IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / mtd / nand / davinci_nand.c
blobaff3468867ac056cb81054fa4c17bfdb50022803
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
37 #include <mach/nand.h>
38 #include <mach/aemif.h>
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 struct davinci_nand_info {
54 struct mtd_info mtd;
55 struct nand_chip chip;
56 struct nand_ecclayout ecclayout;
58 struct device *dev;
59 struct clk *clk;
60 bool partitioned;
62 bool is_readmode;
64 void __iomem *base;
65 void __iomem *vaddr;
67 uint32_t ioaddr;
68 uint32_t current_cs;
70 uint32_t mask_chipsel;
71 uint32_t mask_ale;
72 uint32_t mask_cle;
74 uint32_t core_chipsel;
76 struct davinci_aemif_timing *timing;
79 static DEFINE_SPINLOCK(davinci_nand_lock);
80 static bool ecc4_busy;
82 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 int offset)
88 return __raw_readl(info->base + offset);
91 static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 int offset, unsigned long value)
94 __raw_writel(value, info->base + offset);
97 /*----------------------------------------------------------------------*/
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 unsigned int ctrl)
106 struct davinci_nand_info *info = to_davinci_nand(mtd);
107 uint32_t addr = info->current_cs;
108 struct nand_chip *nand = mtd->priv;
110 /* Did the control lines change? */
111 if (ctrl & NAND_CTRL_CHANGE) {
112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 addr |= info->mask_cle;
114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 addr |= info->mask_ale;
117 nand->IO_ADDR_W = (void __iomem __force *)addr;
120 if (cmd != NAND_CMD_NONE)
121 iowrite8(cmd, nand->IO_ADDR_W);
124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 struct davinci_nand_info *info = to_davinci_nand(mtd);
127 uint32_t addr = info->ioaddr;
129 /* maybe kick in a second chipselect */
130 if (chip > 0)
131 addr |= info->mask_chipsel;
132 info->current_cs = addr;
134 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
138 /*----------------------------------------------------------------------*/
141 * 1-bit hardware ECC ... context maintained for each core chipselect
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 struct davinci_nand_info *info = to_davinci_nand(mtd);
148 return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 + 4 * info->core_chipsel);
152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 struct davinci_nand_info *info;
155 uint32_t nandcfr;
156 unsigned long flags;
158 info = to_davinci_nand(mtd);
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd);
163 spin_lock_irqsave(&davinci_nand_lock, flags);
165 /* Restart ECC hardware */
166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 nandcfr |= BIT(8 + info->core_chipsel);
168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170 spin_unlock_irqrestore(&davinci_nand_lock, flags);
174 * Read hardware ECC value and pack into three bytes
176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 const u_char *dat, u_char *ecc_code)
179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182 /* invert so that erased block ecc is correct */
183 ecc24 = ~ecc24;
184 ecc_code[0] = (u_char)(ecc24);
185 ecc_code[1] = (u_char)(ecc24 >> 8);
186 ecc_code[2] = (u_char)(ecc24 >> 16);
188 return 0;
191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 u_char *read_ecc, u_char *calc_ecc)
194 struct nand_chip *chip = mtd->priv;
195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 (read_ecc[2] << 16);
197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 (calc_ecc[2] << 16);
199 uint32_t diff = eccCalc ^ eccNand;
201 if (diff) {
202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff >> (12 + 3)) < chip->ecc.size) {
205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 return 1;
207 } else {
208 return -1;
210 } else if (!(diff & (diff - 1))) {
211 /* Single bit ECC error in the ECC itself,
212 * nothing to fix */
213 return 1;
214 } else {
215 /* Uncorrectable error */
216 return -1;
220 return 0;
223 /*----------------------------------------------------------------------*/
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 struct davinci_nand_info *info = to_davinci_nand(mtd);
240 unsigned long flags;
241 u32 val;
243 spin_lock_irqsave(&davinci_nand_lock, flags);
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
251 info->is_readmode = (mode == NAND_ECC_READ);
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256 /* Read raw ECC code after writing to NAND. */
257 static void
258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260 const u32 mask = 0x03ff03ff;
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
300 return 0;
303 /* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
306 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
314 u32 ecc_state;
315 unsigned num_errors, corrected;
316 unsigned long timeo;
318 /* All bytes 0xff? It's an erased page; ignore its ECC. */
319 for (i = 0; i < 10; i++) {
320 if (ecc_code[i] != 0xff)
321 goto compare;
323 return 0;
325 compare:
326 /* Unpack ten bytes into eight 10 bit values. We know we're
327 * little-endian, and use type punning for less shifting/masking.
329 if (WARN_ON(0x01 & (unsigned) ecc_code))
330 return -EINVAL;
331 ecc16 = (unsigned short *)ecc_code;
333 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
334 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
335 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
336 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
337 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
338 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
339 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
340 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
342 /* Tell ECC controller about the expected ECC codes. */
343 for (i = 7; i >= 0; i--)
344 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
346 /* Allow time for syndrome calculation ... then read it.
347 * A syndrome of all zeroes 0 means no detected errors.
349 davinci_nand_readl(info, NANDFSR_OFFSET);
350 nand_davinci_readecc_4bit(info, syndrome);
351 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
352 return 0;
355 * Clear any previous address calculation by doing a dummy read of an
356 * error address register.
358 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
360 /* Start address calculation, and wait for it to complete.
361 * We _could_ start reading more data while this is working,
362 * to speed up the overall page read.
364 davinci_nand_writel(info, NANDFCR_OFFSET,
365 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
368 * ECC_STATE field reads 0x3 (Error correction complete) immediately
369 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
370 * begin trying to poll for the state, you may fall right out of your
371 * loop without any of the correction calculations having taken place.
372 * The recommendation from the hardware team is to initially delay as
373 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
374 * correction state.
376 timeo = jiffies + usecs_to_jiffies(100);
377 do {
378 ecc_state = (davinci_nand_readl(info,
379 NANDFSR_OFFSET) >> 8) & 0x0f;
380 cpu_relax();
381 } while ((ecc_state < 4) && time_before(jiffies, timeo));
383 for (;;) {
384 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
386 switch ((fsr >> 8) & 0x0f) {
387 case 0: /* no error, should not happen */
388 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
389 return 0;
390 case 1: /* five or more errors detected */
391 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
392 return -EIO;
393 case 2: /* error addresses computed */
394 case 3:
395 num_errors = 1 + ((fsr >> 16) & 0x03);
396 goto correct;
397 default: /* still working on it */
398 cpu_relax();
399 continue;
403 correct:
404 /* correct each error */
405 for (i = 0, corrected = 0; i < num_errors; i++) {
406 int error_address, error_value;
408 if (i > 1) {
409 error_address = davinci_nand_readl(info,
410 NAND_ERR_ADD2_OFFSET);
411 error_value = davinci_nand_readl(info,
412 NAND_ERR_ERRVAL2_OFFSET);
413 } else {
414 error_address = davinci_nand_readl(info,
415 NAND_ERR_ADD1_OFFSET);
416 error_value = davinci_nand_readl(info,
417 NAND_ERR_ERRVAL1_OFFSET);
420 if (i & 1) {
421 error_address >>= 16;
422 error_value >>= 16;
424 error_address &= 0x3ff;
425 error_address = (512 + 7) - error_address;
427 if (error_address < 512) {
428 data[error_address] ^= error_value;
429 corrected++;
433 return corrected;
436 /*----------------------------------------------------------------------*/
439 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
440 * how these chips are normally wired. This translates to both 8 and 16
441 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
443 * For now we assume that configuration, or any other one which ignores
444 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
445 * and have that transparently morphed into multiple NAND operations.
447 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
449 struct nand_chip *chip = mtd->priv;
451 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
452 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
453 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
454 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
455 else
456 ioread8_rep(chip->IO_ADDR_R, buf, len);
459 static void nand_davinci_write_buf(struct mtd_info *mtd,
460 const uint8_t *buf, int len)
462 struct nand_chip *chip = mtd->priv;
464 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
465 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
466 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
467 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
468 else
469 iowrite8_rep(chip->IO_ADDR_R, buf, len);
473 * Check hardware register for wait status. Returns 1 if device is ready,
474 * 0 if it is still busy.
476 static int nand_davinci_dev_ready(struct mtd_info *mtd)
478 struct davinci_nand_info *info = to_davinci_nand(mtd);
480 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
483 /*----------------------------------------------------------------------*/
485 /* An ECC layout for using 4-bit ECC with small-page flash, storing
486 * ten ECC bytes plus the manufacturer's bad block marker byte, and
487 * and not overlapping the default BBT markers.
489 static struct nand_ecclayout hwecc4_small __initconst = {
490 .eccbytes = 10,
491 .eccpos = { 0, 1, 2, 3, 4,
492 /* offset 5 holds the badblock marker */
493 6, 7,
494 13, 14, 15, },
495 .oobfree = {
496 {.offset = 8, .length = 5, },
497 {.offset = 16, },
501 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
502 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
503 * and not overlapping the default BBT markers.
505 static struct nand_ecclayout hwecc4_2048 __initconst = {
506 .eccbytes = 40,
507 .eccpos = {
508 /* at the end of spare sector */
509 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
510 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
511 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
512 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
514 .oobfree = {
515 /* 2 bytes at offset 0 hold manufacturer badblock markers */
516 {.offset = 2, .length = 22, },
517 /* 5 bytes at offset 8 hold BBT markers */
518 /* 8 bytes at offset 16 hold JFFS2 clean markers */
522 static int __init nand_davinci_probe(struct platform_device *pdev)
524 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
525 struct davinci_nand_info *info;
526 struct resource *res1;
527 struct resource *res2;
528 void __iomem *vaddr;
529 void __iomem *base;
530 int ret;
531 uint32_t val;
532 nand_ecc_modes_t ecc_mode;
534 /* insist on board-specific configuration */
535 if (!pdata)
536 return -ENODEV;
538 /* which external chipselect will we be managing? */
539 if (pdev->id < 0 || pdev->id > 3)
540 return -ENODEV;
542 info = kzalloc(sizeof(*info), GFP_KERNEL);
543 if (!info) {
544 dev_err(&pdev->dev, "unable to allocate memory\n");
545 ret = -ENOMEM;
546 goto err_nomem;
549 platform_set_drvdata(pdev, info);
551 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
552 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
553 if (!res1 || !res2) {
554 dev_err(&pdev->dev, "resource missing\n");
555 ret = -EINVAL;
556 goto err_nomem;
559 vaddr = ioremap(res1->start, resource_size(res1));
560 base = ioremap(res2->start, resource_size(res2));
561 if (!vaddr || !base) {
562 dev_err(&pdev->dev, "ioremap failed\n");
563 ret = -EINVAL;
564 goto err_ioremap;
567 info->dev = &pdev->dev;
568 info->base = base;
569 info->vaddr = vaddr;
571 info->mtd.priv = &info->chip;
572 info->mtd.name = dev_name(&pdev->dev);
573 info->mtd.owner = THIS_MODULE;
575 info->mtd.dev.parent = &pdev->dev;
577 info->chip.IO_ADDR_R = vaddr;
578 info->chip.IO_ADDR_W = vaddr;
579 info->chip.chip_delay = 0;
580 info->chip.select_chip = nand_davinci_select_chip;
582 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
583 info->chip.options = pdata->options;
584 info->chip.bbt_td = pdata->bbt_td;
585 info->chip.bbt_md = pdata->bbt_md;
586 info->timing = pdata->timing;
588 info->ioaddr = (uint32_t __force) vaddr;
590 info->current_cs = info->ioaddr;
591 info->core_chipsel = pdev->id;
592 info->mask_chipsel = pdata->mask_chipsel;
594 /* use nandboot-capable ALE/CLE masks by default */
595 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
596 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
598 /* Set address of hardware control function */
599 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
600 info->chip.dev_ready = nand_davinci_dev_ready;
602 /* Speed up buffer I/O */
603 info->chip.read_buf = nand_davinci_read_buf;
604 info->chip.write_buf = nand_davinci_write_buf;
606 /* Use board-specific ECC config */
607 ecc_mode = pdata->ecc_mode;
609 ret = -EINVAL;
610 switch (ecc_mode) {
611 case NAND_ECC_NONE:
612 case NAND_ECC_SOFT:
613 pdata->ecc_bits = 0;
614 break;
615 case NAND_ECC_HW:
616 if (pdata->ecc_bits == 4) {
617 /* No sanity checks: CPUs must support this,
618 * and the chips may not use NAND_BUSWIDTH_16.
621 /* No sharing 4-bit hardware between chipselects yet */
622 spin_lock_irq(&davinci_nand_lock);
623 if (ecc4_busy)
624 ret = -EBUSY;
625 else
626 ecc4_busy = true;
627 spin_unlock_irq(&davinci_nand_lock);
629 if (ret == -EBUSY)
630 goto err_ecc;
632 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
633 info->chip.ecc.correct = nand_davinci_correct_4bit;
634 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
635 info->chip.ecc.bytes = 10;
636 } else {
637 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
638 info->chip.ecc.correct = nand_davinci_correct_1bit;
639 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
640 info->chip.ecc.bytes = 3;
642 info->chip.ecc.size = 512;
643 break;
644 default:
645 ret = -EINVAL;
646 goto err_ecc;
648 info->chip.ecc.mode = ecc_mode;
650 info->clk = clk_get(&pdev->dev, "aemif");
651 if (IS_ERR(info->clk)) {
652 ret = PTR_ERR(info->clk);
653 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
654 goto err_clk;
657 ret = clk_enable(info->clk);
658 if (ret < 0) {
659 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
660 ret);
661 goto err_clk_enable;
665 * Setup Async configuration register in case we did not boot from
666 * NAND and so bootloader did not bother to set it up.
668 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
670 /* Extended Wait is not valid and Select Strobe mode is not used */
671 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
672 if (info->chip.options & NAND_BUSWIDTH_16)
673 val |= 0x1;
675 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
677 ret = davinci_aemif_setup_timing(info->timing, info->base,
678 info->core_chipsel);
679 if (ret < 0) {
680 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
681 goto err_timing;
684 spin_lock_irq(&davinci_nand_lock);
686 /* put CSxNAND into NAND mode */
687 val = davinci_nand_readl(info, NANDFCR_OFFSET);
688 val |= BIT(info->core_chipsel);
689 davinci_nand_writel(info, NANDFCR_OFFSET, val);
691 spin_unlock_irq(&davinci_nand_lock);
693 /* Scan to find existence of the device(s) */
694 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
695 if (ret < 0) {
696 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
697 goto err_scan;
700 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
701 * is OK, but it allocates 6 bytes when only 3 are needed (for
702 * each 512 bytes). For the 4-bit HW ECC, that default is not
703 * usable: 10 bytes are needed, not 6.
705 if (pdata->ecc_bits == 4) {
706 int chunks = info->mtd.writesize / 512;
708 if (!chunks || info->mtd.oobsize < 16) {
709 dev_dbg(&pdev->dev, "too small\n");
710 ret = -EINVAL;
711 goto err_scan;
714 /* For small page chips, preserve the manufacturer's
715 * badblock marking data ... and make sure a flash BBT
716 * table marker fits in the free bytes.
718 if (chunks == 1) {
719 info->ecclayout = hwecc4_small;
720 info->ecclayout.oobfree[1].length =
721 info->mtd.oobsize - 16;
722 goto syndrome_done;
724 if (chunks == 4) {
725 info->ecclayout = hwecc4_2048;
726 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
727 goto syndrome_done;
730 /* 4KiB page chips are not yet supported. The eccpos from
731 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
732 * breaks userspace ioctl interface with mtd-utils. Once we
733 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
734 * for the 4KiB page chips.
736 * TODO: Note that nand_ecclayout has now been expanded and can
737 * hold plenty of OOB entries.
739 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
740 "for 4KiB-page NAND\n");
741 ret = -EIO;
742 goto err_scan;
744 syndrome_done:
745 info->chip.ecc.layout = &info->ecclayout;
748 ret = nand_scan_tail(&info->mtd);
749 if (ret < 0)
750 goto err_scan;
752 if (mtd_has_partitions()) {
753 struct mtd_partition *mtd_parts = NULL;
754 int mtd_parts_nb = 0;
756 if (mtd_has_cmdlinepart()) {
757 static const char *probes[] __initconst =
758 { "cmdlinepart", NULL };
760 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
761 &mtd_parts, 0);
764 if (mtd_parts_nb <= 0) {
765 mtd_parts = pdata->parts;
766 mtd_parts_nb = pdata->nr_parts;
769 /* Register any partitions */
770 if (mtd_parts_nb > 0) {
771 ret = add_mtd_partitions(&info->mtd,
772 mtd_parts, mtd_parts_nb);
773 if (ret == 0)
774 info->partitioned = true;
777 } else if (pdata->nr_parts) {
778 dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
779 pdata->nr_parts, info->mtd.name);
782 /* If there's no partition info, just package the whole chip
783 * as a single MTD device.
785 if (!info->partitioned)
786 ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;
788 if (ret < 0)
789 goto err_scan;
791 val = davinci_nand_readl(info, NRCSR_OFFSET);
792 dev_info(&pdev->dev, "controller rev. %d.%d\n",
793 (val >> 8) & 0xff, val & 0xff);
795 return 0;
797 err_scan:
798 err_timing:
799 clk_disable(info->clk);
801 err_clk_enable:
802 clk_put(info->clk);
804 spin_lock_irq(&davinci_nand_lock);
805 if (ecc_mode == NAND_ECC_HW_SYNDROME)
806 ecc4_busy = false;
807 spin_unlock_irq(&davinci_nand_lock);
809 err_ecc:
810 err_clk:
811 err_ioremap:
812 if (base)
813 iounmap(base);
814 if (vaddr)
815 iounmap(vaddr);
817 err_nomem:
818 kfree(info);
819 return ret;
822 static int __exit nand_davinci_remove(struct platform_device *pdev)
824 struct davinci_nand_info *info = platform_get_drvdata(pdev);
825 int status;
827 if (mtd_has_partitions() && info->partitioned)
828 status = del_mtd_partitions(&info->mtd);
829 else
830 status = del_mtd_device(&info->mtd);
832 spin_lock_irq(&davinci_nand_lock);
833 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
834 ecc4_busy = false;
835 spin_unlock_irq(&davinci_nand_lock);
837 iounmap(info->base);
838 iounmap(info->vaddr);
840 nand_release(&info->mtd);
842 clk_disable(info->clk);
843 clk_put(info->clk);
845 kfree(info);
847 return 0;
850 static struct platform_driver nand_davinci_driver = {
851 .remove = __exit_p(nand_davinci_remove),
852 .driver = {
853 .name = "davinci_nand",
856 MODULE_ALIAS("platform:davinci_nand");
858 static int __init nand_davinci_init(void)
860 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
862 module_init(nand_davinci_init);
864 static void __exit nand_davinci_exit(void)
866 platform_driver_unregister(&nand_davinci_driver);
868 module_exit(nand_davinci_exit);
870 MODULE_LICENSE("GPL");
871 MODULE_AUTHOR("Texas Instruments");
872 MODULE_DESCRIPTION("Davinci NAND flash driver");