IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / md / raid5.c
blobe867ee42b15239707c0dfede4be71d2bc9a72e20
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
60 * Stripe cache
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio *bio)
107 return bio->bi_phys_segments & 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio *bio)
112 return (bio->bi_phys_segments >> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 unsigned short val = raid5_bi_hw_segments(bio);
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
147 static inline int raid6_next_disk(int disk, int raid_disks)
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
161 int slot = *count;
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
174 static void return_io(struct bio *return_bi)
176 struct bio *bi = return_bi;
177 while (bi) {
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
187 static void print_raid5_conf (raid5_conf_t *conf);
189 static int stripe_operations_active(struct stripe_head *sh)
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 plugger_set_plug(&conf->plug);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 sh->bm_seq - conf->seq_write > 0) {
207 list_add_tail(&sh->lru, &conf->bitmap_list);
208 plugger_set_plug(&conf->plug);
209 } else {
210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 list_add_tail(&sh->lru, &conf->handle_list);
213 md_wakeup_thread(conf->mddev->thread);
214 } else {
215 BUG_ON(stripe_operations_active(sh));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
221 atomic_dec(&conf->active_stripes);
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
224 wake_up(&conf->wait_for_stripe);
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
232 static void release_stripe(struct stripe_head *sh)
234 raid5_conf_t *conf = sh->raid_conf;
235 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
242 static inline void remove_hash(struct stripe_head *sh)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
247 hlist_del_init(&sh->hash);
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
257 CHECK_DEVLOCK();
258 hlist_add_head(&sh->hash, hp);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
268 CHECK_DEVLOCK();
269 if (list_empty(&conf->inactive_list))
270 goto out;
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
274 remove_hash(sh);
275 atomic_inc(&conf->active_stripes);
276 out:
277 return sh;
280 static void shrink_buffers(struct stripe_head *sh)
282 struct page *p;
283 int i;
284 int num = sh->raid_conf->pool_size;
286 for (i = 0; i < num ; i++) {
287 p = sh->dev[i].page;
288 if (!p)
289 continue;
290 sh->dev[i].page = NULL;
291 put_page(p);
295 static int grow_buffers(struct stripe_head *sh)
297 int i;
298 int num = sh->raid_conf->pool_size;
300 for (i = 0; i < num; i++) {
301 struct page *page;
303 if (!(page = alloc_page(GFP_KERNEL))) {
304 return 1;
306 sh->dev[i].page = page;
308 return 0;
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
317 raid5_conf_t *conf = sh->raid_conf;
318 int i;
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 BUG_ON(stripe_operations_active(sh));
324 CHECK_DEVLOCK();
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh->sector);
328 remove_hash(sh);
330 sh->generation = conf->generation - previous;
331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 sh->sector = sector;
333 stripe_set_idx(sector, conf, previous, sh);
334 sh->state = 0;
337 for (i = sh->disks; i--; ) {
338 struct r5dev *dev = &sh->dev[i];
340 if (dev->toread || dev->read || dev->towrite || dev->written ||
341 test_bit(R5_LOCKED, &dev->flags)) {
342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh->sector, i, dev->toread,
344 dev->read, dev->towrite, dev->written,
345 test_bit(R5_LOCKED, &dev->flags));
346 BUG();
348 dev->flags = 0;
349 raid5_build_block(sh, i, previous);
351 insert_hash(conf, sh);
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 short generation)
357 struct stripe_head *sh;
358 struct hlist_node *hn;
360 CHECK_DEVLOCK();
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 if (sh->sector == sector && sh->generation == generation)
364 return sh;
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 return NULL;
370 * Need to check if array has failed when deciding whether to:
371 * - start an array
372 * - remove non-faulty devices
373 * - add a spare
374 * - allow a reshape
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
382 static int has_failed(raid5_conf_t *conf)
384 int degraded;
385 int i;
386 if (conf->mddev->reshape_position == MaxSector)
387 return conf->mddev->degraded > conf->max_degraded;
389 rcu_read_lock();
390 degraded = 0;
391 for (i = 0; i < conf->previous_raid_disks; i++) {
392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 if (!rdev || test_bit(Faulty, &rdev->flags))
394 degraded++;
395 else if (test_bit(In_sync, &rdev->flags))
397 else
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
405 * be in-sync.
407 if (conf->raid_disks >= conf->previous_raid_disks)
408 degraded++;
410 rcu_read_unlock();
411 if (degraded > conf->max_degraded)
412 return 1;
413 rcu_read_lock();
414 degraded = 0;
415 for (i = 0; i < conf->raid_disks; i++) {
416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 if (!rdev || test_bit(Faulty, &rdev->flags))
418 degraded++;
419 else if (test_bit(In_sync, &rdev->flags))
421 else
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
427 if (conf->raid_disks <= conf->previous_raid_disks)
428 degraded++;
430 rcu_read_unlock();
431 if (degraded > conf->max_degraded)
432 return 1;
433 return 0;
436 static struct stripe_head *
437 get_active_stripe(raid5_conf_t *conf, sector_t sector,
438 int previous, int noblock, int noquiesce)
440 struct stripe_head *sh;
442 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
444 spin_lock_irq(&conf->device_lock);
446 do {
447 wait_event_lock_irq(conf->wait_for_stripe,
448 conf->quiesce == 0 || noquiesce,
449 conf->device_lock, /* nothing */);
450 sh = __find_stripe(conf, sector, conf->generation - previous);
451 if (!sh) {
452 if (!conf->inactive_blocked)
453 sh = get_free_stripe(conf);
454 if (noblock && sh == NULL)
455 break;
456 if (!sh) {
457 conf->inactive_blocked = 1;
458 wait_event_lock_irq(conf->wait_for_stripe,
459 !list_empty(&conf->inactive_list) &&
460 (atomic_read(&conf->active_stripes)
461 < (conf->max_nr_stripes *3/4)
462 || !conf->inactive_blocked),
463 conf->device_lock,
464 md_raid5_kick_device(conf));
465 conf->inactive_blocked = 0;
466 } else
467 init_stripe(sh, sector, previous);
468 } else {
469 if (atomic_read(&sh->count)) {
470 BUG_ON(!list_empty(&sh->lru)
471 && !test_bit(STRIPE_EXPANDING, &sh->state));
472 } else {
473 if (!test_bit(STRIPE_HANDLE, &sh->state))
474 atomic_inc(&conf->active_stripes);
475 if (list_empty(&sh->lru) &&
476 !test_bit(STRIPE_EXPANDING, &sh->state))
477 BUG();
478 list_del_init(&sh->lru);
481 } while (sh == NULL);
483 if (sh)
484 atomic_inc(&sh->count);
486 spin_unlock_irq(&conf->device_lock);
487 return sh;
490 static void
491 raid5_end_read_request(struct bio *bi, int error);
492 static void
493 raid5_end_write_request(struct bio *bi, int error);
495 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
497 raid5_conf_t *conf = sh->raid_conf;
498 int i, disks = sh->disks;
500 might_sleep();
502 for (i = disks; i--; ) {
503 int rw;
504 struct bio *bi;
505 mdk_rdev_t *rdev;
506 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
507 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
508 rw = WRITE_FUA;
509 else
510 rw = WRITE;
511 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
512 rw = READ;
513 else
514 continue;
516 bi = &sh->dev[i].req;
518 bi->bi_rw = rw;
519 if (rw == WRITE)
520 bi->bi_end_io = raid5_end_write_request;
521 else
522 bi->bi_end_io = raid5_end_read_request;
524 rcu_read_lock();
525 rdev = rcu_dereference(conf->disks[i].rdev);
526 if (rdev && test_bit(Faulty, &rdev->flags))
527 rdev = NULL;
528 if (rdev)
529 atomic_inc(&rdev->nr_pending);
530 rcu_read_unlock();
532 if (rdev) {
533 if (s->syncing || s->expanding || s->expanded)
534 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
536 set_bit(STRIPE_IO_STARTED, &sh->state);
538 bi->bi_bdev = rdev->bdev;
539 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540 __func__, (unsigned long long)sh->sector,
541 bi->bi_rw, i);
542 atomic_inc(&sh->count);
543 bi->bi_sector = sh->sector + rdev->data_offset;
544 bi->bi_flags = 1 << BIO_UPTODATE;
545 bi->bi_vcnt = 1;
546 bi->bi_max_vecs = 1;
547 bi->bi_idx = 0;
548 bi->bi_io_vec = &sh->dev[i].vec;
549 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
550 bi->bi_io_vec[0].bv_offset = 0;
551 bi->bi_size = STRIPE_SIZE;
552 bi->bi_next = NULL;
553 if (rw == WRITE &&
554 test_bit(R5_ReWrite, &sh->dev[i].flags))
555 atomic_add(STRIPE_SECTORS,
556 &rdev->corrected_errors);
557 generic_make_request(bi);
558 } else {
559 if (rw == WRITE)
560 set_bit(STRIPE_DEGRADED, &sh->state);
561 pr_debug("skip op %ld on disc %d for sector %llu\n",
562 bi->bi_rw, i, (unsigned long long)sh->sector);
563 clear_bit(R5_LOCKED, &sh->dev[i].flags);
564 set_bit(STRIPE_HANDLE, &sh->state);
569 static struct dma_async_tx_descriptor *
570 async_copy_data(int frombio, struct bio *bio, struct page *page,
571 sector_t sector, struct dma_async_tx_descriptor *tx)
573 struct bio_vec *bvl;
574 struct page *bio_page;
575 int i;
576 int page_offset;
577 struct async_submit_ctl submit;
578 enum async_tx_flags flags = 0;
580 if (bio->bi_sector >= sector)
581 page_offset = (signed)(bio->bi_sector - sector) * 512;
582 else
583 page_offset = (signed)(sector - bio->bi_sector) * -512;
585 if (frombio)
586 flags |= ASYNC_TX_FENCE;
587 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
589 bio_for_each_segment(bvl, bio, i) {
590 int len = bio_iovec_idx(bio, i)->bv_len;
591 int clen;
592 int b_offset = 0;
594 if (page_offset < 0) {
595 b_offset = -page_offset;
596 page_offset += b_offset;
597 len -= b_offset;
600 if (len > 0 && page_offset + len > STRIPE_SIZE)
601 clen = STRIPE_SIZE - page_offset;
602 else
603 clen = len;
605 if (clen > 0) {
606 b_offset += bio_iovec_idx(bio, i)->bv_offset;
607 bio_page = bio_iovec_idx(bio, i)->bv_page;
608 if (frombio)
609 tx = async_memcpy(page, bio_page, page_offset,
610 b_offset, clen, &submit);
611 else
612 tx = async_memcpy(bio_page, page, b_offset,
613 page_offset, clen, &submit);
615 /* chain the operations */
616 submit.depend_tx = tx;
618 if (clen < len) /* hit end of page */
619 break;
620 page_offset += len;
623 return tx;
626 static void ops_complete_biofill(void *stripe_head_ref)
628 struct stripe_head *sh = stripe_head_ref;
629 struct bio *return_bi = NULL;
630 raid5_conf_t *conf = sh->raid_conf;
631 int i;
633 pr_debug("%s: stripe %llu\n", __func__,
634 (unsigned long long)sh->sector);
636 /* clear completed biofills */
637 spin_lock_irq(&conf->device_lock);
638 for (i = sh->disks; i--; ) {
639 struct r5dev *dev = &sh->dev[i];
641 /* acknowledge completion of a biofill operation */
642 /* and check if we need to reply to a read request,
643 * new R5_Wantfill requests are held off until
644 * !STRIPE_BIOFILL_RUN
646 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647 struct bio *rbi, *rbi2;
649 BUG_ON(!dev->read);
650 rbi = dev->read;
651 dev->read = NULL;
652 while (rbi && rbi->bi_sector <
653 dev->sector + STRIPE_SECTORS) {
654 rbi2 = r5_next_bio(rbi, dev->sector);
655 if (!raid5_dec_bi_phys_segments(rbi)) {
656 rbi->bi_next = return_bi;
657 return_bi = rbi;
659 rbi = rbi2;
663 spin_unlock_irq(&conf->device_lock);
664 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
666 return_io(return_bi);
668 set_bit(STRIPE_HANDLE, &sh->state);
669 release_stripe(sh);
672 static void ops_run_biofill(struct stripe_head *sh)
674 struct dma_async_tx_descriptor *tx = NULL;
675 raid5_conf_t *conf = sh->raid_conf;
676 struct async_submit_ctl submit;
677 int i;
679 pr_debug("%s: stripe %llu\n", __func__,
680 (unsigned long long)sh->sector);
682 for (i = sh->disks; i--; ) {
683 struct r5dev *dev = &sh->dev[i];
684 if (test_bit(R5_Wantfill, &dev->flags)) {
685 struct bio *rbi;
686 spin_lock_irq(&conf->device_lock);
687 dev->read = rbi = dev->toread;
688 dev->toread = NULL;
689 spin_unlock_irq(&conf->device_lock);
690 while (rbi && rbi->bi_sector <
691 dev->sector + STRIPE_SECTORS) {
692 tx = async_copy_data(0, rbi, dev->page,
693 dev->sector, tx);
694 rbi = r5_next_bio(rbi, dev->sector);
699 atomic_inc(&sh->count);
700 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
701 async_trigger_callback(&submit);
704 static void mark_target_uptodate(struct stripe_head *sh, int target)
706 struct r5dev *tgt;
708 if (target < 0)
709 return;
711 tgt = &sh->dev[target];
712 set_bit(R5_UPTODATE, &tgt->flags);
713 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
714 clear_bit(R5_Wantcompute, &tgt->flags);
717 static void ops_complete_compute(void *stripe_head_ref)
719 struct stripe_head *sh = stripe_head_ref;
721 pr_debug("%s: stripe %llu\n", __func__,
722 (unsigned long long)sh->sector);
724 /* mark the computed target(s) as uptodate */
725 mark_target_uptodate(sh, sh->ops.target);
726 mark_target_uptodate(sh, sh->ops.target2);
728 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
729 if (sh->check_state == check_state_compute_run)
730 sh->check_state = check_state_compute_result;
731 set_bit(STRIPE_HANDLE, &sh->state);
732 release_stripe(sh);
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
737 struct raid5_percpu *percpu)
739 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
742 static struct dma_async_tx_descriptor *
743 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
745 int disks = sh->disks;
746 struct page **xor_srcs = percpu->scribble;
747 int target = sh->ops.target;
748 struct r5dev *tgt = &sh->dev[target];
749 struct page *xor_dest = tgt->page;
750 int count = 0;
751 struct dma_async_tx_descriptor *tx;
752 struct async_submit_ctl submit;
753 int i;
755 pr_debug("%s: stripe %llu block: %d\n",
756 __func__, (unsigned long long)sh->sector, target);
757 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
759 for (i = disks; i--; )
760 if (i != target)
761 xor_srcs[count++] = sh->dev[i].page;
763 atomic_inc(&sh->count);
765 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766 ops_complete_compute, sh, to_addr_conv(sh, percpu));
767 if (unlikely(count == 1))
768 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769 else
770 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
772 return tx;
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776 * @srcs - (struct page *) array of size sh->disks
777 * @sh - stripe_head to parse
779 * Populates srcs in proper layout order for the stripe and returns the
780 * 'count' of sources to be used in a call to async_gen_syndrome. The P
781 * destination buffer is recorded in srcs[count] and the Q destination
782 * is recorded in srcs[count+1]].
784 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
786 int disks = sh->disks;
787 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
788 int d0_idx = raid6_d0(sh);
789 int count;
790 int i;
792 for (i = 0; i < disks; i++)
793 srcs[i] = NULL;
795 count = 0;
796 i = d0_idx;
797 do {
798 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
800 srcs[slot] = sh->dev[i].page;
801 i = raid6_next_disk(i, disks);
802 } while (i != d0_idx);
804 return syndrome_disks;
807 static struct dma_async_tx_descriptor *
808 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
810 int disks = sh->disks;
811 struct page **blocks = percpu->scribble;
812 int target;
813 int qd_idx = sh->qd_idx;
814 struct dma_async_tx_descriptor *tx;
815 struct async_submit_ctl submit;
816 struct r5dev *tgt;
817 struct page *dest;
818 int i;
819 int count;
821 if (sh->ops.target < 0)
822 target = sh->ops.target2;
823 else if (sh->ops.target2 < 0)
824 target = sh->ops.target;
825 else
826 /* we should only have one valid target */
827 BUG();
828 BUG_ON(target < 0);
829 pr_debug("%s: stripe %llu block: %d\n",
830 __func__, (unsigned long long)sh->sector, target);
832 tgt = &sh->dev[target];
833 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834 dest = tgt->page;
836 atomic_inc(&sh->count);
838 if (target == qd_idx) {
839 count = set_syndrome_sources(blocks, sh);
840 blocks[count] = NULL; /* regenerating p is not necessary */
841 BUG_ON(blocks[count+1] != dest); /* q should already be set */
842 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
843 ops_complete_compute, sh,
844 to_addr_conv(sh, percpu));
845 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
846 } else {
847 /* Compute any data- or p-drive using XOR */
848 count = 0;
849 for (i = disks; i-- ; ) {
850 if (i == target || i == qd_idx)
851 continue;
852 blocks[count++] = sh->dev[i].page;
855 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
856 NULL, ops_complete_compute, sh,
857 to_addr_conv(sh, percpu));
858 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
861 return tx;
864 static struct dma_async_tx_descriptor *
865 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
867 int i, count, disks = sh->disks;
868 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
869 int d0_idx = raid6_d0(sh);
870 int faila = -1, failb = -1;
871 int target = sh->ops.target;
872 int target2 = sh->ops.target2;
873 struct r5dev *tgt = &sh->dev[target];
874 struct r5dev *tgt2 = &sh->dev[target2];
875 struct dma_async_tx_descriptor *tx;
876 struct page **blocks = percpu->scribble;
877 struct async_submit_ctl submit;
879 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880 __func__, (unsigned long long)sh->sector, target, target2);
881 BUG_ON(target < 0 || target2 < 0);
882 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
885 /* we need to open-code set_syndrome_sources to handle the
886 * slot number conversion for 'faila' and 'failb'
888 for (i = 0; i < disks ; i++)
889 blocks[i] = NULL;
890 count = 0;
891 i = d0_idx;
892 do {
893 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
895 blocks[slot] = sh->dev[i].page;
897 if (i == target)
898 faila = slot;
899 if (i == target2)
900 failb = slot;
901 i = raid6_next_disk(i, disks);
902 } while (i != d0_idx);
904 BUG_ON(faila == failb);
905 if (failb < faila)
906 swap(faila, failb);
907 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908 __func__, (unsigned long long)sh->sector, faila, failb);
910 atomic_inc(&sh->count);
912 if (failb == syndrome_disks+1) {
913 /* Q disk is one of the missing disks */
914 if (faila == syndrome_disks) {
915 /* Missing P+Q, just recompute */
916 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
917 ops_complete_compute, sh,
918 to_addr_conv(sh, percpu));
919 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920 STRIPE_SIZE, &submit);
921 } else {
922 struct page *dest;
923 int data_target;
924 int qd_idx = sh->qd_idx;
926 /* Missing D+Q: recompute D from P, then recompute Q */
927 if (target == qd_idx)
928 data_target = target2;
929 else
930 data_target = target;
932 count = 0;
933 for (i = disks; i-- ; ) {
934 if (i == data_target || i == qd_idx)
935 continue;
936 blocks[count++] = sh->dev[i].page;
938 dest = sh->dev[data_target].page;
939 init_async_submit(&submit,
940 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
941 NULL, NULL, NULL,
942 to_addr_conv(sh, percpu));
943 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
944 &submit);
946 count = set_syndrome_sources(blocks, sh);
947 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
948 ops_complete_compute, sh,
949 to_addr_conv(sh, percpu));
950 return async_gen_syndrome(blocks, 0, count+2,
951 STRIPE_SIZE, &submit);
953 } else {
954 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
955 ops_complete_compute, sh,
956 to_addr_conv(sh, percpu));
957 if (failb == syndrome_disks) {
958 /* We're missing D+P. */
959 return async_raid6_datap_recov(syndrome_disks+2,
960 STRIPE_SIZE, faila,
961 blocks, &submit);
962 } else {
963 /* We're missing D+D. */
964 return async_raid6_2data_recov(syndrome_disks+2,
965 STRIPE_SIZE, faila, failb,
966 blocks, &submit);
972 static void ops_complete_prexor(void *stripe_head_ref)
974 struct stripe_head *sh = stripe_head_ref;
976 pr_debug("%s: stripe %llu\n", __func__,
977 (unsigned long long)sh->sector);
980 static struct dma_async_tx_descriptor *
981 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
982 struct dma_async_tx_descriptor *tx)
984 int disks = sh->disks;
985 struct page **xor_srcs = percpu->scribble;
986 int count = 0, pd_idx = sh->pd_idx, i;
987 struct async_submit_ctl submit;
989 /* existing parity data subtracted */
990 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
992 pr_debug("%s: stripe %llu\n", __func__,
993 (unsigned long long)sh->sector);
995 for (i = disks; i--; ) {
996 struct r5dev *dev = &sh->dev[i];
997 /* Only process blocks that are known to be uptodate */
998 if (test_bit(R5_Wantdrain, &dev->flags))
999 xor_srcs[count++] = dev->page;
1002 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1006 return tx;
1009 static struct dma_async_tx_descriptor *
1010 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1012 int disks = sh->disks;
1013 int i;
1015 pr_debug("%s: stripe %llu\n", __func__,
1016 (unsigned long long)sh->sector);
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 struct bio *chosen;
1022 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023 struct bio *wbi;
1025 spin_lock(&sh->lock);
1026 chosen = dev->towrite;
1027 dev->towrite = NULL;
1028 BUG_ON(dev->written);
1029 wbi = dev->written = chosen;
1030 spin_unlock(&sh->lock);
1032 while (wbi && wbi->bi_sector <
1033 dev->sector + STRIPE_SECTORS) {
1034 if (wbi->bi_rw & REQ_FUA)
1035 set_bit(R5_WantFUA, &dev->flags);
1036 tx = async_copy_data(1, wbi, dev->page,
1037 dev->sector, tx);
1038 wbi = r5_next_bio(wbi, dev->sector);
1043 return tx;
1046 static void ops_complete_reconstruct(void *stripe_head_ref)
1048 struct stripe_head *sh = stripe_head_ref;
1049 int disks = sh->disks;
1050 int pd_idx = sh->pd_idx;
1051 int qd_idx = sh->qd_idx;
1052 int i;
1053 bool fua = false;
1055 pr_debug("%s: stripe %llu\n", __func__,
1056 (unsigned long long)sh->sector);
1058 for (i = disks; i--; )
1059 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1061 for (i = disks; i--; ) {
1062 struct r5dev *dev = &sh->dev[i];
1064 if (dev->written || i == pd_idx || i == qd_idx) {
1065 set_bit(R5_UPTODATE, &dev->flags);
1066 if (fua)
1067 set_bit(R5_WantFUA, &dev->flags);
1071 if (sh->reconstruct_state == reconstruct_state_drain_run)
1072 sh->reconstruct_state = reconstruct_state_drain_result;
1073 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1074 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1075 else {
1076 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1077 sh->reconstruct_state = reconstruct_state_result;
1080 set_bit(STRIPE_HANDLE, &sh->state);
1081 release_stripe(sh);
1084 static void
1085 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1086 struct dma_async_tx_descriptor *tx)
1088 int disks = sh->disks;
1089 struct page **xor_srcs = percpu->scribble;
1090 struct async_submit_ctl submit;
1091 int count = 0, pd_idx = sh->pd_idx, i;
1092 struct page *xor_dest;
1093 int prexor = 0;
1094 unsigned long flags;
1096 pr_debug("%s: stripe %llu\n", __func__,
1097 (unsigned long long)sh->sector);
1099 /* check if prexor is active which means only process blocks
1100 * that are part of a read-modify-write (written)
1102 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1103 prexor = 1;
1104 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1105 for (i = disks; i--; ) {
1106 struct r5dev *dev = &sh->dev[i];
1107 if (dev->written)
1108 xor_srcs[count++] = dev->page;
1110 } else {
1111 xor_dest = sh->dev[pd_idx].page;
1112 for (i = disks; i--; ) {
1113 struct r5dev *dev = &sh->dev[i];
1114 if (i != pd_idx)
1115 xor_srcs[count++] = dev->page;
1119 /* 1/ if we prexor'd then the dest is reused as a source
1120 * 2/ if we did not prexor then we are redoing the parity
1121 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1122 * for the synchronous xor case
1124 flags = ASYNC_TX_ACK |
1125 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1127 atomic_inc(&sh->count);
1129 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1130 to_addr_conv(sh, percpu));
1131 if (unlikely(count == 1))
1132 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1133 else
1134 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1137 static void
1138 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1139 struct dma_async_tx_descriptor *tx)
1141 struct async_submit_ctl submit;
1142 struct page **blocks = percpu->scribble;
1143 int count;
1145 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1147 count = set_syndrome_sources(blocks, sh);
1149 atomic_inc(&sh->count);
1151 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1152 sh, to_addr_conv(sh, percpu));
1153 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1156 static void ops_complete_check(void *stripe_head_ref)
1158 struct stripe_head *sh = stripe_head_ref;
1160 pr_debug("%s: stripe %llu\n", __func__,
1161 (unsigned long long)sh->sector);
1163 sh->check_state = check_state_check_result;
1164 set_bit(STRIPE_HANDLE, &sh->state);
1165 release_stripe(sh);
1168 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1170 int disks = sh->disks;
1171 int pd_idx = sh->pd_idx;
1172 int qd_idx = sh->qd_idx;
1173 struct page *xor_dest;
1174 struct page **xor_srcs = percpu->scribble;
1175 struct dma_async_tx_descriptor *tx;
1176 struct async_submit_ctl submit;
1177 int count;
1178 int i;
1180 pr_debug("%s: stripe %llu\n", __func__,
1181 (unsigned long long)sh->sector);
1183 count = 0;
1184 xor_dest = sh->dev[pd_idx].page;
1185 xor_srcs[count++] = xor_dest;
1186 for (i = disks; i--; ) {
1187 if (i == pd_idx || i == qd_idx)
1188 continue;
1189 xor_srcs[count++] = sh->dev[i].page;
1192 init_async_submit(&submit, 0, NULL, NULL, NULL,
1193 to_addr_conv(sh, percpu));
1194 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1195 &sh->ops.zero_sum_result, &submit);
1197 atomic_inc(&sh->count);
1198 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1199 tx = async_trigger_callback(&submit);
1202 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1204 struct page **srcs = percpu->scribble;
1205 struct async_submit_ctl submit;
1206 int count;
1208 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1209 (unsigned long long)sh->sector, checkp);
1211 count = set_syndrome_sources(srcs, sh);
1212 if (!checkp)
1213 srcs[count] = NULL;
1215 atomic_inc(&sh->count);
1216 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1217 sh, to_addr_conv(sh, percpu));
1218 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1219 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1222 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1224 int overlap_clear = 0, i, disks = sh->disks;
1225 struct dma_async_tx_descriptor *tx = NULL;
1226 raid5_conf_t *conf = sh->raid_conf;
1227 int level = conf->level;
1228 struct raid5_percpu *percpu;
1229 unsigned long cpu;
1231 cpu = get_cpu();
1232 percpu = per_cpu_ptr(conf->percpu, cpu);
1233 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1234 ops_run_biofill(sh);
1235 overlap_clear++;
1238 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1239 if (level < 6)
1240 tx = ops_run_compute5(sh, percpu);
1241 else {
1242 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1243 tx = ops_run_compute6_1(sh, percpu);
1244 else
1245 tx = ops_run_compute6_2(sh, percpu);
1247 /* terminate the chain if reconstruct is not set to be run */
1248 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1249 async_tx_ack(tx);
1252 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1253 tx = ops_run_prexor(sh, percpu, tx);
1255 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1256 tx = ops_run_biodrain(sh, tx);
1257 overlap_clear++;
1260 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1261 if (level < 6)
1262 ops_run_reconstruct5(sh, percpu, tx);
1263 else
1264 ops_run_reconstruct6(sh, percpu, tx);
1267 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1268 if (sh->check_state == check_state_run)
1269 ops_run_check_p(sh, percpu);
1270 else if (sh->check_state == check_state_run_q)
1271 ops_run_check_pq(sh, percpu, 0);
1272 else if (sh->check_state == check_state_run_pq)
1273 ops_run_check_pq(sh, percpu, 1);
1274 else
1275 BUG();
1278 if (overlap_clear)
1279 for (i = disks; i--; ) {
1280 struct r5dev *dev = &sh->dev[i];
1281 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1282 wake_up(&sh->raid_conf->wait_for_overlap);
1284 put_cpu();
1287 #ifdef CONFIG_MULTICORE_RAID456
1288 static void async_run_ops(void *param, async_cookie_t cookie)
1290 struct stripe_head *sh = param;
1291 unsigned long ops_request = sh->ops.request;
1293 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1294 wake_up(&sh->ops.wait_for_ops);
1296 __raid_run_ops(sh, ops_request);
1297 release_stripe(sh);
1300 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1302 /* since handle_stripe can be called outside of raid5d context
1303 * we need to ensure sh->ops.request is de-staged before another
1304 * request arrives
1306 wait_event(sh->ops.wait_for_ops,
1307 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1308 sh->ops.request = ops_request;
1310 atomic_inc(&sh->count);
1311 async_schedule(async_run_ops, sh);
1313 #else
1314 #define raid_run_ops __raid_run_ops
1315 #endif
1317 static int grow_one_stripe(raid5_conf_t *conf)
1319 struct stripe_head *sh;
1320 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1321 if (!sh)
1322 return 0;
1323 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1324 sh->raid_conf = conf;
1325 spin_lock_init(&sh->lock);
1326 #ifdef CONFIG_MULTICORE_RAID456
1327 init_waitqueue_head(&sh->ops.wait_for_ops);
1328 #endif
1330 if (grow_buffers(sh)) {
1331 shrink_buffers(sh);
1332 kmem_cache_free(conf->slab_cache, sh);
1333 return 0;
1335 /* we just created an active stripe so... */
1336 atomic_set(&sh->count, 1);
1337 atomic_inc(&conf->active_stripes);
1338 INIT_LIST_HEAD(&sh->lru);
1339 release_stripe(sh);
1340 return 1;
1343 static int grow_stripes(raid5_conf_t *conf, int num)
1345 struct kmem_cache *sc;
1346 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1348 if (conf->mddev->gendisk)
1349 sprintf(conf->cache_name[0],
1350 "raid%d-%s", conf->level, mdname(conf->mddev));
1351 else
1352 sprintf(conf->cache_name[0],
1353 "raid%d-%p", conf->level, conf->mddev);
1354 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1356 conf->active_name = 0;
1357 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1358 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1359 0, 0, NULL);
1360 if (!sc)
1361 return 1;
1362 conf->slab_cache = sc;
1363 conf->pool_size = devs;
1364 while (num--)
1365 if (!grow_one_stripe(conf))
1366 return 1;
1367 return 0;
1371 * scribble_len - return the required size of the scribble region
1372 * @num - total number of disks in the array
1374 * The size must be enough to contain:
1375 * 1/ a struct page pointer for each device in the array +2
1376 * 2/ room to convert each entry in (1) to its corresponding dma
1377 * (dma_map_page()) or page (page_address()) address.
1379 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1380 * calculate over all devices (not just the data blocks), using zeros in place
1381 * of the P and Q blocks.
1383 static size_t scribble_len(int num)
1385 size_t len;
1387 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1389 return len;
1392 static int resize_stripes(raid5_conf_t *conf, int newsize)
1394 /* Make all the stripes able to hold 'newsize' devices.
1395 * New slots in each stripe get 'page' set to a new page.
1397 * This happens in stages:
1398 * 1/ create a new kmem_cache and allocate the required number of
1399 * stripe_heads.
1400 * 2/ gather all the old stripe_heads and tranfer the pages across
1401 * to the new stripe_heads. This will have the side effect of
1402 * freezing the array as once all stripe_heads have been collected,
1403 * no IO will be possible. Old stripe heads are freed once their
1404 * pages have been transferred over, and the old kmem_cache is
1405 * freed when all stripes are done.
1406 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1407 * we simple return a failre status - no need to clean anything up.
1408 * 4/ allocate new pages for the new slots in the new stripe_heads.
1409 * If this fails, we don't bother trying the shrink the
1410 * stripe_heads down again, we just leave them as they are.
1411 * As each stripe_head is processed the new one is released into
1412 * active service.
1414 * Once step2 is started, we cannot afford to wait for a write,
1415 * so we use GFP_NOIO allocations.
1417 struct stripe_head *osh, *nsh;
1418 LIST_HEAD(newstripes);
1419 struct disk_info *ndisks;
1420 unsigned long cpu;
1421 int err;
1422 struct kmem_cache *sc;
1423 int i;
1425 if (newsize <= conf->pool_size)
1426 return 0; /* never bother to shrink */
1428 err = md_allow_write(conf->mddev);
1429 if (err)
1430 return err;
1432 /* Step 1 */
1433 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1434 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1435 0, 0, NULL);
1436 if (!sc)
1437 return -ENOMEM;
1439 for (i = conf->max_nr_stripes; i; i--) {
1440 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1441 if (!nsh)
1442 break;
1444 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1446 nsh->raid_conf = conf;
1447 spin_lock_init(&nsh->lock);
1448 #ifdef CONFIG_MULTICORE_RAID456
1449 init_waitqueue_head(&nsh->ops.wait_for_ops);
1450 #endif
1452 list_add(&nsh->lru, &newstripes);
1454 if (i) {
1455 /* didn't get enough, give up */
1456 while (!list_empty(&newstripes)) {
1457 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1458 list_del(&nsh->lru);
1459 kmem_cache_free(sc, nsh);
1461 kmem_cache_destroy(sc);
1462 return -ENOMEM;
1464 /* Step 2 - Must use GFP_NOIO now.
1465 * OK, we have enough stripes, start collecting inactive
1466 * stripes and copying them over
1468 list_for_each_entry(nsh, &newstripes, lru) {
1469 spin_lock_irq(&conf->device_lock);
1470 wait_event_lock_irq(conf->wait_for_stripe,
1471 !list_empty(&conf->inactive_list),
1472 conf->device_lock,
1473 blk_flush_plug(current));
1474 osh = get_free_stripe(conf);
1475 spin_unlock_irq(&conf->device_lock);
1476 atomic_set(&nsh->count, 1);
1477 for(i=0; i<conf->pool_size; i++)
1478 nsh->dev[i].page = osh->dev[i].page;
1479 for( ; i<newsize; i++)
1480 nsh->dev[i].page = NULL;
1481 kmem_cache_free(conf->slab_cache, osh);
1483 kmem_cache_destroy(conf->slab_cache);
1485 /* Step 3.
1486 * At this point, we are holding all the stripes so the array
1487 * is completely stalled, so now is a good time to resize
1488 * conf->disks and the scribble region
1490 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1491 if (ndisks) {
1492 for (i=0; i<conf->raid_disks; i++)
1493 ndisks[i] = conf->disks[i];
1494 kfree(conf->disks);
1495 conf->disks = ndisks;
1496 } else
1497 err = -ENOMEM;
1499 get_online_cpus();
1500 conf->scribble_len = scribble_len(newsize);
1501 for_each_present_cpu(cpu) {
1502 struct raid5_percpu *percpu;
1503 void *scribble;
1505 percpu = per_cpu_ptr(conf->percpu, cpu);
1506 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1508 if (scribble) {
1509 kfree(percpu->scribble);
1510 percpu->scribble = scribble;
1511 } else {
1512 err = -ENOMEM;
1513 break;
1516 put_online_cpus();
1518 /* Step 4, return new stripes to service */
1519 while(!list_empty(&newstripes)) {
1520 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1521 list_del_init(&nsh->lru);
1523 for (i=conf->raid_disks; i < newsize; i++)
1524 if (nsh->dev[i].page == NULL) {
1525 struct page *p = alloc_page(GFP_NOIO);
1526 nsh->dev[i].page = p;
1527 if (!p)
1528 err = -ENOMEM;
1530 release_stripe(nsh);
1532 /* critical section pass, GFP_NOIO no longer needed */
1534 conf->slab_cache = sc;
1535 conf->active_name = 1-conf->active_name;
1536 conf->pool_size = newsize;
1537 return err;
1540 static int drop_one_stripe(raid5_conf_t *conf)
1542 struct stripe_head *sh;
1544 spin_lock_irq(&conf->device_lock);
1545 sh = get_free_stripe(conf);
1546 spin_unlock_irq(&conf->device_lock);
1547 if (!sh)
1548 return 0;
1549 BUG_ON(atomic_read(&sh->count));
1550 shrink_buffers(sh);
1551 kmem_cache_free(conf->slab_cache, sh);
1552 atomic_dec(&conf->active_stripes);
1553 return 1;
1556 static void shrink_stripes(raid5_conf_t *conf)
1558 while (drop_one_stripe(conf))
1561 if (conf->slab_cache)
1562 kmem_cache_destroy(conf->slab_cache);
1563 conf->slab_cache = NULL;
1566 static void raid5_end_read_request(struct bio * bi, int error)
1568 struct stripe_head *sh = bi->bi_private;
1569 raid5_conf_t *conf = sh->raid_conf;
1570 int disks = sh->disks, i;
1571 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1572 char b[BDEVNAME_SIZE];
1573 mdk_rdev_t *rdev;
1576 for (i=0 ; i<disks; i++)
1577 if (bi == &sh->dev[i].req)
1578 break;
1580 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1581 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1582 uptodate);
1583 if (i == disks) {
1584 BUG();
1585 return;
1588 if (uptodate) {
1589 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1590 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1591 rdev = conf->disks[i].rdev;
1592 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1593 " (%lu sectors at %llu on %s)\n",
1594 mdname(conf->mddev), STRIPE_SECTORS,
1595 (unsigned long long)(sh->sector
1596 + rdev->data_offset),
1597 bdevname(rdev->bdev, b));
1598 clear_bit(R5_ReadError, &sh->dev[i].flags);
1599 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1601 if (atomic_read(&conf->disks[i].rdev->read_errors))
1602 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1603 } else {
1604 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1605 int retry = 0;
1606 rdev = conf->disks[i].rdev;
1608 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1609 atomic_inc(&rdev->read_errors);
1610 if (conf->mddev->degraded >= conf->max_degraded)
1611 printk_rl(KERN_WARNING
1612 "md/raid:%s: read error not correctable "
1613 "(sector %llu on %s).\n",
1614 mdname(conf->mddev),
1615 (unsigned long long)(sh->sector
1616 + rdev->data_offset),
1617 bdn);
1618 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1619 /* Oh, no!!! */
1620 printk_rl(KERN_WARNING
1621 "md/raid:%s: read error NOT corrected!! "
1622 "(sector %llu on %s).\n",
1623 mdname(conf->mddev),
1624 (unsigned long long)(sh->sector
1625 + rdev->data_offset),
1626 bdn);
1627 else if (atomic_read(&rdev->read_errors)
1628 > conf->max_nr_stripes)
1629 printk(KERN_WARNING
1630 "md/raid:%s: Too many read errors, failing device %s.\n",
1631 mdname(conf->mddev), bdn);
1632 else
1633 retry = 1;
1634 if (retry)
1635 set_bit(R5_ReadError, &sh->dev[i].flags);
1636 else {
1637 clear_bit(R5_ReadError, &sh->dev[i].flags);
1638 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1639 md_error(conf->mddev, rdev);
1642 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1643 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1644 set_bit(STRIPE_HANDLE, &sh->state);
1645 release_stripe(sh);
1648 static void raid5_end_write_request(struct bio *bi, int error)
1650 struct stripe_head *sh = bi->bi_private;
1651 raid5_conf_t *conf = sh->raid_conf;
1652 int disks = sh->disks, i;
1653 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1655 for (i=0 ; i<disks; i++)
1656 if (bi == &sh->dev[i].req)
1657 break;
1659 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1660 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1661 uptodate);
1662 if (i == disks) {
1663 BUG();
1664 return;
1667 if (!uptodate)
1668 md_error(conf->mddev, conf->disks[i].rdev);
1670 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1672 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1673 set_bit(STRIPE_HANDLE, &sh->state);
1674 release_stripe(sh);
1678 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1680 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1682 struct r5dev *dev = &sh->dev[i];
1684 bio_init(&dev->req);
1685 dev->req.bi_io_vec = &dev->vec;
1686 dev->req.bi_vcnt++;
1687 dev->req.bi_max_vecs++;
1688 dev->vec.bv_page = dev->page;
1689 dev->vec.bv_len = STRIPE_SIZE;
1690 dev->vec.bv_offset = 0;
1692 dev->req.bi_sector = sh->sector;
1693 dev->req.bi_private = sh;
1695 dev->flags = 0;
1696 dev->sector = compute_blocknr(sh, i, previous);
1699 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1701 char b[BDEVNAME_SIZE];
1702 raid5_conf_t *conf = mddev->private;
1703 pr_debug("raid456: error called\n");
1705 if (!test_bit(Faulty, &rdev->flags)) {
1706 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1707 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1708 unsigned long flags;
1709 spin_lock_irqsave(&conf->device_lock, flags);
1710 mddev->degraded++;
1711 spin_unlock_irqrestore(&conf->device_lock, flags);
1713 * if recovery was running, make sure it aborts.
1715 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1717 set_bit(Faulty, &rdev->flags);
1718 printk(KERN_ALERT
1719 "md/raid:%s: Disk failure on %s, disabling device.\n"
1720 "md/raid:%s: Operation continuing on %d devices.\n",
1721 mdname(mddev),
1722 bdevname(rdev->bdev, b),
1723 mdname(mddev),
1724 conf->raid_disks - mddev->degraded);
1729 * Input: a 'big' sector number,
1730 * Output: index of the data and parity disk, and the sector # in them.
1732 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1733 int previous, int *dd_idx,
1734 struct stripe_head *sh)
1736 sector_t stripe, stripe2;
1737 sector_t chunk_number;
1738 unsigned int chunk_offset;
1739 int pd_idx, qd_idx;
1740 int ddf_layout = 0;
1741 sector_t new_sector;
1742 int algorithm = previous ? conf->prev_algo
1743 : conf->algorithm;
1744 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1745 : conf->chunk_sectors;
1746 int raid_disks = previous ? conf->previous_raid_disks
1747 : conf->raid_disks;
1748 int data_disks = raid_disks - conf->max_degraded;
1750 /* First compute the information on this sector */
1753 * Compute the chunk number and the sector offset inside the chunk
1755 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1756 chunk_number = r_sector;
1759 * Compute the stripe number
1761 stripe = chunk_number;
1762 *dd_idx = sector_div(stripe, data_disks);
1763 stripe2 = stripe;
1765 * Select the parity disk based on the user selected algorithm.
1767 pd_idx = qd_idx = ~0;
1768 switch(conf->level) {
1769 case 4:
1770 pd_idx = data_disks;
1771 break;
1772 case 5:
1773 switch (algorithm) {
1774 case ALGORITHM_LEFT_ASYMMETRIC:
1775 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776 if (*dd_idx >= pd_idx)
1777 (*dd_idx)++;
1778 break;
1779 case ALGORITHM_RIGHT_ASYMMETRIC:
1780 pd_idx = sector_div(stripe2, raid_disks);
1781 if (*dd_idx >= pd_idx)
1782 (*dd_idx)++;
1783 break;
1784 case ALGORITHM_LEFT_SYMMETRIC:
1785 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1786 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1787 break;
1788 case ALGORITHM_RIGHT_SYMMETRIC:
1789 pd_idx = sector_div(stripe2, raid_disks);
1790 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1791 break;
1792 case ALGORITHM_PARITY_0:
1793 pd_idx = 0;
1794 (*dd_idx)++;
1795 break;
1796 case ALGORITHM_PARITY_N:
1797 pd_idx = data_disks;
1798 break;
1799 default:
1800 BUG();
1802 break;
1803 case 6:
1805 switch (algorithm) {
1806 case ALGORITHM_LEFT_ASYMMETRIC:
1807 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1808 qd_idx = pd_idx + 1;
1809 if (pd_idx == raid_disks-1) {
1810 (*dd_idx)++; /* Q D D D P */
1811 qd_idx = 0;
1812 } else if (*dd_idx >= pd_idx)
1813 (*dd_idx) += 2; /* D D P Q D */
1814 break;
1815 case ALGORITHM_RIGHT_ASYMMETRIC:
1816 pd_idx = sector_div(stripe2, raid_disks);
1817 qd_idx = pd_idx + 1;
1818 if (pd_idx == raid_disks-1) {
1819 (*dd_idx)++; /* Q D D D P */
1820 qd_idx = 0;
1821 } else if (*dd_idx >= pd_idx)
1822 (*dd_idx) += 2; /* D D P Q D */
1823 break;
1824 case ALGORITHM_LEFT_SYMMETRIC:
1825 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1826 qd_idx = (pd_idx + 1) % raid_disks;
1827 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1828 break;
1829 case ALGORITHM_RIGHT_SYMMETRIC:
1830 pd_idx = sector_div(stripe2, raid_disks);
1831 qd_idx = (pd_idx + 1) % raid_disks;
1832 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1833 break;
1835 case ALGORITHM_PARITY_0:
1836 pd_idx = 0;
1837 qd_idx = 1;
1838 (*dd_idx) += 2;
1839 break;
1840 case ALGORITHM_PARITY_N:
1841 pd_idx = data_disks;
1842 qd_idx = data_disks + 1;
1843 break;
1845 case ALGORITHM_ROTATING_ZERO_RESTART:
1846 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1847 * of blocks for computing Q is different.
1849 pd_idx = sector_div(stripe2, raid_disks);
1850 qd_idx = pd_idx + 1;
1851 if (pd_idx == raid_disks-1) {
1852 (*dd_idx)++; /* Q D D D P */
1853 qd_idx = 0;
1854 } else if (*dd_idx >= pd_idx)
1855 (*dd_idx) += 2; /* D D P Q D */
1856 ddf_layout = 1;
1857 break;
1859 case ALGORITHM_ROTATING_N_RESTART:
1860 /* Same a left_asymmetric, by first stripe is
1861 * D D D P Q rather than
1862 * Q D D D P
1864 stripe2 += 1;
1865 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1866 qd_idx = pd_idx + 1;
1867 if (pd_idx == raid_disks-1) {
1868 (*dd_idx)++; /* Q D D D P */
1869 qd_idx = 0;
1870 } else if (*dd_idx >= pd_idx)
1871 (*dd_idx) += 2; /* D D P Q D */
1872 ddf_layout = 1;
1873 break;
1875 case ALGORITHM_ROTATING_N_CONTINUE:
1876 /* Same as left_symmetric but Q is before P */
1877 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1878 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1879 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1880 ddf_layout = 1;
1881 break;
1883 case ALGORITHM_LEFT_ASYMMETRIC_6:
1884 /* RAID5 left_asymmetric, with Q on last device */
1885 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1886 if (*dd_idx >= pd_idx)
1887 (*dd_idx)++;
1888 qd_idx = raid_disks - 1;
1889 break;
1891 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1892 pd_idx = sector_div(stripe2, raid_disks-1);
1893 if (*dd_idx >= pd_idx)
1894 (*dd_idx)++;
1895 qd_idx = raid_disks - 1;
1896 break;
1898 case ALGORITHM_LEFT_SYMMETRIC_6:
1899 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1900 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1901 qd_idx = raid_disks - 1;
1902 break;
1904 case ALGORITHM_RIGHT_SYMMETRIC_6:
1905 pd_idx = sector_div(stripe2, raid_disks-1);
1906 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1907 qd_idx = raid_disks - 1;
1908 break;
1910 case ALGORITHM_PARITY_0_6:
1911 pd_idx = 0;
1912 (*dd_idx)++;
1913 qd_idx = raid_disks - 1;
1914 break;
1916 default:
1917 BUG();
1919 break;
1922 if (sh) {
1923 sh->pd_idx = pd_idx;
1924 sh->qd_idx = qd_idx;
1925 sh->ddf_layout = ddf_layout;
1928 * Finally, compute the new sector number
1930 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1931 return new_sector;
1935 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1937 raid5_conf_t *conf = sh->raid_conf;
1938 int raid_disks = sh->disks;
1939 int data_disks = raid_disks - conf->max_degraded;
1940 sector_t new_sector = sh->sector, check;
1941 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1942 : conf->chunk_sectors;
1943 int algorithm = previous ? conf->prev_algo
1944 : conf->algorithm;
1945 sector_t stripe;
1946 int chunk_offset;
1947 sector_t chunk_number;
1948 int dummy1, dd_idx = i;
1949 sector_t r_sector;
1950 struct stripe_head sh2;
1953 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1954 stripe = new_sector;
1956 if (i == sh->pd_idx)
1957 return 0;
1958 switch(conf->level) {
1959 case 4: break;
1960 case 5:
1961 switch (algorithm) {
1962 case ALGORITHM_LEFT_ASYMMETRIC:
1963 case ALGORITHM_RIGHT_ASYMMETRIC:
1964 if (i > sh->pd_idx)
1965 i--;
1966 break;
1967 case ALGORITHM_LEFT_SYMMETRIC:
1968 case ALGORITHM_RIGHT_SYMMETRIC:
1969 if (i < sh->pd_idx)
1970 i += raid_disks;
1971 i -= (sh->pd_idx + 1);
1972 break;
1973 case ALGORITHM_PARITY_0:
1974 i -= 1;
1975 break;
1976 case ALGORITHM_PARITY_N:
1977 break;
1978 default:
1979 BUG();
1981 break;
1982 case 6:
1983 if (i == sh->qd_idx)
1984 return 0; /* It is the Q disk */
1985 switch (algorithm) {
1986 case ALGORITHM_LEFT_ASYMMETRIC:
1987 case ALGORITHM_RIGHT_ASYMMETRIC:
1988 case ALGORITHM_ROTATING_ZERO_RESTART:
1989 case ALGORITHM_ROTATING_N_RESTART:
1990 if (sh->pd_idx == raid_disks-1)
1991 i--; /* Q D D D P */
1992 else if (i > sh->pd_idx)
1993 i -= 2; /* D D P Q D */
1994 break;
1995 case ALGORITHM_LEFT_SYMMETRIC:
1996 case ALGORITHM_RIGHT_SYMMETRIC:
1997 if (sh->pd_idx == raid_disks-1)
1998 i--; /* Q D D D P */
1999 else {
2000 /* D D P Q D */
2001 if (i < sh->pd_idx)
2002 i += raid_disks;
2003 i -= (sh->pd_idx + 2);
2005 break;
2006 case ALGORITHM_PARITY_0:
2007 i -= 2;
2008 break;
2009 case ALGORITHM_PARITY_N:
2010 break;
2011 case ALGORITHM_ROTATING_N_CONTINUE:
2012 /* Like left_symmetric, but P is before Q */
2013 if (sh->pd_idx == 0)
2014 i--; /* P D D D Q */
2015 else {
2016 /* D D Q P D */
2017 if (i < sh->pd_idx)
2018 i += raid_disks;
2019 i -= (sh->pd_idx + 1);
2021 break;
2022 case ALGORITHM_LEFT_ASYMMETRIC_6:
2023 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2024 if (i > sh->pd_idx)
2025 i--;
2026 break;
2027 case ALGORITHM_LEFT_SYMMETRIC_6:
2028 case ALGORITHM_RIGHT_SYMMETRIC_6:
2029 if (i < sh->pd_idx)
2030 i += data_disks + 1;
2031 i -= (sh->pd_idx + 1);
2032 break;
2033 case ALGORITHM_PARITY_0_6:
2034 i -= 1;
2035 break;
2036 default:
2037 BUG();
2039 break;
2042 chunk_number = stripe * data_disks + i;
2043 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2045 check = raid5_compute_sector(conf, r_sector,
2046 previous, &dummy1, &sh2);
2047 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2048 || sh2.qd_idx != sh->qd_idx) {
2049 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2050 mdname(conf->mddev));
2051 return 0;
2053 return r_sector;
2057 static void
2058 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2059 int rcw, int expand)
2061 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2062 raid5_conf_t *conf = sh->raid_conf;
2063 int level = conf->level;
2065 if (rcw) {
2066 /* if we are not expanding this is a proper write request, and
2067 * there will be bios with new data to be drained into the
2068 * stripe cache
2070 if (!expand) {
2071 sh->reconstruct_state = reconstruct_state_drain_run;
2072 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2073 } else
2074 sh->reconstruct_state = reconstruct_state_run;
2076 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2078 for (i = disks; i--; ) {
2079 struct r5dev *dev = &sh->dev[i];
2081 if (dev->towrite) {
2082 set_bit(R5_LOCKED, &dev->flags);
2083 set_bit(R5_Wantdrain, &dev->flags);
2084 if (!expand)
2085 clear_bit(R5_UPTODATE, &dev->flags);
2086 s->locked++;
2089 if (s->locked + conf->max_degraded == disks)
2090 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2091 atomic_inc(&conf->pending_full_writes);
2092 } else {
2093 BUG_ON(level == 6);
2094 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2095 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2097 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2098 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2099 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2100 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2102 for (i = disks; i--; ) {
2103 struct r5dev *dev = &sh->dev[i];
2104 if (i == pd_idx)
2105 continue;
2107 if (dev->towrite &&
2108 (test_bit(R5_UPTODATE, &dev->flags) ||
2109 test_bit(R5_Wantcompute, &dev->flags))) {
2110 set_bit(R5_Wantdrain, &dev->flags);
2111 set_bit(R5_LOCKED, &dev->flags);
2112 clear_bit(R5_UPTODATE, &dev->flags);
2113 s->locked++;
2118 /* keep the parity disk(s) locked while asynchronous operations
2119 * are in flight
2121 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2122 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2123 s->locked++;
2125 if (level == 6) {
2126 int qd_idx = sh->qd_idx;
2127 struct r5dev *dev = &sh->dev[qd_idx];
2129 set_bit(R5_LOCKED, &dev->flags);
2130 clear_bit(R5_UPTODATE, &dev->flags);
2131 s->locked++;
2134 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2135 __func__, (unsigned long long)sh->sector,
2136 s->locked, s->ops_request);
2140 * Each stripe/dev can have one or more bion attached.
2141 * toread/towrite point to the first in a chain.
2142 * The bi_next chain must be in order.
2144 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2146 struct bio **bip;
2147 raid5_conf_t *conf = sh->raid_conf;
2148 int firstwrite=0;
2150 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2151 (unsigned long long)bi->bi_sector,
2152 (unsigned long long)sh->sector);
2155 spin_lock(&sh->lock);
2156 spin_lock_irq(&conf->device_lock);
2157 if (forwrite) {
2158 bip = &sh->dev[dd_idx].towrite;
2159 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2160 firstwrite = 1;
2161 } else
2162 bip = &sh->dev[dd_idx].toread;
2163 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2164 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2165 goto overlap;
2166 bip = & (*bip)->bi_next;
2168 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2169 goto overlap;
2171 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2172 if (*bip)
2173 bi->bi_next = *bip;
2174 *bip = bi;
2175 bi->bi_phys_segments++;
2176 spin_unlock_irq(&conf->device_lock);
2177 spin_unlock(&sh->lock);
2179 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector, dd_idx);
2183 if (conf->mddev->bitmap && firstwrite) {
2184 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2185 STRIPE_SECTORS, 0);
2186 sh->bm_seq = conf->seq_flush+1;
2187 set_bit(STRIPE_BIT_DELAY, &sh->state);
2190 if (forwrite) {
2191 /* check if page is covered */
2192 sector_t sector = sh->dev[dd_idx].sector;
2193 for (bi=sh->dev[dd_idx].towrite;
2194 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2195 bi && bi->bi_sector <= sector;
2196 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2197 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2198 sector = bi->bi_sector + (bi->bi_size>>9);
2200 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2201 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2203 return 1;
2205 overlap:
2206 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2207 spin_unlock_irq(&conf->device_lock);
2208 spin_unlock(&sh->lock);
2209 return 0;
2212 static void end_reshape(raid5_conf_t *conf);
2214 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2215 struct stripe_head *sh)
2217 int sectors_per_chunk =
2218 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2219 int dd_idx;
2220 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2221 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2223 raid5_compute_sector(conf,
2224 stripe * (disks - conf->max_degraded)
2225 *sectors_per_chunk + chunk_offset,
2226 previous,
2227 &dd_idx, sh);
2230 static void
2231 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2232 struct stripe_head_state *s, int disks,
2233 struct bio **return_bi)
2235 int i;
2236 for (i = disks; i--; ) {
2237 struct bio *bi;
2238 int bitmap_end = 0;
2240 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2241 mdk_rdev_t *rdev;
2242 rcu_read_lock();
2243 rdev = rcu_dereference(conf->disks[i].rdev);
2244 if (rdev && test_bit(In_sync, &rdev->flags))
2245 /* multiple read failures in one stripe */
2246 md_error(conf->mddev, rdev);
2247 rcu_read_unlock();
2249 spin_lock_irq(&conf->device_lock);
2250 /* fail all writes first */
2251 bi = sh->dev[i].towrite;
2252 sh->dev[i].towrite = NULL;
2253 if (bi) {
2254 s->to_write--;
2255 bitmap_end = 1;
2258 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2259 wake_up(&conf->wait_for_overlap);
2261 while (bi && bi->bi_sector <
2262 sh->dev[i].sector + STRIPE_SECTORS) {
2263 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2264 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2265 if (!raid5_dec_bi_phys_segments(bi)) {
2266 md_write_end(conf->mddev);
2267 bi->bi_next = *return_bi;
2268 *return_bi = bi;
2270 bi = nextbi;
2272 /* and fail all 'written' */
2273 bi = sh->dev[i].written;
2274 sh->dev[i].written = NULL;
2275 if (bi) bitmap_end = 1;
2276 while (bi && bi->bi_sector <
2277 sh->dev[i].sector + STRIPE_SECTORS) {
2278 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2279 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2280 if (!raid5_dec_bi_phys_segments(bi)) {
2281 md_write_end(conf->mddev);
2282 bi->bi_next = *return_bi;
2283 *return_bi = bi;
2285 bi = bi2;
2288 /* fail any reads if this device is non-operational and
2289 * the data has not reached the cache yet.
2291 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2292 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2293 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2294 bi = sh->dev[i].toread;
2295 sh->dev[i].toread = NULL;
2296 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2297 wake_up(&conf->wait_for_overlap);
2298 if (bi) s->to_read--;
2299 while (bi && bi->bi_sector <
2300 sh->dev[i].sector + STRIPE_SECTORS) {
2301 struct bio *nextbi =
2302 r5_next_bio(bi, sh->dev[i].sector);
2303 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2304 if (!raid5_dec_bi_phys_segments(bi)) {
2305 bi->bi_next = *return_bi;
2306 *return_bi = bi;
2308 bi = nextbi;
2311 spin_unlock_irq(&conf->device_lock);
2312 if (bitmap_end)
2313 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2314 STRIPE_SECTORS, 0, 0);
2317 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2318 if (atomic_dec_and_test(&conf->pending_full_writes))
2319 md_wakeup_thread(conf->mddev->thread);
2322 /* fetch_block5 - checks the given member device to see if its data needs
2323 * to be read or computed to satisfy a request.
2325 * Returns 1 when no more member devices need to be checked, otherwise returns
2326 * 0 to tell the loop in handle_stripe_fill5 to continue
2328 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2329 int disk_idx, int disks)
2331 struct r5dev *dev = &sh->dev[disk_idx];
2332 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2334 /* is the data in this block needed, and can we get it? */
2335 if (!test_bit(R5_LOCKED, &dev->flags) &&
2336 !test_bit(R5_UPTODATE, &dev->flags) &&
2337 (dev->toread ||
2338 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2339 s->syncing || s->expanding ||
2340 (s->failed &&
2341 (failed_dev->toread ||
2342 (failed_dev->towrite &&
2343 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2344 /* We would like to get this block, possibly by computing it,
2345 * otherwise read it if the backing disk is insync
2347 if ((s->uptodate == disks - 1) &&
2348 (s->failed && disk_idx == s->failed_num)) {
2349 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2350 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2351 set_bit(R5_Wantcompute, &dev->flags);
2352 sh->ops.target = disk_idx;
2353 sh->ops.target2 = -1;
2354 s->req_compute = 1;
2355 /* Careful: from this point on 'uptodate' is in the eye
2356 * of raid_run_ops which services 'compute' operations
2357 * before writes. R5_Wantcompute flags a block that will
2358 * be R5_UPTODATE by the time it is needed for a
2359 * subsequent operation.
2361 s->uptodate++;
2362 return 1; /* uptodate + compute == disks */
2363 } else if (test_bit(R5_Insync, &dev->flags)) {
2364 set_bit(R5_LOCKED, &dev->flags);
2365 set_bit(R5_Wantread, &dev->flags);
2366 s->locked++;
2367 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2368 s->syncing);
2372 return 0;
2376 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2378 static void handle_stripe_fill5(struct stripe_head *sh,
2379 struct stripe_head_state *s, int disks)
2381 int i;
2383 /* look for blocks to read/compute, skip this if a compute
2384 * is already in flight, or if the stripe contents are in the
2385 * midst of changing due to a write
2387 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2388 !sh->reconstruct_state)
2389 for (i = disks; i--; )
2390 if (fetch_block5(sh, s, i, disks))
2391 break;
2392 set_bit(STRIPE_HANDLE, &sh->state);
2395 /* fetch_block6 - checks the given member device to see if its data needs
2396 * to be read or computed to satisfy a request.
2398 * Returns 1 when no more member devices need to be checked, otherwise returns
2399 * 0 to tell the loop in handle_stripe_fill6 to continue
2401 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2402 struct r6_state *r6s, int disk_idx, int disks)
2404 struct r5dev *dev = &sh->dev[disk_idx];
2405 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2406 &sh->dev[r6s->failed_num[1]] };
2408 if (!test_bit(R5_LOCKED, &dev->flags) &&
2409 !test_bit(R5_UPTODATE, &dev->flags) &&
2410 (dev->toread ||
2411 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2412 s->syncing || s->expanding ||
2413 (s->failed >= 1 &&
2414 (fdev[0]->toread || s->to_write)) ||
2415 (s->failed >= 2 &&
2416 (fdev[1]->toread || s->to_write)))) {
2417 /* we would like to get this block, possibly by computing it,
2418 * otherwise read it if the backing disk is insync
2420 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2421 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2422 if ((s->uptodate == disks - 1) &&
2423 (s->failed && (disk_idx == r6s->failed_num[0] ||
2424 disk_idx == r6s->failed_num[1]))) {
2425 /* have disk failed, and we're requested to fetch it;
2426 * do compute it
2428 pr_debug("Computing stripe %llu block %d\n",
2429 (unsigned long long)sh->sector, disk_idx);
2430 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2431 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2432 set_bit(R5_Wantcompute, &dev->flags);
2433 sh->ops.target = disk_idx;
2434 sh->ops.target2 = -1; /* no 2nd target */
2435 s->req_compute = 1;
2436 s->uptodate++;
2437 return 1;
2438 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2439 /* Computing 2-failure is *very* expensive; only
2440 * do it if failed >= 2
2442 int other;
2443 for (other = disks; other--; ) {
2444 if (other == disk_idx)
2445 continue;
2446 if (!test_bit(R5_UPTODATE,
2447 &sh->dev[other].flags))
2448 break;
2450 BUG_ON(other < 0);
2451 pr_debug("Computing stripe %llu blocks %d,%d\n",
2452 (unsigned long long)sh->sector,
2453 disk_idx, other);
2454 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2455 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2456 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2457 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2458 sh->ops.target = disk_idx;
2459 sh->ops.target2 = other;
2460 s->uptodate += 2;
2461 s->req_compute = 1;
2462 return 1;
2463 } else if (test_bit(R5_Insync, &dev->flags)) {
2464 set_bit(R5_LOCKED, &dev->flags);
2465 set_bit(R5_Wantread, &dev->flags);
2466 s->locked++;
2467 pr_debug("Reading block %d (sync=%d)\n",
2468 disk_idx, s->syncing);
2472 return 0;
2476 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2478 static void handle_stripe_fill6(struct stripe_head *sh,
2479 struct stripe_head_state *s, struct r6_state *r6s,
2480 int disks)
2482 int i;
2484 /* look for blocks to read/compute, skip this if a compute
2485 * is already in flight, or if the stripe contents are in the
2486 * midst of changing due to a write
2488 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2489 !sh->reconstruct_state)
2490 for (i = disks; i--; )
2491 if (fetch_block6(sh, s, r6s, i, disks))
2492 break;
2493 set_bit(STRIPE_HANDLE, &sh->state);
2497 /* handle_stripe_clean_event
2498 * any written block on an uptodate or failed drive can be returned.
2499 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2500 * never LOCKED, so we don't need to test 'failed' directly.
2502 static void handle_stripe_clean_event(raid5_conf_t *conf,
2503 struct stripe_head *sh, int disks, struct bio **return_bi)
2505 int i;
2506 struct r5dev *dev;
2508 for (i = disks; i--; )
2509 if (sh->dev[i].written) {
2510 dev = &sh->dev[i];
2511 if (!test_bit(R5_LOCKED, &dev->flags) &&
2512 test_bit(R5_UPTODATE, &dev->flags)) {
2513 /* We can return any write requests */
2514 struct bio *wbi, *wbi2;
2515 int bitmap_end = 0;
2516 pr_debug("Return write for disc %d\n", i);
2517 spin_lock_irq(&conf->device_lock);
2518 wbi = dev->written;
2519 dev->written = NULL;
2520 while (wbi && wbi->bi_sector <
2521 dev->sector + STRIPE_SECTORS) {
2522 wbi2 = r5_next_bio(wbi, dev->sector);
2523 if (!raid5_dec_bi_phys_segments(wbi)) {
2524 md_write_end(conf->mddev);
2525 wbi->bi_next = *return_bi;
2526 *return_bi = wbi;
2528 wbi = wbi2;
2530 if (dev->towrite == NULL)
2531 bitmap_end = 1;
2532 spin_unlock_irq(&conf->device_lock);
2533 if (bitmap_end)
2534 bitmap_endwrite(conf->mddev->bitmap,
2535 sh->sector,
2536 STRIPE_SECTORS,
2537 !test_bit(STRIPE_DEGRADED, &sh->state),
2542 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2543 if (atomic_dec_and_test(&conf->pending_full_writes))
2544 md_wakeup_thread(conf->mddev->thread);
2547 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2548 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2550 int rmw = 0, rcw = 0, i;
2551 for (i = disks; i--; ) {
2552 /* would I have to read this buffer for read_modify_write */
2553 struct r5dev *dev = &sh->dev[i];
2554 if ((dev->towrite || i == sh->pd_idx) &&
2555 !test_bit(R5_LOCKED, &dev->flags) &&
2556 !(test_bit(R5_UPTODATE, &dev->flags) ||
2557 test_bit(R5_Wantcompute, &dev->flags))) {
2558 if (test_bit(R5_Insync, &dev->flags))
2559 rmw++;
2560 else
2561 rmw += 2*disks; /* cannot read it */
2563 /* Would I have to read this buffer for reconstruct_write */
2564 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2565 !test_bit(R5_LOCKED, &dev->flags) &&
2566 !(test_bit(R5_UPTODATE, &dev->flags) ||
2567 test_bit(R5_Wantcompute, &dev->flags))) {
2568 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2569 else
2570 rcw += 2*disks;
2573 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2574 (unsigned long long)sh->sector, rmw, rcw);
2575 set_bit(STRIPE_HANDLE, &sh->state);
2576 if (rmw < rcw && rmw > 0)
2577 /* prefer read-modify-write, but need to get some data */
2578 for (i = disks; i--; ) {
2579 struct r5dev *dev = &sh->dev[i];
2580 if ((dev->towrite || i == sh->pd_idx) &&
2581 !test_bit(R5_LOCKED, &dev->flags) &&
2582 !(test_bit(R5_UPTODATE, &dev->flags) ||
2583 test_bit(R5_Wantcompute, &dev->flags)) &&
2584 test_bit(R5_Insync, &dev->flags)) {
2585 if (
2586 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2587 pr_debug("Read_old block "
2588 "%d for r-m-w\n", i);
2589 set_bit(R5_LOCKED, &dev->flags);
2590 set_bit(R5_Wantread, &dev->flags);
2591 s->locked++;
2592 } else {
2593 set_bit(STRIPE_DELAYED, &sh->state);
2594 set_bit(STRIPE_HANDLE, &sh->state);
2598 if (rcw <= rmw && rcw > 0)
2599 /* want reconstruct write, but need to get some data */
2600 for (i = disks; i--; ) {
2601 struct r5dev *dev = &sh->dev[i];
2602 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2603 i != sh->pd_idx &&
2604 !test_bit(R5_LOCKED, &dev->flags) &&
2605 !(test_bit(R5_UPTODATE, &dev->flags) ||
2606 test_bit(R5_Wantcompute, &dev->flags)) &&
2607 test_bit(R5_Insync, &dev->flags)) {
2608 if (
2609 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2610 pr_debug("Read_old block "
2611 "%d for Reconstruct\n", i);
2612 set_bit(R5_LOCKED, &dev->flags);
2613 set_bit(R5_Wantread, &dev->flags);
2614 s->locked++;
2615 } else {
2616 set_bit(STRIPE_DELAYED, &sh->state);
2617 set_bit(STRIPE_HANDLE, &sh->state);
2621 /* now if nothing is locked, and if we have enough data,
2622 * we can start a write request
2624 /* since handle_stripe can be called at any time we need to handle the
2625 * case where a compute block operation has been submitted and then a
2626 * subsequent call wants to start a write request. raid_run_ops only
2627 * handles the case where compute block and reconstruct are requested
2628 * simultaneously. If this is not the case then new writes need to be
2629 * held off until the compute completes.
2631 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2632 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2633 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2634 schedule_reconstruction(sh, s, rcw == 0, 0);
2637 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2638 struct stripe_head *sh, struct stripe_head_state *s,
2639 struct r6_state *r6s, int disks)
2641 int rcw = 0, pd_idx = sh->pd_idx, i;
2642 int qd_idx = sh->qd_idx;
2644 set_bit(STRIPE_HANDLE, &sh->state);
2645 for (i = disks; i--; ) {
2646 struct r5dev *dev = &sh->dev[i];
2647 /* check if we haven't enough data */
2648 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2649 i != pd_idx && i != qd_idx &&
2650 !test_bit(R5_LOCKED, &dev->flags) &&
2651 !(test_bit(R5_UPTODATE, &dev->flags) ||
2652 test_bit(R5_Wantcompute, &dev->flags))) {
2653 rcw++;
2654 if (!test_bit(R5_Insync, &dev->flags))
2655 continue; /* it's a failed drive */
2657 if (
2658 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2659 pr_debug("Read_old stripe %llu "
2660 "block %d for Reconstruct\n",
2661 (unsigned long long)sh->sector, i);
2662 set_bit(R5_LOCKED, &dev->flags);
2663 set_bit(R5_Wantread, &dev->flags);
2664 s->locked++;
2665 } else {
2666 pr_debug("Request delayed stripe %llu "
2667 "block %d for Reconstruct\n",
2668 (unsigned long long)sh->sector, i);
2669 set_bit(STRIPE_DELAYED, &sh->state);
2670 set_bit(STRIPE_HANDLE, &sh->state);
2674 /* now if nothing is locked, and if we have enough data, we can start a
2675 * write request
2677 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2678 s->locked == 0 && rcw == 0 &&
2679 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2680 schedule_reconstruction(sh, s, 1, 0);
2684 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2685 struct stripe_head_state *s, int disks)
2687 struct r5dev *dev = NULL;
2689 set_bit(STRIPE_HANDLE, &sh->state);
2691 switch (sh->check_state) {
2692 case check_state_idle:
2693 /* start a new check operation if there are no failures */
2694 if (s->failed == 0) {
2695 BUG_ON(s->uptodate != disks);
2696 sh->check_state = check_state_run;
2697 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2698 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2699 s->uptodate--;
2700 break;
2702 dev = &sh->dev[s->failed_num];
2703 /* fall through */
2704 case check_state_compute_result:
2705 sh->check_state = check_state_idle;
2706 if (!dev)
2707 dev = &sh->dev[sh->pd_idx];
2709 /* check that a write has not made the stripe insync */
2710 if (test_bit(STRIPE_INSYNC, &sh->state))
2711 break;
2713 /* either failed parity check, or recovery is happening */
2714 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2715 BUG_ON(s->uptodate != disks);
2717 set_bit(R5_LOCKED, &dev->flags);
2718 s->locked++;
2719 set_bit(R5_Wantwrite, &dev->flags);
2721 clear_bit(STRIPE_DEGRADED, &sh->state);
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 break;
2724 case check_state_run:
2725 break; /* we will be called again upon completion */
2726 case check_state_check_result:
2727 sh->check_state = check_state_idle;
2729 /* if a failure occurred during the check operation, leave
2730 * STRIPE_INSYNC not set and let the stripe be handled again
2732 if (s->failed)
2733 break;
2735 /* handle a successful check operation, if parity is correct
2736 * we are done. Otherwise update the mismatch count and repair
2737 * parity if !MD_RECOVERY_CHECK
2739 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2740 /* parity is correct (on disc,
2741 * not in buffer any more)
2743 set_bit(STRIPE_INSYNC, &sh->state);
2744 else {
2745 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2746 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2747 /* don't try to repair!! */
2748 set_bit(STRIPE_INSYNC, &sh->state);
2749 else {
2750 sh->check_state = check_state_compute_run;
2751 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2752 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2753 set_bit(R5_Wantcompute,
2754 &sh->dev[sh->pd_idx].flags);
2755 sh->ops.target = sh->pd_idx;
2756 sh->ops.target2 = -1;
2757 s->uptodate++;
2760 break;
2761 case check_state_compute_run:
2762 break;
2763 default:
2764 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2765 __func__, sh->check_state,
2766 (unsigned long long) sh->sector);
2767 BUG();
2772 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2773 struct stripe_head_state *s,
2774 struct r6_state *r6s, int disks)
2776 int pd_idx = sh->pd_idx;
2777 int qd_idx = sh->qd_idx;
2778 struct r5dev *dev;
2780 set_bit(STRIPE_HANDLE, &sh->state);
2782 BUG_ON(s->failed > 2);
2784 /* Want to check and possibly repair P and Q.
2785 * However there could be one 'failed' device, in which
2786 * case we can only check one of them, possibly using the
2787 * other to generate missing data
2790 switch (sh->check_state) {
2791 case check_state_idle:
2792 /* start a new check operation if there are < 2 failures */
2793 if (s->failed == r6s->q_failed) {
2794 /* The only possible failed device holds Q, so it
2795 * makes sense to check P (If anything else were failed,
2796 * we would have used P to recreate it).
2798 sh->check_state = check_state_run;
2800 if (!r6s->q_failed && s->failed < 2) {
2801 /* Q is not failed, and we didn't use it to generate
2802 * anything, so it makes sense to check it
2804 if (sh->check_state == check_state_run)
2805 sh->check_state = check_state_run_pq;
2806 else
2807 sh->check_state = check_state_run_q;
2810 /* discard potentially stale zero_sum_result */
2811 sh->ops.zero_sum_result = 0;
2813 if (sh->check_state == check_state_run) {
2814 /* async_xor_zero_sum destroys the contents of P */
2815 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2816 s->uptodate--;
2818 if (sh->check_state >= check_state_run &&
2819 sh->check_state <= check_state_run_pq) {
2820 /* async_syndrome_zero_sum preserves P and Q, so
2821 * no need to mark them !uptodate here
2823 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2824 break;
2827 /* we have 2-disk failure */
2828 BUG_ON(s->failed != 2);
2829 /* fall through */
2830 case check_state_compute_result:
2831 sh->check_state = check_state_idle;
2833 /* check that a write has not made the stripe insync */
2834 if (test_bit(STRIPE_INSYNC, &sh->state))
2835 break;
2837 /* now write out any block on a failed drive,
2838 * or P or Q if they were recomputed
2840 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2841 if (s->failed == 2) {
2842 dev = &sh->dev[r6s->failed_num[1]];
2843 s->locked++;
2844 set_bit(R5_LOCKED, &dev->flags);
2845 set_bit(R5_Wantwrite, &dev->flags);
2847 if (s->failed >= 1) {
2848 dev = &sh->dev[r6s->failed_num[0]];
2849 s->locked++;
2850 set_bit(R5_LOCKED, &dev->flags);
2851 set_bit(R5_Wantwrite, &dev->flags);
2853 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2854 dev = &sh->dev[pd_idx];
2855 s->locked++;
2856 set_bit(R5_LOCKED, &dev->flags);
2857 set_bit(R5_Wantwrite, &dev->flags);
2859 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2860 dev = &sh->dev[qd_idx];
2861 s->locked++;
2862 set_bit(R5_LOCKED, &dev->flags);
2863 set_bit(R5_Wantwrite, &dev->flags);
2865 clear_bit(STRIPE_DEGRADED, &sh->state);
2867 set_bit(STRIPE_INSYNC, &sh->state);
2868 break;
2869 case check_state_run:
2870 case check_state_run_q:
2871 case check_state_run_pq:
2872 break; /* we will be called again upon completion */
2873 case check_state_check_result:
2874 sh->check_state = check_state_idle;
2876 /* handle a successful check operation, if parity is correct
2877 * we are done. Otherwise update the mismatch count and repair
2878 * parity if !MD_RECOVERY_CHECK
2880 if (sh->ops.zero_sum_result == 0) {
2881 /* both parities are correct */
2882 if (!s->failed)
2883 set_bit(STRIPE_INSYNC, &sh->state);
2884 else {
2885 /* in contrast to the raid5 case we can validate
2886 * parity, but still have a failure to write
2887 * back
2889 sh->check_state = check_state_compute_result;
2890 /* Returning at this point means that we may go
2891 * off and bring p and/or q uptodate again so
2892 * we make sure to check zero_sum_result again
2893 * to verify if p or q need writeback
2896 } else {
2897 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2898 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2899 /* don't try to repair!! */
2900 set_bit(STRIPE_INSYNC, &sh->state);
2901 else {
2902 int *target = &sh->ops.target;
2904 sh->ops.target = -1;
2905 sh->ops.target2 = -1;
2906 sh->check_state = check_state_compute_run;
2907 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2908 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2909 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2910 set_bit(R5_Wantcompute,
2911 &sh->dev[pd_idx].flags);
2912 *target = pd_idx;
2913 target = &sh->ops.target2;
2914 s->uptodate++;
2916 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2917 set_bit(R5_Wantcompute,
2918 &sh->dev[qd_idx].flags);
2919 *target = qd_idx;
2920 s->uptodate++;
2924 break;
2925 case check_state_compute_run:
2926 break;
2927 default:
2928 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2929 __func__, sh->check_state,
2930 (unsigned long long) sh->sector);
2931 BUG();
2935 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2936 struct r6_state *r6s)
2938 int i;
2940 /* We have read all the blocks in this stripe and now we need to
2941 * copy some of them into a target stripe for expand.
2943 struct dma_async_tx_descriptor *tx = NULL;
2944 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2945 for (i = 0; i < sh->disks; i++)
2946 if (i != sh->pd_idx && i != sh->qd_idx) {
2947 int dd_idx, j;
2948 struct stripe_head *sh2;
2949 struct async_submit_ctl submit;
2951 sector_t bn = compute_blocknr(sh, i, 1);
2952 sector_t s = raid5_compute_sector(conf, bn, 0,
2953 &dd_idx, NULL);
2954 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2955 if (sh2 == NULL)
2956 /* so far only the early blocks of this stripe
2957 * have been requested. When later blocks
2958 * get requested, we will try again
2960 continue;
2961 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2962 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2963 /* must have already done this block */
2964 release_stripe(sh2);
2965 continue;
2968 /* place all the copies on one channel */
2969 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2970 tx = async_memcpy(sh2->dev[dd_idx].page,
2971 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2972 &submit);
2974 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2975 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2976 for (j = 0; j < conf->raid_disks; j++)
2977 if (j != sh2->pd_idx &&
2978 (!r6s || j != sh2->qd_idx) &&
2979 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2980 break;
2981 if (j == conf->raid_disks) {
2982 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2983 set_bit(STRIPE_HANDLE, &sh2->state);
2985 release_stripe(sh2);
2988 /* done submitting copies, wait for them to complete */
2989 if (tx) {
2990 async_tx_ack(tx);
2991 dma_wait_for_async_tx(tx);
2997 * handle_stripe - do things to a stripe.
2999 * We lock the stripe and then examine the state of various bits
3000 * to see what needs to be done.
3001 * Possible results:
3002 * return some read request which now have data
3003 * return some write requests which are safely on disc
3004 * schedule a read on some buffers
3005 * schedule a write of some buffers
3006 * return confirmation of parity correctness
3008 * buffers are taken off read_list or write_list, and bh_cache buffers
3009 * get BH_Lock set before the stripe lock is released.
3013 static void handle_stripe5(struct stripe_head *sh)
3015 raid5_conf_t *conf = sh->raid_conf;
3016 int disks = sh->disks, i;
3017 struct bio *return_bi = NULL;
3018 struct stripe_head_state s;
3019 struct r5dev *dev;
3020 mdk_rdev_t *blocked_rdev = NULL;
3021 int prexor;
3022 int dec_preread_active = 0;
3024 memset(&s, 0, sizeof(s));
3025 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3026 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3027 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3028 sh->reconstruct_state);
3030 spin_lock(&sh->lock);
3031 clear_bit(STRIPE_HANDLE, &sh->state);
3032 clear_bit(STRIPE_DELAYED, &sh->state);
3034 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3035 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3036 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3038 /* Now to look around and see what can be done */
3039 rcu_read_lock();
3040 for (i=disks; i--; ) {
3041 mdk_rdev_t *rdev;
3043 dev = &sh->dev[i];
3045 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3046 "written %p\n", i, dev->flags, dev->toread, dev->read,
3047 dev->towrite, dev->written);
3049 /* maybe we can request a biofill operation
3051 * new wantfill requests are only permitted while
3052 * ops_complete_biofill is guaranteed to be inactive
3054 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3055 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3056 set_bit(R5_Wantfill, &dev->flags);
3058 /* now count some things */
3059 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3060 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3061 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3063 if (test_bit(R5_Wantfill, &dev->flags))
3064 s.to_fill++;
3065 else if (dev->toread)
3066 s.to_read++;
3067 if (dev->towrite) {
3068 s.to_write++;
3069 if (!test_bit(R5_OVERWRITE, &dev->flags))
3070 s.non_overwrite++;
3072 if (dev->written)
3073 s.written++;
3074 rdev = rcu_dereference(conf->disks[i].rdev);
3075 if (blocked_rdev == NULL &&
3076 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3077 blocked_rdev = rdev;
3078 atomic_inc(&rdev->nr_pending);
3080 clear_bit(R5_Insync, &dev->flags);
3081 if (!rdev)
3082 /* Not in-sync */;
3083 else if (test_bit(In_sync, &rdev->flags))
3084 set_bit(R5_Insync, &dev->flags);
3085 else {
3086 /* could be in-sync depending on recovery/reshape status */
3087 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3088 set_bit(R5_Insync, &dev->flags);
3090 if (!test_bit(R5_Insync, &dev->flags)) {
3091 /* The ReadError flag will just be confusing now */
3092 clear_bit(R5_ReadError, &dev->flags);
3093 clear_bit(R5_ReWrite, &dev->flags);
3095 if (test_bit(R5_ReadError, &dev->flags))
3096 clear_bit(R5_Insync, &dev->flags);
3097 if (!test_bit(R5_Insync, &dev->flags)) {
3098 s.failed++;
3099 s.failed_num = i;
3102 rcu_read_unlock();
3104 if (unlikely(blocked_rdev)) {
3105 if (s.syncing || s.expanding || s.expanded ||
3106 s.to_write || s.written) {
3107 set_bit(STRIPE_HANDLE, &sh->state);
3108 goto unlock;
3110 /* There is nothing for the blocked_rdev to block */
3111 rdev_dec_pending(blocked_rdev, conf->mddev);
3112 blocked_rdev = NULL;
3115 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3116 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3117 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3120 pr_debug("locked=%d uptodate=%d to_read=%d"
3121 " to_write=%d failed=%d failed_num=%d\n",
3122 s.locked, s.uptodate, s.to_read, s.to_write,
3123 s.failed, s.failed_num);
3124 /* check if the array has lost two devices and, if so, some requests might
3125 * need to be failed
3127 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3128 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3129 if (s.failed > 1 && s.syncing) {
3130 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3131 clear_bit(STRIPE_SYNCING, &sh->state);
3132 s.syncing = 0;
3135 /* might be able to return some write requests if the parity block
3136 * is safe, or on a failed drive
3138 dev = &sh->dev[sh->pd_idx];
3139 if ( s.written &&
3140 ((test_bit(R5_Insync, &dev->flags) &&
3141 !test_bit(R5_LOCKED, &dev->flags) &&
3142 test_bit(R5_UPTODATE, &dev->flags)) ||
3143 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3144 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3146 /* Now we might consider reading some blocks, either to check/generate
3147 * parity, or to satisfy requests
3148 * or to load a block that is being partially written.
3150 if (s.to_read || s.non_overwrite ||
3151 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3152 handle_stripe_fill5(sh, &s, disks);
3154 /* Now we check to see if any write operations have recently
3155 * completed
3157 prexor = 0;
3158 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3159 prexor = 1;
3160 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3161 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3162 sh->reconstruct_state = reconstruct_state_idle;
3164 /* All the 'written' buffers and the parity block are ready to
3165 * be written back to disk
3167 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3168 for (i = disks; i--; ) {
3169 dev = &sh->dev[i];
3170 if (test_bit(R5_LOCKED, &dev->flags) &&
3171 (i == sh->pd_idx || dev->written)) {
3172 pr_debug("Writing block %d\n", i);
3173 set_bit(R5_Wantwrite, &dev->flags);
3174 if (prexor)
3175 continue;
3176 if (!test_bit(R5_Insync, &dev->flags) ||
3177 (i == sh->pd_idx && s.failed == 0))
3178 set_bit(STRIPE_INSYNC, &sh->state);
3181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3182 dec_preread_active = 1;
3185 /* Now to consider new write requests and what else, if anything
3186 * should be read. We do not handle new writes when:
3187 * 1/ A 'write' operation (copy+xor) is already in flight.
3188 * 2/ A 'check' operation is in flight, as it may clobber the parity
3189 * block.
3191 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3192 handle_stripe_dirtying5(conf, sh, &s, disks);
3194 /* maybe we need to check and possibly fix the parity for this stripe
3195 * Any reads will already have been scheduled, so we just see if enough
3196 * data is available. The parity check is held off while parity
3197 * dependent operations are in flight.
3199 if (sh->check_state ||
3200 (s.syncing && s.locked == 0 &&
3201 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3202 !test_bit(STRIPE_INSYNC, &sh->state)))
3203 handle_parity_checks5(conf, sh, &s, disks);
3205 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3206 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3207 clear_bit(STRIPE_SYNCING, &sh->state);
3210 /* If the failed drive is just a ReadError, then we might need to progress
3211 * the repair/check process
3213 if (s.failed == 1 && !conf->mddev->ro &&
3214 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3215 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3216 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3218 dev = &sh->dev[s.failed_num];
3219 if (!test_bit(R5_ReWrite, &dev->flags)) {
3220 set_bit(R5_Wantwrite, &dev->flags);
3221 set_bit(R5_ReWrite, &dev->flags);
3222 set_bit(R5_LOCKED, &dev->flags);
3223 s.locked++;
3224 } else {
3225 /* let's read it back */
3226 set_bit(R5_Wantread, &dev->flags);
3227 set_bit(R5_LOCKED, &dev->flags);
3228 s.locked++;
3232 /* Finish reconstruct operations initiated by the expansion process */
3233 if (sh->reconstruct_state == reconstruct_state_result) {
3234 struct stripe_head *sh2
3235 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3236 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3237 /* sh cannot be written until sh2 has been read.
3238 * so arrange for sh to be delayed a little
3240 set_bit(STRIPE_DELAYED, &sh->state);
3241 set_bit(STRIPE_HANDLE, &sh->state);
3242 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3243 &sh2->state))
3244 atomic_inc(&conf->preread_active_stripes);
3245 release_stripe(sh2);
3246 goto unlock;
3248 if (sh2)
3249 release_stripe(sh2);
3251 sh->reconstruct_state = reconstruct_state_idle;
3252 clear_bit(STRIPE_EXPANDING, &sh->state);
3253 for (i = conf->raid_disks; i--; ) {
3254 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3255 set_bit(R5_LOCKED, &sh->dev[i].flags);
3256 s.locked++;
3260 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3261 !sh->reconstruct_state) {
3262 /* Need to write out all blocks after computing parity */
3263 sh->disks = conf->raid_disks;
3264 stripe_set_idx(sh->sector, conf, 0, sh);
3265 schedule_reconstruction(sh, &s, 1, 1);
3266 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3267 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3268 atomic_dec(&conf->reshape_stripes);
3269 wake_up(&conf->wait_for_overlap);
3270 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3273 if (s.expanding && s.locked == 0 &&
3274 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3275 handle_stripe_expansion(conf, sh, NULL);
3277 unlock:
3278 spin_unlock(&sh->lock);
3280 /* wait for this device to become unblocked */
3281 if (unlikely(blocked_rdev))
3282 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3284 if (s.ops_request)
3285 raid_run_ops(sh, s.ops_request);
3287 ops_run_io(sh, &s);
3289 if (dec_preread_active) {
3290 /* We delay this until after ops_run_io so that if make_request
3291 * is waiting on a flush, it won't continue until the writes
3292 * have actually been submitted.
3294 atomic_dec(&conf->preread_active_stripes);
3295 if (atomic_read(&conf->preread_active_stripes) <
3296 IO_THRESHOLD)
3297 md_wakeup_thread(conf->mddev->thread);
3299 return_io(return_bi);
3302 static void handle_stripe6(struct stripe_head *sh)
3304 raid5_conf_t *conf = sh->raid_conf;
3305 int disks = sh->disks;
3306 struct bio *return_bi = NULL;
3307 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3308 struct stripe_head_state s;
3309 struct r6_state r6s;
3310 struct r5dev *dev, *pdev, *qdev;
3311 mdk_rdev_t *blocked_rdev = NULL;
3312 int dec_preread_active = 0;
3314 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3315 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3316 (unsigned long long)sh->sector, sh->state,
3317 atomic_read(&sh->count), pd_idx, qd_idx,
3318 sh->check_state, sh->reconstruct_state);
3319 memset(&s, 0, sizeof(s));
3321 spin_lock(&sh->lock);
3322 clear_bit(STRIPE_HANDLE, &sh->state);
3323 clear_bit(STRIPE_DELAYED, &sh->state);
3325 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3326 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3327 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3328 /* Now to look around and see what can be done */
3330 rcu_read_lock();
3331 for (i=disks; i--; ) {
3332 mdk_rdev_t *rdev;
3333 dev = &sh->dev[i];
3335 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3336 i, dev->flags, dev->toread, dev->towrite, dev->written);
3337 /* maybe we can reply to a read
3339 * new wantfill requests are only permitted while
3340 * ops_complete_biofill is guaranteed to be inactive
3342 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3343 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3344 set_bit(R5_Wantfill, &dev->flags);
3346 /* now count some things */
3347 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3348 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3349 if (test_bit(R5_Wantcompute, &dev->flags)) {
3350 s.compute++;
3351 BUG_ON(s.compute > 2);
3354 if (test_bit(R5_Wantfill, &dev->flags)) {
3355 s.to_fill++;
3356 } else if (dev->toread)
3357 s.to_read++;
3358 if (dev->towrite) {
3359 s.to_write++;
3360 if (!test_bit(R5_OVERWRITE, &dev->flags))
3361 s.non_overwrite++;
3363 if (dev->written)
3364 s.written++;
3365 rdev = rcu_dereference(conf->disks[i].rdev);
3366 if (blocked_rdev == NULL &&
3367 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3368 blocked_rdev = rdev;
3369 atomic_inc(&rdev->nr_pending);
3371 clear_bit(R5_Insync, &dev->flags);
3372 if (!rdev)
3373 /* Not in-sync */;
3374 else if (test_bit(In_sync, &rdev->flags))
3375 set_bit(R5_Insync, &dev->flags);
3376 else {
3377 /* in sync if before recovery_offset */
3378 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3379 set_bit(R5_Insync, &dev->flags);
3381 if (!test_bit(R5_Insync, &dev->flags)) {
3382 /* The ReadError flag will just be confusing now */
3383 clear_bit(R5_ReadError, &dev->flags);
3384 clear_bit(R5_ReWrite, &dev->flags);
3386 if (test_bit(R5_ReadError, &dev->flags))
3387 clear_bit(R5_Insync, &dev->flags);
3388 if (!test_bit(R5_Insync, &dev->flags)) {
3389 if (s.failed < 2)
3390 r6s.failed_num[s.failed] = i;
3391 s.failed++;
3394 rcu_read_unlock();
3396 if (unlikely(blocked_rdev)) {
3397 if (s.syncing || s.expanding || s.expanded ||
3398 s.to_write || s.written) {
3399 set_bit(STRIPE_HANDLE, &sh->state);
3400 goto unlock;
3402 /* There is nothing for the blocked_rdev to block */
3403 rdev_dec_pending(blocked_rdev, conf->mddev);
3404 blocked_rdev = NULL;
3407 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3408 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3409 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3412 pr_debug("locked=%d uptodate=%d to_read=%d"
3413 " to_write=%d failed=%d failed_num=%d,%d\n",
3414 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3415 r6s.failed_num[0], r6s.failed_num[1]);
3416 /* check if the array has lost >2 devices and, if so, some requests
3417 * might need to be failed
3419 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3420 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3421 if (s.failed > 2 && s.syncing) {
3422 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3423 clear_bit(STRIPE_SYNCING, &sh->state);
3424 s.syncing = 0;
3428 * might be able to return some write requests if the parity blocks
3429 * are safe, or on a failed drive
3431 pdev = &sh->dev[pd_idx];
3432 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3433 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3434 qdev = &sh->dev[qd_idx];
3435 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3436 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3438 if ( s.written &&
3439 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3440 && !test_bit(R5_LOCKED, &pdev->flags)
3441 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3442 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3443 && !test_bit(R5_LOCKED, &qdev->flags)
3444 && test_bit(R5_UPTODATE, &qdev->flags)))))
3445 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3447 /* Now we might consider reading some blocks, either to check/generate
3448 * parity, or to satisfy requests
3449 * or to load a block that is being partially written.
3451 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3452 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3453 handle_stripe_fill6(sh, &s, &r6s, disks);
3455 /* Now we check to see if any write operations have recently
3456 * completed
3458 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3460 sh->reconstruct_state = reconstruct_state_idle;
3461 /* All the 'written' buffers and the parity blocks are ready to
3462 * be written back to disk
3464 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3465 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3466 for (i = disks; i--; ) {
3467 dev = &sh->dev[i];
3468 if (test_bit(R5_LOCKED, &dev->flags) &&
3469 (i == sh->pd_idx || i == qd_idx ||
3470 dev->written)) {
3471 pr_debug("Writing block %d\n", i);
3472 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3473 set_bit(R5_Wantwrite, &dev->flags);
3474 if (!test_bit(R5_Insync, &dev->flags) ||
3475 ((i == sh->pd_idx || i == qd_idx) &&
3476 s.failed == 0))
3477 set_bit(STRIPE_INSYNC, &sh->state);
3480 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3481 dec_preread_active = 1;
3484 /* Now to consider new write requests and what else, if anything
3485 * should be read. We do not handle new writes when:
3486 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3487 * 2/ A 'check' operation is in flight, as it may clobber the parity
3488 * block.
3490 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3491 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3493 /* maybe we need to check and possibly fix the parity for this stripe
3494 * Any reads will already have been scheduled, so we just see if enough
3495 * data is available. The parity check is held off while parity
3496 * dependent operations are in flight.
3498 if (sh->check_state ||
3499 (s.syncing && s.locked == 0 &&
3500 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3501 !test_bit(STRIPE_INSYNC, &sh->state)))
3502 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3504 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3505 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3506 clear_bit(STRIPE_SYNCING, &sh->state);
3509 /* If the failed drives are just a ReadError, then we might need
3510 * to progress the repair/check process
3512 if (s.failed <= 2 && !conf->mddev->ro)
3513 for (i = 0; i < s.failed; i++) {
3514 dev = &sh->dev[r6s.failed_num[i]];
3515 if (test_bit(R5_ReadError, &dev->flags)
3516 && !test_bit(R5_LOCKED, &dev->flags)
3517 && test_bit(R5_UPTODATE, &dev->flags)
3519 if (!test_bit(R5_ReWrite, &dev->flags)) {
3520 set_bit(R5_Wantwrite, &dev->flags);
3521 set_bit(R5_ReWrite, &dev->flags);
3522 set_bit(R5_LOCKED, &dev->flags);
3523 s.locked++;
3524 } else {
3525 /* let's read it back */
3526 set_bit(R5_Wantread, &dev->flags);
3527 set_bit(R5_LOCKED, &dev->flags);
3528 s.locked++;
3533 /* Finish reconstruct operations initiated by the expansion process */
3534 if (sh->reconstruct_state == reconstruct_state_result) {
3535 sh->reconstruct_state = reconstruct_state_idle;
3536 clear_bit(STRIPE_EXPANDING, &sh->state);
3537 for (i = conf->raid_disks; i--; ) {
3538 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3539 set_bit(R5_LOCKED, &sh->dev[i].flags);
3540 s.locked++;
3544 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3545 !sh->reconstruct_state) {
3546 struct stripe_head *sh2
3547 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3548 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3549 /* sh cannot be written until sh2 has been read.
3550 * so arrange for sh to be delayed a little
3552 set_bit(STRIPE_DELAYED, &sh->state);
3553 set_bit(STRIPE_HANDLE, &sh->state);
3554 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3555 &sh2->state))
3556 atomic_inc(&conf->preread_active_stripes);
3557 release_stripe(sh2);
3558 goto unlock;
3560 if (sh2)
3561 release_stripe(sh2);
3563 /* Need to write out all blocks after computing P&Q */
3564 sh->disks = conf->raid_disks;
3565 stripe_set_idx(sh->sector, conf, 0, sh);
3566 schedule_reconstruction(sh, &s, 1, 1);
3567 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3568 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3569 atomic_dec(&conf->reshape_stripes);
3570 wake_up(&conf->wait_for_overlap);
3571 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3574 if (s.expanding && s.locked == 0 &&
3575 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3576 handle_stripe_expansion(conf, sh, &r6s);
3578 unlock:
3579 spin_unlock(&sh->lock);
3581 /* wait for this device to become unblocked */
3582 if (unlikely(blocked_rdev))
3583 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3585 if (s.ops_request)
3586 raid_run_ops(sh, s.ops_request);
3588 ops_run_io(sh, &s);
3591 if (dec_preread_active) {
3592 /* We delay this until after ops_run_io so that if make_request
3593 * is waiting on a flush, it won't continue until the writes
3594 * have actually been submitted.
3596 atomic_dec(&conf->preread_active_stripes);
3597 if (atomic_read(&conf->preread_active_stripes) <
3598 IO_THRESHOLD)
3599 md_wakeup_thread(conf->mddev->thread);
3602 return_io(return_bi);
3605 static void handle_stripe(struct stripe_head *sh)
3607 if (sh->raid_conf->level == 6)
3608 handle_stripe6(sh);
3609 else
3610 handle_stripe5(sh);
3613 static void raid5_activate_delayed(raid5_conf_t *conf)
3615 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3616 while (!list_empty(&conf->delayed_list)) {
3617 struct list_head *l = conf->delayed_list.next;
3618 struct stripe_head *sh;
3619 sh = list_entry(l, struct stripe_head, lru);
3620 list_del_init(l);
3621 clear_bit(STRIPE_DELAYED, &sh->state);
3622 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3623 atomic_inc(&conf->preread_active_stripes);
3624 list_add_tail(&sh->lru, &conf->hold_list);
3626 } else
3627 plugger_set_plug(&conf->plug);
3630 static void activate_bit_delay(raid5_conf_t *conf)
3632 /* device_lock is held */
3633 struct list_head head;
3634 list_add(&head, &conf->bitmap_list);
3635 list_del_init(&conf->bitmap_list);
3636 while (!list_empty(&head)) {
3637 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3638 list_del_init(&sh->lru);
3639 atomic_inc(&sh->count);
3640 __release_stripe(conf, sh);
3644 void md_raid5_kick_device(raid5_conf_t *conf)
3646 blk_flush_plug(current);
3647 raid5_activate_delayed(conf);
3648 md_wakeup_thread(conf->mddev->thread);
3650 EXPORT_SYMBOL_GPL(md_raid5_kick_device);
3652 static void raid5_unplug(struct plug_handle *plug)
3654 raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3656 md_raid5_kick_device(conf);
3659 int md_raid5_congested(mddev_t *mddev, int bits)
3661 raid5_conf_t *conf = mddev->private;
3663 /* No difference between reads and writes. Just check
3664 * how busy the stripe_cache is
3667 if (conf->inactive_blocked)
3668 return 1;
3669 if (conf->quiesce)
3670 return 1;
3671 if (list_empty_careful(&conf->inactive_list))
3672 return 1;
3674 return 0;
3676 EXPORT_SYMBOL_GPL(md_raid5_congested);
3678 static int raid5_congested(void *data, int bits)
3680 mddev_t *mddev = data;
3682 return mddev_congested(mddev, bits) ||
3683 md_raid5_congested(mddev, bits);
3686 /* We want read requests to align with chunks where possible,
3687 * but write requests don't need to.
3689 static int raid5_mergeable_bvec(struct request_queue *q,
3690 struct bvec_merge_data *bvm,
3691 struct bio_vec *biovec)
3693 mddev_t *mddev = q->queuedata;
3694 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3695 int max;
3696 unsigned int chunk_sectors = mddev->chunk_sectors;
3697 unsigned int bio_sectors = bvm->bi_size >> 9;
3699 if ((bvm->bi_rw & 1) == WRITE)
3700 return biovec->bv_len; /* always allow writes to be mergeable */
3702 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3703 chunk_sectors = mddev->new_chunk_sectors;
3704 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3705 if (max < 0) max = 0;
3706 if (max <= biovec->bv_len && bio_sectors == 0)
3707 return biovec->bv_len;
3708 else
3709 return max;
3713 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3715 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3716 unsigned int chunk_sectors = mddev->chunk_sectors;
3717 unsigned int bio_sectors = bio->bi_size >> 9;
3719 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3720 chunk_sectors = mddev->new_chunk_sectors;
3721 return chunk_sectors >=
3722 ((sector & (chunk_sectors - 1)) + bio_sectors);
3726 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3727 * later sampled by raid5d.
3729 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3731 unsigned long flags;
3733 spin_lock_irqsave(&conf->device_lock, flags);
3735 bi->bi_next = conf->retry_read_aligned_list;
3736 conf->retry_read_aligned_list = bi;
3738 spin_unlock_irqrestore(&conf->device_lock, flags);
3739 md_wakeup_thread(conf->mddev->thread);
3743 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3745 struct bio *bi;
3747 bi = conf->retry_read_aligned;
3748 if (bi) {
3749 conf->retry_read_aligned = NULL;
3750 return bi;
3752 bi = conf->retry_read_aligned_list;
3753 if(bi) {
3754 conf->retry_read_aligned_list = bi->bi_next;
3755 bi->bi_next = NULL;
3757 * this sets the active strip count to 1 and the processed
3758 * strip count to zero (upper 8 bits)
3760 bi->bi_phys_segments = 1; /* biased count of active stripes */
3763 return bi;
3768 * The "raid5_align_endio" should check if the read succeeded and if it
3769 * did, call bio_endio on the original bio (having bio_put the new bio
3770 * first).
3771 * If the read failed..
3773 static void raid5_align_endio(struct bio *bi, int error)
3775 struct bio* raid_bi = bi->bi_private;
3776 mddev_t *mddev;
3777 raid5_conf_t *conf;
3778 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3779 mdk_rdev_t *rdev;
3781 bio_put(bi);
3783 rdev = (void*)raid_bi->bi_next;
3784 raid_bi->bi_next = NULL;
3785 mddev = rdev->mddev;
3786 conf = mddev->private;
3788 rdev_dec_pending(rdev, conf->mddev);
3790 if (!error && uptodate) {
3791 bio_endio(raid_bi, 0);
3792 if (atomic_dec_and_test(&conf->active_aligned_reads))
3793 wake_up(&conf->wait_for_stripe);
3794 return;
3798 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3800 add_bio_to_retry(raid_bi, conf);
3803 static int bio_fits_rdev(struct bio *bi)
3805 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3807 if ((bi->bi_size>>9) > queue_max_sectors(q))
3808 return 0;
3809 blk_recount_segments(q, bi);
3810 if (bi->bi_phys_segments > queue_max_segments(q))
3811 return 0;
3813 if (q->merge_bvec_fn)
3814 /* it's too hard to apply the merge_bvec_fn at this stage,
3815 * just just give up
3817 return 0;
3819 return 1;
3823 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3825 raid5_conf_t *conf = mddev->private;
3826 int dd_idx;
3827 struct bio* align_bi;
3828 mdk_rdev_t *rdev;
3830 if (!in_chunk_boundary(mddev, raid_bio)) {
3831 pr_debug("chunk_aligned_read : non aligned\n");
3832 return 0;
3835 * use bio_clone_mddev to make a copy of the bio
3837 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3838 if (!align_bi)
3839 return 0;
3841 * set bi_end_io to a new function, and set bi_private to the
3842 * original bio.
3844 align_bi->bi_end_io = raid5_align_endio;
3845 align_bi->bi_private = raid_bio;
3847 * compute position
3849 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3851 &dd_idx, NULL);
3853 rcu_read_lock();
3854 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3855 if (rdev && test_bit(In_sync, &rdev->flags)) {
3856 atomic_inc(&rdev->nr_pending);
3857 rcu_read_unlock();
3858 raid_bio->bi_next = (void*)rdev;
3859 align_bi->bi_bdev = rdev->bdev;
3860 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3861 align_bi->bi_sector += rdev->data_offset;
3863 if (!bio_fits_rdev(align_bi)) {
3864 /* too big in some way */
3865 bio_put(align_bi);
3866 rdev_dec_pending(rdev, mddev);
3867 return 0;
3870 spin_lock_irq(&conf->device_lock);
3871 wait_event_lock_irq(conf->wait_for_stripe,
3872 conf->quiesce == 0,
3873 conf->device_lock, /* nothing */);
3874 atomic_inc(&conf->active_aligned_reads);
3875 spin_unlock_irq(&conf->device_lock);
3877 generic_make_request(align_bi);
3878 return 1;
3879 } else {
3880 rcu_read_unlock();
3881 bio_put(align_bi);
3882 return 0;
3886 /* __get_priority_stripe - get the next stripe to process
3888 * Full stripe writes are allowed to pass preread active stripes up until
3889 * the bypass_threshold is exceeded. In general the bypass_count
3890 * increments when the handle_list is handled before the hold_list; however, it
3891 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3892 * stripe with in flight i/o. The bypass_count will be reset when the
3893 * head of the hold_list has changed, i.e. the head was promoted to the
3894 * handle_list.
3896 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3898 struct stripe_head *sh;
3900 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3901 __func__,
3902 list_empty(&conf->handle_list) ? "empty" : "busy",
3903 list_empty(&conf->hold_list) ? "empty" : "busy",
3904 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3906 if (!list_empty(&conf->handle_list)) {
3907 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3909 if (list_empty(&conf->hold_list))
3910 conf->bypass_count = 0;
3911 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3912 if (conf->hold_list.next == conf->last_hold)
3913 conf->bypass_count++;
3914 else {
3915 conf->last_hold = conf->hold_list.next;
3916 conf->bypass_count -= conf->bypass_threshold;
3917 if (conf->bypass_count < 0)
3918 conf->bypass_count = 0;
3921 } else if (!list_empty(&conf->hold_list) &&
3922 ((conf->bypass_threshold &&
3923 conf->bypass_count > conf->bypass_threshold) ||
3924 atomic_read(&conf->pending_full_writes) == 0)) {
3925 sh = list_entry(conf->hold_list.next,
3926 typeof(*sh), lru);
3927 conf->bypass_count -= conf->bypass_threshold;
3928 if (conf->bypass_count < 0)
3929 conf->bypass_count = 0;
3930 } else
3931 return NULL;
3933 list_del_init(&sh->lru);
3934 atomic_inc(&sh->count);
3935 BUG_ON(atomic_read(&sh->count) != 1);
3936 return sh;
3939 static int make_request(mddev_t *mddev, struct bio * bi)
3941 raid5_conf_t *conf = mddev->private;
3942 int dd_idx;
3943 sector_t new_sector;
3944 sector_t logical_sector, last_sector;
3945 struct stripe_head *sh;
3946 const int rw = bio_data_dir(bi);
3947 int remaining;
3949 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3950 md_flush_request(mddev, bi);
3951 return 0;
3954 md_write_start(mddev, bi);
3956 if (rw == READ &&
3957 mddev->reshape_position == MaxSector &&
3958 chunk_aligned_read(mddev,bi))
3959 return 0;
3961 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3962 last_sector = bi->bi_sector + (bi->bi_size>>9);
3963 bi->bi_next = NULL;
3964 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3966 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3967 DEFINE_WAIT(w);
3968 int disks, data_disks;
3969 int previous;
3971 retry:
3972 previous = 0;
3973 disks = conf->raid_disks;
3974 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3975 if (unlikely(conf->reshape_progress != MaxSector)) {
3976 /* spinlock is needed as reshape_progress may be
3977 * 64bit on a 32bit platform, and so it might be
3978 * possible to see a half-updated value
3979 * Ofcourse reshape_progress could change after
3980 * the lock is dropped, so once we get a reference
3981 * to the stripe that we think it is, we will have
3982 * to check again.
3984 spin_lock_irq(&conf->device_lock);
3985 if (mddev->delta_disks < 0
3986 ? logical_sector < conf->reshape_progress
3987 : logical_sector >= conf->reshape_progress) {
3988 disks = conf->previous_raid_disks;
3989 previous = 1;
3990 } else {
3991 if (mddev->delta_disks < 0
3992 ? logical_sector < conf->reshape_safe
3993 : logical_sector >= conf->reshape_safe) {
3994 spin_unlock_irq(&conf->device_lock);
3995 schedule();
3996 goto retry;
3999 spin_unlock_irq(&conf->device_lock);
4001 data_disks = disks - conf->max_degraded;
4003 new_sector = raid5_compute_sector(conf, logical_sector,
4004 previous,
4005 &dd_idx, NULL);
4006 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4007 (unsigned long long)new_sector,
4008 (unsigned long long)logical_sector);
4010 sh = get_active_stripe(conf, new_sector, previous,
4011 (bi->bi_rw&RWA_MASK), 0);
4012 if (sh) {
4013 if (unlikely(previous)) {
4014 /* expansion might have moved on while waiting for a
4015 * stripe, so we must do the range check again.
4016 * Expansion could still move past after this
4017 * test, but as we are holding a reference to
4018 * 'sh', we know that if that happens,
4019 * STRIPE_EXPANDING will get set and the expansion
4020 * won't proceed until we finish with the stripe.
4022 int must_retry = 0;
4023 spin_lock_irq(&conf->device_lock);
4024 if (mddev->delta_disks < 0
4025 ? logical_sector >= conf->reshape_progress
4026 : logical_sector < conf->reshape_progress)
4027 /* mismatch, need to try again */
4028 must_retry = 1;
4029 spin_unlock_irq(&conf->device_lock);
4030 if (must_retry) {
4031 release_stripe(sh);
4032 schedule();
4033 goto retry;
4037 if (bio_data_dir(bi) == WRITE &&
4038 logical_sector >= mddev->suspend_lo &&
4039 logical_sector < mddev->suspend_hi) {
4040 release_stripe(sh);
4041 /* As the suspend_* range is controlled by
4042 * userspace, we want an interruptible
4043 * wait.
4045 flush_signals(current);
4046 prepare_to_wait(&conf->wait_for_overlap,
4047 &w, TASK_INTERRUPTIBLE);
4048 if (logical_sector >= mddev->suspend_lo &&
4049 logical_sector < mddev->suspend_hi)
4050 schedule();
4051 goto retry;
4054 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4055 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4056 /* Stripe is busy expanding or
4057 * add failed due to overlap. Flush everything
4058 * and wait a while
4060 md_raid5_kick_device(conf);
4061 release_stripe(sh);
4062 schedule();
4063 goto retry;
4065 finish_wait(&conf->wait_for_overlap, &w);
4066 set_bit(STRIPE_HANDLE, &sh->state);
4067 clear_bit(STRIPE_DELAYED, &sh->state);
4068 if ((bi->bi_rw & REQ_SYNC) &&
4069 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4070 atomic_inc(&conf->preread_active_stripes);
4071 release_stripe(sh);
4072 } else {
4073 /* cannot get stripe for read-ahead, just give-up */
4074 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4075 finish_wait(&conf->wait_for_overlap, &w);
4076 break;
4080 spin_lock_irq(&conf->device_lock);
4081 remaining = raid5_dec_bi_phys_segments(bi);
4082 spin_unlock_irq(&conf->device_lock);
4083 if (remaining == 0) {
4085 if ( rw == WRITE )
4086 md_write_end(mddev);
4088 bio_endio(bi, 0);
4091 return 0;
4094 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4096 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4098 /* reshaping is quite different to recovery/resync so it is
4099 * handled quite separately ... here.
4101 * On each call to sync_request, we gather one chunk worth of
4102 * destination stripes and flag them as expanding.
4103 * Then we find all the source stripes and request reads.
4104 * As the reads complete, handle_stripe will copy the data
4105 * into the destination stripe and release that stripe.
4107 raid5_conf_t *conf = mddev->private;
4108 struct stripe_head *sh;
4109 sector_t first_sector, last_sector;
4110 int raid_disks = conf->previous_raid_disks;
4111 int data_disks = raid_disks - conf->max_degraded;
4112 int new_data_disks = conf->raid_disks - conf->max_degraded;
4113 int i;
4114 int dd_idx;
4115 sector_t writepos, readpos, safepos;
4116 sector_t stripe_addr;
4117 int reshape_sectors;
4118 struct list_head stripes;
4120 if (sector_nr == 0) {
4121 /* If restarting in the middle, skip the initial sectors */
4122 if (mddev->delta_disks < 0 &&
4123 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4124 sector_nr = raid5_size(mddev, 0, 0)
4125 - conf->reshape_progress;
4126 } else if (mddev->delta_disks >= 0 &&
4127 conf->reshape_progress > 0)
4128 sector_nr = conf->reshape_progress;
4129 sector_div(sector_nr, new_data_disks);
4130 if (sector_nr) {
4131 mddev->curr_resync_completed = sector_nr;
4132 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4133 *skipped = 1;
4134 return sector_nr;
4138 /* We need to process a full chunk at a time.
4139 * If old and new chunk sizes differ, we need to process the
4140 * largest of these
4142 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4143 reshape_sectors = mddev->new_chunk_sectors;
4144 else
4145 reshape_sectors = mddev->chunk_sectors;
4147 /* we update the metadata when there is more than 3Meg
4148 * in the block range (that is rather arbitrary, should
4149 * probably be time based) or when the data about to be
4150 * copied would over-write the source of the data at
4151 * the front of the range.
4152 * i.e. one new_stripe along from reshape_progress new_maps
4153 * to after where reshape_safe old_maps to
4155 writepos = conf->reshape_progress;
4156 sector_div(writepos, new_data_disks);
4157 readpos = conf->reshape_progress;
4158 sector_div(readpos, data_disks);
4159 safepos = conf->reshape_safe;
4160 sector_div(safepos, data_disks);
4161 if (mddev->delta_disks < 0) {
4162 writepos -= min_t(sector_t, reshape_sectors, writepos);
4163 readpos += reshape_sectors;
4164 safepos += reshape_sectors;
4165 } else {
4166 writepos += reshape_sectors;
4167 readpos -= min_t(sector_t, reshape_sectors, readpos);
4168 safepos -= min_t(sector_t, reshape_sectors, safepos);
4171 /* 'writepos' is the most advanced device address we might write.
4172 * 'readpos' is the least advanced device address we might read.
4173 * 'safepos' is the least address recorded in the metadata as having
4174 * been reshaped.
4175 * If 'readpos' is behind 'writepos', then there is no way that we can
4176 * ensure safety in the face of a crash - that must be done by userspace
4177 * making a backup of the data. So in that case there is no particular
4178 * rush to update metadata.
4179 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4180 * update the metadata to advance 'safepos' to match 'readpos' so that
4181 * we can be safe in the event of a crash.
4182 * So we insist on updating metadata if safepos is behind writepos and
4183 * readpos is beyond writepos.
4184 * In any case, update the metadata every 10 seconds.
4185 * Maybe that number should be configurable, but I'm not sure it is
4186 * worth it.... maybe it could be a multiple of safemode_delay???
4188 if ((mddev->delta_disks < 0
4189 ? (safepos > writepos && readpos < writepos)
4190 : (safepos < writepos && readpos > writepos)) ||
4191 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4192 /* Cannot proceed until we've updated the superblock... */
4193 wait_event(conf->wait_for_overlap,
4194 atomic_read(&conf->reshape_stripes)==0);
4195 mddev->reshape_position = conf->reshape_progress;
4196 mddev->curr_resync_completed = sector_nr;
4197 conf->reshape_checkpoint = jiffies;
4198 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4199 md_wakeup_thread(mddev->thread);
4200 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4201 kthread_should_stop());
4202 spin_lock_irq(&conf->device_lock);
4203 conf->reshape_safe = mddev->reshape_position;
4204 spin_unlock_irq(&conf->device_lock);
4205 wake_up(&conf->wait_for_overlap);
4206 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4209 if (mddev->delta_disks < 0) {
4210 BUG_ON(conf->reshape_progress == 0);
4211 stripe_addr = writepos;
4212 BUG_ON((mddev->dev_sectors &
4213 ~((sector_t)reshape_sectors - 1))
4214 - reshape_sectors - stripe_addr
4215 != sector_nr);
4216 } else {
4217 BUG_ON(writepos != sector_nr + reshape_sectors);
4218 stripe_addr = sector_nr;
4220 INIT_LIST_HEAD(&stripes);
4221 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4222 int j;
4223 int skipped_disk = 0;
4224 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4225 set_bit(STRIPE_EXPANDING, &sh->state);
4226 atomic_inc(&conf->reshape_stripes);
4227 /* If any of this stripe is beyond the end of the old
4228 * array, then we need to zero those blocks
4230 for (j=sh->disks; j--;) {
4231 sector_t s;
4232 if (j == sh->pd_idx)
4233 continue;
4234 if (conf->level == 6 &&
4235 j == sh->qd_idx)
4236 continue;
4237 s = compute_blocknr(sh, j, 0);
4238 if (s < raid5_size(mddev, 0, 0)) {
4239 skipped_disk = 1;
4240 continue;
4242 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4243 set_bit(R5_Expanded, &sh->dev[j].flags);
4244 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4246 if (!skipped_disk) {
4247 set_bit(STRIPE_EXPAND_READY, &sh->state);
4248 set_bit(STRIPE_HANDLE, &sh->state);
4250 list_add(&sh->lru, &stripes);
4252 spin_lock_irq(&conf->device_lock);
4253 if (mddev->delta_disks < 0)
4254 conf->reshape_progress -= reshape_sectors * new_data_disks;
4255 else
4256 conf->reshape_progress += reshape_sectors * new_data_disks;
4257 spin_unlock_irq(&conf->device_lock);
4258 /* Ok, those stripe are ready. We can start scheduling
4259 * reads on the source stripes.
4260 * The source stripes are determined by mapping the first and last
4261 * block on the destination stripes.
4263 first_sector =
4264 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4265 1, &dd_idx, NULL);
4266 last_sector =
4267 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4268 * new_data_disks - 1),
4269 1, &dd_idx, NULL);
4270 if (last_sector >= mddev->dev_sectors)
4271 last_sector = mddev->dev_sectors - 1;
4272 while (first_sector <= last_sector) {
4273 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4274 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4275 set_bit(STRIPE_HANDLE, &sh->state);
4276 release_stripe(sh);
4277 first_sector += STRIPE_SECTORS;
4279 /* Now that the sources are clearly marked, we can release
4280 * the destination stripes
4282 while (!list_empty(&stripes)) {
4283 sh = list_entry(stripes.next, struct stripe_head, lru);
4284 list_del_init(&sh->lru);
4285 release_stripe(sh);
4287 /* If this takes us to the resync_max point where we have to pause,
4288 * then we need to write out the superblock.
4290 sector_nr += reshape_sectors;
4291 if ((sector_nr - mddev->curr_resync_completed) * 2
4292 >= mddev->resync_max - mddev->curr_resync_completed) {
4293 /* Cannot proceed until we've updated the superblock... */
4294 wait_event(conf->wait_for_overlap,
4295 atomic_read(&conf->reshape_stripes) == 0);
4296 mddev->reshape_position = conf->reshape_progress;
4297 mddev->curr_resync_completed = sector_nr;
4298 conf->reshape_checkpoint = jiffies;
4299 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4300 md_wakeup_thread(mddev->thread);
4301 wait_event(mddev->sb_wait,
4302 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4303 || kthread_should_stop());
4304 spin_lock_irq(&conf->device_lock);
4305 conf->reshape_safe = mddev->reshape_position;
4306 spin_unlock_irq(&conf->device_lock);
4307 wake_up(&conf->wait_for_overlap);
4308 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4310 return reshape_sectors;
4313 /* FIXME go_faster isn't used */
4314 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4316 raid5_conf_t *conf = mddev->private;
4317 struct stripe_head *sh;
4318 sector_t max_sector = mddev->dev_sectors;
4319 sector_t sync_blocks;
4320 int still_degraded = 0;
4321 int i;
4323 if (sector_nr >= max_sector) {
4324 /* just being told to finish up .. nothing much to do */
4326 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4327 end_reshape(conf);
4328 return 0;
4331 if (mddev->curr_resync < max_sector) /* aborted */
4332 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4333 &sync_blocks, 1);
4334 else /* completed sync */
4335 conf->fullsync = 0;
4336 bitmap_close_sync(mddev->bitmap);
4338 return 0;
4341 /* Allow raid5_quiesce to complete */
4342 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4344 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4345 return reshape_request(mddev, sector_nr, skipped);
4347 /* No need to check resync_max as we never do more than one
4348 * stripe, and as resync_max will always be on a chunk boundary,
4349 * if the check in md_do_sync didn't fire, there is no chance
4350 * of overstepping resync_max here
4353 /* if there is too many failed drives and we are trying
4354 * to resync, then assert that we are finished, because there is
4355 * nothing we can do.
4357 if (mddev->degraded >= conf->max_degraded &&
4358 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4359 sector_t rv = mddev->dev_sectors - sector_nr;
4360 *skipped = 1;
4361 return rv;
4363 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4364 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4365 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4366 /* we can skip this block, and probably more */
4367 sync_blocks /= STRIPE_SECTORS;
4368 *skipped = 1;
4369 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4373 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4375 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4376 if (sh == NULL) {
4377 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4378 /* make sure we don't swamp the stripe cache if someone else
4379 * is trying to get access
4381 schedule_timeout_uninterruptible(1);
4383 /* Need to check if array will still be degraded after recovery/resync
4384 * We don't need to check the 'failed' flag as when that gets set,
4385 * recovery aborts.
4387 for (i = 0; i < conf->raid_disks; i++)
4388 if (conf->disks[i].rdev == NULL)
4389 still_degraded = 1;
4391 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4393 spin_lock(&sh->lock);
4394 set_bit(STRIPE_SYNCING, &sh->state);
4395 clear_bit(STRIPE_INSYNC, &sh->state);
4396 spin_unlock(&sh->lock);
4398 handle_stripe(sh);
4399 release_stripe(sh);
4401 return STRIPE_SECTORS;
4404 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4406 /* We may not be able to submit a whole bio at once as there
4407 * may not be enough stripe_heads available.
4408 * We cannot pre-allocate enough stripe_heads as we may need
4409 * more than exist in the cache (if we allow ever large chunks).
4410 * So we do one stripe head at a time and record in
4411 * ->bi_hw_segments how many have been done.
4413 * We *know* that this entire raid_bio is in one chunk, so
4414 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4416 struct stripe_head *sh;
4417 int dd_idx;
4418 sector_t sector, logical_sector, last_sector;
4419 int scnt = 0;
4420 int remaining;
4421 int handled = 0;
4423 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4424 sector = raid5_compute_sector(conf, logical_sector,
4425 0, &dd_idx, NULL);
4426 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4428 for (; logical_sector < last_sector;
4429 logical_sector += STRIPE_SECTORS,
4430 sector += STRIPE_SECTORS,
4431 scnt++) {
4433 if (scnt < raid5_bi_hw_segments(raid_bio))
4434 /* already done this stripe */
4435 continue;
4437 sh = get_active_stripe(conf, sector, 0, 1, 0);
4439 if (!sh) {
4440 /* failed to get a stripe - must wait */
4441 raid5_set_bi_hw_segments(raid_bio, scnt);
4442 conf->retry_read_aligned = raid_bio;
4443 return handled;
4446 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4447 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4448 release_stripe(sh);
4449 raid5_set_bi_hw_segments(raid_bio, scnt);
4450 conf->retry_read_aligned = raid_bio;
4451 return handled;
4454 handle_stripe(sh);
4455 release_stripe(sh);
4456 handled++;
4458 spin_lock_irq(&conf->device_lock);
4459 remaining = raid5_dec_bi_phys_segments(raid_bio);
4460 spin_unlock_irq(&conf->device_lock);
4461 if (remaining == 0)
4462 bio_endio(raid_bio, 0);
4463 if (atomic_dec_and_test(&conf->active_aligned_reads))
4464 wake_up(&conf->wait_for_stripe);
4465 return handled;
4470 * This is our raid5 kernel thread.
4472 * We scan the hash table for stripes which can be handled now.
4473 * During the scan, completed stripes are saved for us by the interrupt
4474 * handler, so that they will not have to wait for our next wakeup.
4476 static void raid5d(mddev_t *mddev)
4478 struct stripe_head *sh;
4479 raid5_conf_t *conf = mddev->private;
4480 int handled;
4482 pr_debug("+++ raid5d active\n");
4484 md_check_recovery(mddev);
4486 handled = 0;
4487 spin_lock_irq(&conf->device_lock);
4488 while (1) {
4489 struct bio *bio;
4491 if (conf->seq_flush != conf->seq_write) {
4492 int seq = conf->seq_flush;
4493 spin_unlock_irq(&conf->device_lock);
4494 bitmap_unplug(mddev->bitmap);
4495 spin_lock_irq(&conf->device_lock);
4496 conf->seq_write = seq;
4497 activate_bit_delay(conf);
4500 while ((bio = remove_bio_from_retry(conf))) {
4501 int ok;
4502 spin_unlock_irq(&conf->device_lock);
4503 ok = retry_aligned_read(conf, bio);
4504 spin_lock_irq(&conf->device_lock);
4505 if (!ok)
4506 break;
4507 handled++;
4510 sh = __get_priority_stripe(conf);
4512 if (!sh)
4513 break;
4514 spin_unlock_irq(&conf->device_lock);
4516 handled++;
4517 handle_stripe(sh);
4518 release_stripe(sh);
4519 cond_resched();
4521 spin_lock_irq(&conf->device_lock);
4523 pr_debug("%d stripes handled\n", handled);
4525 spin_unlock_irq(&conf->device_lock);
4527 async_tx_issue_pending_all();
4529 pr_debug("--- raid5d inactive\n");
4532 static ssize_t
4533 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4535 raid5_conf_t *conf = mddev->private;
4536 if (conf)
4537 return sprintf(page, "%d\n", conf->max_nr_stripes);
4538 else
4539 return 0;
4543 raid5_set_cache_size(mddev_t *mddev, int size)
4545 raid5_conf_t *conf = mddev->private;
4546 int err;
4548 if (size <= 16 || size > 32768)
4549 return -EINVAL;
4550 while (size < conf->max_nr_stripes) {
4551 if (drop_one_stripe(conf))
4552 conf->max_nr_stripes--;
4553 else
4554 break;
4556 err = md_allow_write(mddev);
4557 if (err)
4558 return err;
4559 while (size > conf->max_nr_stripes) {
4560 if (grow_one_stripe(conf))
4561 conf->max_nr_stripes++;
4562 else break;
4564 return 0;
4566 EXPORT_SYMBOL(raid5_set_cache_size);
4568 static ssize_t
4569 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4571 raid5_conf_t *conf = mddev->private;
4572 unsigned long new;
4573 int err;
4575 if (len >= PAGE_SIZE)
4576 return -EINVAL;
4577 if (!conf)
4578 return -ENODEV;
4580 if (strict_strtoul(page, 10, &new))
4581 return -EINVAL;
4582 err = raid5_set_cache_size(mddev, new);
4583 if (err)
4584 return err;
4585 return len;
4588 static struct md_sysfs_entry
4589 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4590 raid5_show_stripe_cache_size,
4591 raid5_store_stripe_cache_size);
4593 static ssize_t
4594 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4596 raid5_conf_t *conf = mddev->private;
4597 if (conf)
4598 return sprintf(page, "%d\n", conf->bypass_threshold);
4599 else
4600 return 0;
4603 static ssize_t
4604 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4606 raid5_conf_t *conf = mddev->private;
4607 unsigned long new;
4608 if (len >= PAGE_SIZE)
4609 return -EINVAL;
4610 if (!conf)
4611 return -ENODEV;
4613 if (strict_strtoul(page, 10, &new))
4614 return -EINVAL;
4615 if (new > conf->max_nr_stripes)
4616 return -EINVAL;
4617 conf->bypass_threshold = new;
4618 return len;
4621 static struct md_sysfs_entry
4622 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4623 S_IRUGO | S_IWUSR,
4624 raid5_show_preread_threshold,
4625 raid5_store_preread_threshold);
4627 static ssize_t
4628 stripe_cache_active_show(mddev_t *mddev, char *page)
4630 raid5_conf_t *conf = mddev->private;
4631 if (conf)
4632 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4633 else
4634 return 0;
4637 static struct md_sysfs_entry
4638 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4640 static struct attribute *raid5_attrs[] = {
4641 &raid5_stripecache_size.attr,
4642 &raid5_stripecache_active.attr,
4643 &raid5_preread_bypass_threshold.attr,
4644 NULL,
4646 static struct attribute_group raid5_attrs_group = {
4647 .name = NULL,
4648 .attrs = raid5_attrs,
4651 static sector_t
4652 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4654 raid5_conf_t *conf = mddev->private;
4656 if (!sectors)
4657 sectors = mddev->dev_sectors;
4658 if (!raid_disks)
4659 /* size is defined by the smallest of previous and new size */
4660 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4662 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4663 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4664 return sectors * (raid_disks - conf->max_degraded);
4667 static void raid5_free_percpu(raid5_conf_t *conf)
4669 struct raid5_percpu *percpu;
4670 unsigned long cpu;
4672 if (!conf->percpu)
4673 return;
4675 get_online_cpus();
4676 for_each_possible_cpu(cpu) {
4677 percpu = per_cpu_ptr(conf->percpu, cpu);
4678 safe_put_page(percpu->spare_page);
4679 kfree(percpu->scribble);
4681 #ifdef CONFIG_HOTPLUG_CPU
4682 unregister_cpu_notifier(&conf->cpu_notify);
4683 #endif
4684 put_online_cpus();
4686 free_percpu(conf->percpu);
4689 static void free_conf(raid5_conf_t *conf)
4691 shrink_stripes(conf);
4692 raid5_free_percpu(conf);
4693 kfree(conf->disks);
4694 kfree(conf->stripe_hashtbl);
4695 kfree(conf);
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4700 void *hcpu)
4702 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4703 long cpu = (long)hcpu;
4704 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4706 switch (action) {
4707 case CPU_UP_PREPARE:
4708 case CPU_UP_PREPARE_FROZEN:
4709 if (conf->level == 6 && !percpu->spare_page)
4710 percpu->spare_page = alloc_page(GFP_KERNEL);
4711 if (!percpu->scribble)
4712 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4714 if (!percpu->scribble ||
4715 (conf->level == 6 && !percpu->spare_page)) {
4716 safe_put_page(percpu->spare_page);
4717 kfree(percpu->scribble);
4718 pr_err("%s: failed memory allocation for cpu%ld\n",
4719 __func__, cpu);
4720 return notifier_from_errno(-ENOMEM);
4722 break;
4723 case CPU_DEAD:
4724 case CPU_DEAD_FROZEN:
4725 safe_put_page(percpu->spare_page);
4726 kfree(percpu->scribble);
4727 percpu->spare_page = NULL;
4728 percpu->scribble = NULL;
4729 break;
4730 default:
4731 break;
4733 return NOTIFY_OK;
4735 #endif
4737 static int raid5_alloc_percpu(raid5_conf_t *conf)
4739 unsigned long cpu;
4740 struct page *spare_page;
4741 struct raid5_percpu __percpu *allcpus;
4742 void *scribble;
4743 int err;
4745 allcpus = alloc_percpu(struct raid5_percpu);
4746 if (!allcpus)
4747 return -ENOMEM;
4748 conf->percpu = allcpus;
4750 get_online_cpus();
4751 err = 0;
4752 for_each_present_cpu(cpu) {
4753 if (conf->level == 6) {
4754 spare_page = alloc_page(GFP_KERNEL);
4755 if (!spare_page) {
4756 err = -ENOMEM;
4757 break;
4759 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4761 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4762 if (!scribble) {
4763 err = -ENOMEM;
4764 break;
4766 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4768 #ifdef CONFIG_HOTPLUG_CPU
4769 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4770 conf->cpu_notify.priority = 0;
4771 if (err == 0)
4772 err = register_cpu_notifier(&conf->cpu_notify);
4773 #endif
4774 put_online_cpus();
4776 return err;
4779 static raid5_conf_t *setup_conf(mddev_t *mddev)
4781 raid5_conf_t *conf;
4782 int raid_disk, memory, max_disks;
4783 mdk_rdev_t *rdev;
4784 struct disk_info *disk;
4786 if (mddev->new_level != 5
4787 && mddev->new_level != 4
4788 && mddev->new_level != 6) {
4789 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4790 mdname(mddev), mddev->new_level);
4791 return ERR_PTR(-EIO);
4793 if ((mddev->new_level == 5
4794 && !algorithm_valid_raid5(mddev->new_layout)) ||
4795 (mddev->new_level == 6
4796 && !algorithm_valid_raid6(mddev->new_layout))) {
4797 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4798 mdname(mddev), mddev->new_layout);
4799 return ERR_PTR(-EIO);
4801 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4802 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4803 mdname(mddev), mddev->raid_disks);
4804 return ERR_PTR(-EINVAL);
4807 if (!mddev->new_chunk_sectors ||
4808 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4809 !is_power_of_2(mddev->new_chunk_sectors)) {
4810 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4811 mdname(mddev), mddev->new_chunk_sectors << 9);
4812 return ERR_PTR(-EINVAL);
4815 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4816 if (conf == NULL)
4817 goto abort;
4818 spin_lock_init(&conf->device_lock);
4819 init_waitqueue_head(&conf->wait_for_stripe);
4820 init_waitqueue_head(&conf->wait_for_overlap);
4821 INIT_LIST_HEAD(&conf->handle_list);
4822 INIT_LIST_HEAD(&conf->hold_list);
4823 INIT_LIST_HEAD(&conf->delayed_list);
4824 INIT_LIST_HEAD(&conf->bitmap_list);
4825 INIT_LIST_HEAD(&conf->inactive_list);
4826 atomic_set(&conf->active_stripes, 0);
4827 atomic_set(&conf->preread_active_stripes, 0);
4828 atomic_set(&conf->active_aligned_reads, 0);
4829 conf->bypass_threshold = BYPASS_THRESHOLD;
4831 conf->raid_disks = mddev->raid_disks;
4832 if (mddev->reshape_position == MaxSector)
4833 conf->previous_raid_disks = mddev->raid_disks;
4834 else
4835 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4836 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4837 conf->scribble_len = scribble_len(max_disks);
4839 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4840 GFP_KERNEL);
4841 if (!conf->disks)
4842 goto abort;
4844 conf->mddev = mddev;
4846 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4847 goto abort;
4849 conf->level = mddev->new_level;
4850 if (raid5_alloc_percpu(conf) != 0)
4851 goto abort;
4853 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4855 list_for_each_entry(rdev, &mddev->disks, same_set) {
4856 raid_disk = rdev->raid_disk;
4857 if (raid_disk >= max_disks
4858 || raid_disk < 0)
4859 continue;
4860 disk = conf->disks + raid_disk;
4862 disk->rdev = rdev;
4864 if (test_bit(In_sync, &rdev->flags)) {
4865 char b[BDEVNAME_SIZE];
4866 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4867 " disk %d\n",
4868 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4869 } else
4870 /* Cannot rely on bitmap to complete recovery */
4871 conf->fullsync = 1;
4874 conf->chunk_sectors = mddev->new_chunk_sectors;
4875 conf->level = mddev->new_level;
4876 if (conf->level == 6)
4877 conf->max_degraded = 2;
4878 else
4879 conf->max_degraded = 1;
4880 conf->algorithm = mddev->new_layout;
4881 conf->max_nr_stripes = NR_STRIPES;
4882 conf->reshape_progress = mddev->reshape_position;
4883 if (conf->reshape_progress != MaxSector) {
4884 conf->prev_chunk_sectors = mddev->chunk_sectors;
4885 conf->prev_algo = mddev->layout;
4888 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4889 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4890 if (grow_stripes(conf, conf->max_nr_stripes)) {
4891 printk(KERN_ERR
4892 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4893 mdname(mddev), memory);
4894 goto abort;
4895 } else
4896 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4897 mdname(mddev), memory);
4899 conf->thread = md_register_thread(raid5d, mddev, NULL);
4900 if (!conf->thread) {
4901 printk(KERN_ERR
4902 "md/raid:%s: couldn't allocate thread.\n",
4903 mdname(mddev));
4904 goto abort;
4907 return conf;
4909 abort:
4910 if (conf) {
4911 free_conf(conf);
4912 return ERR_PTR(-EIO);
4913 } else
4914 return ERR_PTR(-ENOMEM);
4918 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4920 switch (algo) {
4921 case ALGORITHM_PARITY_0:
4922 if (raid_disk < max_degraded)
4923 return 1;
4924 break;
4925 case ALGORITHM_PARITY_N:
4926 if (raid_disk >= raid_disks - max_degraded)
4927 return 1;
4928 break;
4929 case ALGORITHM_PARITY_0_6:
4930 if (raid_disk == 0 ||
4931 raid_disk == raid_disks - 1)
4932 return 1;
4933 break;
4934 case ALGORITHM_LEFT_ASYMMETRIC_6:
4935 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4936 case ALGORITHM_LEFT_SYMMETRIC_6:
4937 case ALGORITHM_RIGHT_SYMMETRIC_6:
4938 if (raid_disk == raid_disks - 1)
4939 return 1;
4941 return 0;
4944 static int run(mddev_t *mddev)
4946 raid5_conf_t *conf;
4947 int working_disks = 0;
4948 int dirty_parity_disks = 0;
4949 mdk_rdev_t *rdev;
4950 sector_t reshape_offset = 0;
4952 if (mddev->recovery_cp != MaxSector)
4953 printk(KERN_NOTICE "md/raid:%s: not clean"
4954 " -- starting background reconstruction\n",
4955 mdname(mddev));
4956 if (mddev->reshape_position != MaxSector) {
4957 /* Check that we can continue the reshape.
4958 * Currently only disks can change, it must
4959 * increase, and we must be past the point where
4960 * a stripe over-writes itself
4962 sector_t here_new, here_old;
4963 int old_disks;
4964 int max_degraded = (mddev->level == 6 ? 2 : 1);
4966 if (mddev->new_level != mddev->level) {
4967 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4968 "required - aborting.\n",
4969 mdname(mddev));
4970 return -EINVAL;
4972 old_disks = mddev->raid_disks - mddev->delta_disks;
4973 /* reshape_position must be on a new-stripe boundary, and one
4974 * further up in new geometry must map after here in old
4975 * geometry.
4977 here_new = mddev->reshape_position;
4978 if (sector_div(here_new, mddev->new_chunk_sectors *
4979 (mddev->raid_disks - max_degraded))) {
4980 printk(KERN_ERR "md/raid:%s: reshape_position not "
4981 "on a stripe boundary\n", mdname(mddev));
4982 return -EINVAL;
4984 reshape_offset = here_new * mddev->new_chunk_sectors;
4985 /* here_new is the stripe we will write to */
4986 here_old = mddev->reshape_position;
4987 sector_div(here_old, mddev->chunk_sectors *
4988 (old_disks-max_degraded));
4989 /* here_old is the first stripe that we might need to read
4990 * from */
4991 if (mddev->delta_disks == 0) {
4992 /* We cannot be sure it is safe to start an in-place
4993 * reshape. It is only safe if user-space if monitoring
4994 * and taking constant backups.
4995 * mdadm always starts a situation like this in
4996 * readonly mode so it can take control before
4997 * allowing any writes. So just check for that.
4999 if ((here_new * mddev->new_chunk_sectors !=
5000 here_old * mddev->chunk_sectors) ||
5001 mddev->ro == 0) {
5002 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5003 " in read-only mode - aborting\n",
5004 mdname(mddev));
5005 return -EINVAL;
5007 } else if (mddev->delta_disks < 0
5008 ? (here_new * mddev->new_chunk_sectors <=
5009 here_old * mddev->chunk_sectors)
5010 : (here_new * mddev->new_chunk_sectors >=
5011 here_old * mddev->chunk_sectors)) {
5012 /* Reading from the same stripe as writing to - bad */
5013 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5014 "auto-recovery - aborting.\n",
5015 mdname(mddev));
5016 return -EINVAL;
5018 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5019 mdname(mddev));
5020 /* OK, we should be able to continue; */
5021 } else {
5022 BUG_ON(mddev->level != mddev->new_level);
5023 BUG_ON(mddev->layout != mddev->new_layout);
5024 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5025 BUG_ON(mddev->delta_disks != 0);
5028 if (mddev->private == NULL)
5029 conf = setup_conf(mddev);
5030 else
5031 conf = mddev->private;
5033 if (IS_ERR(conf))
5034 return PTR_ERR(conf);
5036 mddev->thread = conf->thread;
5037 conf->thread = NULL;
5038 mddev->private = conf;
5041 * 0 for a fully functional array, 1 or 2 for a degraded array.
5043 list_for_each_entry(rdev, &mddev->disks, same_set) {
5044 if (rdev->raid_disk < 0)
5045 continue;
5046 if (test_bit(In_sync, &rdev->flags)) {
5047 working_disks++;
5048 continue;
5050 /* This disc is not fully in-sync. However if it
5051 * just stored parity (beyond the recovery_offset),
5052 * when we don't need to be concerned about the
5053 * array being dirty.
5054 * When reshape goes 'backwards', we never have
5055 * partially completed devices, so we only need
5056 * to worry about reshape going forwards.
5058 /* Hack because v0.91 doesn't store recovery_offset properly. */
5059 if (mddev->major_version == 0 &&
5060 mddev->minor_version > 90)
5061 rdev->recovery_offset = reshape_offset;
5063 if (rdev->recovery_offset < reshape_offset) {
5064 /* We need to check old and new layout */
5065 if (!only_parity(rdev->raid_disk,
5066 conf->algorithm,
5067 conf->raid_disks,
5068 conf->max_degraded))
5069 continue;
5071 if (!only_parity(rdev->raid_disk,
5072 conf->prev_algo,
5073 conf->previous_raid_disks,
5074 conf->max_degraded))
5075 continue;
5076 dirty_parity_disks++;
5079 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5080 - working_disks);
5082 if (has_failed(conf)) {
5083 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5084 " (%d/%d failed)\n",
5085 mdname(mddev), mddev->degraded, conf->raid_disks);
5086 goto abort;
5089 /* device size must be a multiple of chunk size */
5090 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5091 mddev->resync_max_sectors = mddev->dev_sectors;
5093 if (mddev->degraded > dirty_parity_disks &&
5094 mddev->recovery_cp != MaxSector) {
5095 if (mddev->ok_start_degraded)
5096 printk(KERN_WARNING
5097 "md/raid:%s: starting dirty degraded array"
5098 " - data corruption possible.\n",
5099 mdname(mddev));
5100 else {
5101 printk(KERN_ERR
5102 "md/raid:%s: cannot start dirty degraded array.\n",
5103 mdname(mddev));
5104 goto abort;
5108 if (mddev->degraded == 0)
5109 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5110 " devices, algorithm %d\n", mdname(mddev), conf->level,
5111 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5112 mddev->new_layout);
5113 else
5114 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5115 " out of %d devices, algorithm %d\n",
5116 mdname(mddev), conf->level,
5117 mddev->raid_disks - mddev->degraded,
5118 mddev->raid_disks, mddev->new_layout);
5120 print_raid5_conf(conf);
5122 if (conf->reshape_progress != MaxSector) {
5123 conf->reshape_safe = conf->reshape_progress;
5124 atomic_set(&conf->reshape_stripes, 0);
5125 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5126 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5127 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5128 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5129 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5130 "reshape");
5134 /* Ok, everything is just fine now */
5135 if (mddev->to_remove == &raid5_attrs_group)
5136 mddev->to_remove = NULL;
5137 else if (mddev->kobj.sd &&
5138 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5139 printk(KERN_WARNING
5140 "raid5: failed to create sysfs attributes for %s\n",
5141 mdname(mddev));
5142 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5144 plugger_init(&conf->plug, raid5_unplug);
5145 mddev->plug = &conf->plug;
5146 if (mddev->queue) {
5147 int chunk_size;
5148 /* read-ahead size must cover two whole stripes, which
5149 * is 2 * (datadisks) * chunksize where 'n' is the
5150 * number of raid devices
5152 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5153 int stripe = data_disks *
5154 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5155 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5156 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5158 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5160 mddev->queue->backing_dev_info.congested_data = mddev;
5161 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5162 mddev->queue->queue_lock = &conf->device_lock;
5164 chunk_size = mddev->chunk_sectors << 9;
5165 blk_queue_io_min(mddev->queue, chunk_size);
5166 blk_queue_io_opt(mddev->queue, chunk_size *
5167 (conf->raid_disks - conf->max_degraded));
5169 list_for_each_entry(rdev, &mddev->disks, same_set)
5170 disk_stack_limits(mddev->gendisk, rdev->bdev,
5171 rdev->data_offset << 9);
5174 return 0;
5175 abort:
5176 md_unregister_thread(mddev->thread);
5177 mddev->thread = NULL;
5178 if (conf) {
5179 print_raid5_conf(conf);
5180 free_conf(conf);
5182 mddev->private = NULL;
5183 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5184 return -EIO;
5187 static int stop(mddev_t *mddev)
5189 raid5_conf_t *conf = mddev->private;
5191 md_unregister_thread(mddev->thread);
5192 mddev->thread = NULL;
5193 if (mddev->queue)
5194 mddev->queue->backing_dev_info.congested_fn = NULL;
5195 plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5196 free_conf(conf);
5197 mddev->private = NULL;
5198 mddev->to_remove = &raid5_attrs_group;
5199 return 0;
5202 #ifdef DEBUG
5203 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5205 int i;
5207 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5208 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5209 seq_printf(seq, "sh %llu, count %d.\n",
5210 (unsigned long long)sh->sector, atomic_read(&sh->count));
5211 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5212 for (i = 0; i < sh->disks; i++) {
5213 seq_printf(seq, "(cache%d: %p %ld) ",
5214 i, sh->dev[i].page, sh->dev[i].flags);
5216 seq_printf(seq, "\n");
5219 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5221 struct stripe_head *sh;
5222 struct hlist_node *hn;
5223 int i;
5225 spin_lock_irq(&conf->device_lock);
5226 for (i = 0; i < NR_HASH; i++) {
5227 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5228 if (sh->raid_conf != conf)
5229 continue;
5230 print_sh(seq, sh);
5233 spin_unlock_irq(&conf->device_lock);
5235 #endif
5237 static void status(struct seq_file *seq, mddev_t *mddev)
5239 raid5_conf_t *conf = mddev->private;
5240 int i;
5242 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5243 mddev->chunk_sectors / 2, mddev->layout);
5244 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5245 for (i = 0; i < conf->raid_disks; i++)
5246 seq_printf (seq, "%s",
5247 conf->disks[i].rdev &&
5248 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5249 seq_printf (seq, "]");
5250 #ifdef DEBUG
5251 seq_printf (seq, "\n");
5252 printall(seq, conf);
5253 #endif
5256 static void print_raid5_conf (raid5_conf_t *conf)
5258 int i;
5259 struct disk_info *tmp;
5261 printk(KERN_DEBUG "RAID conf printout:\n");
5262 if (!conf) {
5263 printk("(conf==NULL)\n");
5264 return;
5266 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5267 conf->raid_disks,
5268 conf->raid_disks - conf->mddev->degraded);
5270 for (i = 0; i < conf->raid_disks; i++) {
5271 char b[BDEVNAME_SIZE];
5272 tmp = conf->disks + i;
5273 if (tmp->rdev)
5274 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5275 i, !test_bit(Faulty, &tmp->rdev->flags),
5276 bdevname(tmp->rdev->bdev, b));
5280 static int raid5_spare_active(mddev_t *mddev)
5282 int i;
5283 raid5_conf_t *conf = mddev->private;
5284 struct disk_info *tmp;
5285 int count = 0;
5286 unsigned long flags;
5288 for (i = 0; i < conf->raid_disks; i++) {
5289 tmp = conf->disks + i;
5290 if (tmp->rdev
5291 && tmp->rdev->recovery_offset == MaxSector
5292 && !test_bit(Faulty, &tmp->rdev->flags)
5293 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5294 count++;
5295 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5298 spin_lock_irqsave(&conf->device_lock, flags);
5299 mddev->degraded -= count;
5300 spin_unlock_irqrestore(&conf->device_lock, flags);
5301 print_raid5_conf(conf);
5302 return count;
5305 static int raid5_remove_disk(mddev_t *mddev, int number)
5307 raid5_conf_t *conf = mddev->private;
5308 int err = 0;
5309 mdk_rdev_t *rdev;
5310 struct disk_info *p = conf->disks + number;
5312 print_raid5_conf(conf);
5313 rdev = p->rdev;
5314 if (rdev) {
5315 if (number >= conf->raid_disks &&
5316 conf->reshape_progress == MaxSector)
5317 clear_bit(In_sync, &rdev->flags);
5319 if (test_bit(In_sync, &rdev->flags) ||
5320 atomic_read(&rdev->nr_pending)) {
5321 err = -EBUSY;
5322 goto abort;
5324 /* Only remove non-faulty devices if recovery
5325 * isn't possible.
5327 if (!test_bit(Faulty, &rdev->flags) &&
5328 !has_failed(conf) &&
5329 number < conf->raid_disks) {
5330 err = -EBUSY;
5331 goto abort;
5333 p->rdev = NULL;
5334 synchronize_rcu();
5335 if (atomic_read(&rdev->nr_pending)) {
5336 /* lost the race, try later */
5337 err = -EBUSY;
5338 p->rdev = rdev;
5341 abort:
5343 print_raid5_conf(conf);
5344 return err;
5347 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5349 raid5_conf_t *conf = mddev->private;
5350 int err = -EEXIST;
5351 int disk;
5352 struct disk_info *p;
5353 int first = 0;
5354 int last = conf->raid_disks - 1;
5356 if (has_failed(conf))
5357 /* no point adding a device */
5358 return -EINVAL;
5360 if (rdev->raid_disk >= 0)
5361 first = last = rdev->raid_disk;
5364 * find the disk ... but prefer rdev->saved_raid_disk
5365 * if possible.
5367 if (rdev->saved_raid_disk >= 0 &&
5368 rdev->saved_raid_disk >= first &&
5369 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5370 disk = rdev->saved_raid_disk;
5371 else
5372 disk = first;
5373 for ( ; disk <= last ; disk++)
5374 if ((p=conf->disks + disk)->rdev == NULL) {
5375 clear_bit(In_sync, &rdev->flags);
5376 rdev->raid_disk = disk;
5377 err = 0;
5378 if (rdev->saved_raid_disk != disk)
5379 conf->fullsync = 1;
5380 rcu_assign_pointer(p->rdev, rdev);
5381 break;
5383 print_raid5_conf(conf);
5384 return err;
5387 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5389 /* no resync is happening, and there is enough space
5390 * on all devices, so we can resize.
5391 * We need to make sure resync covers any new space.
5392 * If the array is shrinking we should possibly wait until
5393 * any io in the removed space completes, but it hardly seems
5394 * worth it.
5396 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5397 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5398 mddev->raid_disks));
5399 if (mddev->array_sectors >
5400 raid5_size(mddev, sectors, mddev->raid_disks))
5401 return -EINVAL;
5402 set_capacity(mddev->gendisk, mddev->array_sectors);
5403 revalidate_disk(mddev->gendisk);
5404 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5405 mddev->recovery_cp = mddev->dev_sectors;
5406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5408 mddev->dev_sectors = sectors;
5409 mddev->resync_max_sectors = sectors;
5410 return 0;
5413 static int check_stripe_cache(mddev_t *mddev)
5415 /* Can only proceed if there are plenty of stripe_heads.
5416 * We need a minimum of one full stripe,, and for sensible progress
5417 * it is best to have about 4 times that.
5418 * If we require 4 times, then the default 256 4K stripe_heads will
5419 * allow for chunk sizes up to 256K, which is probably OK.
5420 * If the chunk size is greater, user-space should request more
5421 * stripe_heads first.
5423 raid5_conf_t *conf = mddev->private;
5424 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5425 > conf->max_nr_stripes ||
5426 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5427 > conf->max_nr_stripes) {
5428 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5429 mdname(mddev),
5430 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5431 / STRIPE_SIZE)*4);
5432 return 0;
5434 return 1;
5437 static int check_reshape(mddev_t *mddev)
5439 raid5_conf_t *conf = mddev->private;
5441 if (mddev->delta_disks == 0 &&
5442 mddev->new_layout == mddev->layout &&
5443 mddev->new_chunk_sectors == mddev->chunk_sectors)
5444 return 0; /* nothing to do */
5445 if (mddev->bitmap)
5446 /* Cannot grow a bitmap yet */
5447 return -EBUSY;
5448 if (has_failed(conf))
5449 return -EINVAL;
5450 if (mddev->delta_disks < 0) {
5451 /* We might be able to shrink, but the devices must
5452 * be made bigger first.
5453 * For raid6, 4 is the minimum size.
5454 * Otherwise 2 is the minimum
5456 int min = 2;
5457 if (mddev->level == 6)
5458 min = 4;
5459 if (mddev->raid_disks + mddev->delta_disks < min)
5460 return -EINVAL;
5463 if (!check_stripe_cache(mddev))
5464 return -ENOSPC;
5466 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5469 static int raid5_start_reshape(mddev_t *mddev)
5471 raid5_conf_t *conf = mddev->private;
5472 mdk_rdev_t *rdev;
5473 int spares = 0;
5474 unsigned long flags;
5476 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5477 return -EBUSY;
5479 if (!check_stripe_cache(mddev))
5480 return -ENOSPC;
5482 list_for_each_entry(rdev, &mddev->disks, same_set)
5483 if (!test_bit(In_sync, &rdev->flags)
5484 && !test_bit(Faulty, &rdev->flags))
5485 spares++;
5487 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5488 /* Not enough devices even to make a degraded array
5489 * of that size
5491 return -EINVAL;
5493 /* Refuse to reduce size of the array. Any reductions in
5494 * array size must be through explicit setting of array_size
5495 * attribute.
5497 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5498 < mddev->array_sectors) {
5499 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5500 "before number of disks\n", mdname(mddev));
5501 return -EINVAL;
5504 atomic_set(&conf->reshape_stripes, 0);
5505 spin_lock_irq(&conf->device_lock);
5506 conf->previous_raid_disks = conf->raid_disks;
5507 conf->raid_disks += mddev->delta_disks;
5508 conf->prev_chunk_sectors = conf->chunk_sectors;
5509 conf->chunk_sectors = mddev->new_chunk_sectors;
5510 conf->prev_algo = conf->algorithm;
5511 conf->algorithm = mddev->new_layout;
5512 if (mddev->delta_disks < 0)
5513 conf->reshape_progress = raid5_size(mddev, 0, 0);
5514 else
5515 conf->reshape_progress = 0;
5516 conf->reshape_safe = conf->reshape_progress;
5517 conf->generation++;
5518 spin_unlock_irq(&conf->device_lock);
5520 /* Add some new drives, as many as will fit.
5521 * We know there are enough to make the newly sized array work.
5522 * Don't add devices if we are reducing the number of
5523 * devices in the array. This is because it is not possible
5524 * to correctly record the "partially reconstructed" state of
5525 * such devices during the reshape and confusion could result.
5527 if (mddev->delta_disks >= 0) {
5528 int added_devices = 0;
5529 list_for_each_entry(rdev, &mddev->disks, same_set)
5530 if (rdev->raid_disk < 0 &&
5531 !test_bit(Faulty, &rdev->flags)) {
5532 if (raid5_add_disk(mddev, rdev) == 0) {
5533 char nm[20];
5534 if (rdev->raid_disk
5535 >= conf->previous_raid_disks) {
5536 set_bit(In_sync, &rdev->flags);
5537 added_devices++;
5538 } else
5539 rdev->recovery_offset = 0;
5540 sprintf(nm, "rd%d", rdev->raid_disk);
5541 if (sysfs_create_link(&mddev->kobj,
5542 &rdev->kobj, nm))
5543 /* Failure here is OK */;
5545 } else if (rdev->raid_disk >= conf->previous_raid_disks
5546 && !test_bit(Faulty, &rdev->flags)) {
5547 /* This is a spare that was manually added */
5548 set_bit(In_sync, &rdev->flags);
5549 added_devices++;
5552 /* When a reshape changes the number of devices,
5553 * ->degraded is measured against the larger of the
5554 * pre and post number of devices.
5556 spin_lock_irqsave(&conf->device_lock, flags);
5557 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5558 - added_devices;
5559 spin_unlock_irqrestore(&conf->device_lock, flags);
5561 mddev->raid_disks = conf->raid_disks;
5562 mddev->reshape_position = conf->reshape_progress;
5563 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5565 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5566 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5567 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5568 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5569 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5570 "reshape");
5571 if (!mddev->sync_thread) {
5572 mddev->recovery = 0;
5573 spin_lock_irq(&conf->device_lock);
5574 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5575 conf->reshape_progress = MaxSector;
5576 spin_unlock_irq(&conf->device_lock);
5577 return -EAGAIN;
5579 conf->reshape_checkpoint = jiffies;
5580 md_wakeup_thread(mddev->sync_thread);
5581 md_new_event(mddev);
5582 return 0;
5585 /* This is called from the reshape thread and should make any
5586 * changes needed in 'conf'
5588 static void end_reshape(raid5_conf_t *conf)
5591 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5593 spin_lock_irq(&conf->device_lock);
5594 conf->previous_raid_disks = conf->raid_disks;
5595 conf->reshape_progress = MaxSector;
5596 spin_unlock_irq(&conf->device_lock);
5597 wake_up(&conf->wait_for_overlap);
5599 /* read-ahead size must cover two whole stripes, which is
5600 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5602 if (conf->mddev->queue) {
5603 int data_disks = conf->raid_disks - conf->max_degraded;
5604 int stripe = data_disks * ((conf->chunk_sectors << 9)
5605 / PAGE_SIZE);
5606 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5607 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5612 /* This is called from the raid5d thread with mddev_lock held.
5613 * It makes config changes to the device.
5615 static void raid5_finish_reshape(mddev_t *mddev)
5617 raid5_conf_t *conf = mddev->private;
5619 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5621 if (mddev->delta_disks > 0) {
5622 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5623 set_capacity(mddev->gendisk, mddev->array_sectors);
5624 revalidate_disk(mddev->gendisk);
5625 } else {
5626 int d;
5627 mddev->degraded = conf->raid_disks;
5628 for (d = 0; d < conf->raid_disks ; d++)
5629 if (conf->disks[d].rdev &&
5630 test_bit(In_sync,
5631 &conf->disks[d].rdev->flags))
5632 mddev->degraded--;
5633 for (d = conf->raid_disks ;
5634 d < conf->raid_disks - mddev->delta_disks;
5635 d++) {
5636 mdk_rdev_t *rdev = conf->disks[d].rdev;
5637 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5638 char nm[20];
5639 sprintf(nm, "rd%d", rdev->raid_disk);
5640 sysfs_remove_link(&mddev->kobj, nm);
5641 rdev->raid_disk = -1;
5645 mddev->layout = conf->algorithm;
5646 mddev->chunk_sectors = conf->chunk_sectors;
5647 mddev->reshape_position = MaxSector;
5648 mddev->delta_disks = 0;
5652 static void raid5_quiesce(mddev_t *mddev, int state)
5654 raid5_conf_t *conf = mddev->private;
5656 switch(state) {
5657 case 2: /* resume for a suspend */
5658 wake_up(&conf->wait_for_overlap);
5659 break;
5661 case 1: /* stop all writes */
5662 spin_lock_irq(&conf->device_lock);
5663 /* '2' tells resync/reshape to pause so that all
5664 * active stripes can drain
5666 conf->quiesce = 2;
5667 wait_event_lock_irq(conf->wait_for_stripe,
5668 atomic_read(&conf->active_stripes) == 0 &&
5669 atomic_read(&conf->active_aligned_reads) == 0,
5670 conf->device_lock, /* nothing */);
5671 conf->quiesce = 1;
5672 spin_unlock_irq(&conf->device_lock);
5673 /* allow reshape to continue */
5674 wake_up(&conf->wait_for_overlap);
5675 break;
5677 case 0: /* re-enable writes */
5678 spin_lock_irq(&conf->device_lock);
5679 conf->quiesce = 0;
5680 wake_up(&conf->wait_for_stripe);
5681 wake_up(&conf->wait_for_overlap);
5682 spin_unlock_irq(&conf->device_lock);
5683 break;
5688 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5690 struct raid0_private_data *raid0_priv = mddev->private;
5692 /* for raid0 takeover only one zone is supported */
5693 if (raid0_priv->nr_strip_zones > 1) {
5694 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5695 mdname(mddev));
5696 return ERR_PTR(-EINVAL);
5699 mddev->new_level = level;
5700 mddev->new_layout = ALGORITHM_PARITY_N;
5701 mddev->new_chunk_sectors = mddev->chunk_sectors;
5702 mddev->raid_disks += 1;
5703 mddev->delta_disks = 1;
5704 /* make sure it will be not marked as dirty */
5705 mddev->recovery_cp = MaxSector;
5707 return setup_conf(mddev);
5711 static void *raid5_takeover_raid1(mddev_t *mddev)
5713 int chunksect;
5715 if (mddev->raid_disks != 2 ||
5716 mddev->degraded > 1)
5717 return ERR_PTR(-EINVAL);
5719 /* Should check if there are write-behind devices? */
5721 chunksect = 64*2; /* 64K by default */
5723 /* The array must be an exact multiple of chunksize */
5724 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5725 chunksect >>= 1;
5727 if ((chunksect<<9) < STRIPE_SIZE)
5728 /* array size does not allow a suitable chunk size */
5729 return ERR_PTR(-EINVAL);
5731 mddev->new_level = 5;
5732 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5733 mddev->new_chunk_sectors = chunksect;
5735 return setup_conf(mddev);
5738 static void *raid5_takeover_raid6(mddev_t *mddev)
5740 int new_layout;
5742 switch (mddev->layout) {
5743 case ALGORITHM_LEFT_ASYMMETRIC_6:
5744 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5745 break;
5746 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5747 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5748 break;
5749 case ALGORITHM_LEFT_SYMMETRIC_6:
5750 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5751 break;
5752 case ALGORITHM_RIGHT_SYMMETRIC_6:
5753 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5754 break;
5755 case ALGORITHM_PARITY_0_6:
5756 new_layout = ALGORITHM_PARITY_0;
5757 break;
5758 case ALGORITHM_PARITY_N:
5759 new_layout = ALGORITHM_PARITY_N;
5760 break;
5761 default:
5762 return ERR_PTR(-EINVAL);
5764 mddev->new_level = 5;
5765 mddev->new_layout = new_layout;
5766 mddev->delta_disks = -1;
5767 mddev->raid_disks -= 1;
5768 return setup_conf(mddev);
5772 static int raid5_check_reshape(mddev_t *mddev)
5774 /* For a 2-drive array, the layout and chunk size can be changed
5775 * immediately as not restriping is needed.
5776 * For larger arrays we record the new value - after validation
5777 * to be used by a reshape pass.
5779 raid5_conf_t *conf = mddev->private;
5780 int new_chunk = mddev->new_chunk_sectors;
5782 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5783 return -EINVAL;
5784 if (new_chunk > 0) {
5785 if (!is_power_of_2(new_chunk))
5786 return -EINVAL;
5787 if (new_chunk < (PAGE_SIZE>>9))
5788 return -EINVAL;
5789 if (mddev->array_sectors & (new_chunk-1))
5790 /* not factor of array size */
5791 return -EINVAL;
5794 /* They look valid */
5796 if (mddev->raid_disks == 2) {
5797 /* can make the change immediately */
5798 if (mddev->new_layout >= 0) {
5799 conf->algorithm = mddev->new_layout;
5800 mddev->layout = mddev->new_layout;
5802 if (new_chunk > 0) {
5803 conf->chunk_sectors = new_chunk ;
5804 mddev->chunk_sectors = new_chunk;
5806 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807 md_wakeup_thread(mddev->thread);
5809 return check_reshape(mddev);
5812 static int raid6_check_reshape(mddev_t *mddev)
5814 int new_chunk = mddev->new_chunk_sectors;
5816 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5817 return -EINVAL;
5818 if (new_chunk > 0) {
5819 if (!is_power_of_2(new_chunk))
5820 return -EINVAL;
5821 if (new_chunk < (PAGE_SIZE >> 9))
5822 return -EINVAL;
5823 if (mddev->array_sectors & (new_chunk-1))
5824 /* not factor of array size */
5825 return -EINVAL;
5828 /* They look valid */
5829 return check_reshape(mddev);
5832 static void *raid5_takeover(mddev_t *mddev)
5834 /* raid5 can take over:
5835 * raid0 - if there is only one strip zone - make it a raid4 layout
5836 * raid1 - if there are two drives. We need to know the chunk size
5837 * raid4 - trivial - just use a raid4 layout.
5838 * raid6 - Providing it is a *_6 layout
5840 if (mddev->level == 0)
5841 return raid45_takeover_raid0(mddev, 5);
5842 if (mddev->level == 1)
5843 return raid5_takeover_raid1(mddev);
5844 if (mddev->level == 4) {
5845 mddev->new_layout = ALGORITHM_PARITY_N;
5846 mddev->new_level = 5;
5847 return setup_conf(mddev);
5849 if (mddev->level == 6)
5850 return raid5_takeover_raid6(mddev);
5852 return ERR_PTR(-EINVAL);
5855 static void *raid4_takeover(mddev_t *mddev)
5857 /* raid4 can take over:
5858 * raid0 - if there is only one strip zone
5859 * raid5 - if layout is right
5861 if (mddev->level == 0)
5862 return raid45_takeover_raid0(mddev, 4);
5863 if (mddev->level == 5 &&
5864 mddev->layout == ALGORITHM_PARITY_N) {
5865 mddev->new_layout = 0;
5866 mddev->new_level = 4;
5867 return setup_conf(mddev);
5869 return ERR_PTR(-EINVAL);
5872 static struct mdk_personality raid5_personality;
5874 static void *raid6_takeover(mddev_t *mddev)
5876 /* Currently can only take over a raid5. We map the
5877 * personality to an equivalent raid6 personality
5878 * with the Q block at the end.
5880 int new_layout;
5882 if (mddev->pers != &raid5_personality)
5883 return ERR_PTR(-EINVAL);
5884 if (mddev->degraded > 1)
5885 return ERR_PTR(-EINVAL);
5886 if (mddev->raid_disks > 253)
5887 return ERR_PTR(-EINVAL);
5888 if (mddev->raid_disks < 3)
5889 return ERR_PTR(-EINVAL);
5891 switch (mddev->layout) {
5892 case ALGORITHM_LEFT_ASYMMETRIC:
5893 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5894 break;
5895 case ALGORITHM_RIGHT_ASYMMETRIC:
5896 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5897 break;
5898 case ALGORITHM_LEFT_SYMMETRIC:
5899 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5900 break;
5901 case ALGORITHM_RIGHT_SYMMETRIC:
5902 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5903 break;
5904 case ALGORITHM_PARITY_0:
5905 new_layout = ALGORITHM_PARITY_0_6;
5906 break;
5907 case ALGORITHM_PARITY_N:
5908 new_layout = ALGORITHM_PARITY_N;
5909 break;
5910 default:
5911 return ERR_PTR(-EINVAL);
5913 mddev->new_level = 6;
5914 mddev->new_layout = new_layout;
5915 mddev->delta_disks = 1;
5916 mddev->raid_disks += 1;
5917 return setup_conf(mddev);
5921 static struct mdk_personality raid6_personality =
5923 .name = "raid6",
5924 .level = 6,
5925 .owner = THIS_MODULE,
5926 .make_request = make_request,
5927 .run = run,
5928 .stop = stop,
5929 .status = status,
5930 .error_handler = error,
5931 .hot_add_disk = raid5_add_disk,
5932 .hot_remove_disk= raid5_remove_disk,
5933 .spare_active = raid5_spare_active,
5934 .sync_request = sync_request,
5935 .resize = raid5_resize,
5936 .size = raid5_size,
5937 .check_reshape = raid6_check_reshape,
5938 .start_reshape = raid5_start_reshape,
5939 .finish_reshape = raid5_finish_reshape,
5940 .quiesce = raid5_quiesce,
5941 .takeover = raid6_takeover,
5943 static struct mdk_personality raid5_personality =
5945 .name = "raid5",
5946 .level = 5,
5947 .owner = THIS_MODULE,
5948 .make_request = make_request,
5949 .run = run,
5950 .stop = stop,
5951 .status = status,
5952 .error_handler = error,
5953 .hot_add_disk = raid5_add_disk,
5954 .hot_remove_disk= raid5_remove_disk,
5955 .spare_active = raid5_spare_active,
5956 .sync_request = sync_request,
5957 .resize = raid5_resize,
5958 .size = raid5_size,
5959 .check_reshape = raid5_check_reshape,
5960 .start_reshape = raid5_start_reshape,
5961 .finish_reshape = raid5_finish_reshape,
5962 .quiesce = raid5_quiesce,
5963 .takeover = raid5_takeover,
5966 static struct mdk_personality raid4_personality =
5968 .name = "raid4",
5969 .level = 4,
5970 .owner = THIS_MODULE,
5971 .make_request = make_request,
5972 .run = run,
5973 .stop = stop,
5974 .status = status,
5975 .error_handler = error,
5976 .hot_add_disk = raid5_add_disk,
5977 .hot_remove_disk= raid5_remove_disk,
5978 .spare_active = raid5_spare_active,
5979 .sync_request = sync_request,
5980 .resize = raid5_resize,
5981 .size = raid5_size,
5982 .check_reshape = raid5_check_reshape,
5983 .start_reshape = raid5_start_reshape,
5984 .finish_reshape = raid5_finish_reshape,
5985 .quiesce = raid5_quiesce,
5986 .takeover = raid4_takeover,
5989 static int __init raid5_init(void)
5991 register_md_personality(&raid6_personality);
5992 register_md_personality(&raid5_personality);
5993 register_md_personality(&raid4_personality);
5994 return 0;
5997 static void raid5_exit(void)
5999 unregister_md_personality(&raid6_personality);
6000 unregister_md_personality(&raid5_personality);
6001 unregister_md_personality(&raid4_personality);
6004 module_init(raid5_init);
6005 module_exit(raid5_exit);
6006 MODULE_LICENSE("GPL");
6007 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6008 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6009 MODULE_ALIAS("md-raid5");
6010 MODULE_ALIAS("md-raid4");
6011 MODULE_ALIAS("md-level-5");
6012 MODULE_ALIAS("md-level-4");
6013 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6014 MODULE_ALIAS("md-raid6");
6015 MODULE_ALIAS("md-level-6");
6017 /* This used to be two separate modules, they were: */
6018 MODULE_ALIAS("raid5");
6019 MODULE_ALIAS("raid6");