
421 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423 kfree(va);
426 static void __free_vmap_area(struct vmap_area *va)
428 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429 rb_erase(&va->rb_node, &vmap_area_root);
430 RB_CLEAR_NODE(&va->rb_node);
431 list_del_rcu(&va->list);
433 call_rcu(&va->rcu_head, rcu_free_va);
437 * Free a region of KVA allocated by alloc_vmap_area
439 static void free_vmap_area(struct vmap_area *va)
441 spin_lock(&vmap_area_lock);
442 __free_vmap_area(va);
443 spin_unlock(&vmap_area_lock);
447 * Clear the pagetable entries of a given vmap_area
449 static void unmap_vmap_area(struct vmap_area *va)
451 vunmap_page_range(va->va_start, va->va_end);
454 static void vmap_debug_free_range(unsigned long start, unsigned long end)
457 * Unmap page tables and force a TLB flush immediately if
458 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
459 * bugs similarly to those in linear kernel virtual address
460 * space after a page has been freed.
462 * All the lazy freeing logic is still retained, in order to
463 * minimise intrusiveness of this debugging feature.
465 * This is going to be *slow* (linear kernel virtual address
466 * debugging doesn't do a broadcast TLB flush so it is a lot
467 * faster).
469 #ifdef CONFIG_DEBUG_PAGEALLOC
470 vunmap_page_range(start, end);
471 flush_tlb_kernel_range(start, end);
472 #endif
476 * lazy_max_pages is the maximum amount of virtual address space we gather up
477 * before attempting to purge with a TLB flush.
479 * There is a tradeoff here: a larger number will cover more kernel page tables
480 * and take slightly longer to purge, but it will linearly reduce the number of
481 * global TLB flushes that must be performed. It would seem natural to scale
482 * this number up linearly with the number of CPUs (because vmapping activity
483 * could also scale linearly with the number of CPUs), however it is likely
484 * that in practice, workloads might be constrained in other ways that mean
485 * vmap activity will not scale linearly with CPUs. Also, I want to be
486 * conservative and not introduce a big latency on huge systems, so go with
487 * a less aggressive log scale. It will still be an improvement over the old
488 * code, and it will be simple to change the scale factor if we find that it
489 * becomes a problem on bigger systems.
491 static unsigned long lazy_max_pages(void)
493 unsigned int log;
495 log = fls(num_online_cpus());
497 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
500 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
503 * Purges all lazily-freed vmap areas.
505 * If sync is 0 then don't purge if there is already a purge in progress.
506 * If force_flush is 1, then flush kernel TLBs between *start and *end even
507 * if we found no lazy vmap areas to unmap (callers can use this to optimise
508 * their own TLB flushing).
509 * Returns with *start = min(*start, lowest purged address)
510 * *end = max(*end, highest purged address)
512 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
513 int sync, int force_flush)
515 static DEFINE_SPINLOCK(purge_lock);
516 LIST_HEAD(valist);
517 struct vmap_area *va;
518 struct vmap_area *n_va;
519 int nr = 0;
522 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
523 * should not expect such behaviour. This just simplifies locking for
524 * the case that isn't actually used at the moment anyway.
526 if (!sync && !force_flush) {
527 if (!spin_trylock(&purge_lock))
528 return;
529 } else
530 spin_lock(&purge_lock);
532 rcu_read_lock();
533 list_for_each_entry_rcu(va, &vmap_area_list, list) {
534 if (va->flags & VM_LAZY_FREE) {
535 if (va->va_start < *start)
536 *start = va->va_start;
537 if (va->va_end > *end)
538 *end = va->va_end;
539 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
540 unmap_vmap_area(va);
541 list_add_tail(&va->purge_list, &valist);
542 va->flags |= VM_LAZY_FREEING;
543 va->flags &= ~VM_LAZY_FREE;
546 rcu_read_unlock();
548 if (nr) {
549 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
550 atomic_sub(nr, &vmap_lazy_nr);
553 if (nr || force_flush)
554 flush_tlb_kernel_range(*start, *end);
556 if (nr) {
557 spin_lock(&vmap_area_lock);
558 list_for_each_entry_safe(va, n_va, &valist, purge_list)
559 __free_vmap_area(va);
560 spin_unlock(&vmap_area_lock);
562 spin_unlock(&purge_lock);
566 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
567 * is already purging.
569 static void try_purge_vmap_area_lazy(void)
571 unsigned long start = ULONG_MAX, end = 0;
573 __purge_vmap_area_lazy(&start, &end, 0, 0);
577 * Kick off a purge of the outstanding lazy areas.
579 static void purge_vmap_area_lazy(void)
581 unsigned long start = ULONG_MAX, end = 0;
583 __purge_vmap_area_lazy(&start, &end, 1, 0);
587 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
588 * called for the correct range previously.
590 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
592 va->flags |= VM_LAZY_FREE;
593 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
594 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
595 try_purge_vmap_area_lazy();
599 * Free and unmap a vmap area
601 static void free_unmap_vmap_area(struct vmap_area *va)
603 flush_cache_vunmap(va->va_start, va->va_end);
604 free_unmap_vmap_area_noflush(va);
607 static struct vmap_area *find_vmap_area(unsigned long addr)
609 struct vmap_area *va;
611 spin_lock(&vmap_area_lock);
612 va = __find_vmap_area(addr);
613 spin_unlock(&vmap_area_lock);
615 return va;
618 static void free_unmap_vmap_area_addr(unsigned long addr)
620 struct vmap_area *va;
622 va = find_vmap_area(addr);
623 BUG_ON(!va);
624 free_unmap_vmap_area(va);
628 /*** Per cpu kva allocator ***/
631 * vmap space is limited especially on 32 bit architectures. Ensure there is
632 * room for at least 16 percpu vmap blocks per CPU.
635 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
636 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
637 * instead (we just need a rough idea)
639 #if BITS_PER_LONG == 32
640 #define VMALLOC_SPACE (128UL*1024*1024)
641 #else
642 #define VMALLOC_SPACE (128UL*1024*1024*1024)
643 #endif
645 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
646 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
647 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
648 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
649 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
650 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
651 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
652 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
653 VMALLOC_PAGES / NR_CPUS / 16))
655 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
657 static bool vmap_initialized __read_mostly = false;
659 struct vmap_block_queue {
660 spinlock_t lock;
661 struct list_head free;
662 struct list_head dirty;
663 unsigned int nr_dirty;
666 struct vmap_block {
667 spinlock_t lock;
668 struct vmap_area *va;
669 struct vmap_block_queue *vbq;
670 unsigned long free, dirty;
671 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
672 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
673 union {
674 struct list_head free_list;
675 struct rcu_head rcu_head;
679 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
680 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
683 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
684 * in the free path. Could get rid of this if we change the API to return a
685 * "cookie" from alloc, to be passed to free. But no big deal yet.
687 static DEFINE_SPINLOCK(vmap_block_tree_lock);
688 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
691 * We should probably have a fallback mechanism to allocate virtual memory
692 * out of partially filled vmap blocks. However vmap block sizing should be
693 * fairly reasonable according to the vmalloc size, so it shouldn't be a
694 * big problem.
697 static unsigned long addr_to_vb_idx(unsigned long addr)
699 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
700 addr /= VMAP_BLOCK_SIZE;
701 return addr;
704 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
706 struct vmap_block_queue *vbq;
707 struct vmap_block *vb;
708 struct vmap_area *va;
709 unsigned long vb_idx;
710 int node, err;
712 node = numa_node_id();
714 vb = kmalloc_node(sizeof(struct vmap_block),
715 gfp_mask & GFP_RECLAIM_MASK, node);
716 if (unlikely(!vb))
717 return ERR_PTR(-ENOMEM);
719 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
720 VMALLOC_START, VMALLOC_END,
721 node, gfp_mask);
722 if (unlikely(IS_ERR(va))) {
723 kfree(vb);
724 return ERR_PTR(PTR_ERR(va));
727 err = radix_tree_preload(gfp_mask);
728 if (unlikely(err)) {
729 kfree(vb);
730 free_vmap_area(va);
731 return ERR_PTR(err);
734 spin_lock_init(&vb->lock);
735 vb->va = va;
736 vb->free = VMAP_BBMAP_BITS;
737 vb->dirty = 0;
738 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
739 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
740 INIT_LIST_HEAD(&vb->free_list);
742 vb_idx = addr_to_vb_idx(va->va_start);
743 spin_lock(&vmap_block_tree_lock);
744 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
745 spin_unlock(&vmap_block_tree_lock);
746 BUG_ON(err);
747 radix_tree_preload_end();
749 vbq = &get_cpu_var(vmap_block_queue);
750 vb->vbq = vbq;
751 spin_lock(&vbq->lock);
752 list_add(&vb->free_list, &vbq->free);
753 spin_unlock(&vbq->lock);
754 put_cpu_var(vmap_cpu_blocks);
756 return vb;
759 static void rcu_free_vb(struct rcu_head *head)
761 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
763 kfree(vb);
766 static void free_vmap_block(struct vmap_block *vb)
768 struct vmap_block *tmp;
769 unsigned long vb_idx;
771 BUG_ON(!list_empty(&vb->free_list));
773 vb_idx = addr_to_vb_idx(vb->va->va_start);
774 spin_lock(&vmap_block_tree_lock);
775 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
776 spin_unlock(&vmap_block_tree_lock);
777 BUG_ON(tmp != vb);
779 free_unmap_vmap_area_noflush(vb->va);
780 call_rcu(&vb->rcu_head, rcu_free_vb);
783 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
785 struct vmap_block_queue *vbq;
786 struct vmap_block *vb;
787 unsigned long addr = 0;
788 unsigned int order;
790 BUG_ON(size & ~PAGE_MASK);
791 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
792 order = get_order(size);
794 again:
795 rcu_read_lock();
796 vbq = &get_cpu_var(vmap_block_queue);
797 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
798 int i;
800 spin_lock(&vb->lock);
801 i = bitmap_find_free_region(vb->alloc_map,
802 VMAP_BBMAP_BITS, order);
804 if (i >= 0) {
805 addr = vb->va->va_start + (i << PAGE_SHIFT);
806 BUG_ON(addr_to_vb_idx(addr) !=
807 addr_to_vb_idx(vb->va->va_start));
808 vb->free -= 1UL << order;
809 if (vb->free == 0) {
810 spin_lock(&vbq->lock);
811 list_del_init(&vb->free_list);
812 spin_unlock(&vbq->lock);
814 spin_unlock(&vb->lock);
815 break;
817 spin_unlock(&vb->lock);
819 put_cpu_var(vmap_cpu_blocks);
820 rcu_read_unlock();
822 if (!addr) {
823 vb = new_vmap_block(gfp_mask);
824 if (IS_ERR(vb))
825 return vb;
826 goto again;
829 return (void *)addr;
832 static void vb_free(const void *addr, unsigned long size)
834 unsigned long offset;
835 unsigned long vb_idx;
836 unsigned int order;
837 struct vmap_block *vb;
839 BUG_ON(size & ~PAGE_MASK);
840 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
842 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
844 order = get_order(size);
846 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
848 vb_idx = addr_to_vb_idx((unsigned long)addr);
849 rcu_read_lock();
850 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
851 rcu_read_unlock();
852 BUG_ON(!vb);
854 spin_lock(&vb->lock);
855 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
857 vb->dirty += 1UL << order;
858 if (vb->dirty == VMAP_BBMAP_BITS) {
859 BUG_ON(vb->free || !list_empty(&vb->free_list));
860 spin_unlock(&vb->lock);
861 free_vmap_block(vb);
862 } else
863 spin_unlock(&vb->lock);
867 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
869 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
870 * to amortize TLB flushing overheads. What this means is that any page you
871 * have now, may, in a former life, have been mapped into kernel virtual
872 * address by the vmap layer and so there might be some CPUs with TLB entries
873 * still referencing that page (additional to the regular 1:1 kernel mapping).
875 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
876 * be sure that none of the pages we have control over will have any aliases
877 * from the vmap layer.
879 void vm_unmap_aliases(void)
881 unsigned long start = ULONG_MAX, end = 0;
882 int cpu;
883 int flush = 0;
885 if (unlikely(!vmap_initialized))
886 return;
888 for_each_possible_cpu(cpu) {
889 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
890 struct vmap_block *vb;
892 rcu_read_lock();
893 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
894 int i;
896 spin_lock(&vb->lock);
897 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
898 while (i < VMAP_BBMAP_BITS) {
899 unsigned long s, e;
900 int j;
901 j = find_next_zero_bit(vb->dirty_map,
902 VMAP_BBMAP_BITS, i);
904 s = vb->va->va_start + (i << PAGE_SHIFT);
905 e = vb->va->va_start + (j << PAGE_SHIFT);
906 vunmap_page_range(s, e);
907 flush = 1;
909 if (s < start)
910 start = s;
911 if (e > end)
912 end = e;
914 i = j;
915 i = find_next_bit(vb->dirty_map,
916 VMAP_BBMAP_BITS, i);
918 spin_unlock(&vb->lock);
920 rcu_read_unlock();
923 __purge_vmap_area_lazy(&start, &end, 1, flush);
925 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
928 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
929 * @mem: the pointer returned by vm_map_ram
930 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
932 void vm_unmap_ram(const void *mem, unsigned int count)
934 unsigned long size = count << PAGE_SHIFT;
935 unsigned long addr = (unsigned long)mem;
937 BUG_ON(!addr);
938 BUG_ON(addr < VMALLOC_START);
939 BUG_ON(addr > VMALLOC_END);
940 BUG_ON(addr & (PAGE_SIZE-1));
942 debug_check_no_locks_freed(mem, size);
943 vmap_debug_free_range(addr, addr+size);
945 if (likely(count <= VMAP_MAX_ALLOC))
946 vb_free(mem, size);
947 else
948 free_unmap_vmap_area_addr(addr);
950 EXPORT_SYMBOL(vm_unmap_ram);
953 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
954 * @pages: an array of pointers to the pages to be mapped
955 * @count: number of pages
956 * @node: prefer to allocate data structures on this node
957 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
959 * Returns: a pointer to the address that has been mapped, or %NULL on failure
961 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
963 unsigned long size = count << PAGE_SHIFT;
964 unsigned long addr;
965 void *mem;
967 if (likely(count <= VMAP_MAX_ALLOC)) {
968 mem = vb_alloc(size, GFP_KERNEL);
969 if (IS_ERR(mem))
970 return NULL;
971 addr = (unsigned long)mem;
972 } else {
973 struct vmap_area *va;
974 va = alloc_vmap_area(size, PAGE_SIZE,
975 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
976 if (IS_ERR(va))
977 return NULL;
979 addr = va->va_start;
980 mem = (void *)addr;
982 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
983 vm_unmap_ram(mem, count);
984 return NULL;
986 return mem;
988 EXPORT_SYMBOL(vm_map_ram);
991 * vm_area_register_early - register vmap area early during boot
992 * @vm: vm_struct to register
993 * @align: requested alignment
995 * This function is used to register kernel vm area before
996 * vmalloc_init() is called. @vm->size and @vm->flags should contain
997 * proper values on entry and other fields should be zero. On return,
998 * vm->addr contains the allocated address.
1000 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1002 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1004 static size_t vm_init_off __initdata;
1005 unsigned long addr;
1007 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1008 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1010 vm->addr = (void *)addr;
1012 vm->next = vmlist;
1013 vmlist = vm;
1016 void __init vmalloc_init(void)
1018 struct vmap_area *va;
1019 struct vm_struct *tmp;
1020 int i;
1022 for_each_possible_cpu(i) {
1023 struct vmap_block_queue *vbq;
1025 vbq = &per_cpu(vmap_block_queue, i);
1026 spin_lock_init(&vbq->lock);
1027 INIT_LIST_HEAD(&vbq->free);
1028 INIT_LIST_HEAD(&vbq->dirty);
1029 vbq->nr_dirty = 0;
1032 /* Import existing vmlist entries. */
1033 for (tmp = vmlist; tmp; tmp = tmp->next) {
1034 va = alloc_bootmem(sizeof(struct vmap_area));
1035 va->flags = tmp->flags | VM_VM_AREA;
1036 va->va_start = (unsigned long)tmp->addr;
1037 va->va_end = va->va_start + tmp->size;
1038 __insert_vmap_area(va);
1040 vmap_initialized = true;
1044 * map_kernel_range_noflush - map kernel VM area with the specified pages
1045 * @addr: start of the VM area to map
1046 * @size: size of the VM area to map
1047 * @prot: page protection flags to use
1048 * @pages: pages to map
1050 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1051 * specify should have been allocated using get_vm_area() and its
1052 * friends.
1054 * NOTE:
1055 * This function does NOT do any cache flushing. The caller is
1056 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1057 * before calling this function.
1059 * RETURNS:
1060 * The number of pages mapped on success, -errno on failure.
1062 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1063 pgprot_t prot, struct page **pages)
1065 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1069 * unmap_kernel_range_noflush - unmap kernel VM area
1070 * @addr: start of the VM area to unmap
1071 * @size: size of the VM area to unmap
1073 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1074 * specify should have been allocated using get_vm_area() and its
1075 * friends.
1077 * NOTE:
1078 * This function does NOT do any cache flushing. The caller is
1079 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1080 * before calling this function and flush_tlb_kernel_range() after.
1082 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1084 vunmap_page_range(addr, addr + size);
1088 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1089 * @addr: start of the VM area to unmap
1090 * @size: size of the VM area to unmap
1092 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1093 * the unmapping and tlb after.
1095 void unmap_kernel_range(unsigned long addr, unsigned long size)
1097 unsigned long end = addr + size;
1099 flush_cache_vunmap(addr, end);
1100 vunmap_page_range(addr, end);
1101 flush_tlb_kernel_range(addr, end);
1104 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1106 unsigned long addr = (unsigned long)area->addr;
1107 unsigned long end = addr + area->size - PAGE_SIZE;
1108 int err;
1110 err = vmap_page_range(addr, end, prot, *pages);
1111 if (err > 0) {
1112 *pages += err;
1113 err = 0;
1116 return err;
1118 EXPORT_SYMBOL_GPL(map_vm_area);
1120 /*** Old vmalloc interfaces ***/
1121 DEFINE_RWLOCK(vmlist_lock);
1122 struct vm_struct *vmlist;
1124 static struct vm_struct *__get_vm_area_node(unsigned long size,
1125 unsigned long flags, unsigned long start, unsigned long end,
1126 int node, gfp_t gfp_mask, void *caller)
1128 static struct vmap_area *va;
1129 struct vm_struct *area;
1130 struct vm_struct *tmp, **p;
1131 unsigned long align = 1;
1133 BUG_ON(in_interrupt());
1134 if (flags & VM_IOREMAP) {
1135 int bit = fls(size);
1137 if (bit > IOREMAP_MAX_ORDER)
1138 bit = IOREMAP_MAX_ORDER;
1139 else if (bit < PAGE_SHIFT)
1140 bit = PAGE_SHIFT;
1142 align = 1ul << bit;
1145 size = PAGE_ALIGN(size);
1146 if (unlikely(!size))
1147 return NULL;
1149 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1150 if (unlikely(!area))
1151 return NULL;
1154 * We always allocate a guard page.
1156 size += PAGE_SIZE;
1158 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1159 if (IS_ERR(va)) {
1160 kfree(area);
1161 return NULL;
1164 area->flags = flags;
1165 area->addr = (void *)va->va_start;
1166 area->size = size;
1167 area->pages = NULL;
1168 area->nr_pages = 0;
1169 area->phys_addr = 0;
1170 area->caller = caller;
1171 va->private = area;
1172 va->flags |= VM_VM_AREA;
1174 write_lock(&vmlist_lock);
1175 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1176 if (tmp->addr >= area->addr)
1177 break;
1179 area->next = *p;
1180 *p = area;
1181 write_unlock(&vmlist_lock);
1183 return area;
1186 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1187 unsigned long start, unsigned long end)
1189 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1190 __builtin_return_address(0));
1192 EXPORT_SYMBOL_GPL(__get_vm_area);
1194 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1195 unsigned long start, unsigned long end,
1196 void *caller)
1198 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1199 caller);
1203 * get_vm_area - reserve a contiguous kernel virtual area
1204 * @size: size of the area
1205 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1207 * Search an area of @size in the kernel virtual mapping area,
1208 * and reserved it for out purposes. Returns the area descriptor
1209 * on success or %NULL on failure.
1211 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1213 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1214 -1, GFP_KERNEL, __builtin_return_address(0));
1217 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1218 void *caller)
1220 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1221 -1, GFP_KERNEL, caller);
1224 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1225 int node, gfp_t gfp_mask)
1227 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1228 gfp_mask, __builtin_return_address(0));
1231 static struct vm_struct *find_vm_area(const void *addr)
1233 struct vmap_area *va;
1235 va = find_vmap_area((unsigned long)addr);
1236 if (va && va->flags & VM_VM_AREA)
1237 return va->private;
1239 return NULL;
1243 * remove_vm_area - find and remove a continuous kernel virtual area
1244 * @addr: base address
1246 * Search for the kernel VM area starting at @addr, and remove it.
1247 * This function returns the found VM area, but using it is NOT safe
1248 * on SMP machines, except for its size or flags.
1250 struct vm_struct *remove_vm_area(const void *addr)
1252 struct vmap_area *va;
1254 va = find_vmap_area((unsigned long)addr);
1255 if (va && va->flags & VM_VM_AREA) {
1256 struct vm_struct *vm = va->private;
1257 struct vm_struct *tmp, **p;
1259 vmap_debug_free_range(va->va_start, va->va_end);
1260 free_unmap_vmap_area(va);
1261 vm->size -= PAGE_SIZE;
1263 write_lock(&vmlist_lock);
1264 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1266 *p = tmp->next;
1267 write_unlock(&vmlist_lock);
1269 return vm;
1271 return NULL;
1274 static void __vunmap(const void *addr, int deallocate_pages)
1276 struct vm_struct *area;
1278 if (!addr)
1279 return;
1281 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1282 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1283 return;
1286 area = remove_vm_area(addr);
1287 if (unlikely(!area)) {
1288 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1289 addr);
1290 return;
1293 debug_check_no_locks_freed(addr, area->size);
1294 debug_check_no_obj_freed(addr, area->size);
1296 if (deallocate_pages) {
1297 int i;
1299 for (i = 0; i < area->nr_pages; i++) {
1300 struct page *page = area->pages[i];
1302 BUG_ON(!page);
1303 __free_page(page);
1306 if (area->flags & VM_VPAGES)
1307 vfree(area->pages);
1308 else
1309 kfree(area->pages);
1312 kfree(area);
1313 return;
1317 * vfree - release memory allocated by vmalloc()
1318 * @addr: memory base address
1320 * Free the virtually continuous memory area starting at @addr, as
1321 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1322 * NULL, no operation is performed.
1324 * Must not be called in interrupt context.
1326 void vfree(const void *addr)
1328 BUG_ON(in_interrupt());
1329 __vunmap(addr, 1);
1331 EXPORT_SYMBOL(vfree);
1334 * vunmap - release virtual mapping obtained by vmap()
1335 * @addr: memory base address
1337 * Free the virtually contiguous memory area starting at @addr,
1338 * which was created from the page array passed to vmap().
1340 * Must not be called in interrupt context.
1342 void vunmap(const void *addr)
1344 BUG_ON(in_interrupt());
1345 might_sleep();
1346 __vunmap(addr, 0);
1348 EXPORT_SYMBOL(vunmap);
1351 * vmap - map an array of pages into virtually contiguous space
1352 * @pages: array of page pointers
1353 * @count: number of pages to map
1354 * @flags: vm_area->flags
1355 * @prot: page protection for the mapping
1357 * Maps @count pages from @pages into contiguous kernel virtual
1358 * space.
1360 void *vmap(struct page **pages, unsigned int count,
1361 unsigned long flags, pgprot_t prot)
1363 struct vm_struct *area;
1365 might_sleep();
1367 if (count > num_physpages)
1368 return NULL;
1370 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1371 __builtin_return_address(0));
1372 if (!area)
1373 return NULL;
1375 if (map_vm_area(area, prot, &pages)) {
1376 vunmap(area->addr);
1377 return NULL;
1380 return area->addr;
1382 EXPORT_SYMBOL(vmap);
1384 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1385 int node, void *caller);
1386 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1387 pgprot_t prot, int node, void *caller)
1389 struct page **pages;
1390 unsigned int nr_pages, array_size, i;
1392 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1393 array_size = (nr_pages * sizeof(struct page *));
1395 area->nr_pages = nr_pages;
1396 /* Please note that the recursion is strictly bounded. */
1397 if (array_size > PAGE_SIZE) {
1398 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1399 PAGE_KERNEL, node, caller);
1400 area->flags |= VM_VPAGES;
1401 } else {
1402 pages = kmalloc_node(array_size,
1403 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1404 node);
1406 area->pages = pages;
1407 area->caller = caller;
1408 if (!area->pages) {
1409 remove_vm_area(area->addr);
1410 kfree(area);
1411 return NULL;
1414 for (i = 0; i < area->nr_pages; i++) {
1415 struct page *page;
1417 if (node < 0)
1418 page = alloc_page(gfp_mask);
1419 else
1420 page = alloc_pages_node(node, gfp_mask, 0);
1422 if (unlikely(!page)) {
1423 /* Successfully allocated i pages, free them in __vunmap() */
1424 area->nr_pages = i;
1425 goto fail;
1427 area->pages[i] = page;
1430 if (map_vm_area(area, prot, &pages))
1431 goto fail;
1432 return area->addr;
1434 fail:
1435 vfree(area->addr);
1436 return NULL;
1439 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1441 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1442 __builtin_return_address(0));
1446 * __vmalloc_node - allocate virtually contiguous memory
1447 * @size: allocation size
1448 * @gfp_mask: flags for the page level allocator
1449 * @prot: protection mask for the allocated pages
1450 * @node: node to use for allocation or -1
1451 * @caller: caller's return address
1453 * Allocate enough pages to cover @size from the page level
1454 * allocator with @gfp_mask flags. Map them into contiguous
1455 * kernel virtual space, using a pagetable protection of @prot.
1457 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1458 int node, void *caller)
1460 struct vm_struct *area;
1462 size = PAGE_ALIGN(size);
1463 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1464 return NULL;
1466 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1467 node, gfp_mask, caller);
1469 if (!area)
1470 return NULL;
1472 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1475 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1477 return __vmalloc_node(size, gfp_mask, prot, -1,
1478 __builtin_return_address(0));
1480 EXPORT_SYMBOL(__vmalloc);
1483 * vmalloc - allocate virtually contiguous memory
1484 * @size: allocation size
1485 * Allocate enough pages to cover @size from the page level
1486 * allocator and map them into contiguous kernel virtual space.
1488 * For tight control over page level allocator and protection flags
1489 * use __vmalloc() instead.
1491 void *vmalloc(unsigned long size)
1493 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1494 -1, __builtin_return_address(0));
1496 EXPORT_SYMBOL(vmalloc);
1499 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1500 * @size: allocation size
1502 * The resulting memory area is zeroed so it can be mapped to userspace
1503 * without leaking data.
1505 void *vmalloc_user(unsigned long size)
1507 struct vm_struct *area;
1508 void *ret;
1510 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1511 PAGE_KERNEL, -1, __builtin_return_address(0));
1512 if (ret) {
1513 area = find_vm_area(ret);
1514 area->flags |= VM_USERMAP;
1516 return ret;
1518 EXPORT_SYMBOL(vmalloc_user);
1521 * vmalloc_node - allocate memory on a specific node
1522 * @size: allocation size
1523 * @node: numa node
1525 * Allocate enough pages to cover @size from the page level
1526 * allocator and map them into contiguous kernel virtual space.
1528 * For tight control over page level allocator and protection flags
1529 * use __vmalloc() instead.
1531 void *vmalloc_node(unsigned long size, int node)
1533 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1534 node, __builtin_return_address(0));
1536 EXPORT_SYMBOL(vmalloc_node);
1538 #ifndef PAGE_KERNEL_EXEC
1539 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1540 #endif
1543 * vmalloc_exec - allocate virtually contiguous, executable memory
1544 * @size: allocation size
1546 * Kernel-internal function to allocate enough pages to cover @size
1547 * the page level allocator and map them into contiguous and
1548 * executable kernel virtual space.
1550 * For tight control over page level allocator and protection flags
1551 * use __vmalloc() instead.
1554 void *vmalloc_exec(unsigned long size)
1556 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1557 -1, __builtin_return_address(0));
1560 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1561 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1562 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1563 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1564 #else
1565 #define GFP_VMALLOC32 GFP_KERNEL
1566 #endif
1569 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1570 * @size: allocation size
1572 * Allocate enough 32bit PA addressable pages to cover @size from the
1573 * page level allocator and map them into contiguous kernel virtual space.
1575 void *vmalloc_32(unsigned long size)
1577 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1578 -1, __builtin_return_address(0));
1580 EXPORT_SYMBOL(vmalloc_32);
1583 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1584 * @size: allocation size
1586 * The resulting memory area is 32bit addressable and zeroed so it can be
1587 * mapped to userspace without leaking data.
1589 void *vmalloc_32_user(unsigned long size)
1591 struct vm_struct *area;
1592 void *ret;
1594 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1595 -1, __builtin_return_address(0));
1596 if (ret) {
1597 area = find_vm_area(ret);
1598 area->flags |= VM_USERMAP;
1600 return ret;
1602 EXPORT_SYMBOL(vmalloc_32_user);
1604 long vread(char *buf, char *addr, unsigned long count)
1606 struct vm_struct *tmp;
1607 char *vaddr, *buf_start = buf;
1608 unsigned long n;
1610 /* Don't allow overflow */
1611 if ((unsigned long) addr + count < count)
1612 count = -(unsigned long) addr;
1614 read_lock(&vmlist_lock);
1615 for (tmp = vmlist; tmp; tmp = tmp->next) {
1616 vaddr = (char *) tmp->addr;
1617 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1618 continue;
1619 while (addr < vaddr) {
1620 if (count == 0)
1621 goto finished;
1622 *buf = '\0';
1623 buf++;
1624 addr++;
1625 count--;
1627 n = vaddr + tmp->size - PAGE_SIZE - addr;
1628 do {
1629 if (count == 0)
1630 goto finished;
1631 *buf = *addr;
1632 buf++;
1633 addr++;
1634 count--;
1635 } while (--n > 0);
1637 finished:
1638 read_unlock(&vmlist_lock);
1639 return buf - buf_start;
1642 long vwrite(char *buf, char *addr, unsigned long count)
1644 struct vm_struct *tmp;
1645 char *vaddr, *buf_start = buf;
1646 unsigned long n;
1648 /* Don't allow overflow */
1649 if ((unsigned long) addr + count < count)
1650 count = -(unsigned long) addr;
1652 read_lock(&vmlist_lock);
1653 for (tmp = vmlist; tmp; tmp = tmp->next) {
1654 vaddr = (char *) tmp->addr;
1655 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1656 continue;
1657 while (addr < vaddr) {
1658 if (count == 0)
1659 goto finished;
1660 buf++;
1661 addr++;
1662 count--;
1664 n = vaddr + tmp->size - PAGE_SIZE - addr;
1665 do {
1666 if (count == 0)
1667 goto finished;
1668 *addr = *buf;
1669 buf++;
1670 addr++;
1671 count--;
1672 } while (--n > 0);
1674 finished:
1675 read_unlock(&vmlist_lock);
1676 return buf - buf_start;
1680 * remap_vmalloc_range - map vmalloc pages to userspace
1681 * @vma: vma to cover (map full range of vma)
1682 * @addr: vmalloc memory
1683 * @pgoff: number of pages into addr before first page to map
1685 * Returns: 0 for success, -Exxx on failure
1687 * This function checks that addr is a valid vmalloc'ed area, and
1688 * that it is big enough to cover the vma. Will return failure if
1689 * that criteria isn't met.
1691 * Similar to remap_pfn_range() (see mm/memory.c)
1693 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1694 unsigned long pgoff)
1696 struct vm_struct *area;
1697 unsigned long uaddr = vma->vm_start;
1698 unsigned long usize = vma->vm_end - vma->vm_start;
1700 if ((PAGE_SIZE-1) & (unsigned long)addr)
1701 return -EINVAL;
1703 area = find_vm_area(addr);
1704 if (!area)
1705 return -EINVAL;
1707 if (!(area->flags & VM_USERMAP))
1708 return -EINVAL;
1710 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1711 return -EINVAL;
1713 addr += pgoff << PAGE_SHIFT;
1714 do {
1715 struct page *page = vmalloc_to_page(addr);
1716 int ret;
1718 ret = vm_insert_page(vma, uaddr, page);
1719 if (ret)
1720 return ret;
1722 uaddr += PAGE_SIZE;
1723 addr += PAGE_SIZE;
1724 usize -= PAGE_SIZE;
1725 } while (usize > 0);
1727 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1728 vma->vm_flags |= VM_RESERVED;
1730 return 0;
1732 EXPORT_SYMBOL(remap_vmalloc_range);
1735 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1736 * have one.
1738 void __attribute__((weak)) vmalloc_sync_all(void)
1743 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1745 /* apply_to_page_range() does all the hard work. */
1746 return 0;
1750 * alloc_vm_area - allocate a range of kernel address space
1751 * @size: size of the area
1753 * Returns: NULL on failure, vm_struct on success
1755 * This function reserves a range of kernel address space, and
1756 * allocates pagetables to map that range. No actual mappings
1757 * are created. If the kernel address space is not shared
1758 * between processes, it syncs the pagetable across all
1759 * processes.
1761 struct vm_struct *alloc_vm_area(size_t size)
1763 struct vm_struct *area;
1765 area = get_vm_area_caller(size, VM_IOREMAP,
1766 __builtin_return_address(0));
1767 if (area == NULL)
1768 return NULL;
1771 * This ensures that page tables are constructed for this region
1772 * of kernel virtual address space and mapped into init_mm.
1774 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1775 area->size, f, NULL)) {
1776 free_vm_area(area);
1777 return NULL;
1780 /* Make sure the pagetables are constructed in process kernel
1781 mappings */
1782 vmalloc_sync_all();
1784 return area;
1786 EXPORT_SYMBOL_GPL(alloc_vm_area);
1788 void free_vm_area(struct vm_struct *area)
1790 struct vm_struct *ret;
1791 ret = remove_vm_area(area->addr);
1792 BUG_ON(ret != area);
1793 kfree(area);
1795 EXPORT_SYMBOL_GPL(free_vm_area);
1798 #ifdef CONFIG_PROC_FS
1799 static void *s_start(struct seq_file *m, loff_t *pos)
1801 loff_t n = *pos;
1802 struct vm_struct *v;
1804 read_lock(&vmlist_lock);
1805 v = vmlist;
1806 while (n > 0 && v) {
1807 n--;
1808 v = v->next;
1810 if (!n)
1811 return v;
1813 return NULL;
1817 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1819 struct vm_struct *v = p;
1821 ++*pos;
1822 return v->next;
1825 static void s_stop(struct seq_file *m, void *p)
1827 read_unlock(&vmlist_lock);
1830 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1832 if (NUMA_BUILD) {
1833 unsigned int nr, *counters = m->private;
1835 if (!counters)
1836 return;
1838 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1840 for (nr = 0; nr < v->nr_pages; nr++)
1841 counters[page_to_nid(v->pages[nr])]++;
1843 for_each_node_state(nr, N_HIGH_MEMORY)
1844 if (counters[nr])
1845 seq_printf(m, " N%u=%u", nr, counters[nr]);
1849 static int s_show(struct seq_file *m, void *p)
1851 struct vm_struct *v = p;
1853 seq_printf(m, "0x%p-0x%p %7ld",
1854 v->addr, v->addr + v->size, v->size);
1856 if (v->caller) {
1857 char buff[KSYM_SYMBOL_LEN];
1859 seq_putc(m, ' ');
1860 sprint_symbol(buff, (unsigned long)v->caller);
1861 seq_puts(m, buff);
1864 if (v->nr_pages)
1865 seq_printf(m, " pages=%d", v->nr_pages);
1867 if (v->phys_addr)
1868 seq_printf(m, " phys=%lx", v->phys_addr);
1870 if (v->flags & VM_IOREMAP)
1871 seq_printf(m, " ioremap");
1873 if (v->flags & VM_ALLOC)
1874 seq_printf(m, " vmalloc");
1876 if (v->flags & VM_MAP)
1877 seq_printf(m, " vmap");
1879 if (v->flags & VM_USERMAP)
1880 seq_printf(m, " user");
1882 if (v->flags & VM_VPAGES)
1883 seq_printf(m, " vpages");
1885 show_numa_info(m, v);
1886 seq_putc(m, '\n');
1887 return 0;
1890 static const struct seq_operations vmalloc_op = {
1891 .start = s_start,
1892 .next = s_next,
1893 .stop = s_stop,
1894 .show = s_show,
1897 static int vmalloc_open(struct inode *inode, struct file *file)
1899 unsigned int *ptr = NULL;
1900 int ret;
1902 if (NUMA_BUILD)
1903 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1904 ret = seq_open(file, &vmalloc_op);
1905 if (!ret) {
1906 struct seq_file *m = file->private_data;
1907 m->private = ptr;
1908 } else
1909 kfree(ptr);
1910 return ret;
1913 static const struct file_operations proc_vmalloc_operations = {
1914 .open = vmalloc_open,
1915 .read = seq_read,
1916 .llseek = seq_lseek,
1917 .release = seq_release_private,
1920 static int __init proc_vmalloc_init(void)
1922 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1923 return 0;
1925 module_init(proc_vmalloc_init);
1926 #endif