staging: xgifb: fix LVDS LCD resolution data setup
[linux-2.6/linux-mips.git] / security / selinux / avc.c
blobdca1c22d9276ec87b9723e2419128505cb758914
1 /*
2 * Implementation of the kernel access vector cache (AVC).
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field) do {} while (0)
44 #endif
46 struct avc_entry {
47 u32 ssid;
48 u32 tsid;
49 u16 tclass;
50 struct av_decision avd;
53 struct avc_node {
54 struct avc_entry ae;
55 struct hlist_node list; /* anchored in avc_cache->slots[i] */
56 struct rcu_head rhead;
59 struct avc_cache {
60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 atomic_t lru_hint; /* LRU hint for reclaim scan */
63 atomic_t active_nodes;
64 u32 latest_notif; /* latest revocation notification */
67 struct avc_callback_node {
68 int (*callback) (u32 event, u32 ssid, u32 tsid,
69 u16 tclass, u32 perms,
70 u32 *out_retained);
71 u32 events;
72 u32 ssid;
73 u32 tsid;
74 u16 tclass;
75 u32 perms;
76 struct avc_callback_node *next;
79 /* Exported via selinufs */
80 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
86 static struct avc_cache avc_cache;
87 static struct avc_callback_node *avc_callbacks;
88 static struct kmem_cache *avc_node_cachep;
90 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
92 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
95 /**
96 * avc_dump_av - Display an access vector in human-readable form.
97 * @tclass: target security class
98 * @av: access vector
100 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
102 const char **perms;
103 int i, perm;
105 if (av == 0) {
106 audit_log_format(ab, " null");
107 return;
110 perms = secclass_map[tclass-1].perms;
112 audit_log_format(ab, " {");
113 i = 0;
114 perm = 1;
115 while (i < (sizeof(av) * 8)) {
116 if ((perm & av) && perms[i]) {
117 audit_log_format(ab, " %s", perms[i]);
118 av &= ~perm;
120 i++;
121 perm <<= 1;
124 if (av)
125 audit_log_format(ab, " 0x%x", av);
127 audit_log_format(ab, " }");
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
136 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
138 int rc;
139 char *scontext;
140 u32 scontext_len;
142 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143 if (rc)
144 audit_log_format(ab, "ssid=%d", ssid);
145 else {
146 audit_log_format(ab, "scontext=%s", scontext);
147 kfree(scontext);
150 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151 if (rc)
152 audit_log_format(ab, " tsid=%d", tsid);
153 else {
154 audit_log_format(ab, " tcontext=%s", scontext);
155 kfree(scontext);
158 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
163 * avc_init - Initialize the AVC.
165 * Initialize the access vector cache.
167 void __init avc_init(void)
169 int i;
171 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172 INIT_HLIST_HEAD(&avc_cache.slots[i]);
173 spin_lock_init(&avc_cache.slots_lock[i]);
175 atomic_set(&avc_cache.active_nodes, 0);
176 atomic_set(&avc_cache.lru_hint, 0);
178 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179 0, SLAB_PANIC, NULL);
181 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
184 int avc_get_hash_stats(char *page)
186 int i, chain_len, max_chain_len, slots_used;
187 struct avc_node *node;
188 struct hlist_head *head;
190 rcu_read_lock();
192 slots_used = 0;
193 max_chain_len = 0;
194 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195 head = &avc_cache.slots[i];
196 if (!hlist_empty(head)) {
197 struct hlist_node *next;
199 slots_used++;
200 chain_len = 0;
201 hlist_for_each_entry_rcu(node, next, head, list)
202 chain_len++;
203 if (chain_len > max_chain_len)
204 max_chain_len = chain_len;
208 rcu_read_unlock();
210 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211 "longest chain: %d\n",
212 atomic_read(&avc_cache.active_nodes),
213 slots_used, AVC_CACHE_SLOTS, max_chain_len);
216 static void avc_node_free(struct rcu_head *rhead)
218 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219 kmem_cache_free(avc_node_cachep, node);
220 avc_cache_stats_incr(frees);
223 static void avc_node_delete(struct avc_node *node)
225 hlist_del_rcu(&node->list);
226 call_rcu(&node->rhead, avc_node_free);
227 atomic_dec(&avc_cache.active_nodes);
230 static void avc_node_kill(struct avc_node *node)
232 kmem_cache_free(avc_node_cachep, node);
233 avc_cache_stats_incr(frees);
234 atomic_dec(&avc_cache.active_nodes);
237 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
239 hlist_replace_rcu(&old->list, &new->list);
240 call_rcu(&old->rhead, avc_node_free);
241 atomic_dec(&avc_cache.active_nodes);
244 static inline int avc_reclaim_node(void)
246 struct avc_node *node;
247 int hvalue, try, ecx;
248 unsigned long flags;
249 struct hlist_head *head;
250 struct hlist_node *next;
251 spinlock_t *lock;
253 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255 head = &avc_cache.slots[hvalue];
256 lock = &avc_cache.slots_lock[hvalue];
258 if (!spin_trylock_irqsave(lock, flags))
259 continue;
261 rcu_read_lock();
262 hlist_for_each_entry(node, next, head, list) {
263 avc_node_delete(node);
264 avc_cache_stats_incr(reclaims);
265 ecx++;
266 if (ecx >= AVC_CACHE_RECLAIM) {
267 rcu_read_unlock();
268 spin_unlock_irqrestore(lock, flags);
269 goto out;
272 rcu_read_unlock();
273 spin_unlock_irqrestore(lock, flags);
275 out:
276 return ecx;
279 static struct avc_node *avc_alloc_node(void)
281 struct avc_node *node;
283 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284 if (!node)
285 goto out;
287 INIT_HLIST_NODE(&node->list);
288 avc_cache_stats_incr(allocations);
290 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291 avc_reclaim_node();
293 out:
294 return node;
297 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
299 node->ae.ssid = ssid;
300 node->ae.tsid = tsid;
301 node->ae.tclass = tclass;
302 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
305 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
307 struct avc_node *node, *ret = NULL;
308 int hvalue;
309 struct hlist_head *head;
310 struct hlist_node *next;
312 hvalue = avc_hash(ssid, tsid, tclass);
313 head = &avc_cache.slots[hvalue];
314 hlist_for_each_entry_rcu(node, next, head, list) {
315 if (ssid == node->ae.ssid &&
316 tclass == node->ae.tclass &&
317 tsid == node->ae.tsid) {
318 ret = node;
319 break;
323 return ret;
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass. If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
338 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
340 struct avc_node *node;
342 avc_cache_stats_incr(lookups);
343 node = avc_search_node(ssid, tsid, tclass);
345 if (node)
346 return node;
348 avc_cache_stats_incr(misses);
349 return NULL;
352 static int avc_latest_notif_update(int seqno, int is_insert)
354 int ret = 0;
355 static DEFINE_SPINLOCK(notif_lock);
356 unsigned long flag;
358 spin_lock_irqsave(&notif_lock, flag);
359 if (is_insert) {
360 if (seqno < avc_cache.latest_notif) {
361 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
362 seqno, avc_cache.latest_notif);
363 ret = -EAGAIN;
365 } else {
366 if (seqno > avc_cache.latest_notif)
367 avc_cache.latest_notif = seqno;
369 spin_unlock_irqrestore(&notif_lock, flag);
371 return ret;
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call. If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
391 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
393 struct avc_node *pos, *node = NULL;
394 int hvalue;
395 unsigned long flag;
397 if (avc_latest_notif_update(avd->seqno, 1))
398 goto out;
400 node = avc_alloc_node();
401 if (node) {
402 struct hlist_head *head;
403 struct hlist_node *next;
404 spinlock_t *lock;
406 hvalue = avc_hash(ssid, tsid, tclass);
407 avc_node_populate(node, ssid, tsid, tclass, avd);
409 head = &avc_cache.slots[hvalue];
410 lock = &avc_cache.slots_lock[hvalue];
412 spin_lock_irqsave(lock, flag);
413 hlist_for_each_entry(pos, next, head, list) {
414 if (pos->ae.ssid == ssid &&
415 pos->ae.tsid == tsid &&
416 pos->ae.tclass == tclass) {
417 avc_node_replace(node, pos);
418 goto found;
421 hlist_add_head_rcu(&node->list, head);
422 found:
423 spin_unlock_irqrestore(lock, flag);
425 out:
426 return node;
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
435 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
437 struct common_audit_data *ad = a;
438 audit_log_format(ab, "avc: %s ",
439 ad->selinux_audit_data.denied ? "denied" : "granted");
440 avc_dump_av(ab, ad->selinux_audit_data.tclass,
441 ad->selinux_audit_data.audited);
442 audit_log_format(ab, " for ");
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
451 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
453 struct common_audit_data *ad = a;
454 audit_log_format(ab, " ");
455 avc_dump_query(ab, ad->selinux_audit_data.ssid,
456 ad->selinux_audit_data.tsid,
457 ad->selinux_audit_data.tclass);
461 * avc_audit - Audit the granting or denial of permissions.
462 * @ssid: source security identifier
463 * @tsid: target security identifier
464 * @tclass: target security class
465 * @requested: requested permissions
466 * @avd: access vector decisions
467 * @result: result from avc_has_perm_noaudit
468 * @a: auxiliary audit data
469 * @flags: VFS walk flags
471 * Audit the granting or denial of permissions in accordance
472 * with the policy. This function is typically called by
473 * avc_has_perm() after a permission check, but can also be
474 * called directly by callers who use avc_has_perm_noaudit()
475 * in order to separate the permission check from the auditing.
476 * For example, this separation is useful when the permission check must
477 * be performed under a lock, to allow the lock to be released
478 * before calling the auditing code.
480 int avc_audit(u32 ssid, u32 tsid,
481 u16 tclass, u32 requested,
482 struct av_decision *avd, int result, struct common_audit_data *a,
483 unsigned flags)
485 struct common_audit_data stack_data;
486 u32 denied, audited;
487 denied = requested & ~avd->allowed;
488 if (denied) {
489 audited = denied & avd->auditdeny;
491 * a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in
492 * this field means that ANY denials should NOT be audited if
493 * the policy contains an explicit dontaudit rule for that
494 * permission. Take notice that this is unrelated to the
495 * actual permissions that were denied. As an example lets
496 * assume:
498 * denied == READ
499 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500 * selinux_audit_data.auditdeny & ACCESS == 1
502 * We will NOT audit the denial even though the denied
503 * permission was READ and the auditdeny checks were for
504 * ACCESS
506 if (a &&
507 a->selinux_audit_data.auditdeny &&
508 !(a->selinux_audit_data.auditdeny & avd->auditdeny))
509 audited = 0;
510 } else if (result)
511 audited = denied = requested;
512 else
513 audited = requested & avd->auditallow;
514 if (!audited)
515 return 0;
517 if (!a) {
518 a = &stack_data;
519 COMMON_AUDIT_DATA_INIT(a, NONE);
523 * When in a RCU walk do the audit on the RCU retry. This is because
524 * the collection of the dname in an inode audit message is not RCU
525 * safe. Note this may drop some audits when the situation changes
526 * during retry. However this is logically just as if the operation
527 * happened a little later.
529 if ((a->type == LSM_AUDIT_DATA_INODE) &&
530 (flags & MAY_NOT_BLOCK))
531 return -ECHILD;
533 a->selinux_audit_data.tclass = tclass;
534 a->selinux_audit_data.requested = requested;
535 a->selinux_audit_data.ssid = ssid;
536 a->selinux_audit_data.tsid = tsid;
537 a->selinux_audit_data.audited = audited;
538 a->selinux_audit_data.denied = denied;
539 a->lsm_pre_audit = avc_audit_pre_callback;
540 a->lsm_post_audit = avc_audit_post_callback;
541 common_lsm_audit(a);
542 return 0;
546 * avc_add_callback - Register a callback for security events.
547 * @callback: callback function
548 * @events: security events
549 * @ssid: source security identifier or %SECSID_WILD
550 * @tsid: target security identifier or %SECSID_WILD
551 * @tclass: target security class
552 * @perms: permissions
554 * Register a callback function for events in the set @events
555 * related to the SID pair (@ssid, @tsid)
556 * and the permissions @perms, interpreting
557 * @perms based on @tclass. Returns %0 on success or
558 * -%ENOMEM if insufficient memory exists to add the callback.
560 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561 u16 tclass, u32 perms,
562 u32 *out_retained),
563 u32 events, u32 ssid, u32 tsid,
564 u16 tclass, u32 perms)
566 struct avc_callback_node *c;
567 int rc = 0;
569 c = kmalloc(sizeof(*c), GFP_ATOMIC);
570 if (!c) {
571 rc = -ENOMEM;
572 goto out;
575 c->callback = callback;
576 c->events = events;
577 c->ssid = ssid;
578 c->tsid = tsid;
579 c->perms = perms;
580 c->next = avc_callbacks;
581 avc_callbacks = c;
582 out:
583 return rc;
586 static inline int avc_sidcmp(u32 x, u32 y)
588 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
592 * avc_update_node Update an AVC entry
593 * @event : Updating event
594 * @perms : Permission mask bits
595 * @ssid,@tsid,@tclass : identifier of an AVC entry
596 * @seqno : sequence number when decision was made
598 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
599 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600 * otherwise, this function updates the AVC entry. The original AVC-entry object
601 * will release later by RCU.
603 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604 u32 seqno)
606 int hvalue, rc = 0;
607 unsigned long flag;
608 struct avc_node *pos, *node, *orig = NULL;
609 struct hlist_head *head;
610 struct hlist_node *next;
611 spinlock_t *lock;
613 node = avc_alloc_node();
614 if (!node) {
615 rc = -ENOMEM;
616 goto out;
619 /* Lock the target slot */
620 hvalue = avc_hash(ssid, tsid, tclass);
622 head = &avc_cache.slots[hvalue];
623 lock = &avc_cache.slots_lock[hvalue];
625 spin_lock_irqsave(lock, flag);
627 hlist_for_each_entry(pos, next, head, list) {
628 if (ssid == pos->ae.ssid &&
629 tsid == pos->ae.tsid &&
630 tclass == pos->ae.tclass &&
631 seqno == pos->ae.avd.seqno){
632 orig = pos;
633 break;
637 if (!orig) {
638 rc = -ENOENT;
639 avc_node_kill(node);
640 goto out_unlock;
644 * Copy and replace original node.
647 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
649 switch (event) {
650 case AVC_CALLBACK_GRANT:
651 node->ae.avd.allowed |= perms;
652 break;
653 case AVC_CALLBACK_TRY_REVOKE:
654 case AVC_CALLBACK_REVOKE:
655 node->ae.avd.allowed &= ~perms;
656 break;
657 case AVC_CALLBACK_AUDITALLOW_ENABLE:
658 node->ae.avd.auditallow |= perms;
659 break;
660 case AVC_CALLBACK_AUDITALLOW_DISABLE:
661 node->ae.avd.auditallow &= ~perms;
662 break;
663 case AVC_CALLBACK_AUDITDENY_ENABLE:
664 node->ae.avd.auditdeny |= perms;
665 break;
666 case AVC_CALLBACK_AUDITDENY_DISABLE:
667 node->ae.avd.auditdeny &= ~perms;
668 break;
670 avc_node_replace(node, orig);
671 out_unlock:
672 spin_unlock_irqrestore(lock, flag);
673 out:
674 return rc;
678 * avc_flush - Flush the cache
680 static void avc_flush(void)
682 struct hlist_head *head;
683 struct hlist_node *next;
684 struct avc_node *node;
685 spinlock_t *lock;
686 unsigned long flag;
687 int i;
689 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690 head = &avc_cache.slots[i];
691 lock = &avc_cache.slots_lock[i];
693 spin_lock_irqsave(lock, flag);
695 * With preemptable RCU, the outer spinlock does not
696 * prevent RCU grace periods from ending.
698 rcu_read_lock();
699 hlist_for_each_entry(node, next, head, list)
700 avc_node_delete(node);
701 rcu_read_unlock();
702 spin_unlock_irqrestore(lock, flag);
707 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
708 * @seqno: policy sequence number
710 int avc_ss_reset(u32 seqno)
712 struct avc_callback_node *c;
713 int rc = 0, tmprc;
715 avc_flush();
717 for (c = avc_callbacks; c; c = c->next) {
718 if (c->events & AVC_CALLBACK_RESET) {
719 tmprc = c->callback(AVC_CALLBACK_RESET,
720 0, 0, 0, 0, NULL);
721 /* save the first error encountered for the return
722 value and continue processing the callbacks */
723 if (!rc)
724 rc = tmprc;
728 avc_latest_notif_update(seqno, 0);
729 return rc;
733 * avc_has_perm_noaudit - Check permissions but perform no auditing.
734 * @ssid: source security identifier
735 * @tsid: target security identifier
736 * @tclass: target security class
737 * @requested: requested permissions, interpreted based on @tclass
738 * @flags: AVC_STRICT or 0
739 * @avd: access vector decisions
741 * Check the AVC to determine whether the @requested permissions are granted
742 * for the SID pair (@ssid, @tsid), interpreting the permissions
743 * based on @tclass, and call the security server on a cache miss to obtain
744 * a new decision and add it to the cache. Return a copy of the decisions
745 * in @avd. Return %0 if all @requested permissions are granted,
746 * -%EACCES if any permissions are denied, or another -errno upon
747 * other errors. This function is typically called by avc_has_perm(),
748 * but may also be called directly to separate permission checking from
749 * auditing, e.g. in cases where a lock must be held for the check but
750 * should be released for the auditing.
752 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753 u16 tclass, u32 requested,
754 unsigned flags,
755 struct av_decision *avd)
757 struct avc_node *node;
758 int rc = 0;
759 u32 denied;
761 BUG_ON(!requested);
763 rcu_read_lock();
765 node = avc_lookup(ssid, tsid, tclass);
766 if (unlikely(!node)) {
767 rcu_read_unlock();
768 security_compute_av(ssid, tsid, tclass, avd);
769 rcu_read_lock();
770 node = avc_insert(ssid, tsid, tclass, avd);
771 } else {
772 memcpy(avd, &node->ae.avd, sizeof(*avd));
773 avd = &node->ae.avd;
776 denied = requested & ~(avd->allowed);
778 if (denied) {
779 if (flags & AVC_STRICT)
780 rc = -EACCES;
781 else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783 tsid, tclass, avd->seqno);
784 else
785 rc = -EACCES;
788 rcu_read_unlock();
789 return rc;
793 * avc_has_perm - Check permissions and perform any appropriate auditing.
794 * @ssid: source security identifier
795 * @tsid: target security identifier
796 * @tclass: target security class
797 * @requested: requested permissions, interpreted based on @tclass
798 * @auditdata: auxiliary audit data
799 * @flags: VFS walk flags
801 * Check the AVC to determine whether the @requested permissions are granted
802 * for the SID pair (@ssid, @tsid), interpreting the permissions
803 * based on @tclass, and call the security server on a cache miss to obtain
804 * a new decision and add it to the cache. Audit the granting or denial of
805 * permissions in accordance with the policy. Return %0 if all @requested
806 * permissions are granted, -%EACCES if any permissions are denied, or
807 * another -errno upon other errors.
809 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810 u32 requested, struct common_audit_data *auditdata,
811 unsigned flags)
813 struct av_decision avd;
814 int rc, rc2;
816 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
818 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819 flags);
820 if (rc2)
821 return rc2;
822 return rc;
825 u32 avc_policy_seqno(void)
827 return avc_cache.latest_notif;
830 void avc_disable(void)
833 * If you are looking at this because you have realized that we are
834 * not destroying the avc_node_cachep it might be easy to fix, but
835 * I don't know the memory barrier semantics well enough to know. It's
836 * possible that some other task dereferenced security_ops when
837 * it still pointed to selinux operations. If that is the case it's
838 * possible that it is about to use the avc and is about to need the
839 * avc_node_cachep. I know I could wrap the security.c security_ops call
840 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
841 * the cache and get that memory back.
843 if (avc_node_cachep) {
844 avc_flush();
845 /* kmem_cache_destroy(avc_node_cachep); */