IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / net / dm9000.c
blobb7af5bab9937397d20aa54ceac349ac16e81988e
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/ethtool.h>
32 #include <linux/dm9000.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 #include <linux/irq.h>
36 #include <linux/slab.h>
38 #include <asm/delay.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
42 #include "dm9000.h"
44 /* Board/System/Debug information/definition ---------------- */
46 #define DM9000_PHY 0x40 /* PHY address 0x01 */
48 #define CARDNAME "dm9000"
49 #define DRV_VERSION "1.31"
52 * Transmit timeout, default 5 seconds.
54 static int watchdog = 5000;
55 module_param(watchdog, int, 0400);
56 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58 /* DM9000 register address locking.
60 * The DM9000 uses an address register to control where data written
61 * to the data register goes. This means that the address register
62 * must be preserved over interrupts or similar calls.
64 * During interrupt and other critical calls, a spinlock is used to
65 * protect the system, but the calls themselves save the address
66 * in the address register in case they are interrupting another
67 * access to the device.
69 * For general accesses a lock is provided so that calls which are
70 * allowed to sleep are serialised so that the address register does
71 * not need to be saved. This lock also serves to serialise access
72 * to the EEPROM and PHY access registers which are shared between
73 * these two devices.
76 /* The driver supports the original DM9000E, and now the two newer
77 * devices, DM9000A and DM9000B.
80 enum dm9000_type {
81 TYPE_DM9000E, /* original DM9000 */
82 TYPE_DM9000A,
83 TYPE_DM9000B
86 /* Structure/enum declaration ------------------------------- */
87 typedef struct board_info {
89 void __iomem *io_addr; /* Register I/O base address */
90 void __iomem *io_data; /* Data I/O address */
91 u16 irq; /* IRQ */
93 u16 tx_pkt_cnt;
94 u16 queue_pkt_len;
95 u16 queue_start_addr;
96 u16 queue_ip_summed;
97 u16 dbug_cnt;
98 u8 io_mode; /* 0:word, 2:byte */
99 u8 phy_addr;
100 u8 imr_all;
102 unsigned int flags;
103 unsigned int in_suspend :1;
104 unsigned int wake_supported :1;
105 int debug_level;
107 enum dm9000_type type;
109 void (*inblk)(void __iomem *port, void *data, int length);
110 void (*outblk)(void __iomem *port, void *data, int length);
111 void (*dumpblk)(void __iomem *port, int length);
113 struct device *dev; /* parent device */
115 struct resource *addr_res; /* resources found */
116 struct resource *data_res;
117 struct resource *addr_req; /* resources requested */
118 struct resource *data_req;
119 struct resource *irq_res;
121 int irq_wake;
123 struct mutex addr_lock; /* phy and eeprom access lock */
125 struct delayed_work phy_poll;
126 struct net_device *ndev;
128 spinlock_t lock;
130 struct mii_if_info mii;
131 u32 msg_enable;
132 u32 wake_state;
134 int rx_csum;
135 int can_csum;
136 int ip_summed;
137 } board_info_t;
139 /* debug code */
141 #define dm9000_dbg(db, lev, msg...) do { \
142 if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
143 (lev) < db->debug_level) { \
144 dev_dbg(db->dev, msg); \
146 } while (0)
148 static inline board_info_t *to_dm9000_board(struct net_device *dev)
150 return netdev_priv(dev);
153 /* DM9000 network board routine ---------------------------- */
155 static void
156 dm9000_reset(board_info_t * db)
158 dev_dbg(db->dev, "resetting device\n");
160 /* RESET device */
161 writeb(DM9000_NCR, db->io_addr);
162 udelay(200);
163 writeb(NCR_RST, db->io_data);
164 udelay(200);
168 * Read a byte from I/O port
170 static u8
171 ior(board_info_t * db, int reg)
173 writeb(reg, db->io_addr);
174 return readb(db->io_data);
178 * Write a byte to I/O port
181 static void
182 iow(board_info_t * db, int reg, int value)
184 writeb(reg, db->io_addr);
185 writeb(value, db->io_data);
188 /* routines for sending block to chip */
190 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
192 writesb(reg, data, count);
195 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
197 writesw(reg, data, (count+1) >> 1);
200 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
202 writesl(reg, data, (count+3) >> 2);
205 /* input block from chip to memory */
207 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
209 readsb(reg, data, count);
213 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
215 readsw(reg, data, (count+1) >> 1);
218 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
220 readsl(reg, data, (count+3) >> 2);
223 /* dump block from chip to null */
225 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
227 int i;
228 int tmp;
230 for (i = 0; i < count; i++)
231 tmp = readb(reg);
234 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
236 int i;
237 int tmp;
239 count = (count + 1) >> 1;
241 for (i = 0; i < count; i++)
242 tmp = readw(reg);
245 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
247 int i;
248 int tmp;
250 count = (count + 3) >> 2;
252 for (i = 0; i < count; i++)
253 tmp = readl(reg);
256 /* dm9000_set_io
258 * select the specified set of io routines to use with the
259 * device
262 static void dm9000_set_io(struct board_info *db, int byte_width)
264 /* use the size of the data resource to work out what IO
265 * routines we want to use
268 switch (byte_width) {
269 case 1:
270 db->dumpblk = dm9000_dumpblk_8bit;
271 db->outblk = dm9000_outblk_8bit;
272 db->inblk = dm9000_inblk_8bit;
273 break;
276 case 3:
277 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
278 case 2:
279 db->dumpblk = dm9000_dumpblk_16bit;
280 db->outblk = dm9000_outblk_16bit;
281 db->inblk = dm9000_inblk_16bit;
282 break;
284 case 4:
285 default:
286 db->dumpblk = dm9000_dumpblk_32bit;
287 db->outblk = dm9000_outblk_32bit;
288 db->inblk = dm9000_inblk_32bit;
289 break;
293 static void dm9000_schedule_poll(board_info_t *db)
295 if (db->type == TYPE_DM9000E)
296 schedule_delayed_work(&db->phy_poll, HZ * 2);
299 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
301 board_info_t *dm = to_dm9000_board(dev);
303 if (!netif_running(dev))
304 return -EINVAL;
306 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
309 static unsigned int
310 dm9000_read_locked(board_info_t *db, int reg)
312 unsigned long flags;
313 unsigned int ret;
315 spin_lock_irqsave(&db->lock, flags);
316 ret = ior(db, reg);
317 spin_unlock_irqrestore(&db->lock, flags);
319 return ret;
322 static int dm9000_wait_eeprom(board_info_t *db)
324 unsigned int status;
325 int timeout = 8; /* wait max 8msec */
327 /* The DM9000 data sheets say we should be able to
328 * poll the ERRE bit in EPCR to wait for the EEPROM
329 * operation. From testing several chips, this bit
330 * does not seem to work.
332 * We attempt to use the bit, but fall back to the
333 * timeout (which is why we do not return an error
334 * on expiry) to say that the EEPROM operation has
335 * completed.
338 while (1) {
339 status = dm9000_read_locked(db, DM9000_EPCR);
341 if ((status & EPCR_ERRE) == 0)
342 break;
344 msleep(1);
346 if (timeout-- < 0) {
347 dev_dbg(db->dev, "timeout waiting EEPROM\n");
348 break;
352 return 0;
356 * Read a word data from EEPROM
358 static void
359 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
361 unsigned long flags;
363 if (db->flags & DM9000_PLATF_NO_EEPROM) {
364 to[0] = 0xff;
365 to[1] = 0xff;
366 return;
369 mutex_lock(&db->addr_lock);
371 spin_lock_irqsave(&db->lock, flags);
373 iow(db, DM9000_EPAR, offset);
374 iow(db, DM9000_EPCR, EPCR_ERPRR);
376 spin_unlock_irqrestore(&db->lock, flags);
378 dm9000_wait_eeprom(db);
380 /* delay for at-least 150uS */
381 msleep(1);
383 spin_lock_irqsave(&db->lock, flags);
385 iow(db, DM9000_EPCR, 0x0);
387 to[0] = ior(db, DM9000_EPDRL);
388 to[1] = ior(db, DM9000_EPDRH);
390 spin_unlock_irqrestore(&db->lock, flags);
392 mutex_unlock(&db->addr_lock);
396 * Write a word data to SROM
398 static void
399 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
401 unsigned long flags;
403 if (db->flags & DM9000_PLATF_NO_EEPROM)
404 return;
406 mutex_lock(&db->addr_lock);
408 spin_lock_irqsave(&db->lock, flags);
409 iow(db, DM9000_EPAR, offset);
410 iow(db, DM9000_EPDRH, data[1]);
411 iow(db, DM9000_EPDRL, data[0]);
412 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
413 spin_unlock_irqrestore(&db->lock, flags);
415 dm9000_wait_eeprom(db);
417 mdelay(1); /* wait at least 150uS to clear */
419 spin_lock_irqsave(&db->lock, flags);
420 iow(db, DM9000_EPCR, 0);
421 spin_unlock_irqrestore(&db->lock, flags);
423 mutex_unlock(&db->addr_lock);
426 /* ethtool ops */
428 static void dm9000_get_drvinfo(struct net_device *dev,
429 struct ethtool_drvinfo *info)
431 board_info_t *dm = to_dm9000_board(dev);
433 strcpy(info->driver, CARDNAME);
434 strcpy(info->version, DRV_VERSION);
435 strcpy(info->bus_info, to_platform_device(dm->dev)->name);
438 static u32 dm9000_get_msglevel(struct net_device *dev)
440 board_info_t *dm = to_dm9000_board(dev);
442 return dm->msg_enable;
445 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
447 board_info_t *dm = to_dm9000_board(dev);
449 dm->msg_enable = value;
452 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
454 board_info_t *dm = to_dm9000_board(dev);
456 mii_ethtool_gset(&dm->mii, cmd);
457 return 0;
460 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
462 board_info_t *dm = to_dm9000_board(dev);
464 return mii_ethtool_sset(&dm->mii, cmd);
467 static int dm9000_nway_reset(struct net_device *dev)
469 board_info_t *dm = to_dm9000_board(dev);
470 return mii_nway_restart(&dm->mii);
473 static uint32_t dm9000_get_rx_csum(struct net_device *dev)
475 board_info_t *dm = to_dm9000_board(dev);
476 return dm->rx_csum;
479 static int dm9000_set_rx_csum_unlocked(struct net_device *dev, uint32_t data)
481 board_info_t *dm = to_dm9000_board(dev);
483 if (dm->can_csum) {
484 dm->rx_csum = data;
485 iow(dm, DM9000_RCSR, dm->rx_csum ? RCSR_CSUM : 0);
487 return 0;
490 return -EOPNOTSUPP;
493 static int dm9000_set_rx_csum(struct net_device *dev, uint32_t data)
495 board_info_t *dm = to_dm9000_board(dev);
496 unsigned long flags;
497 int ret;
499 spin_lock_irqsave(&dm->lock, flags);
500 ret = dm9000_set_rx_csum_unlocked(dev, data);
501 spin_unlock_irqrestore(&dm->lock, flags);
503 return ret;
506 static int dm9000_set_tx_csum(struct net_device *dev, uint32_t data)
508 board_info_t *dm = to_dm9000_board(dev);
509 int ret = -EOPNOTSUPP;
511 if (dm->can_csum)
512 ret = ethtool_op_set_tx_csum(dev, data);
513 return ret;
516 static u32 dm9000_get_link(struct net_device *dev)
518 board_info_t *dm = to_dm9000_board(dev);
519 u32 ret;
521 if (dm->flags & DM9000_PLATF_EXT_PHY)
522 ret = mii_link_ok(&dm->mii);
523 else
524 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
526 return ret;
529 #define DM_EEPROM_MAGIC (0x444D394B)
531 static int dm9000_get_eeprom_len(struct net_device *dev)
533 return 128;
536 static int dm9000_get_eeprom(struct net_device *dev,
537 struct ethtool_eeprom *ee, u8 *data)
539 board_info_t *dm = to_dm9000_board(dev);
540 int offset = ee->offset;
541 int len = ee->len;
542 int i;
544 /* EEPROM access is aligned to two bytes */
546 if ((len & 1) != 0 || (offset & 1) != 0)
547 return -EINVAL;
549 if (dm->flags & DM9000_PLATF_NO_EEPROM)
550 return -ENOENT;
552 ee->magic = DM_EEPROM_MAGIC;
554 for (i = 0; i < len; i += 2)
555 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
557 return 0;
560 static int dm9000_set_eeprom(struct net_device *dev,
561 struct ethtool_eeprom *ee, u8 *data)
563 board_info_t *dm = to_dm9000_board(dev);
564 int offset = ee->offset;
565 int len = ee->len;
566 int i;
568 /* EEPROM access is aligned to two bytes */
570 if ((len & 1) != 0 || (offset & 1) != 0)
571 return -EINVAL;
573 if (dm->flags & DM9000_PLATF_NO_EEPROM)
574 return -ENOENT;
576 if (ee->magic != DM_EEPROM_MAGIC)
577 return -EINVAL;
579 for (i = 0; i < len; i += 2)
580 dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
582 return 0;
585 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
587 board_info_t *dm = to_dm9000_board(dev);
589 memset(w, 0, sizeof(struct ethtool_wolinfo));
591 /* note, we could probably support wake-phy too */
592 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
593 w->wolopts = dm->wake_state;
596 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
598 board_info_t *dm = to_dm9000_board(dev);
599 unsigned long flags;
600 u32 opts = w->wolopts;
601 u32 wcr = 0;
603 if (!dm->wake_supported)
604 return -EOPNOTSUPP;
606 if (opts & ~WAKE_MAGIC)
607 return -EINVAL;
609 if (opts & WAKE_MAGIC)
610 wcr |= WCR_MAGICEN;
612 mutex_lock(&dm->addr_lock);
614 spin_lock_irqsave(&dm->lock, flags);
615 iow(dm, DM9000_WCR, wcr);
616 spin_unlock_irqrestore(&dm->lock, flags);
618 mutex_unlock(&dm->addr_lock);
620 if (dm->wake_state != opts) {
621 /* change in wol state, update IRQ state */
623 if (!dm->wake_state)
624 irq_set_irq_wake(dm->irq_wake, 1);
625 else if (dm->wake_state & !opts)
626 irq_set_irq_wake(dm->irq_wake, 0);
629 dm->wake_state = opts;
630 return 0;
633 static const struct ethtool_ops dm9000_ethtool_ops = {
634 .get_drvinfo = dm9000_get_drvinfo,
635 .get_settings = dm9000_get_settings,
636 .set_settings = dm9000_set_settings,
637 .get_msglevel = dm9000_get_msglevel,
638 .set_msglevel = dm9000_set_msglevel,
639 .nway_reset = dm9000_nway_reset,
640 .get_link = dm9000_get_link,
641 .get_wol = dm9000_get_wol,
642 .set_wol = dm9000_set_wol,
643 .get_eeprom_len = dm9000_get_eeprom_len,
644 .get_eeprom = dm9000_get_eeprom,
645 .set_eeprom = dm9000_set_eeprom,
646 .get_rx_csum = dm9000_get_rx_csum,
647 .set_rx_csum = dm9000_set_rx_csum,
648 .get_tx_csum = ethtool_op_get_tx_csum,
649 .set_tx_csum = dm9000_set_tx_csum,
652 static void dm9000_show_carrier(board_info_t *db,
653 unsigned carrier, unsigned nsr)
655 struct net_device *ndev = db->ndev;
656 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
658 if (carrier)
659 dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
660 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
661 (ncr & NCR_FDX) ? "full" : "half");
662 else
663 dev_info(db->dev, "%s: link down\n", ndev->name);
666 static void
667 dm9000_poll_work(struct work_struct *w)
669 struct delayed_work *dw = to_delayed_work(w);
670 board_info_t *db = container_of(dw, board_info_t, phy_poll);
671 struct net_device *ndev = db->ndev;
673 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
674 !(db->flags & DM9000_PLATF_EXT_PHY)) {
675 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
676 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
677 unsigned new_carrier;
679 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
681 if (old_carrier != new_carrier) {
682 if (netif_msg_link(db))
683 dm9000_show_carrier(db, new_carrier, nsr);
685 if (!new_carrier)
686 netif_carrier_off(ndev);
687 else
688 netif_carrier_on(ndev);
690 } else
691 mii_check_media(&db->mii, netif_msg_link(db), 0);
693 if (netif_running(ndev))
694 dm9000_schedule_poll(db);
697 /* dm9000_release_board
699 * release a board, and any mapped resources
702 static void
703 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
705 /* unmap our resources */
707 iounmap(db->io_addr);
708 iounmap(db->io_data);
710 /* release the resources */
712 release_resource(db->data_req);
713 kfree(db->data_req);
715 release_resource(db->addr_req);
716 kfree(db->addr_req);
719 static unsigned char dm9000_type_to_char(enum dm9000_type type)
721 switch (type) {
722 case TYPE_DM9000E: return 'e';
723 case TYPE_DM9000A: return 'a';
724 case TYPE_DM9000B: return 'b';
727 return '?';
731 * Set DM9000 multicast address
733 static void
734 dm9000_hash_table_unlocked(struct net_device *dev)
736 board_info_t *db = netdev_priv(dev);
737 struct netdev_hw_addr *ha;
738 int i, oft;
739 u32 hash_val;
740 u16 hash_table[4];
741 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
743 dm9000_dbg(db, 1, "entering %s\n", __func__);
745 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
746 iow(db, oft, dev->dev_addr[i]);
748 /* Clear Hash Table */
749 for (i = 0; i < 4; i++)
750 hash_table[i] = 0x0;
752 /* broadcast address */
753 hash_table[3] = 0x8000;
755 if (dev->flags & IFF_PROMISC)
756 rcr |= RCR_PRMSC;
758 if (dev->flags & IFF_ALLMULTI)
759 rcr |= RCR_ALL;
761 /* the multicast address in Hash Table : 64 bits */
762 netdev_for_each_mc_addr(ha, dev) {
763 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
764 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
767 /* Write the hash table to MAC MD table */
768 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
769 iow(db, oft++, hash_table[i]);
770 iow(db, oft++, hash_table[i] >> 8);
773 iow(db, DM9000_RCR, rcr);
776 static void
777 dm9000_hash_table(struct net_device *dev)
779 board_info_t *db = netdev_priv(dev);
780 unsigned long flags;
782 spin_lock_irqsave(&db->lock, flags);
783 dm9000_hash_table_unlocked(dev);
784 spin_unlock_irqrestore(&db->lock, flags);
788 * Initialize dm9000 board
790 static void
791 dm9000_init_dm9000(struct net_device *dev)
793 board_info_t *db = netdev_priv(dev);
794 unsigned int imr;
795 unsigned int ncr;
797 dm9000_dbg(db, 1, "entering %s\n", __func__);
799 /* I/O mode */
800 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
802 /* Checksum mode */
803 dm9000_set_rx_csum_unlocked(dev, db->rx_csum);
805 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
807 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
809 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
810 * up dumping the wake events if we disable this. There is already
811 * a wake-mask in DM9000_WCR */
812 if (db->wake_supported)
813 ncr |= NCR_WAKEEN;
815 iow(db, DM9000_NCR, ncr);
817 /* Program operating register */
818 iow(db, DM9000_TCR, 0); /* TX Polling clear */
819 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
820 iow(db, DM9000_FCR, 0xff); /* Flow Control */
821 iow(db, DM9000_SMCR, 0); /* Special Mode */
822 /* clear TX status */
823 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
824 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
826 /* Set address filter table */
827 dm9000_hash_table_unlocked(dev);
829 imr = IMR_PAR | IMR_PTM | IMR_PRM;
830 if (db->type != TYPE_DM9000E)
831 imr |= IMR_LNKCHNG;
833 db->imr_all = imr;
835 /* Enable TX/RX interrupt mask */
836 iow(db, DM9000_IMR, imr);
838 /* Init Driver variable */
839 db->tx_pkt_cnt = 0;
840 db->queue_pkt_len = 0;
841 dev->trans_start = jiffies;
844 /* Our watchdog timed out. Called by the networking layer */
845 static void dm9000_timeout(struct net_device *dev)
847 board_info_t *db = netdev_priv(dev);
848 u8 reg_save;
849 unsigned long flags;
851 /* Save previous register address */
852 spin_lock_irqsave(&db->lock, flags);
853 reg_save = readb(db->io_addr);
855 netif_stop_queue(dev);
856 dm9000_reset(db);
857 dm9000_init_dm9000(dev);
858 /* We can accept TX packets again */
859 dev->trans_start = jiffies; /* prevent tx timeout */
860 netif_wake_queue(dev);
862 /* Restore previous register address */
863 writeb(reg_save, db->io_addr);
864 spin_unlock_irqrestore(&db->lock, flags);
867 static void dm9000_send_packet(struct net_device *dev,
868 int ip_summed,
869 u16 pkt_len)
871 board_info_t *dm = to_dm9000_board(dev);
873 /* The DM9000 is not smart enough to leave fragmented packets alone. */
874 if (dm->ip_summed != ip_summed) {
875 if (ip_summed == CHECKSUM_NONE)
876 iow(dm, DM9000_TCCR, 0);
877 else
878 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
879 dm->ip_summed = ip_summed;
882 /* Set TX length to DM9000 */
883 iow(dm, DM9000_TXPLL, pkt_len);
884 iow(dm, DM9000_TXPLH, pkt_len >> 8);
886 /* Issue TX polling command */
887 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
891 * Hardware start transmission.
892 * Send a packet to media from the upper layer.
894 static int
895 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
897 unsigned long flags;
898 board_info_t *db = netdev_priv(dev);
900 dm9000_dbg(db, 3, "%s:\n", __func__);
902 if (db->tx_pkt_cnt > 1)
903 return NETDEV_TX_BUSY;
905 spin_lock_irqsave(&db->lock, flags);
907 /* Move data to DM9000 TX RAM */
908 writeb(DM9000_MWCMD, db->io_addr);
910 (db->outblk)(db->io_data, skb->data, skb->len);
911 dev->stats.tx_bytes += skb->len;
913 db->tx_pkt_cnt++;
914 /* TX control: First packet immediately send, second packet queue */
915 if (db->tx_pkt_cnt == 1) {
916 dm9000_send_packet(dev, skb->ip_summed, skb->len);
917 } else {
918 /* Second packet */
919 db->queue_pkt_len = skb->len;
920 db->queue_ip_summed = skb->ip_summed;
921 netif_stop_queue(dev);
924 spin_unlock_irqrestore(&db->lock, flags);
926 /* free this SKB */
927 dev_kfree_skb(skb);
929 return NETDEV_TX_OK;
933 * DM9000 interrupt handler
934 * receive the packet to upper layer, free the transmitted packet
937 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
939 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
941 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
942 /* One packet sent complete */
943 db->tx_pkt_cnt--;
944 dev->stats.tx_packets++;
946 if (netif_msg_tx_done(db))
947 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
949 /* Queue packet check & send */
950 if (db->tx_pkt_cnt > 0)
951 dm9000_send_packet(dev, db->queue_ip_summed,
952 db->queue_pkt_len);
953 netif_wake_queue(dev);
957 struct dm9000_rxhdr {
958 u8 RxPktReady;
959 u8 RxStatus;
960 __le16 RxLen;
961 } __packed;
964 * Received a packet and pass to upper layer
966 static void
967 dm9000_rx(struct net_device *dev)
969 board_info_t *db = netdev_priv(dev);
970 struct dm9000_rxhdr rxhdr;
971 struct sk_buff *skb;
972 u8 rxbyte, *rdptr;
973 bool GoodPacket;
974 int RxLen;
976 /* Check packet ready or not */
977 do {
978 ior(db, DM9000_MRCMDX); /* Dummy read */
980 /* Get most updated data */
981 rxbyte = readb(db->io_data);
983 /* Status check: this byte must be 0 or 1 */
984 if (rxbyte & DM9000_PKT_ERR) {
985 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
986 iow(db, DM9000_RCR, 0x00); /* Stop Device */
987 iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
988 return;
991 if (!(rxbyte & DM9000_PKT_RDY))
992 return;
994 /* A packet ready now & Get status/length */
995 GoodPacket = true;
996 writeb(DM9000_MRCMD, db->io_addr);
998 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1000 RxLen = le16_to_cpu(rxhdr.RxLen);
1002 if (netif_msg_rx_status(db))
1003 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1004 rxhdr.RxStatus, RxLen);
1006 /* Packet Status check */
1007 if (RxLen < 0x40) {
1008 GoodPacket = false;
1009 if (netif_msg_rx_err(db))
1010 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1013 if (RxLen > DM9000_PKT_MAX) {
1014 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1017 /* rxhdr.RxStatus is identical to RSR register. */
1018 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1019 RSR_PLE | RSR_RWTO |
1020 RSR_LCS | RSR_RF)) {
1021 GoodPacket = false;
1022 if (rxhdr.RxStatus & RSR_FOE) {
1023 if (netif_msg_rx_err(db))
1024 dev_dbg(db->dev, "fifo error\n");
1025 dev->stats.rx_fifo_errors++;
1027 if (rxhdr.RxStatus & RSR_CE) {
1028 if (netif_msg_rx_err(db))
1029 dev_dbg(db->dev, "crc error\n");
1030 dev->stats.rx_crc_errors++;
1032 if (rxhdr.RxStatus & RSR_RF) {
1033 if (netif_msg_rx_err(db))
1034 dev_dbg(db->dev, "length error\n");
1035 dev->stats.rx_length_errors++;
1039 /* Move data from DM9000 */
1040 if (GoodPacket &&
1041 ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1042 skb_reserve(skb, 2);
1043 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1045 /* Read received packet from RX SRAM */
1047 (db->inblk)(db->io_data, rdptr, RxLen);
1048 dev->stats.rx_bytes += RxLen;
1050 /* Pass to upper layer */
1051 skb->protocol = eth_type_trans(skb, dev);
1052 if (db->rx_csum) {
1053 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1054 skb->ip_summed = CHECKSUM_UNNECESSARY;
1055 else
1056 skb_checksum_none_assert(skb);
1058 netif_rx(skb);
1059 dev->stats.rx_packets++;
1061 } else {
1062 /* need to dump the packet's data */
1064 (db->dumpblk)(db->io_data, RxLen);
1066 } while (rxbyte & DM9000_PKT_RDY);
1069 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1071 struct net_device *dev = dev_id;
1072 board_info_t *db = netdev_priv(dev);
1073 int int_status;
1074 unsigned long flags;
1075 u8 reg_save;
1077 dm9000_dbg(db, 3, "entering %s\n", __func__);
1079 /* A real interrupt coming */
1081 /* holders of db->lock must always block IRQs */
1082 spin_lock_irqsave(&db->lock, flags);
1084 /* Save previous register address */
1085 reg_save = readb(db->io_addr);
1087 /* Disable all interrupts */
1088 iow(db, DM9000_IMR, IMR_PAR);
1090 /* Got DM9000 interrupt status */
1091 int_status = ior(db, DM9000_ISR); /* Got ISR */
1092 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1094 if (netif_msg_intr(db))
1095 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1097 /* Received the coming packet */
1098 if (int_status & ISR_PRS)
1099 dm9000_rx(dev);
1101 /* Trnasmit Interrupt check */
1102 if (int_status & ISR_PTS)
1103 dm9000_tx_done(dev, db);
1105 if (db->type != TYPE_DM9000E) {
1106 if (int_status & ISR_LNKCHNG) {
1107 /* fire a link-change request */
1108 schedule_delayed_work(&db->phy_poll, 1);
1112 /* Re-enable interrupt mask */
1113 iow(db, DM9000_IMR, db->imr_all);
1115 /* Restore previous register address */
1116 writeb(reg_save, db->io_addr);
1118 spin_unlock_irqrestore(&db->lock, flags);
1120 return IRQ_HANDLED;
1123 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1125 struct net_device *dev = dev_id;
1126 board_info_t *db = netdev_priv(dev);
1127 unsigned long flags;
1128 unsigned nsr, wcr;
1130 spin_lock_irqsave(&db->lock, flags);
1132 nsr = ior(db, DM9000_NSR);
1133 wcr = ior(db, DM9000_WCR);
1135 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1137 if (nsr & NSR_WAKEST) {
1138 /* clear, so we can avoid */
1139 iow(db, DM9000_NSR, NSR_WAKEST);
1141 if (wcr & WCR_LINKST)
1142 dev_info(db->dev, "wake by link status change\n");
1143 if (wcr & WCR_SAMPLEST)
1144 dev_info(db->dev, "wake by sample packet\n");
1145 if (wcr & WCR_MAGICST )
1146 dev_info(db->dev, "wake by magic packet\n");
1147 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1148 dev_err(db->dev, "wake signalled with no reason? "
1149 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1153 spin_unlock_irqrestore(&db->lock, flags);
1155 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1158 #ifdef CONFIG_NET_POLL_CONTROLLER
1160 *Used by netconsole
1162 static void dm9000_poll_controller(struct net_device *dev)
1164 disable_irq(dev->irq);
1165 dm9000_interrupt(dev->irq, dev);
1166 enable_irq(dev->irq);
1168 #endif
1171 * Open the interface.
1172 * The interface is opened whenever "ifconfig" actives it.
1174 static int
1175 dm9000_open(struct net_device *dev)
1177 board_info_t *db = netdev_priv(dev);
1178 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1180 if (netif_msg_ifup(db))
1181 dev_dbg(db->dev, "enabling %s\n", dev->name);
1183 /* If there is no IRQ type specified, default to something that
1184 * may work, and tell the user that this is a problem */
1186 if (irqflags == IRQF_TRIGGER_NONE)
1187 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1189 irqflags |= IRQF_SHARED;
1191 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1192 return -EAGAIN;
1194 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1195 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1196 mdelay(1); /* delay needs by DM9000B */
1198 /* Initialize DM9000 board */
1199 dm9000_reset(db);
1200 dm9000_init_dm9000(dev);
1202 /* Init driver variable */
1203 db->dbug_cnt = 0;
1205 mii_check_media(&db->mii, netif_msg_link(db), 1);
1206 netif_start_queue(dev);
1208 dm9000_schedule_poll(db);
1210 return 0;
1214 * Sleep, either by using msleep() or if we are suspending, then
1215 * use mdelay() to sleep.
1217 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1219 if (db->in_suspend)
1220 mdelay(ms);
1221 else
1222 msleep(ms);
1226 * Read a word from phyxcer
1228 static int
1229 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1231 board_info_t *db = netdev_priv(dev);
1232 unsigned long flags;
1233 unsigned int reg_save;
1234 int ret;
1236 mutex_lock(&db->addr_lock);
1238 spin_lock_irqsave(&db->lock,flags);
1240 /* Save previous register address */
1241 reg_save = readb(db->io_addr);
1243 /* Fill the phyxcer register into REG_0C */
1244 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1246 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
1248 writeb(reg_save, db->io_addr);
1249 spin_unlock_irqrestore(&db->lock,flags);
1251 dm9000_msleep(db, 1); /* Wait read complete */
1253 spin_lock_irqsave(&db->lock,flags);
1254 reg_save = readb(db->io_addr);
1256 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
1258 /* The read data keeps on REG_0D & REG_0E */
1259 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1261 /* restore the previous address */
1262 writeb(reg_save, db->io_addr);
1263 spin_unlock_irqrestore(&db->lock,flags);
1265 mutex_unlock(&db->addr_lock);
1267 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1268 return ret;
1272 * Write a word to phyxcer
1274 static void
1275 dm9000_phy_write(struct net_device *dev,
1276 int phyaddr_unused, int reg, int value)
1278 board_info_t *db = netdev_priv(dev);
1279 unsigned long flags;
1280 unsigned long reg_save;
1282 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1283 mutex_lock(&db->addr_lock);
1285 spin_lock_irqsave(&db->lock,flags);
1287 /* Save previous register address */
1288 reg_save = readb(db->io_addr);
1290 /* Fill the phyxcer register into REG_0C */
1291 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1293 /* Fill the written data into REG_0D & REG_0E */
1294 iow(db, DM9000_EPDRL, value);
1295 iow(db, DM9000_EPDRH, value >> 8);
1297 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
1299 writeb(reg_save, db->io_addr);
1300 spin_unlock_irqrestore(&db->lock, flags);
1302 dm9000_msleep(db, 1); /* Wait write complete */
1304 spin_lock_irqsave(&db->lock,flags);
1305 reg_save = readb(db->io_addr);
1307 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
1309 /* restore the previous address */
1310 writeb(reg_save, db->io_addr);
1312 spin_unlock_irqrestore(&db->lock, flags);
1313 mutex_unlock(&db->addr_lock);
1316 static void
1317 dm9000_shutdown(struct net_device *dev)
1319 board_info_t *db = netdev_priv(dev);
1321 /* RESET device */
1322 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1323 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1324 iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
1325 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1329 * Stop the interface.
1330 * The interface is stopped when it is brought.
1332 static int
1333 dm9000_stop(struct net_device *ndev)
1335 board_info_t *db = netdev_priv(ndev);
1337 if (netif_msg_ifdown(db))
1338 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1340 cancel_delayed_work_sync(&db->phy_poll);
1342 netif_stop_queue(ndev);
1343 netif_carrier_off(ndev);
1345 /* free interrupt */
1346 free_irq(ndev->irq, ndev);
1348 dm9000_shutdown(ndev);
1350 return 0;
1353 static const struct net_device_ops dm9000_netdev_ops = {
1354 .ndo_open = dm9000_open,
1355 .ndo_stop = dm9000_stop,
1356 .ndo_start_xmit = dm9000_start_xmit,
1357 .ndo_tx_timeout = dm9000_timeout,
1358 .ndo_set_multicast_list = dm9000_hash_table,
1359 .ndo_do_ioctl = dm9000_ioctl,
1360 .ndo_change_mtu = eth_change_mtu,
1361 .ndo_validate_addr = eth_validate_addr,
1362 .ndo_set_mac_address = eth_mac_addr,
1363 #ifdef CONFIG_NET_POLL_CONTROLLER
1364 .ndo_poll_controller = dm9000_poll_controller,
1365 #endif
1369 * Search DM9000 board, allocate space and register it
1371 static int __devinit
1372 dm9000_probe(struct platform_device *pdev)
1374 struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1375 struct board_info *db; /* Point a board information structure */
1376 struct net_device *ndev;
1377 const unsigned char *mac_src;
1378 int ret = 0;
1379 int iosize;
1380 int i;
1381 u32 id_val;
1383 /* Init network device */
1384 ndev = alloc_etherdev(sizeof(struct board_info));
1385 if (!ndev) {
1386 dev_err(&pdev->dev, "could not allocate device.\n");
1387 return -ENOMEM;
1390 SET_NETDEV_DEV(ndev, &pdev->dev);
1392 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1394 /* setup board info structure */
1395 db = netdev_priv(ndev);
1397 db->dev = &pdev->dev;
1398 db->ndev = ndev;
1400 spin_lock_init(&db->lock);
1401 mutex_init(&db->addr_lock);
1403 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1405 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1406 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1407 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1409 if (db->addr_res == NULL || db->data_res == NULL ||
1410 db->irq_res == NULL) {
1411 dev_err(db->dev, "insufficient resources\n");
1412 ret = -ENOENT;
1413 goto out;
1416 db->irq_wake = platform_get_irq(pdev, 1);
1417 if (db->irq_wake >= 0) {
1418 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1420 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1421 IRQF_SHARED, dev_name(db->dev), ndev);
1422 if (ret) {
1423 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1424 } else {
1426 /* test to see if irq is really wakeup capable */
1427 ret = irq_set_irq_wake(db->irq_wake, 1);
1428 if (ret) {
1429 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1430 db->irq_wake, ret);
1431 ret = 0;
1432 } else {
1433 irq_set_irq_wake(db->irq_wake, 0);
1434 db->wake_supported = 1;
1439 iosize = resource_size(db->addr_res);
1440 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1441 pdev->name);
1443 if (db->addr_req == NULL) {
1444 dev_err(db->dev, "cannot claim address reg area\n");
1445 ret = -EIO;
1446 goto out;
1449 db->io_addr = ioremap(db->addr_res->start, iosize);
1451 if (db->io_addr == NULL) {
1452 dev_err(db->dev, "failed to ioremap address reg\n");
1453 ret = -EINVAL;
1454 goto out;
1457 iosize = resource_size(db->data_res);
1458 db->data_req = request_mem_region(db->data_res->start, iosize,
1459 pdev->name);
1461 if (db->data_req == NULL) {
1462 dev_err(db->dev, "cannot claim data reg area\n");
1463 ret = -EIO;
1464 goto out;
1467 db->io_data = ioremap(db->data_res->start, iosize);
1469 if (db->io_data == NULL) {
1470 dev_err(db->dev, "failed to ioremap data reg\n");
1471 ret = -EINVAL;
1472 goto out;
1475 /* fill in parameters for net-dev structure */
1476 ndev->base_addr = (unsigned long)db->io_addr;
1477 ndev->irq = db->irq_res->start;
1479 /* ensure at least we have a default set of IO routines */
1480 dm9000_set_io(db, iosize);
1482 /* check to see if anything is being over-ridden */
1483 if (pdata != NULL) {
1484 /* check to see if the driver wants to over-ride the
1485 * default IO width */
1487 if (pdata->flags & DM9000_PLATF_8BITONLY)
1488 dm9000_set_io(db, 1);
1490 if (pdata->flags & DM9000_PLATF_16BITONLY)
1491 dm9000_set_io(db, 2);
1493 if (pdata->flags & DM9000_PLATF_32BITONLY)
1494 dm9000_set_io(db, 4);
1496 /* check to see if there are any IO routine
1497 * over-rides */
1499 if (pdata->inblk != NULL)
1500 db->inblk = pdata->inblk;
1502 if (pdata->outblk != NULL)
1503 db->outblk = pdata->outblk;
1505 if (pdata->dumpblk != NULL)
1506 db->dumpblk = pdata->dumpblk;
1508 db->flags = pdata->flags;
1511 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1512 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1513 #endif
1515 dm9000_reset(db);
1517 /* try multiple times, DM9000 sometimes gets the read wrong */
1518 for (i = 0; i < 8; i++) {
1519 id_val = ior(db, DM9000_VIDL);
1520 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1521 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1522 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1524 if (id_val == DM9000_ID)
1525 break;
1526 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1529 if (id_val != DM9000_ID) {
1530 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1531 ret = -ENODEV;
1532 goto out;
1535 /* Identify what type of DM9000 we are working on */
1537 id_val = ior(db, DM9000_CHIPR);
1538 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1540 switch (id_val) {
1541 case CHIPR_DM9000A:
1542 db->type = TYPE_DM9000A;
1543 break;
1544 case CHIPR_DM9000B:
1545 db->type = TYPE_DM9000B;
1546 break;
1547 default:
1548 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1549 db->type = TYPE_DM9000E;
1552 /* dm9000a/b are capable of hardware checksum offload */
1553 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1554 db->can_csum = 1;
1555 db->rx_csum = 1;
1556 ndev->features |= NETIF_F_IP_CSUM;
1559 /* from this point we assume that we have found a DM9000 */
1561 /* driver system function */
1562 ether_setup(ndev);
1564 ndev->netdev_ops = &dm9000_netdev_ops;
1565 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1566 ndev->ethtool_ops = &dm9000_ethtool_ops;
1568 db->msg_enable = NETIF_MSG_LINK;
1569 db->mii.phy_id_mask = 0x1f;
1570 db->mii.reg_num_mask = 0x1f;
1571 db->mii.force_media = 0;
1572 db->mii.full_duplex = 0;
1573 db->mii.dev = ndev;
1574 db->mii.mdio_read = dm9000_phy_read;
1575 db->mii.mdio_write = dm9000_phy_write;
1577 mac_src = "eeprom";
1579 /* try reading the node address from the attached EEPROM */
1580 for (i = 0; i < 6; i += 2)
1581 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1583 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1584 mac_src = "platform data";
1585 memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1588 if (!is_valid_ether_addr(ndev->dev_addr)) {
1589 /* try reading from mac */
1591 mac_src = "chip";
1592 for (i = 0; i < 6; i++)
1593 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1596 if (!is_valid_ether_addr(ndev->dev_addr)) {
1597 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1598 "set using ifconfig\n", ndev->name);
1600 random_ether_addr(ndev->dev_addr);
1601 mac_src = "random";
1605 platform_set_drvdata(pdev, ndev);
1606 ret = register_netdev(ndev);
1608 if (ret == 0)
1609 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1610 ndev->name, dm9000_type_to_char(db->type),
1611 db->io_addr, db->io_data, ndev->irq,
1612 ndev->dev_addr, mac_src);
1613 return 0;
1615 out:
1616 dev_err(db->dev, "not found (%d).\n", ret);
1618 dm9000_release_board(pdev, db);
1619 free_netdev(ndev);
1621 return ret;
1624 static int
1625 dm9000_drv_suspend(struct device *dev)
1627 struct platform_device *pdev = to_platform_device(dev);
1628 struct net_device *ndev = platform_get_drvdata(pdev);
1629 board_info_t *db;
1631 if (ndev) {
1632 db = netdev_priv(ndev);
1633 db->in_suspend = 1;
1635 if (!netif_running(ndev))
1636 return 0;
1638 netif_device_detach(ndev);
1640 /* only shutdown if not using WoL */
1641 if (!db->wake_state)
1642 dm9000_shutdown(ndev);
1644 return 0;
1647 static int
1648 dm9000_drv_resume(struct device *dev)
1650 struct platform_device *pdev = to_platform_device(dev);
1651 struct net_device *ndev = platform_get_drvdata(pdev);
1652 board_info_t *db = netdev_priv(ndev);
1654 if (ndev) {
1655 if (netif_running(ndev)) {
1656 /* reset if we were not in wake mode to ensure if
1657 * the device was powered off it is in a known state */
1658 if (!db->wake_state) {
1659 dm9000_reset(db);
1660 dm9000_init_dm9000(ndev);
1663 netif_device_attach(ndev);
1666 db->in_suspend = 0;
1668 return 0;
1671 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1672 .suspend = dm9000_drv_suspend,
1673 .resume = dm9000_drv_resume,
1676 static int __devexit
1677 dm9000_drv_remove(struct platform_device *pdev)
1679 struct net_device *ndev = platform_get_drvdata(pdev);
1681 platform_set_drvdata(pdev, NULL);
1683 unregister_netdev(ndev);
1684 dm9000_release_board(pdev, netdev_priv(ndev));
1685 free_netdev(ndev); /* free device structure */
1687 dev_dbg(&pdev->dev, "released and freed device\n");
1688 return 0;
1691 static struct platform_driver dm9000_driver = {
1692 .driver = {
1693 .name = "dm9000",
1694 .owner = THIS_MODULE,
1695 .pm = &dm9000_drv_pm_ops,
1697 .probe = dm9000_probe,
1698 .remove = __devexit_p(dm9000_drv_remove),
1701 static int __init
1702 dm9000_init(void)
1704 printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1706 return platform_driver_register(&dm9000_driver);
1709 static void __exit
1710 dm9000_cleanup(void)
1712 platform_driver_unregister(&dm9000_driver);
1715 module_init(dm9000_init);
1716 module_exit(dm9000_cleanup);
1718 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1719 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1720 MODULE_LICENSE("GPL");
1721 MODULE_ALIAS("platform:dm9000");