IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / edac / amd64_edac.h
blob11be36a311eb55d312178e8e6886f6abc6594cd8
1 /*
2 * AMD64 class Memory Controller kernel module
4 * Copyright (c) 2009 SoftwareBitMaker.
5 * Copyright (c) 2009 Advanced Micro Devices, Inc.
7 * This file may be distributed under the terms of the
8 * GNU General Public License.
10 * Originally Written by Thayne Harbaugh
12 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
13 * - K8 CPU Revision D and greater support
15 * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
16 * - Module largely rewritten, with new (and hopefully correct)
17 * code for dealing with node and chip select interleaving,
18 * various code cleanup, and bug fixes
19 * - Added support for memory hoisting using DRAM hole address
20 * register
22 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
23 * -K8 Rev (1207) revision support added, required Revision
24 * specific mini-driver code to support Rev F as well as
25 * prior revisions
27 * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
28 * -Family 10h revision support added. New PCI Device IDs,
29 * indicating new changes. Actual registers modified
30 * were slight, less than the Rev E to Rev F transition
31 * but changing the PCI Device ID was the proper thing to
32 * do, as it provides for almost automactic family
33 * detection. The mods to Rev F required more family
34 * information detection.
36 * Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
37 * - misc fixes and code cleanups
39 * This module is based on the following documents
40 * (available from http://www.amd.com/):
42 * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
43 * Opteron Processors
44 * AMD publication #: 26094
45 *` Revision: 3.26
47 * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
48 * Processors
49 * AMD publication #: 32559
50 * Revision: 3.00
51 * Issue Date: May 2006
53 * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
54 * Processors
55 * AMD publication #: 31116
56 * Revision: 3.00
57 * Issue Date: September 07, 2007
59 * Sections in the first 2 documents are no longer in sync with each other.
60 * The Family 10h BKDG was totally re-written from scratch with a new
61 * presentation model.
62 * Therefore, comments that refer to a Document section might be off.
65 #include <linux/module.h>
66 #include <linux/ctype.h>
67 #include <linux/init.h>
68 #include <linux/pci.h>
69 #include <linux/pci_ids.h>
70 #include <linux/slab.h>
71 #include <linux/mmzone.h>
72 #include <linux/edac.h>
73 #include <asm/msr.h>
74 #include "edac_core.h"
75 #include "mce_amd.h"
77 #define amd64_debug(fmt, arg...) \
78 edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)
80 #define amd64_info(fmt, arg...) \
81 edac_printk(KERN_INFO, "amd64", fmt, ##arg)
83 #define amd64_notice(fmt, arg...) \
84 edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)
86 #define amd64_warn(fmt, arg...) \
87 edac_printk(KERN_WARNING, "amd64", fmt, ##arg)
89 #define amd64_err(fmt, arg...) \
90 edac_printk(KERN_ERR, "amd64", fmt, ##arg)
92 #define amd64_mc_warn(mci, fmt, arg...) \
93 edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
95 #define amd64_mc_err(mci, fmt, arg...) \
96 edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
99 * Throughout the comments in this code, the following terms are used:
101 * SysAddr, DramAddr, and InputAddr
103 * These terms come directly from the amd64 documentation
104 * (AMD publication #26094). They are defined as follows:
106 * SysAddr:
107 * This is a physical address generated by a CPU core or a device
108 * doing DMA. If generated by a CPU core, a SysAddr is the result of
109 * a virtual to physical address translation by the CPU core's address
110 * translation mechanism (MMU).
112 * DramAddr:
113 * A DramAddr is derived from a SysAddr by subtracting an offset that
114 * depends on which node the SysAddr maps to and whether the SysAddr
115 * is within a range affected by memory hoisting. The DRAM Base
116 * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
117 * determine which node a SysAddr maps to.
119 * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
120 * is within the range of addresses specified by this register, then
121 * a value x from the DHAR is subtracted from the SysAddr to produce a
122 * DramAddr. Here, x represents the base address for the node that
123 * the SysAddr maps to plus an offset due to memory hoisting. See
124 * section 3.4.8 and the comments in amd64_get_dram_hole_info() and
125 * sys_addr_to_dram_addr() below for more information.
127 * If the SysAddr is not affected by the DHAR then a value y is
128 * subtracted from the SysAddr to produce a DramAddr. Here, y is the
129 * base address for the node that the SysAddr maps to. See section
130 * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
131 * information.
133 * InputAddr:
134 * A DramAddr is translated to an InputAddr before being passed to the
135 * memory controller for the node that the DramAddr is associated
136 * with. The memory controller then maps the InputAddr to a csrow.
137 * If node interleaving is not in use, then the InputAddr has the same
138 * value as the DramAddr. Otherwise, the InputAddr is produced by
139 * discarding the bits used for node interleaving from the DramAddr.
140 * See section 3.4.4 for more information.
142 * The memory controller for a given node uses its DRAM CS Base and
143 * DRAM CS Mask registers to map an InputAddr to a csrow. See
144 * sections 3.5.4 and 3.5.5 for more information.
147 #define EDAC_AMD64_VERSION "3.4.0"
148 #define EDAC_MOD_STR "amd64_edac"
150 /* Extended Model from CPUID, for CPU Revision numbers */
151 #define K8_REV_D 1
152 #define K8_REV_E 2
153 #define K8_REV_F 4
155 /* Hardware limit on ChipSelect rows per MC and processors per system */
156 #define NUM_CHIPSELECTS 8
157 #define DRAM_RANGES 8
159 #define ON true
160 #define OFF false
163 * Create a contiguous bitmask starting at bit position @lo and ending at
164 * position @hi. For example
166 * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000.
168 #define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo))
171 * PCI-defined configuration space registers
173 #define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
174 #define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602
178 * Function 1 - Address Map
180 #define DRAM_BASE_LO 0x40
181 #define DRAM_LIMIT_LO 0x44
183 #define dram_intlv_en(pvt, i) ((u8)((pvt->ranges[i].base.lo >> 8) & 0x7))
184 #define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3))
185 #define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
186 #define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7))
188 #define DHAR 0xf0
189 #define dhar_valid(pvt) ((pvt)->dhar & BIT(0))
190 #define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1))
191 #define dhar_base(pvt) ((pvt)->dhar & 0xff000000)
192 #define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16)
194 /* NOTE: Extra mask bit vs K8 */
195 #define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16)
197 #define DCT_CFG_SEL 0x10C
199 #define DRAM_BASE_HI 0x140
200 #define DRAM_LIMIT_HI 0x144
204 * Function 2 - DRAM controller
206 #define DCSB0 0x40
207 #define DCSB1 0x140
208 #define DCSB_CS_ENABLE BIT(0)
210 #define DCSM0 0x60
211 #define DCSM1 0x160
213 #define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
215 #define DBAM0 0x80
216 #define DBAM1 0x180
218 /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
219 #define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF)
221 #define DBAM_MAX_VALUE 11
223 #define DCLR0 0x90
224 #define DCLR1 0x190
225 #define REVE_WIDTH_128 BIT(16)
226 #define WIDTH_128 BIT(11)
228 #define DCHR0 0x94
229 #define DCHR1 0x194
230 #define DDR3_MODE BIT(8)
232 #define DCT_SEL_LO 0x110
233 #define dct_sel_baseaddr(pvt) ((pvt)->dct_sel_lo & 0xFFFFF800)
234 #define dct_sel_interleave_addr(pvt) (((pvt)->dct_sel_lo >> 6) & 0x3)
235 #define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0))
236 #define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2))
238 #define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
240 #define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5))
241 #define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10))
243 #define SWAP_INTLV_REG 0x10c
245 #define DCT_SEL_HI 0x114
248 * Function 3 - Misc Control
250 #define NBCTL 0x40
252 #define NBCFG 0x44
253 #define NBCFG_CHIPKILL BIT(23)
254 #define NBCFG_ECC_ENABLE BIT(22)
256 /* F3x48: NBSL */
257 #define F10_NBSL_EXT_ERR_ECC 0x8
258 #define NBSL_PP_OBS 0x2
260 #define SCRCTRL 0x58
262 #define F10_ONLINE_SPARE 0xB0
263 #define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
264 #define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
266 #define F10_NB_ARRAY_ADDR 0xB8
267 #define F10_NB_ARRAY_DRAM_ECC BIT(31)
269 /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
270 #define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1)
272 #define F10_NB_ARRAY_DATA 0xBC
273 #define SET_NB_DRAM_INJECTION_WRITE(word, bits) \
274 (BIT(((word) & 0xF) + 20) | \
275 BIT(17) | bits)
276 #define SET_NB_DRAM_INJECTION_READ(word, bits) \
277 (BIT(((word) & 0xF) + 20) | \
278 BIT(16) | bits)
280 #define NBCAP 0xE8
281 #define NBCAP_CHIPKILL BIT(4)
282 #define NBCAP_SECDED BIT(3)
283 #define NBCAP_DCT_DUAL BIT(0)
285 #define EXT_NB_MCA_CFG 0x180
287 /* MSRs */
288 #define MSR_MCGCTL_NBE BIT(4)
290 /* AMD sets the first MC device at device ID 0x18. */
291 static inline u8 get_node_id(struct pci_dev *pdev)
293 return PCI_SLOT(pdev->devfn) - 0x18;
296 enum amd_families {
297 K8_CPUS = 0,
298 F10_CPUS,
299 F15_CPUS,
300 NUM_FAMILIES,
303 /* Error injection control structure */
304 struct error_injection {
305 u32 section;
306 u32 word;
307 u32 bit_map;
310 /* low and high part of PCI config space regs */
311 struct reg_pair {
312 u32 lo, hi;
316 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
318 struct dram_range {
319 struct reg_pair base;
320 struct reg_pair lim;
323 /* A DCT chip selects collection */
324 struct chip_select {
325 u32 csbases[NUM_CHIPSELECTS];
326 u8 b_cnt;
328 u32 csmasks[NUM_CHIPSELECTS];
329 u8 m_cnt;
332 struct amd64_pvt {
333 struct low_ops *ops;
335 /* pci_device handles which we utilize */
336 struct pci_dev *F1, *F2, *F3;
338 unsigned mc_node_id; /* MC index of this MC node */
339 int ext_model; /* extended model value of this node */
340 int channel_count;
342 /* Raw registers */
343 u32 dclr0; /* DRAM Configuration Low DCT0 reg */
344 u32 dclr1; /* DRAM Configuration Low DCT1 reg */
345 u32 dchr0; /* DRAM Configuration High DCT0 reg */
346 u32 dchr1; /* DRAM Configuration High DCT1 reg */
347 u32 nbcap; /* North Bridge Capabilities */
348 u32 nbcfg; /* F10 North Bridge Configuration */
349 u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
350 u32 dhar; /* DRAM Hoist reg */
351 u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
352 u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
354 /* one for each DCT */
355 struct chip_select csels[2];
357 /* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
358 struct dram_range ranges[DRAM_RANGES];
360 u64 top_mem; /* top of memory below 4GB */
361 u64 top_mem2; /* top of memory above 4GB */
363 u32 dct_sel_lo; /* DRAM Controller Select Low */
364 u32 dct_sel_hi; /* DRAM Controller Select High */
365 u32 online_spare; /* On-Line spare Reg */
367 /* x4 or x8 syndromes in use */
368 u8 ecc_sym_sz;
370 /* place to store error injection parameters prior to issue */
371 struct error_injection injection;
374 static inline u64 get_dram_base(struct amd64_pvt *pvt, unsigned i)
376 u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
378 if (boot_cpu_data.x86 == 0xf)
379 return addr;
381 return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
384 static inline u64 get_dram_limit(struct amd64_pvt *pvt, unsigned i)
386 u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
388 if (boot_cpu_data.x86 == 0xf)
389 return lim;
391 return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
394 static inline u16 extract_syndrome(u64 status)
396 return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
400 * per-node ECC settings descriptor
402 struct ecc_settings {
403 u32 old_nbctl;
404 bool nbctl_valid;
406 struct flags {
407 unsigned long nb_mce_enable:1;
408 unsigned long nb_ecc_prev:1;
409 } flags;
412 #ifdef CONFIG_EDAC_DEBUG
413 #define NUM_DBG_ATTRS 5
414 #else
415 #define NUM_DBG_ATTRS 0
416 #endif
418 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
419 #define NUM_INJ_ATTRS 5
420 #else
421 #define NUM_INJ_ATTRS 0
422 #endif
424 extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
425 amd64_inj_attrs[NUM_INJ_ATTRS];
428 * Each of the PCI Device IDs types have their own set of hardware accessor
429 * functions and per device encoding/decoding logic.
431 struct low_ops {
432 int (*early_channel_count) (struct amd64_pvt *pvt);
433 void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr,
434 u16 syndrome);
435 int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
436 int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset,
437 u32 *val, const char *func);
440 struct amd64_family_type {
441 const char *ctl_name;
442 u16 f1_id, f3_id;
443 struct low_ops ops;
446 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
447 u32 val, const char *func);
449 #define amd64_read_pci_cfg(pdev, offset, val) \
450 __amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
452 #define amd64_write_pci_cfg(pdev, offset, val) \
453 __amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
455 #define amd64_read_dct_pci_cfg(pvt, offset, val) \
456 pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)
458 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
459 u64 *hole_offset, u64 *hole_size);