IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / atm / horizon.c
blobd58e3fcb9db364d0a1e2da49a64559dff691f6ab
1 /*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/ioport.h>
42 #include <linux/wait.h>
43 #include <linux/slab.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/atomic.h>
48 #include <asm/uaccess.h>
49 #include <asm/string.h>
50 #include <asm/byteorder.h>
52 #include "horizon.h"
54 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55 #define description_string "Madge ATM Horizon [Ultra] driver"
56 #define version_string "1.2.1"
58 static inline void __init show_version (void) {
59 printk ("%s version %s\n", description_string, version_string);
64 CREDITS
66 Driver and documentation by:
68 Chris Aston Madge Networks
69 Giuliano Procida Madge Networks
70 Simon Benham Madge Networks
71 Simon Johnson Madge Networks
72 Various Others Madge Networks
74 Some inspiration taken from other drivers by:
76 Alexandru Cucos UTBv
77 Kari Mettinen University of Helsinki
78 Werner Almesberger EPFL LRC
80 Theory of Operation
82 I Hardware, detection, initialisation and shutdown.
84 1. Supported Hardware
86 This driver should handle all variants of the PCI Madge ATM adapters
87 with the Horizon chipset. These are all PCI cards supporting PIO, BM
88 DMA and a form of MMIO (registers only, not internal RAM).
90 The driver is only known to work with SONET and UTP Horizon Ultra
91 cards at 155Mb/s. However, code is in place to deal with both the
92 original Horizon and 25Mb/s operation.
94 There are two revisions of the Horizon ASIC: the original and the
95 Ultra. Details of hardware bugs are in section III.
97 The ASIC version can be distinguished by chip markings but is NOT
98 indicated by the PCI revision (all adapters seem to have PCI rev 1).
100 I believe that:
102 Horizon => Collage 25 PCI Adapter (UTP and STP)
103 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104 Ambassador x => Collage 155 PCI Server (completely different)
106 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107 have a Madge B154 plus glue logic serializer. I have also found a
108 really ancient version of this with slightly different glue. It
109 comes with the revision 0 (140-025-01) ASIC.
111 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112 output (UTP) or an HP HFBR 5205 output (SONET). It has either
113 Madge's SAMBA framer or a SUNI-lite device (early versions). It
114 comes with the revision 1 (140-027-01) ASIC.
116 2. Detection
118 All Horizon-based cards present with the same PCI Vendor and Device
119 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120 to enable bus-mastering (with appropriate latency).
122 ATM_LAYER_STATUS in the control register distinguishes between the
123 two possible physical layers (25 and 155). It is not clear whether
124 the 155 cards can also operate at 25Mbps. We rely on the fact that a
125 card operates at 155 if and only if it has the newer Horizon Ultra
126 ASIC.
128 For 155 cards the two possible framers are probed for and then set
129 up for loop-timing.
131 3. Initialisation
133 The card is reset and then put into a known state. The physical
134 layer is configured for normal operation at the appropriate speed;
135 in the case of the 155 cards, the framer is initialised with
136 line-based timing; the internal RAM is zeroed and the allocation of
137 buffers for RX and TX is made; the Burnt In Address is read and
138 copied to the ATM ESI; various policy settings for RX (VPI bits,
139 unknown VCs, oam cells) are made. Ideally all policy items should be
140 configurable at module load (if not actually on-demand), however,
141 only the vpi vs vci bit allocation can be specified at insmod.
143 4. Shutdown
145 This is in response to module_cleaup. No VCs are in use and the card
146 should be idle; it is reset.
148 II Driver software (as it should be)
150 0. Traffic Parameters
152 The traffic classes (not an enumeration) are currently: ATM_NONE (no
153 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154 (compatible with everything). Together with (perhaps only some of)
155 the following items they make up the traffic specification.
157 struct atm_trafprm {
158 unsigned char traffic_class; traffic class (ATM_UBR, ...)
159 int max_pcr; maximum PCR in cells per second
160 int pcr; desired PCR in cells per second
161 int min_pcr; minimum PCR in cells per second
162 int max_cdv; maximum CDV in microseconds
163 int max_sdu; maximum SDU in bytes
166 Note that these denote bandwidth available not bandwidth used; the
167 possibilities according to ATMF are:
169 Real Time (cdv and max CDT given)
171 CBR(pcr) pcr bandwidth always available
172 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
174 Non Real Time
176 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
177 UBR()
178 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
180 mbs is max burst size (bucket)
181 pcr and scr have associated cdvt values
182 mcr is like scr but has no cdtv
183 cdtv may differ at each hop
185 Some of the above items are qos items (as opposed to traffic
186 parameters). We have nothing to do with qos. All except ABR can have
187 their traffic parameters converted to GCRA parameters. The GCRA may
188 be implemented as a (real-number) leaky bucket. The GCRA can be used
189 in complicated ways by switches and in simpler ways by end-stations.
190 It can be used both to filter incoming cells and shape out-going
191 cells.
193 ATM Linux actually supports:
195 ATM_NONE() (no traffic in this direction)
196 ATM_UBR(max_frame_size)
197 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
199 0 or ATM_MAX_PCR are used to indicate maximum available PCR
201 A traffic specification consists of the AAL type and separate
202 traffic specifications for either direction. In ATM Linux it is:
204 struct atm_qos {
205 struct atm_trafprm txtp;
206 struct atm_trafprm rxtp;
207 unsigned char aal;
210 AAL types are:
212 ATM_NO_AAL AAL not specified
213 ATM_AAL0 "raw" ATM cells
214 ATM_AAL1 AAL1 (CBR)
215 ATM_AAL2 AAL2 (VBR)
216 ATM_AAL34 AAL3/4 (data)
217 ATM_AAL5 AAL5 (data)
218 ATM_SAAL signaling AAL
220 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221 it does not implement AAL 3/4 SAR and it has a different notion of
222 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223 supported by this driver.
225 The Horizon has limited support for ABR (including UBR), VBR and
226 CBR. Each TX channel has a bucket (containing up to 31 cell units)
227 and two timers (PCR and SCR) associated with it that can be used to
228 govern cell emissions and host notification (in the case of ABR this
229 is presumably so that RM cells may be emitted at appropriate times).
230 The timers may either be disabled or may be set to any of 240 values
231 (determined by the clock crystal, a fixed (?) per-device divider, a
232 configurable divider and a configurable timer preload value).
234 At the moment only UBR and CBR are supported by the driver. VBR will
235 be supported as soon as ATM for Linux supports it. ABR support is
236 very unlikely as RM cell handling is completely up to the driver.
238 1. TX (TX channel setup and TX transfer)
240 The TX half of the driver owns the TX Horizon registers. The TX
241 component in the IRQ handler is the BM completion handler. This can
242 only be entered when tx_busy is true (enforced by hardware). The
243 other TX component can only be entered when tx_busy is false
244 (enforced by driver). So TX is single-threaded.
246 Apart from a minor optimisation to not re-select the last channel,
247 the TX send component works as follows:
249 Atomic test and set tx_busy until we succeed; we should implement
250 some sort of timeout so that tx_busy will never be stuck at true.
252 If no TX channel is set up for this VC we wait for an idle one (if
253 necessary) and set it up.
255 At this point we have a TX channel ready for use. We wait for enough
256 buffers to become available then start a TX transmit (set the TX
257 descriptor, schedule transfer, exit).
259 The IRQ component handles TX completion (stats, free buffer, tx_busy
260 unset, exit). We also re-schedule further transfers for the same
261 frame if needed.
263 TX setup in more detail:
265 TX open is a nop, the relevant information is held in the hrz_vcc
266 (vcc->dev_data) structure and is "cached" on the card.
268 TX close gets the TX lock and clears the channel from the "cache".
270 2. RX (Data Available and RX transfer)
272 The RX half of the driver owns the RX registers. There are two RX
273 components in the IRQ handler: the data available handler deals with
274 fresh data that has arrived on the card, the BM completion handler
275 is very similar to the TX completion handler. The data available
276 handler grabs the rx_lock and it is only released once the data has
277 been discarded or completely transferred to the host. The BM
278 completion handler only runs when the lock is held; the data
279 available handler is locked out over the same period.
281 Data available on the card triggers an interrupt. If the data is not
282 suitable for our existing RX channels or we cannot allocate a buffer
283 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284 transfers may be scheduled for the same frame.
286 RX setup in more detail:
288 RX open...
289 RX close...
291 III Hardware Bugs
293 0. Byte vs Word addressing of adapter RAM.
295 A design feature; see the .h file (especially the memory map).
297 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
299 The host must not start a transmit direction transfer at a
300 non-four-byte boundary in host memory. Instead the host should
301 perform a byte, or a two byte, or one byte followed by two byte
302 transfer in order to start the rest of the transfer on a four byte
303 boundary. RX is OK.
305 Simultaneous transmit and receive direction bus master transfers are
306 not allowed.
308 The simplest solution to these two is to always do PIO (never DMA)
309 in the TX direction on the original Horizon. More complicated
310 solutions are likely to hurt my brain.
312 2. Loss of buffer on close VC
314 When a VC is being closed, the buffer associated with it is not
315 returned to the pool. The host must store the reference to this
316 buffer and when opening a new VC then give it to that new VC.
318 The host intervention currently consists of stacking such a buffer
319 pointer at VC close and checking the stack at VC open.
321 3. Failure to close a VC
323 If a VC is currently receiving a frame then closing the VC may fail
324 and the frame continues to be received.
326 The solution is to make sure any received frames are flushed when
327 ready. This is currently done just before the solution to 2.
329 4. PCI bus (original Horizon only, fixed in Ultra)
331 Reading from the data port prior to initialisation will hang the PCI
332 bus. Just don't do that then! We don't.
334 IV To Do List
336 . Timer code may be broken.
338 . Allow users to specify buffer allocation split for TX and RX.
340 . Deal once and for all with buggy VC close.
342 . Handle interrupted and/or non-blocking operations.
344 . Change some macros to functions and move from .h to .c.
346 . Try to limit the number of TX frames each VC may have queued, in
347 order to reduce the chances of TX buffer exhaustion.
349 . Implement VBR (bucket and timers not understood) and ABR (need to
350 do RM cells manually); also no Linux support for either.
352 . Implement QoS changes on open VCs (involves extracting parts of VC open
353 and close into separate functions and using them to make changes).
357 /********** globals **********/
359 static void do_housekeeping (unsigned long arg);
361 static unsigned short debug = 0;
362 static unsigned short vpi_bits = 0;
363 static int max_tx_size = 9000;
364 static int max_rx_size = 9000;
365 static unsigned char pci_lat = 0;
367 /********** access functions **********/
369 /* Read / Write Horizon registers */
370 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371 outl (cpu_to_le32 (data), dev->iobase + reg);
374 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375 return le32_to_cpu (inl (dev->iobase + reg));
378 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379 outw (cpu_to_le16 (data), dev->iobase + reg);
382 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383 return le16_to_cpu (inw (dev->iobase + reg));
386 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387 outsb (dev->iobase + reg, addr, len);
390 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391 insb (dev->iobase + reg, addr, len);
394 /* Read / Write to a given address in Horizon buffer memory.
395 Interrupts must be disabled between the address register and data
396 port accesses as these must form an atomic operation. */
397 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400 wr_regl (dev, MEMORY_PORT_OFF, data);
403 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406 return rd_regl (dev, MEMORY_PORT_OFF);
409 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411 wr_regl (dev, MEMORY_PORT_OFF, data);
414 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416 return rd_regl (dev, MEMORY_PORT_OFF);
419 /********** specialised access functions **********/
421 /* RX */
423 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425 return;
428 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
431 return;
434 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436 return;
439 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
442 return;
445 /* TX */
447 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449 return;
452 /* Update or query one configuration parameter of a particular channel. */
454 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456 chan * TX_CHANNEL_CONFIG_MULT | mode);
457 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458 return;
461 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
462 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
463 chan * TX_CHANNEL_CONFIG_MULT | mode);
464 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
467 /********** dump functions **********/
469 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
470 #ifdef DEBUG_HORIZON
471 unsigned int i;
472 unsigned char * data = skb->data;
473 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
474 for (i=0; i<skb->len && i < 256;i++)
475 PRINTDM (DBG_DATA, "%02x ", data[i]);
476 PRINTDE (DBG_DATA,"");
477 #else
478 (void) prefix;
479 (void) vc;
480 (void) skb;
481 #endif
482 return;
485 static inline void dump_regs (hrz_dev * dev) {
486 #ifdef DEBUG_HORIZON
487 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493 #else
494 (void) dev;
495 #endif
496 return;
499 static inline void dump_framer (hrz_dev * dev) {
500 #ifdef DEBUG_HORIZON
501 unsigned int i;
502 PRINTDB (DBG_REGS, "framer registers:");
503 for (i = 0; i < 0x10; ++i)
504 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
505 PRINTDE (DBG_REGS,"");
506 #else
507 (void) dev;
508 #endif
509 return;
512 /********** VPI/VCI <-> (RX) channel conversions **********/
514 /* RX channels are 10 bit integers, these fns are quite paranoid */
516 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
517 unsigned short vci_bits = 10 - vpi_bits;
518 if ((channel & RX_CHANNEL_MASK) == channel) {
519 *vci = channel & ((~0)<<vci_bits);
520 *vpi = channel >> vci_bits;
521 return channel ? 0 : -EINVAL;
523 return -EINVAL;
526 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
527 unsigned short vci_bits = 10 - vpi_bits;
528 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
529 *channel = vpi<<vci_bits | vci;
530 return *channel ? 0 : -EINVAL;
532 return -EINVAL;
535 /********** decode RX queue entries **********/
537 static inline u16 rx_q_entry_to_length (u32 x) {
538 return x & RX_Q_ENTRY_LENGTH_MASK;
541 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
542 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
545 /* Cell Transmit Rate Values
547 * the cell transmit rate (cells per sec) can be set to a variety of
548 * different values by specifying two parameters: a timer preload from
549 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
550 * an exponent from 0 to 14; the special value 15 disables the timer).
552 * cellrate = baserate / (preload * 2^divider)
554 * The maximum cell rate that can be specified is therefore just the
555 * base rate. Halving the preload is equivalent to adding 1 to the
556 * divider and so values 1 to 8 of the preload are redundant except
557 * in the case of a maximal divider (14).
559 * Given a desired cell rate, an algorithm to determine the preload
560 * and divider is:
562 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
563 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
564 * if x <= 16 then set p = x, d = 0 (high rates), done
565 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
566 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
567 * we find the range (n will be between 1 and 14), set d = n
568 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
570 * The algorithm used below is a minor variant of the above.
572 * The base rate is derived from the oscillator frequency (Hz) using a
573 * fixed divider:
575 * baserate = freq / 32 in the case of some Unknown Card
576 * baserate = freq / 8 in the case of the Horizon 25
577 * baserate = freq / 8 in the case of the Horizon Ultra 155
579 * The Horizon cards have oscillators and base rates as follows:
581 * Card Oscillator Base Rate
582 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
583 * Horizon 25 32 MHz 4 MHz
584 * Horizon Ultra 155 40 MHz 5 MHz
586 * The following defines give the base rates in Hz. These were
587 * previously a factor of 100 larger, no doubt someone was using
588 * cps*100.
591 #define BR_UKN 1031250l
592 #define BR_HRZ 4000000l
593 #define BR_ULT 5000000l
595 // d is an exponent
596 #define CR_MIND 0
597 #define CR_MAXD 14
599 // p ranges from 1 to a power of 2
600 #define CR_MAXPEXP 4
602 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
603 u16 * bits, unsigned int * actual)
605 // note: rounding the rate down means rounding 'p' up
606 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
608 u32 div = CR_MIND;
609 u32 pre;
611 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
612 // the tests below. We could think harder about exact possibilities
613 // of failure...
615 unsigned long br_man = br;
616 unsigned int br_exp = 0;
618 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
619 r == round_up ? "up" : r == round_down ? "down" : "nearest");
621 // avoid div by zero
622 if (!c) {
623 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
624 return -EINVAL;
627 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
628 br_man = br_man >> 1;
629 ++br_exp;
631 // (br >>br_exp) <<br_exp == br and
632 // br_exp <= CR_MAXPEXP+CR_MIND
634 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
635 // Equivalent to: B <= (c << (MAXPEXP+MIND))
636 // take care of rounding
637 switch (r) {
638 case round_down:
639 pre = DIV_ROUND_UP(br, c<<div);
640 // but p must be non-zero
641 if (!pre)
642 pre = 1;
643 break;
644 case round_nearest:
645 pre = DIV_ROUND_CLOSEST(br, c<<div);
646 // but p must be non-zero
647 if (!pre)
648 pre = 1;
649 break;
650 default: /* round_up */
651 pre = br/(c<<div);
652 // but p must be non-zero
653 if (!pre)
654 return -EINVAL;
656 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
657 goto got_it;
660 // at this point we have
661 // d == MIND and (c << (MAXPEXP+MIND)) < B
662 while (div < CR_MAXD) {
663 div++;
664 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
665 // Equivalent to: B <= (c << (MAXPEXP+d))
666 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
667 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
668 // MAXP/2 < B/c2^d <= MAXP
669 // take care of rounding
670 switch (r) {
671 case round_down:
672 pre = DIV_ROUND_UP(br, c<<div);
673 break;
674 case round_nearest:
675 pre = DIV_ROUND_CLOSEST(br, c<<div);
676 break;
677 default: /* round_up */
678 pre = br/(c<<div);
680 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
681 goto got_it;
684 // at this point we have
685 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
686 // but we cannot go any higher
687 // take care of rounding
688 if (r == round_down)
689 return -EINVAL;
690 pre = 1 << CR_MAXPEXP;
691 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
692 got_it:
693 // paranoia
694 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
695 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
696 div, pre);
697 return -EINVAL;
698 } else {
699 if (bits)
700 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
701 if (actual) {
702 *actual = DIV_ROUND_UP(br, pre<<div);
703 PRINTD (DBG_QOS, "actual rate: %u", *actual);
705 return 0;
709 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
710 u16 * bit_pattern, unsigned int * actual) {
711 unsigned int my_actual;
713 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
714 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
716 if (!actual)
717 // actual rate is not returned
718 actual = &my_actual;
720 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
721 // should never happen as round_nearest always succeeds
722 return -1;
724 if (c - tol <= *actual && *actual <= c + tol)
725 // within tolerance
726 return 0;
727 else
728 // intolerant, try rounding instead
729 return make_rate (dev, c, r, bit_pattern, actual);
732 /********** Listen on a VC **********/
734 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
735 // is there any guarantee that we don't get two simulataneous
736 // identical calls of this function from different processes? yes
737 // rate_lock
738 unsigned long flags;
739 u32 channel_type; // u16?
741 u16 buf_ptr = RX_CHANNEL_IDLE;
743 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
745 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
747 spin_lock_irqsave (&dev->mem_lock, flags);
748 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
749 spin_unlock_irqrestore (&dev->mem_lock, flags);
751 // very serious error, should never occur
752 if (channel_type != RX_CHANNEL_DISABLED) {
753 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
754 return -EBUSY; // clean up?
757 // Give back spare buffer
758 if (dev->noof_spare_buffers) {
759 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
760 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
761 // should never occur
762 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
763 // but easy to recover from
764 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
765 buf_ptr = RX_CHANNEL_IDLE;
767 } else {
768 PRINTD (DBG_VCC, "using IDLE buffer pointer");
771 // Channel is currently disabled so change its status to idle
773 // do we really need to save the flags again?
774 spin_lock_irqsave (&dev->mem_lock, flags);
776 wr_mem (dev, &rx_desc->wr_buf_type,
777 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
778 if (buf_ptr != RX_CHANNEL_IDLE)
779 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
781 spin_unlock_irqrestore (&dev->mem_lock, flags);
783 // rxer->rate = make_rate (qos->peak_cells);
785 PRINTD (DBG_FLOW, "hrz_open_rx ok");
787 return 0;
790 #if 0
791 /********** change vc rate for a given vc **********/
793 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
794 rxer->rate = make_rate (qos->peak_cells);
796 #endif
798 /********** free an skb (as per ATM device driver documentation) **********/
800 static void hrz_kfree_skb (struct sk_buff * skb) {
801 if (ATM_SKB(skb)->vcc->pop) {
802 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
803 } else {
804 dev_kfree_skb_any (skb);
808 /********** cancel listen on a VC **********/
810 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
811 unsigned long flags;
813 u32 value;
815 u32 r1, r2;
817 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
819 int was_idle = 0;
821 spin_lock_irqsave (&dev->mem_lock, flags);
822 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
823 spin_unlock_irqrestore (&dev->mem_lock, flags);
825 if (value == RX_CHANNEL_DISABLED) {
826 // I suppose this could happen once we deal with _NONE traffic properly
827 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
828 return;
830 if (value == RX_CHANNEL_IDLE)
831 was_idle = 1;
833 spin_lock_irqsave (&dev->mem_lock, flags);
835 for (;;) {
836 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
838 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
839 break;
841 was_idle = 0;
844 if (was_idle) {
845 spin_unlock_irqrestore (&dev->mem_lock, flags);
846 return;
849 WAIT_FLUSH_RX_COMPLETE(dev);
851 // XXX Is this all really necessary? We can rely on the rx_data_av
852 // handler to discard frames that remain queued for delivery. If the
853 // worry is that immediately reopening the channel (perhaps by a
854 // different process) may cause some data to be mis-delivered then
855 // there may still be a simpler solution (such as busy-waiting on
856 // rx_busy once the channel is disabled or before a new one is
857 // opened - does this leave any holes?). Arguably setting up and
858 // tearing down the TX and RX halves of each virtual circuit could
859 // most safely be done within ?x_busy protected regions.
861 // OK, current changes are that Simon's marker is disabled and we DO
862 // look for NULL rxer elsewhere. The code here seems flush frames
863 // and then remember the last dead cell belonging to the channel
864 // just disabled - the cell gets relinked at the next vc_open.
865 // However, when all VCs are closed or only a few opened there are a
866 // handful of buffers that are unusable.
868 // Does anyone feel like documenting spare_buffers properly?
869 // Does anyone feel like fixing this in a nicer way?
871 // Flush any data which is left in the channel
872 for (;;) {
873 // Change the rx channel port to something different to the RX
874 // channel we are trying to close to force Horizon to flush the rx
875 // channel read and write pointers.
877 u16 other = vc^(RX_CHANS/2);
879 SELECT_RX_CHANNEL (dev, other);
880 WAIT_UPDATE_COMPLETE (dev);
882 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
884 // Select this RX channel. Flush doesn't seem to work unless we
885 // select an RX channel before hand
887 SELECT_RX_CHANNEL (dev, vc);
888 WAIT_UPDATE_COMPLETE (dev);
890 // Attempt to flush a frame on this RX channel
892 FLUSH_RX_CHANNEL (dev, vc);
893 WAIT_FLUSH_RX_COMPLETE (dev);
895 // Force Horizon to flush rx channel read and write pointers as before
897 SELECT_RX_CHANNEL (dev, other);
898 WAIT_UPDATE_COMPLETE (dev);
900 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
902 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
904 if (r1 == r2) {
905 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
906 break;
910 #if 0
912 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
913 rx_q_entry * rd_ptr = dev->rx_q_entry;
915 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
917 while (rd_ptr != wr_ptr) {
918 u32 x = rd_mem (dev, (HDW *) rd_ptr);
920 if (vc == rx_q_entry_to_rx_channel (x)) {
921 x |= SIMONS_DODGEY_MARKER;
923 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
925 wr_mem (dev, (HDW *) rd_ptr, x);
928 if (rd_ptr == dev->rx_q_wrap)
929 rd_ptr = dev->rx_q_reset;
930 else
931 rd_ptr++;
934 #endif
936 spin_unlock_irqrestore (&dev->mem_lock, flags);
938 return;
941 /********** schedule RX transfers **********/
943 // Note on tail recursion: a GCC developer said that it is not likely
944 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
945 // are sure it does as you may otherwise overflow the kernel stack.
947 // giving this fn a return value would help GCC, allegedly
949 static void rx_schedule (hrz_dev * dev, int irq) {
950 unsigned int rx_bytes;
952 int pio_instead = 0;
953 #ifndef TAILRECURSIONWORKS
954 pio_instead = 1;
955 while (pio_instead) {
956 #endif
957 // bytes waiting for RX transfer
958 rx_bytes = dev->rx_bytes;
960 #if 0
961 spin_count = 0;
962 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
963 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
964 if (++spin_count > 10) {
965 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
966 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
967 clear_bit (rx_busy, &dev->flags);
968 hrz_kfree_skb (dev->rx_skb);
969 return;
972 #endif
974 // this code follows the TX code but (at the moment) there is only
975 // one region - the skb itself. I don't know if this will change,
976 // but it doesn't hurt to have the code here, disabled.
978 if (rx_bytes) {
979 // start next transfer within same region
980 if (rx_bytes <= MAX_PIO_COUNT) {
981 PRINTD (DBG_RX|DBG_BUS, "(pio)");
982 pio_instead = 1;
984 if (rx_bytes <= MAX_TRANSFER_COUNT) {
985 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
986 dev->rx_bytes = 0;
987 } else {
988 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
989 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
990 rx_bytes = MAX_TRANSFER_COUNT;
992 } else {
993 // rx_bytes == 0 -- we're between regions
994 // regions remaining to transfer
995 #if 0
996 unsigned int rx_regions = dev->rx_regions;
997 #else
998 unsigned int rx_regions = 0;
999 #endif
1001 if (rx_regions) {
1002 #if 0
1003 // start a new region
1004 dev->rx_addr = dev->rx_iovec->iov_base;
1005 rx_bytes = dev->rx_iovec->iov_len;
1006 ++dev->rx_iovec;
1007 dev->rx_regions = rx_regions - 1;
1009 if (rx_bytes <= MAX_PIO_COUNT) {
1010 PRINTD (DBG_RX|DBG_BUS, "(pio)");
1011 pio_instead = 1;
1013 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1014 PRINTD (DBG_RX|DBG_BUS, "(full region)");
1015 dev->rx_bytes = 0;
1016 } else {
1017 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1018 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1019 rx_bytes = MAX_TRANSFER_COUNT;
1021 #endif
1022 } else {
1023 // rx_regions == 0
1024 // that's all folks - end of frame
1025 struct sk_buff * skb = dev->rx_skb;
1026 // dev->rx_iovec = 0;
1028 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1030 dump_skb ("<<<", dev->rx_channel, skb);
1032 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1035 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1036 // VC layer stats
1037 atomic_inc(&vcc->stats->rx);
1038 __net_timestamp(skb);
1039 // end of our responsibility
1040 vcc->push (vcc, skb);
1045 // note: writing RX_COUNT clears any interrupt condition
1046 if (rx_bytes) {
1047 if (pio_instead) {
1048 if (irq)
1049 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1050 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1051 } else {
1052 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1053 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1055 dev->rx_addr += rx_bytes;
1056 } else {
1057 if (irq)
1058 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1059 // allow another RX thread to start
1060 YELLOW_LED_ON(dev);
1061 clear_bit (rx_busy, &dev->flags);
1062 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1065 #ifdef TAILRECURSIONWORKS
1066 // and we all bless optimised tail calls
1067 if (pio_instead)
1068 return rx_schedule (dev, 0);
1069 return;
1070 #else
1071 // grrrrrrr!
1072 irq = 0;
1074 return;
1075 #endif
1078 /********** handle RX bus master complete events **********/
1080 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1081 if (test_bit (rx_busy, &dev->flags)) {
1082 rx_schedule (dev, 1);
1083 } else {
1084 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1085 // clear interrupt condition on adapter
1086 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1088 return;
1091 /********** (queue to) become the next TX thread **********/
1093 static int tx_hold (hrz_dev * dev) {
1094 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1095 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1096 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1097 if (signal_pending (current))
1098 return -1;
1099 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1100 return 0;
1103 /********** allow another TX thread to start **********/
1105 static inline void tx_release (hrz_dev * dev) {
1106 clear_bit (tx_busy, &dev->flags);
1107 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1108 wake_up_interruptible (&dev->tx_queue);
1111 /********** schedule TX transfers **********/
1113 static void tx_schedule (hrz_dev * const dev, int irq) {
1114 unsigned int tx_bytes;
1116 int append_desc = 0;
1118 int pio_instead = 0;
1119 #ifndef TAILRECURSIONWORKS
1120 pio_instead = 1;
1121 while (pio_instead) {
1122 #endif
1123 // bytes in current region waiting for TX transfer
1124 tx_bytes = dev->tx_bytes;
1126 #if 0
1127 spin_count = 0;
1128 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1129 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1130 if (++spin_count > 10) {
1131 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1132 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1133 tx_release (dev);
1134 hrz_kfree_skb (dev->tx_skb);
1135 return;
1138 #endif
1140 if (tx_bytes) {
1141 // start next transfer within same region
1142 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1143 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1144 pio_instead = 1;
1146 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1147 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1148 if (!dev->tx_iovec) {
1149 // end of last region
1150 append_desc = 1;
1152 dev->tx_bytes = 0;
1153 } else {
1154 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1155 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1156 tx_bytes = MAX_TRANSFER_COUNT;
1158 } else {
1159 // tx_bytes == 0 -- we're between regions
1160 // regions remaining to transfer
1161 unsigned int tx_regions = dev->tx_regions;
1163 if (tx_regions) {
1164 // start a new region
1165 dev->tx_addr = dev->tx_iovec->iov_base;
1166 tx_bytes = dev->tx_iovec->iov_len;
1167 ++dev->tx_iovec;
1168 dev->tx_regions = tx_regions - 1;
1170 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1171 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1172 pio_instead = 1;
1174 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1175 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1176 dev->tx_bytes = 0;
1177 } else {
1178 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1179 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1180 tx_bytes = MAX_TRANSFER_COUNT;
1182 } else {
1183 // tx_regions == 0
1184 // that's all folks - end of frame
1185 struct sk_buff * skb = dev->tx_skb;
1186 dev->tx_iovec = NULL;
1188 // VC layer stats
1189 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1191 // free the skb
1192 hrz_kfree_skb (skb);
1196 // note: writing TX_COUNT clears any interrupt condition
1197 if (tx_bytes) {
1198 if (pio_instead) {
1199 if (irq)
1200 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1202 if (append_desc)
1203 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1204 } else {
1205 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1206 if (append_desc)
1207 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1208 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1209 append_desc
1210 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1211 : tx_bytes);
1213 dev->tx_addr += tx_bytes;
1214 } else {
1215 if (irq)
1216 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1217 YELLOW_LED_ON(dev);
1218 tx_release (dev);
1221 #ifdef TAILRECURSIONWORKS
1222 // and we all bless optimised tail calls
1223 if (pio_instead)
1224 return tx_schedule (dev, 0);
1225 return;
1226 #else
1227 // grrrrrrr!
1228 irq = 0;
1230 return;
1231 #endif
1234 /********** handle TX bus master complete events **********/
1236 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1237 if (test_bit (tx_busy, &dev->flags)) {
1238 tx_schedule (dev, 1);
1239 } else {
1240 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1241 // clear interrupt condition on adapter
1242 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1244 return;
1247 /********** move RX Q pointer to next item in circular buffer **********/
1249 // called only from IRQ sub-handler
1250 static u32 rx_queue_entry_next (hrz_dev * dev) {
1251 u32 rx_queue_entry;
1252 spin_lock (&dev->mem_lock);
1253 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1254 if (dev->rx_q_entry == dev->rx_q_wrap)
1255 dev->rx_q_entry = dev->rx_q_reset;
1256 else
1257 dev->rx_q_entry++;
1258 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1259 spin_unlock (&dev->mem_lock);
1260 return rx_queue_entry;
1263 /********** handle RX disabled by device **********/
1265 static inline void rx_disabled_handler (hrz_dev * dev) {
1266 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1267 // count me please
1268 PRINTK (KERN_WARNING, "RX was disabled!");
1271 /********** handle RX data received by device **********/
1273 // called from IRQ handler
1274 static void rx_data_av_handler (hrz_dev * dev) {
1275 u32 rx_queue_entry;
1276 u32 rx_queue_entry_flags;
1277 u16 rx_len;
1278 u16 rx_channel;
1280 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1282 // try to grab rx lock (not possible during RX bus mastering)
1283 if (test_and_set_bit (rx_busy, &dev->flags)) {
1284 PRINTD (DBG_RX, "locked out of rx lock");
1285 return;
1287 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1288 // lock is cleared if we fail now, o/w after bus master completion
1290 YELLOW_LED_OFF(dev);
1292 rx_queue_entry = rx_queue_entry_next (dev);
1294 rx_len = rx_q_entry_to_length (rx_queue_entry);
1295 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1297 WAIT_FLUSH_RX_COMPLETE (dev);
1299 SELECT_RX_CHANNEL (dev, rx_channel);
1301 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1302 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1304 if (!rx_len) {
1305 // (at least) bus-mastering breaks if we try to handle a
1306 // zero-length frame, besides AAL5 does not support them
1307 PRINTK (KERN_ERR, "zero-length frame!");
1308 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1311 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1312 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1314 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1315 struct atm_vcc * atm_vcc;
1317 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1319 atm_vcc = dev->rxer[rx_channel];
1320 // if no vcc is assigned to this channel, we should drop the frame
1321 // (is this what SIMONS etc. was trying to achieve?)
1323 if (atm_vcc) {
1325 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1327 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1329 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1330 if (skb) {
1331 // remember this so we can push it later
1332 dev->rx_skb = skb;
1333 // remember this so we can flush it later
1334 dev->rx_channel = rx_channel;
1336 // prepare socket buffer
1337 skb_put (skb, rx_len);
1338 ATM_SKB(skb)->vcc = atm_vcc;
1340 // simple transfer
1341 // dev->rx_regions = 0;
1342 // dev->rx_iovec = 0;
1343 dev->rx_bytes = rx_len;
1344 dev->rx_addr = skb->data;
1345 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1346 skb->data, rx_len);
1348 // do the business
1349 rx_schedule (dev, 0);
1350 return;
1352 } else {
1353 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1356 } else {
1357 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1358 // do we count this?
1361 } else {
1362 PRINTK (KERN_WARNING, "dropped over-size frame");
1363 // do we count this?
1366 } else {
1367 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1368 // do we count this?
1371 } else {
1372 // Wait update complete ? SPONG
1375 // RX was aborted
1376 YELLOW_LED_ON(dev);
1378 FLUSH_RX_CHANNEL (dev,rx_channel);
1379 clear_bit (rx_busy, &dev->flags);
1381 return;
1384 /********** interrupt handler **********/
1386 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1388 hrz_dev *dev = dev_id;
1389 u32 int_source;
1390 unsigned int irq_ok;
1392 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1394 // definitely for us
1395 irq_ok = 0;
1396 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1397 & INTERESTING_INTERRUPTS)) {
1398 // In the interests of fairness, the handlers below are
1399 // called in sequence and without immediate return to the head of
1400 // the while loop. This is only of issue for slow hosts (or when
1401 // debugging messages are on). Really slow hosts may find a fast
1402 // sender keeps them permanently in the IRQ handler. :(
1404 // (only an issue for slow hosts) RX completion goes before
1405 // rx_data_av as the former implies rx_busy and so the latter
1406 // would just abort. If it reschedules another transfer
1407 // (continuing the same frame) then it will not clear rx_busy.
1409 // (only an issue for slow hosts) TX completion goes before RX
1410 // data available as it is a much shorter routine - there is the
1411 // chance that any further transfers it schedules will be complete
1412 // by the time of the return to the head of the while loop
1414 if (int_source & RX_BUS_MASTER_COMPLETE) {
1415 ++irq_ok;
1416 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1417 rx_bus_master_complete_handler (dev);
1419 if (int_source & TX_BUS_MASTER_COMPLETE) {
1420 ++irq_ok;
1421 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1422 tx_bus_master_complete_handler (dev);
1424 if (int_source & RX_DATA_AV) {
1425 ++irq_ok;
1426 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1427 rx_data_av_handler (dev);
1430 if (irq_ok) {
1431 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1432 } else {
1433 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1436 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1437 if (irq_ok)
1438 return IRQ_HANDLED;
1439 return IRQ_NONE;
1442 /********** housekeeping **********/
1444 static void do_housekeeping (unsigned long arg) {
1445 // just stats at the moment
1446 hrz_dev * dev = (hrz_dev *) arg;
1448 // collect device-specific (not driver/atm-linux) stats here
1449 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1450 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1451 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1452 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1454 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1456 return;
1459 /********** find an idle channel for TX and set it up **********/
1461 // called with tx_busy set
1462 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1463 unsigned short idle_channels;
1464 short tx_channel = -1;
1465 unsigned int spin_count;
1466 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1468 // better would be to fail immediately, the caller can then decide whether
1469 // to wait or drop (depending on whether this is UBR etc.)
1470 spin_count = 0;
1471 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1472 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1473 // delay a bit here
1474 if (++spin_count > 100) {
1475 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1476 return -EBUSY;
1480 // got an idle channel
1482 // tx_idle ensures we look for idle channels in RR order
1483 int chan = dev->tx_idle;
1485 int keep_going = 1;
1486 while (keep_going) {
1487 if (idle_channels & (1<<chan)) {
1488 tx_channel = chan;
1489 keep_going = 0;
1491 ++chan;
1492 if (chan == TX_CHANS)
1493 chan = 0;
1496 dev->tx_idle = chan;
1499 // set up the channel we found
1501 // Initialise the cell header in the transmit channel descriptor
1502 // a.k.a. prepare the channel and remember that we have done so.
1504 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1505 u32 rd_ptr;
1506 u32 wr_ptr;
1507 u16 channel = vcc->channel;
1509 unsigned long flags;
1510 spin_lock_irqsave (&dev->mem_lock, flags);
1512 // Update the transmit channel record.
1513 dev->tx_channel_record[tx_channel] = channel;
1515 // xBR channel
1516 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1517 vcc->tx_xbr_bits);
1519 // Update the PCR counter preload value etc.
1520 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1521 vcc->tx_pcr_bits);
1523 #if 0
1524 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1525 // SCR timer
1526 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1527 vcc->tx_scr_bits);
1529 // Bucket size...
1530 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1531 vcc->tx_bucket_bits);
1533 // ... and fullness
1534 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1535 vcc->tx_bucket_bits);
1537 #endif
1539 // Initialise the read and write buffer pointers
1540 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1541 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1543 // idle TX channels should have identical pointers
1544 if (rd_ptr != wr_ptr) {
1545 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1546 // spin_unlock... return -E...
1547 // I wonder if gcc would get rid of one of the pointer aliases
1549 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1550 rd_ptr, wr_ptr);
1552 switch (vcc->aal) {
1553 case aal0:
1554 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1555 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557 break;
1558 case aal34:
1559 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1560 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1561 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1562 break;
1563 case aal5:
1564 rd_ptr |= CHANNEL_TYPE_AAL5;
1565 wr_ptr |= CHANNEL_TYPE_AAL5;
1566 // Initialise the CRC
1567 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1568 break;
1571 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1572 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1574 // Write the Cell Header
1575 // Payload Type, CLP and GFC would go here if non-zero
1576 wr_mem (dev, &tx_desc->cell_header, channel);
1578 spin_unlock_irqrestore (&dev->mem_lock, flags);
1581 return tx_channel;
1584 /********** send a frame **********/
1586 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1587 unsigned int spin_count;
1588 int free_buffers;
1589 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1590 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1591 u16 channel = vcc->channel;
1593 u32 buffers_required;
1595 /* signed for error return */
1596 short tx_channel;
1598 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1599 channel, skb->data, skb->len);
1601 dump_skb (">>>", channel, skb);
1603 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1604 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1605 hrz_kfree_skb (skb);
1606 return -EIO;
1609 // don't understand this
1610 ATM_SKB(skb)->vcc = atm_vcc;
1612 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1613 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1614 hrz_kfree_skb (skb);
1615 return -EIO;
1618 if (!channel) {
1619 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1620 hrz_kfree_skb (skb);
1621 return -EIO;
1624 #if 0
1626 // where would be a better place for this? housekeeping?
1627 u16 status;
1628 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1629 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1630 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1631 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1632 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1633 if (test_bit (tx_busy, &dev->flags)) {
1634 hrz_kfree_skb (dev->tx_skb);
1635 tx_release (dev);
1639 #endif
1641 #ifdef DEBUG_HORIZON
1642 /* wey-hey! */
1643 if (channel == 1023) {
1644 unsigned int i;
1645 unsigned short d = 0;
1646 char * s = skb->data;
1647 if (*s++ == 'D') {
1648 for (i = 0; i < 4; ++i)
1649 d = (d << 4) | hex_to_bin(*s++);
1650 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1653 #endif
1655 // wait until TX is free and grab lock
1656 if (tx_hold (dev)) {
1657 hrz_kfree_skb (skb);
1658 return -ERESTARTSYS;
1661 // Wait for enough space to be available in transmit buffer memory.
1663 // should be number of cells needed + 2 (according to hardware docs)
1664 // = ((framelen+8)+47) / 48 + 2
1665 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669 spin_count = 0;
1670 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672 free_buffers, buffers_required);
1673 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1674 // mdelay (1);
1675 // what happens if we kill (current_pid, SIGKILL) ?
1676 schedule();
1677 if (++spin_count > 1000) {
1678 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679 free_buffers, buffers_required);
1680 tx_release (dev);
1681 hrz_kfree_skb (skb);
1682 return -ERESTARTSYS;
1686 // Select a channel to transmit the frame on.
1687 if (channel == dev->last_vc) {
1688 PRINTD (DBG_TX, "last vc hack: hit");
1689 tx_channel = dev->tx_last;
1690 } else {
1691 PRINTD (DBG_TX, "last vc hack: miss");
1692 // Are we currently transmitting this VC on one of the channels?
1693 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694 if (dev->tx_channel_record[tx_channel] == channel) {
1695 PRINTD (DBG_TX, "vc already on channel: hit");
1696 break;
1698 if (tx_channel == TX_CHANS) {
1699 PRINTD (DBG_TX, "vc already on channel: miss");
1700 // Find and set up an idle channel.
1701 tx_channel = setup_idle_tx_channel (dev, vcc);
1702 if (tx_channel < 0) {
1703 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704 tx_release (dev);
1705 return tx_channel;
1709 PRINTD (DBG_TX, "got channel");
1710 SELECT_TX_CHANNEL(dev, tx_channel);
1712 dev->last_vc = channel;
1713 dev->tx_last = tx_channel;
1716 PRINTD (DBG_TX, "using channel %u", tx_channel);
1718 YELLOW_LED_OFF(dev);
1720 // TX start transfer
1723 unsigned int tx_len = skb->len;
1724 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725 // remember this so we can free it later
1726 dev->tx_skb = skb;
1728 if (tx_iovcnt) {
1729 // scatter gather transfer
1730 dev->tx_regions = tx_iovcnt;
1731 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1732 dev->tx_bytes = 0;
1733 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734 skb->data, tx_len);
1735 tx_release (dev);
1736 hrz_kfree_skb (skb);
1737 return -EIO;
1738 } else {
1739 // simple transfer
1740 dev->tx_regions = 0;
1741 dev->tx_iovec = NULL;
1742 dev->tx_bytes = tx_len;
1743 dev->tx_addr = skb->data;
1744 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745 skb->data, tx_len);
1748 // and do the business
1749 tx_schedule (dev, 0);
1753 return 0;
1756 /********** reset a card **********/
1758 static void hrz_reset (const hrz_dev * dev) {
1759 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761 // why not set RESET_HORIZON to one and wait for the card to
1762 // reassert that bit as zero? Like so:
1763 control_0_reg = control_0_reg & RESET_HORIZON;
1764 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765 while (control_0_reg & RESET_HORIZON)
1766 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768 // old reset code retained:
1769 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1770 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1771 // just guessing here
1772 udelay (1000);
1774 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1777 /********** read the burnt in address **********/
1779 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781 wr_regl (dev, CONTROL_0_REG, ctrl);
1782 udelay (5);
1785 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787 // DI must be valid around rising SK edge
1788 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1792 static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796 const unsigned int addr_bits = 6;
1797 const unsigned int data_bits = 16;
1799 unsigned int i;
1801 u16 res;
1803 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804 WRITE_IT_WAIT(dev, ctrl);
1806 // wake Serial EEPROM and send 110 (READ) command
1807 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1808 CLOCK_IT(dev, ctrl);
1810 ctrl |= SEEPROM_DI;
1811 CLOCK_IT(dev, ctrl);
1813 ctrl &= ~SEEPROM_DI;
1814 CLOCK_IT(dev, ctrl);
1816 for (i=0; i<addr_bits; i++) {
1817 if (addr & (1 << (addr_bits-1)))
1818 ctrl |= SEEPROM_DI;
1819 else
1820 ctrl &= ~SEEPROM_DI;
1822 CLOCK_IT(dev, ctrl);
1824 addr = addr << 1;
1827 // we could check that we have DO = 0 here
1828 ctrl &= ~SEEPROM_DI;
1830 res = 0;
1831 for (i=0;i<data_bits;i++) {
1832 res = res >> 1;
1834 CLOCK_IT(dev, ctrl);
1836 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837 res |= (1 << (data_bits-1));
1840 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841 WRITE_IT_WAIT(dev, ctrl);
1843 return res;
1846 /********** initialise a card **********/
1848 static int __devinit hrz_init (hrz_dev * dev) {
1849 int onefivefive;
1851 u16 chan;
1853 int buff_count;
1855 HDW * mem;
1857 cell_buf * tx_desc;
1858 cell_buf * rx_desc;
1860 u32 ctrl;
1862 ctrl = rd_regl (dev, CONTROL_0_REG);
1863 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1864 onefivefive = ctrl & ATM_LAYER_STATUS;
1866 if (onefivefive)
1867 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1868 else
1869 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871 printk (":");
1872 // Reset the card to get everything in a known state
1874 printk (" reset");
1875 hrz_reset (dev);
1877 // Clear all the buffer memory
1879 printk (" clearing memory");
1881 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1882 wr_mem (dev, mem, 0);
1884 printk (" tx channels");
1886 // All transmit eight channels are set up as AAL5 ABR channels with
1887 // a 16us cell spacing. Why?
1889 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1890 // buffer at 110h etc.
1892 for (chan = 0; chan < TX_CHANS; ++chan) {
1893 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1894 cell_buf * buf = &memmap->inittxbufs[chan];
1896 // initialise the read and write buffer pointers
1897 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1898 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900 // set the status of the initial buffers to empty
1901 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1904 // Use space bufn3 at the moment for tx buffers
1906 printk (" tx buffers");
1908 tx_desc = memmap->bufn3;
1910 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1913 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1914 tx_desc++;
1917 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919 // Initialise the transmit free buffer count
1920 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922 printk (" rx channels");
1924 // Initialise all of the receive channels to be AAL5 disabled with
1925 // an interrupt threshold of 0
1927 for (chan = 0; chan < RX_CHANS; ++chan) {
1928 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1933 printk (" rx buffers");
1935 // Use space bufn4 at the moment for rx buffers
1937 rx_desc = memmap->bufn4;
1939 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1942 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944 rx_desc++;
1947 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949 // Initialise the receive free buffer count
1950 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952 // Initialize Horizons registers
1954 // TX config
1955 wr_regw (dev, TX_CONFIG_OFF,
1956 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1959 wr_regw (dev, RX_CONFIG_OFF,
1960 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962 // RX line config
1963 wr_regw (dev, RX_LINE_CONFIG_OFF,
1964 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966 // Set the max AAL5 cell count to be just enough to contain the
1967 // largest AAL5 frame that the user wants to receive
1968 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1969 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971 // Enable receive
1972 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974 printk (" control");
1976 // Drive the OE of the LEDs then turn the green LED on
1977 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1978 wr_regl (dev, CONTROL_0_REG, ctrl);
1980 // Test for a 155-capable card
1982 if (onefivefive) {
1983 // Select 155 mode... make this a choice (or: how do we detect
1984 // external line speed and switch?)
1985 ctrl |= ATM_LAYER_SELECT;
1986 wr_regl (dev, CONTROL_0_REG, ctrl);
1988 // test SUNI-lite vs SAMBA
1990 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1991 // they will always be zero for the SAMBA. Ha! Bloody hardware
1992 // engineers. It'll never work.
1994 if (rd_framer (dev, 0) & 0x00f0) {
1995 // SUNI
1996 printk (" SUNI");
1998 // Reset, just in case
1999 wr_framer (dev, 0x00, 0x0080);
2000 wr_framer (dev, 0x00, 0x0000);
2002 // Configure transmit FIFO
2003 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005 // Set line timed mode
2006 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2007 } else {
2008 // SAMBA
2009 printk (" SAMBA");
2011 // Reset, just in case
2012 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2013 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015 // Turn off diagnostic loopback and enable line-timed mode
2016 wr_framer (dev, 0, 0x0002);
2018 // Turn on transmit outputs
2019 wr_framer (dev, 2, 0x0B80);
2021 } else {
2022 // Select 25 mode
2023 ctrl &= ~ATM_LAYER_SELECT;
2025 // Madge B154 setup
2026 // none required?
2029 printk (" LEDs");
2031 GREEN_LED_ON(dev);
2032 YELLOW_LED_ON(dev);
2034 printk (" ESI=");
2037 u16 b = 0;
2038 int i;
2039 u8 * esi = dev->atm_dev->esi;
2041 // in the card I have, EEPROM
2042 // addresses 0, 1, 2 contain 0
2043 // addresess 5, 6 etc. contain ffff
2044 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2045 // the read_bia routine gets the BIA in Ethernet bit order
2047 for (i=0; i < ESI_LEN; ++i) {
2048 if (i % 2 == 0)
2049 b = read_bia (dev, i/2 + 2);
2050 else
2051 b = b >> 8;
2052 esi[i] = b & 0xFF;
2053 printk ("%02x", esi[i]);
2057 // Enable RX_Q and ?X_COMPLETE interrupts only
2058 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2059 printk (" IRQ on");
2061 printk (".\n");
2063 return onefivefive;
2066 /********** check max_sdu **********/
2068 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2069 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071 switch (aal) {
2072 case aal0:
2073 if (!(tp->max_sdu)) {
2074 PRINTD (DBG_QOS, "defaulting max_sdu");
2075 tp->max_sdu = ATM_AAL0_SDU;
2076 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2077 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2078 return -EINVAL;
2080 break;
2081 case aal34:
2082 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2083 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2084 tp->max_sdu = ATM_MAX_AAL34_PDU;
2086 break;
2087 case aal5:
2088 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2089 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2090 tp->max_sdu = max_frame_size;
2092 break;
2094 return 0;
2097 /********** check pcr **********/
2099 // something like this should be part of ATM Linux
2100 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2101 // we are assuming non-UBR, and non-special values of pcr
2102 if (tp->min_pcr == ATM_MAX_PCR)
2103 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2104 else if (tp->min_pcr < 0)
2105 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2106 else if (tp->min_pcr && tp->min_pcr > pcr)
2107 PRINTD (DBG_QOS, "pcr less than min_pcr");
2108 else
2109 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2110 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2111 // [this would get rid of next two conditionals]
2112 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2113 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2114 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2115 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2116 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2117 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2118 else {
2119 // each limit unspecified or not violated
2120 PRINTD (DBG_QOS, "xBR(pcr) OK");
2121 return 0;
2123 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2124 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2125 return -EINVAL;
2128 /********** open VC **********/
2130 static int hrz_open (struct atm_vcc *atm_vcc)
2132 int error;
2133 u16 channel;
2135 struct atm_qos * qos;
2136 struct atm_trafprm * txtp;
2137 struct atm_trafprm * rxtp;
2139 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2140 hrz_vcc vcc;
2141 hrz_vcc * vccp; // allocated late
2142 short vpi = atm_vcc->vpi;
2143 int vci = atm_vcc->vci;
2144 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146 #ifdef ATM_VPI_UNSPEC
2147 // UNSPEC is deprecated, remove this code eventually
2148 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2149 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2150 return -EINVAL;
2152 #endif
2154 error = vpivci_to_channel (&channel, vpi, vci);
2155 if (error) {
2156 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2157 return error;
2160 vcc.channel = channel;
2161 // max speed for the moment
2162 vcc.tx_rate = 0x0;
2164 qos = &atm_vcc->qos;
2166 // check AAL and remember it
2167 switch (qos->aal) {
2168 case ATM_AAL0:
2169 // we would if it were 48 bytes and not 52!
2170 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2171 vcc.aal = aal0;
2172 break;
2173 case ATM_AAL34:
2174 // we would if I knew how do the SAR!
2175 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2176 vcc.aal = aal34;
2177 break;
2178 case ATM_AAL5:
2179 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2180 vcc.aal = aal5;
2181 break;
2182 default:
2183 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2184 return -EINVAL;
2185 break;
2188 // TX traffic parameters
2190 // there are two, interrelated problems here: 1. the reservation of
2191 // PCR is not a binary choice, we are given bounds and/or a
2192 // desirable value; 2. the device is only capable of certain values,
2193 // most of which are not integers. It is almost certainly acceptable
2194 // to be off by a maximum of 1 to 10 cps.
2196 // Pragmatic choice: always store an integral PCR as that which has
2197 // been allocated, even if we allocate a little (or a lot) less,
2198 // after rounding. The actual allocation depends on what we can
2199 // manage with our rate selection algorithm. The rate selection
2200 // algorithm is given an integral PCR and a tolerance and told
2201 // whether it should round the value up or down if the tolerance is
2202 // exceeded; it returns: a) the actual rate selected (rounded up to
2203 // the nearest integer), b) a bit pattern to feed to the timer
2204 // register, and c) a failure value if no applicable rate exists.
2206 // Part of the job is done by atm_pcr_goal which gives us a PCR
2207 // specification which says: EITHER grab the maximum available PCR
2208 // (and perhaps a lower bound which we musn't pass), OR grab this
2209 // amount, rounding down if you have to (and perhaps a lower bound
2210 // which we musn't pass) OR grab this amount, rounding up if you
2211 // have to (and perhaps an upper bound which we musn't pass). If any
2212 // bounds ARE passed we fail. Note that rounding is only rounding to
2213 // match device limitations, we do not round down to satisfy
2214 // bandwidth availability even if this would not violate any given
2215 // lower bound.
2217 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2218 // (say) so this is not even a binary fixpoint cell rate (but this
2219 // device can do it). To avoid this sort of hassle we use a
2220 // tolerance parameter (currently fixed at 10 cps).
2222 PRINTD (DBG_QOS, "TX:");
2224 txtp = &qos->txtp;
2226 // set up defaults for no traffic
2227 vcc.tx_rate = 0;
2228 // who knows what would actually happen if you try and send on this?
2229 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2230 vcc.tx_pcr_bits = CLOCK_DISABLE;
2231 #if 0
2232 vcc.tx_scr_bits = CLOCK_DISABLE;
2233 vcc.tx_bucket_bits = 0;
2234 #endif
2236 if (txtp->traffic_class != ATM_NONE) {
2237 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2238 if (error) {
2239 PRINTD (DBG_QOS, "TX max_sdu check failed");
2240 return error;
2243 switch (txtp->traffic_class) {
2244 case ATM_UBR: {
2245 // we take "the PCR" as a rate-cap
2246 // not reserved
2247 vcc.tx_rate = 0;
2248 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2249 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2250 break;
2252 #if 0
2253 case ATM_ABR: {
2254 // reserve min, allow up to max
2255 vcc.tx_rate = 0; // ?
2256 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2257 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2258 break;
2260 #endif
2261 case ATM_CBR: {
2262 int pcr = atm_pcr_goal (txtp);
2263 rounding r;
2264 if (!pcr) {
2265 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2266 // should really have: once someone gets unlimited bandwidth
2267 // that no more non-UBR channels can be opened until the
2268 // unlimited one closes?? For the moment, round_down means
2269 // greedy people actually get something and not nothing
2270 r = round_down;
2271 // slight race (no locking) here so we may get -EAGAIN
2272 // later; the greedy bastards would deserve it :)
2273 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2274 pcr = dev->tx_avail;
2275 } else if (pcr < 0) {
2276 r = round_down;
2277 pcr = -pcr;
2278 } else {
2279 r = round_up;
2281 error = make_rate_with_tolerance (dev, pcr, r, 10,
2282 &vcc.tx_pcr_bits, &vcc.tx_rate);
2283 if (error) {
2284 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2285 return error;
2287 // not really clear what further checking is needed
2288 error = atm_pcr_check (txtp, vcc.tx_rate);
2289 if (error) {
2290 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2291 return error;
2293 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2294 break;
2296 #if 0
2297 case ATM_VBR: {
2298 int pcr = atm_pcr_goal (txtp);
2299 // int scr = atm_scr_goal (txtp);
2300 int scr = pcr/2; // just for fun
2301 unsigned int mbs = 60; // just for fun
2302 rounding pr;
2303 rounding sr;
2304 unsigned int bucket;
2305 if (!pcr) {
2306 pr = round_nearest;
2307 pcr = 1<<30;
2308 } else if (pcr < 0) {
2309 pr = round_down;
2310 pcr = -pcr;
2311 } else {
2312 pr = round_up;
2314 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2315 &vcc.tx_pcr_bits, 0);
2316 if (!scr) {
2317 // see comments for PCR with CBR above
2318 sr = round_down;
2319 // slight race (no locking) here so we may get -EAGAIN
2320 // later; the greedy bastards would deserve it :)
2321 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2322 scr = dev->tx_avail;
2323 } else if (scr < 0) {
2324 sr = round_down;
2325 scr = -scr;
2326 } else {
2327 sr = round_up;
2329 error = make_rate_with_tolerance (dev, scr, sr, 10,
2330 &vcc.tx_scr_bits, &vcc.tx_rate);
2331 if (error) {
2332 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2333 return error;
2335 // not really clear what further checking is needed
2336 // error = atm_scr_check (txtp, vcc.tx_rate);
2337 if (error) {
2338 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2339 return error;
2341 // bucket calculations (from a piece of paper...) cell bucket
2342 // capacity must be largest integer smaller than m(p-s)/p + 1
2343 // where m = max burst size, p = pcr, s = scr
2344 bucket = mbs*(pcr-scr)/pcr;
2345 if (bucket*pcr != mbs*(pcr-scr))
2346 bucket += 1;
2347 if (bucket > BUCKET_MAX_SIZE) {
2348 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2349 bucket, BUCKET_MAX_SIZE);
2350 bucket = BUCKET_MAX_SIZE;
2352 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2353 vcc.tx_bucket_bits = bucket;
2354 break;
2356 #endif
2357 default: {
2358 PRINTD (DBG_QOS, "unsupported TX traffic class");
2359 return -EINVAL;
2360 break;
2365 // RX traffic parameters
2367 PRINTD (DBG_QOS, "RX:");
2369 rxtp = &qos->rxtp;
2371 // set up defaults for no traffic
2372 vcc.rx_rate = 0;
2374 if (rxtp->traffic_class != ATM_NONE) {
2375 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2376 if (error) {
2377 PRINTD (DBG_QOS, "RX max_sdu check failed");
2378 return error;
2380 switch (rxtp->traffic_class) {
2381 case ATM_UBR: {
2382 // not reserved
2383 break;
2385 #if 0
2386 case ATM_ABR: {
2387 // reserve min
2388 vcc.rx_rate = 0; // ?
2389 break;
2391 #endif
2392 case ATM_CBR: {
2393 int pcr = atm_pcr_goal (rxtp);
2394 if (!pcr) {
2395 // slight race (no locking) here so we may get -EAGAIN
2396 // later; the greedy bastards would deserve it :)
2397 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2398 pcr = dev->rx_avail;
2399 } else if (pcr < 0) {
2400 pcr = -pcr;
2402 vcc.rx_rate = pcr;
2403 // not really clear what further checking is needed
2404 error = atm_pcr_check (rxtp, vcc.rx_rate);
2405 if (error) {
2406 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2407 return error;
2409 break;
2411 #if 0
2412 case ATM_VBR: {
2413 // int scr = atm_scr_goal (rxtp);
2414 int scr = 1<<16; // just for fun
2415 if (!scr) {
2416 // slight race (no locking) here so we may get -EAGAIN
2417 // later; the greedy bastards would deserve it :)
2418 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2419 scr = dev->rx_avail;
2420 } else if (scr < 0) {
2421 scr = -scr;
2423 vcc.rx_rate = scr;
2424 // not really clear what further checking is needed
2425 // error = atm_scr_check (rxtp, vcc.rx_rate);
2426 if (error) {
2427 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2428 return error;
2430 break;
2432 #endif
2433 default: {
2434 PRINTD (DBG_QOS, "unsupported RX traffic class");
2435 return -EINVAL;
2436 break;
2442 // late abort useful for diagnostics
2443 if (vcc.aal != aal5) {
2444 PRINTD (DBG_QOS, "AAL not supported");
2445 return -EINVAL;
2448 // get space for our vcc stuff and copy parameters into it
2449 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2450 if (!vccp) {
2451 PRINTK (KERN_ERR, "out of memory!");
2452 return -ENOMEM;
2454 *vccp = vcc;
2456 // clear error and grab cell rate resource lock
2457 error = 0;
2458 spin_lock (&dev->rate_lock);
2460 if (vcc.tx_rate > dev->tx_avail) {
2461 PRINTD (DBG_QOS, "not enough TX PCR left");
2462 error = -EAGAIN;
2465 if (vcc.rx_rate > dev->rx_avail) {
2466 PRINTD (DBG_QOS, "not enough RX PCR left");
2467 error = -EAGAIN;
2470 if (!error) {
2471 // really consume cell rates
2472 dev->tx_avail -= vcc.tx_rate;
2473 dev->rx_avail -= vcc.rx_rate;
2474 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2475 vcc.tx_rate, vcc.rx_rate);
2478 // release lock and exit on error
2479 spin_unlock (&dev->rate_lock);
2480 if (error) {
2481 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2482 kfree (vccp);
2483 return error;
2486 // this is "immediately before allocating the connection identifier
2487 // in hardware" - so long as the next call does not fail :)
2488 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490 // any errors here are very serious and should never occur
2492 if (rxtp->traffic_class != ATM_NONE) {
2493 if (dev->rxer[channel]) {
2494 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2495 error = -EBUSY;
2497 if (!error)
2498 error = hrz_open_rx (dev, channel);
2499 if (error) {
2500 kfree (vccp);
2501 return error;
2503 // this link allows RX frames through
2504 dev->rxer[channel] = atm_vcc;
2507 // success, set elements of atm_vcc
2508 atm_vcc->dev_data = (void *) vccp;
2510 // indicate readiness
2511 set_bit(ATM_VF_READY,&atm_vcc->flags);
2513 return 0;
2516 /********** close VC **********/
2518 static void hrz_close (struct atm_vcc * atm_vcc) {
2519 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2520 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2521 u16 channel = vcc->channel;
2522 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524 // indicate unreadiness
2525 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2528 unsigned int i;
2530 // let any TX on this channel that has started complete
2531 // no restart, just keep trying
2532 while (tx_hold (dev))
2534 // remove record of any tx_channel having been setup for this channel
2535 for (i = 0; i < TX_CHANS; ++i)
2536 if (dev->tx_channel_record[i] == channel) {
2537 dev->tx_channel_record[i] = -1;
2538 break;
2540 if (dev->last_vc == channel)
2541 dev->tx_last = -1;
2542 tx_release (dev);
2545 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2546 // disable RXing - it tries quite hard
2547 hrz_close_rx (dev, channel);
2548 // forget the vcc - no more skbs will be pushed
2549 if (atm_vcc != dev->rxer[channel])
2550 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2551 "arghhh! we're going to die!",
2552 atm_vcc, dev->rxer[channel]);
2553 dev->rxer[channel] = NULL;
2556 // atomically release our rate reservation
2557 spin_lock (&dev->rate_lock);
2558 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2559 vcc->tx_rate, vcc->rx_rate);
2560 dev->tx_avail += vcc->tx_rate;
2561 dev->rx_avail += vcc->rx_rate;
2562 spin_unlock (&dev->rate_lock);
2564 // free our structure
2565 kfree (vcc);
2566 // say the VPI/VCI is free again
2567 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2570 #if 0
2571 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2572 void *optval, int optlen) {
2573 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2574 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2575 switch (level) {
2576 case SOL_SOCKET:
2577 switch (optname) {
2578 // case SO_BCTXOPT:
2579 // break;
2580 // case SO_BCRXOPT:
2581 // break;
2582 default:
2583 return -ENOPROTOOPT;
2584 break;
2586 break;
2588 return -EINVAL;
2591 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2592 void *optval, unsigned int optlen) {
2593 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2594 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2595 switch (level) {
2596 case SOL_SOCKET:
2597 switch (optname) {
2598 // case SO_BCTXOPT:
2599 // break;
2600 // case SO_BCRXOPT:
2601 // break;
2602 default:
2603 return -ENOPROTOOPT;
2604 break;
2606 break;
2608 return -EINVAL;
2610 #endif
2612 #if 0
2613 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2614 hrz_dev * dev = HRZ_DEV(atm_dev);
2615 PRINTD (DBG_FLOW, "hrz_ioctl");
2616 return -1;
2619 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2620 hrz_dev * dev = HRZ_DEV(atm_dev);
2621 PRINTD (DBG_FLOW, "hrz_phy_get");
2622 return 0;
2625 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2626 unsigned long addr) {
2627 hrz_dev * dev = HRZ_DEV(atm_dev);
2628 PRINTD (DBG_FLOW, "hrz_phy_put");
2631 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2632 hrz_dev * dev = HRZ_DEV(vcc->dev);
2633 PRINTD (DBG_FLOW, "hrz_change_qos");
2634 return -1;
2636 #endif
2638 /********** proc file contents **********/
2640 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2641 hrz_dev * dev = HRZ_DEV(atm_dev);
2642 int left = *pos;
2643 PRINTD (DBG_FLOW, "hrz_proc_read");
2645 /* more diagnostics here? */
2647 #if 0
2648 if (!left--) {
2649 unsigned int count = sprintf (page, "vbr buckets:");
2650 unsigned int i;
2651 for (i = 0; i < TX_CHANS; ++i)
2652 count += sprintf (page, " %u/%u",
2653 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2654 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2655 count += sprintf (page+count, ".\n");
2656 return count;
2658 #endif
2660 if (!left--)
2661 return sprintf (page,
2662 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2663 dev->tx_cell_count, dev->rx_cell_count,
2664 dev->hec_error_count, dev->unassigned_cell_count);
2666 if (!left--)
2667 return sprintf (page,
2668 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2669 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2670 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2671 dev->noof_spare_buffers);
2673 if (!left--)
2674 return sprintf (page,
2675 "cps remaining: TX %u, RX %u\n",
2676 dev->tx_avail, dev->rx_avail);
2678 return 0;
2681 static const struct atmdev_ops hrz_ops = {
2682 .open = hrz_open,
2683 .close = hrz_close,
2684 .send = hrz_send,
2685 .proc_read = hrz_proc_read,
2686 .owner = THIS_MODULE,
2689 static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2691 hrz_dev * dev;
2692 int err = 0;
2694 // adapter slot free, read resources from PCI configuration space
2695 u32 iobase = pci_resource_start (pci_dev, 0);
2696 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2697 unsigned int irq;
2698 unsigned char lat;
2700 PRINTD (DBG_FLOW, "hrz_probe");
2702 if (pci_enable_device(pci_dev))
2703 return -EINVAL;
2705 /* XXX DEV_LABEL is a guess */
2706 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2707 err = -EINVAL;
2708 goto out_disable;
2711 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2712 if (!dev) {
2713 // perhaps we should be nice: deregister all adapters and abort?
2714 PRINTD(DBG_ERR, "out of memory");
2715 err = -ENOMEM;
2716 goto out_release;
2719 pci_set_drvdata(pci_dev, dev);
2721 // grab IRQ and install handler - move this someplace more sensible
2722 irq = pci_dev->irq;
2723 if (request_irq(irq,
2724 interrupt_handler,
2725 IRQF_SHARED, /* irqflags guess */
2726 DEV_LABEL, /* name guess */
2727 dev)) {
2728 PRINTD(DBG_WARN, "request IRQ failed!");
2729 err = -EINVAL;
2730 goto out_free;
2733 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2734 iobase, irq, membase);
2736 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2737 NULL);
2738 if (!(dev->atm_dev)) {
2739 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2740 err = -EINVAL;
2741 goto out_free_irq;
2744 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2745 dev->atm_dev->number, dev, dev->atm_dev);
2746 dev->atm_dev->dev_data = (void *) dev;
2747 dev->pci_dev = pci_dev;
2749 // enable bus master accesses
2750 pci_set_master(pci_dev);
2752 // frobnicate latency (upwards, usually)
2753 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2754 if (pci_lat) {
2755 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2756 "changing", lat, pci_lat);
2757 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2758 } else if (lat < MIN_PCI_LATENCY) {
2759 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2760 "increasing", lat, MIN_PCI_LATENCY);
2761 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2764 dev->iobase = iobase;
2765 dev->irq = irq;
2766 dev->membase = membase;
2768 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2769 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2771 // these next three are performance hacks
2772 dev->last_vc = -1;
2773 dev->tx_last = -1;
2774 dev->tx_idle = 0;
2776 dev->tx_regions = 0;
2777 dev->tx_bytes = 0;
2778 dev->tx_skb = NULL;
2779 dev->tx_iovec = NULL;
2781 dev->tx_cell_count = 0;
2782 dev->rx_cell_count = 0;
2783 dev->hec_error_count = 0;
2784 dev->unassigned_cell_count = 0;
2786 dev->noof_spare_buffers = 0;
2789 unsigned int i;
2790 for (i = 0; i < TX_CHANS; ++i)
2791 dev->tx_channel_record[i] = -1;
2794 dev->flags = 0;
2796 // Allocate cell rates and remember ASIC version
2797 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2798 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2799 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2801 if (hrz_init(dev)) {
2802 // to be really pedantic, this should be ATM_OC3c_PCR
2803 dev->tx_avail = ATM_OC3_PCR;
2804 dev->rx_avail = ATM_OC3_PCR;
2805 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2806 } else {
2807 dev->tx_avail = ((25600000/8)*26)/(27*53);
2808 dev->rx_avail = ((25600000/8)*26)/(27*53);
2809 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2812 // rate changes spinlock
2813 spin_lock_init(&dev->rate_lock);
2815 // on-board memory access spinlock; we want atomic reads and
2816 // writes to adapter memory (handles IRQ and SMP)
2817 spin_lock_init(&dev->mem_lock);
2819 init_waitqueue_head(&dev->tx_queue);
2821 // vpi in 0..4, vci in 6..10
2822 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2823 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2825 init_timer(&dev->housekeeping);
2826 dev->housekeeping.function = do_housekeeping;
2827 dev->housekeeping.data = (unsigned long) dev;
2828 mod_timer(&dev->housekeeping, jiffies);
2830 out:
2831 return err;
2833 out_free_irq:
2834 free_irq(dev->irq, dev);
2835 out_free:
2836 kfree(dev);
2837 out_release:
2838 release_region(iobase, HRZ_IO_EXTENT);
2839 out_disable:
2840 pci_disable_device(pci_dev);
2841 goto out;
2844 static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2846 hrz_dev *dev;
2848 dev = pci_get_drvdata(pci_dev);
2850 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2851 del_timer_sync(&dev->housekeeping);
2852 hrz_reset(dev);
2853 atm_dev_deregister(dev->atm_dev);
2854 free_irq(dev->irq, dev);
2855 release_region(dev->iobase, HRZ_IO_EXTENT);
2856 kfree(dev);
2858 pci_disable_device(pci_dev);
2861 static void __init hrz_check_args (void) {
2862 #ifdef DEBUG_HORIZON
2863 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2864 #else
2865 if (debug)
2866 PRINTK (KERN_NOTICE, "no debug support in this image");
2867 #endif
2869 if (vpi_bits > HRZ_MAX_VPI)
2870 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2871 vpi_bits = HRZ_MAX_VPI);
2873 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2874 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2875 max_tx_size = TX_AAL5_LIMIT);
2877 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2878 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2879 max_rx_size = RX_AAL5_LIMIT);
2881 return;
2884 MODULE_AUTHOR(maintainer_string);
2885 MODULE_DESCRIPTION(description_string);
2886 MODULE_LICENSE("GPL");
2887 module_param(debug, ushort, 0644);
2888 module_param(vpi_bits, ushort, 0);
2889 module_param(max_tx_size, int, 0);
2890 module_param(max_rx_size, int, 0);
2891 module_param(pci_lat, byte, 0);
2892 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2893 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2894 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2895 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2896 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2898 static struct pci_device_id hrz_pci_tbl[] = {
2899 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2900 0, 0, 0 },
2901 { 0, }
2904 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2906 static struct pci_driver hrz_driver = {
2907 .name = "horizon",
2908 .probe = hrz_probe,
2909 .remove = __devexit_p(hrz_remove_one),
2910 .id_table = hrz_pci_tbl,
2913 /********** module entry **********/
2915 static int __init hrz_module_init (void) {
2916 // sanity check - cast is needed since printk does not support %Zu
2917 if (sizeof(struct MEMMAP) != 128*1024/4) {
2918 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2919 (unsigned long) sizeof(struct MEMMAP));
2920 return -ENOMEM;
2923 show_version();
2925 // check arguments
2926 hrz_check_args();
2928 // get the juice
2929 return pci_register_driver(&hrz_driver);
2932 /********** module exit **********/
2934 static void __exit hrz_module_exit (void) {
2935 PRINTD (DBG_FLOW, "cleanup_module");
2937 pci_unregister_driver(&hrz_driver);
2940 module_init(hrz_module_init);
2941 module_exit(hrz_module_exit);