1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
144 #define I82579_EMI_ADDR 0x10
145 #define I82579_EMI_DATA 0x11
146 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
148 /* Strapping Option Register - RO */
149 #define E1000_STRAP 0x0000C
150 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
151 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153 /* OEM Bits Phy Register */
154 #define HV_OEM_BITS PHY_REG(768, 25)
155 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
156 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
157 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
160 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
162 /* KMRN Mode Control */
163 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
164 #define HV_KMRN_MDIO_SLOW 0x0400
166 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
167 /* Offset 04h HSFSTS */
168 union ich8_hws_flash_status
{
170 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
171 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
172 u16 dael
:1; /* bit 2 Direct Access error Log */
173 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
174 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
175 u16 reserved1
:2; /* bit 13:6 Reserved */
176 u16 reserved2
:6; /* bit 13:6 Reserved */
177 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
178 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
183 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
184 /* Offset 06h FLCTL */
185 union ich8_hws_flash_ctrl
{
186 struct ich8_hsflctl
{
187 u16 flcgo
:1; /* 0 Flash Cycle Go */
188 u16 flcycle
:2; /* 2:1 Flash Cycle */
189 u16 reserved
:5; /* 7:3 Reserved */
190 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
191 u16 flockdn
:6; /* 15:10 Reserved */
196 /* ICH Flash Region Access Permissions */
197 union ich8_hws_flash_regacc
{
199 u32 grra
:8; /* 0:7 GbE region Read Access */
200 u32 grwa
:8; /* 8:15 GbE region Write Access */
201 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
202 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
207 /* ICH Flash Protected Region */
208 union ich8_flash_protected_range
{
210 u32 base
:13; /* 0:12 Protected Range Base */
211 u32 reserved1
:2; /* 13:14 Reserved */
212 u32 rpe
:1; /* 15 Read Protection Enable */
213 u32 limit
:13; /* 16:28 Protected Range Limit */
214 u32 reserved2
:2; /* 29:30 Reserved */
215 u32 wpe
:1; /* 31 Write Protection Enable */
220 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
221 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
222 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
223 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
224 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
225 u32 offset
, u8 byte
);
226 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
228 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
230 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
232 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
233 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
234 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
235 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
236 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
237 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
238 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
239 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
240 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
241 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
242 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
243 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
244 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
245 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
246 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
247 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
248 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
249 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
250 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
253 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
255 return readw(hw
->flash_address
+ reg
);
258 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
260 return readl(hw
->flash_address
+ reg
);
263 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
265 writew(val
, hw
->flash_address
+ reg
);
268 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
270 writel(val
, hw
->flash_address
+ reg
);
273 #define er16flash(reg) __er16flash(hw, (reg))
274 #define er32flash(reg) __er32flash(hw, (reg))
275 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
276 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
279 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
280 * @hw: pointer to the HW structure
282 * Initialize family-specific PHY parameters and function pointers.
284 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
286 struct e1000_phy_info
*phy
= &hw
->phy
;
291 phy
->reset_delay_us
= 100;
293 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
294 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
295 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
296 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
297 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
298 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
299 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
300 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
301 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
304 * The MAC-PHY interconnect may still be in SMBus mode
305 * after Sx->S0. If the manageability engine (ME) is
306 * disabled, then toggle the LANPHYPC Value bit to force
307 * the interconnect to PCIe mode.
310 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) && !e1000_check_reset_block(hw
)) {
312 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
313 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
316 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
321 * Gate automatic PHY configuration by hardware on
324 if (hw
->mac
.type
== e1000_pch2lan
)
325 e1000_gate_hw_phy_config_ich8lan(hw
, true);
329 * Reset the PHY before any access to it. Doing so, ensures that
330 * the PHY is in a known good state before we read/write PHY registers.
331 * The generic reset is sufficient here, because we haven't determined
334 ret_val
= e1000e_phy_hw_reset_generic(hw
);
338 /* Ungate automatic PHY configuration on non-managed 82579 */
339 if ((hw
->mac
.type
== e1000_pch2lan
) &&
340 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
342 e1000_gate_hw_phy_config_ich8lan(hw
, false);
345 phy
->id
= e1000_phy_unknown
;
346 switch (hw
->mac
.type
) {
348 ret_val
= e1000e_get_phy_id(hw
);
351 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
356 * In case the PHY needs to be in mdio slow mode,
357 * set slow mode and try to get the PHY id again.
359 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
362 ret_val
= e1000e_get_phy_id(hw
);
367 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
370 case e1000_phy_82577
:
371 case e1000_phy_82579
:
372 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
373 phy
->ops
.force_speed_duplex
=
374 e1000_phy_force_speed_duplex_82577
;
375 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
376 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
377 phy
->ops
.commit
= e1000e_phy_sw_reset
;
379 case e1000_phy_82578
:
380 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
381 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
382 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
383 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
386 ret_val
= -E1000_ERR_PHY
;
395 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
396 * @hw: pointer to the HW structure
398 * Initialize family-specific PHY parameters and function pointers.
400 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
402 struct e1000_phy_info
*phy
= &hw
->phy
;
407 phy
->reset_delay_us
= 100;
409 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
410 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
413 * We may need to do this twice - once for IGP and if that fails,
414 * we'll set BM func pointers and try again
416 ret_val
= e1000e_determine_phy_address(hw
);
418 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
419 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
420 ret_val
= e1000e_determine_phy_address(hw
);
422 e_dbg("Cannot determine PHY addr. Erroring out\n");
428 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
431 ret_val
= e1000e_get_phy_id(hw
);
438 case IGP03E1000_E_PHY_ID
:
439 phy
->type
= e1000_phy_igp_3
;
440 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
441 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
442 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
443 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
444 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
445 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
448 case IFE_PLUS_E_PHY_ID
:
450 phy
->type
= e1000_phy_ife
;
451 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
452 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
453 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
454 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
456 case BME1000_E_PHY_ID
:
457 phy
->type
= e1000_phy_bm
;
458 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
459 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
460 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
461 phy
->ops
.commit
= e1000e_phy_sw_reset
;
462 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
463 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
464 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
467 return -E1000_ERR_PHY
;
475 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
476 * @hw: pointer to the HW structure
478 * Initialize family-specific NVM parameters and function
481 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
483 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
484 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
485 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
488 /* Can't read flash registers if the register set isn't mapped. */
489 if (!hw
->flash_address
) {
490 e_dbg("ERROR: Flash registers not mapped\n");
491 return -E1000_ERR_CONFIG
;
494 nvm
->type
= e1000_nvm_flash_sw
;
496 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
499 * sector_X_addr is a "sector"-aligned address (4096 bytes)
500 * Add 1 to sector_end_addr since this sector is included in
503 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
504 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
506 /* flash_base_addr is byte-aligned */
507 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
510 * find total size of the NVM, then cut in half since the total
511 * size represents two separate NVM banks.
513 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
514 << FLASH_SECTOR_ADDR_SHIFT
;
515 nvm
->flash_bank_size
/= 2;
516 /* Adjust to word count */
517 nvm
->flash_bank_size
/= sizeof(u16
);
519 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
521 /* Clear shadow ram */
522 for (i
= 0; i
< nvm
->word_size
; i
++) {
523 dev_spec
->shadow_ram
[i
].modified
= false;
524 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
531 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
532 * @hw: pointer to the HW structure
534 * Initialize family-specific MAC parameters and function
537 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
539 struct e1000_hw
*hw
= &adapter
->hw
;
540 struct e1000_mac_info
*mac
= &hw
->mac
;
542 /* Set media type function pointer */
543 hw
->phy
.media_type
= e1000_media_type_copper
;
545 /* Set mta register count */
546 mac
->mta_reg_count
= 32;
547 /* Set rar entry count */
548 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
549 if (mac
->type
== e1000_ich8lan
)
550 mac
->rar_entry_count
--;
552 mac
->has_fwsm
= true;
553 /* ARC subsystem not supported */
554 mac
->arc_subsystem_valid
= false;
555 /* Adaptive IFS supported */
556 mac
->adaptive_ifs
= true;
563 /* check management mode */
564 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
566 mac
->ops
.id_led_init
= e1000e_id_led_init
;
568 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
570 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
571 /* turn on/off LED */
572 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
573 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
577 /* check management mode */
578 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
580 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
582 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
584 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
585 /* turn on/off LED */
586 mac
->ops
.led_on
= e1000_led_on_pchlan
;
587 mac
->ops
.led_off
= e1000_led_off_pchlan
;
593 /* Enable PCS Lock-loss workaround for ICH8 */
594 if (mac
->type
== e1000_ich8lan
)
595 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
597 /* Gate automatic PHY configuration by hardware on managed 82579 */
598 if ((mac
->type
== e1000_pch2lan
) &&
599 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
600 e1000_gate_hw_phy_config_ich8lan(hw
, true);
606 * e1000_set_eee_pchlan - Enable/disable EEE support
607 * @hw: pointer to the HW structure
609 * Enable/disable EEE based on setting in dev_spec structure. The bits in
610 * the LPI Control register will remain set only if/when link is up.
612 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
617 if (hw
->phy
.type
!= e1000_phy_82579
)
620 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
624 if (hw
->dev_spec
.ich8lan
.eee_disable
)
625 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
627 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
629 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
635 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
636 * @hw: pointer to the HW structure
638 * Checks to see of the link status of the hardware has changed. If a
639 * change in link status has been detected, then we read the PHY registers
640 * to get the current speed/duplex if link exists.
642 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
644 struct e1000_mac_info
*mac
= &hw
->mac
;
649 * We only want to go out to the PHY registers to see if Auto-Neg
650 * has completed and/or if our link status has changed. The
651 * get_link_status flag is set upon receiving a Link Status
652 * Change or Rx Sequence Error interrupt.
654 if (!mac
->get_link_status
) {
660 * First we want to see if the MII Status Register reports
661 * link. If so, then we want to get the current speed/duplex
664 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
668 if (hw
->mac
.type
== e1000_pchlan
) {
669 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
675 goto out
; /* No link detected */
677 mac
->get_link_status
= false;
679 if (hw
->phy
.type
== e1000_phy_82578
) {
680 ret_val
= e1000_link_stall_workaround_hv(hw
);
685 if (hw
->mac
.type
== e1000_pch2lan
) {
686 ret_val
= e1000_k1_workaround_lv(hw
);
692 * Check if there was DownShift, must be checked
693 * immediately after link-up
695 e1000e_check_downshift(hw
);
697 /* Enable/Disable EEE after link up */
698 ret_val
= e1000_set_eee_pchlan(hw
);
703 * If we are forcing speed/duplex, then we simply return since
704 * we have already determined whether we have link or not.
707 ret_val
= -E1000_ERR_CONFIG
;
712 * Auto-Neg is enabled. Auto Speed Detection takes care
713 * of MAC speed/duplex configuration. So we only need to
714 * configure Collision Distance in the MAC.
716 e1000e_config_collision_dist(hw
);
719 * Configure Flow Control now that Auto-Neg has completed.
720 * First, we need to restore the desired flow control
721 * settings because we may have had to re-autoneg with a
722 * different link partner.
724 ret_val
= e1000e_config_fc_after_link_up(hw
);
726 e_dbg("Error configuring flow control\n");
732 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
734 struct e1000_hw
*hw
= &adapter
->hw
;
737 rc
= e1000_init_mac_params_ich8lan(adapter
);
741 rc
= e1000_init_nvm_params_ich8lan(hw
);
745 switch (hw
->mac
.type
) {
749 rc
= e1000_init_phy_params_ich8lan(hw
);
753 rc
= e1000_init_phy_params_pchlan(hw
);
762 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
763 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
765 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
766 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
767 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
768 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
769 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
772 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
773 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
774 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
776 /* Disable EEE by default until IEEE802.3az spec is finalized */
777 if (adapter
->flags2
& FLAG2_HAS_EEE
)
778 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
783 static DEFINE_MUTEX(nvm_mutex
);
786 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
787 * @hw: pointer to the HW structure
789 * Acquires the mutex for performing NVM operations.
791 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
793 mutex_lock(&nvm_mutex
);
799 * e1000_release_nvm_ich8lan - Release NVM mutex
800 * @hw: pointer to the HW structure
802 * Releases the mutex used while performing NVM operations.
804 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
806 mutex_unlock(&nvm_mutex
);
809 static DEFINE_MUTEX(swflag_mutex
);
812 * e1000_acquire_swflag_ich8lan - Acquire software control flag
813 * @hw: pointer to the HW structure
815 * Acquires the software control flag for performing PHY and select
818 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
820 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
823 mutex_lock(&swflag_mutex
);
826 extcnf_ctrl
= er32(EXTCNF_CTRL
);
827 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
835 e_dbg("SW/FW/HW has locked the resource for too long.\n");
836 ret_val
= -E1000_ERR_CONFIG
;
840 timeout
= SW_FLAG_TIMEOUT
;
842 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
843 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
846 extcnf_ctrl
= er32(EXTCNF_CTRL
);
847 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
855 e_dbg("Failed to acquire the semaphore.\n");
856 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
857 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
858 ret_val
= -E1000_ERR_CONFIG
;
864 mutex_unlock(&swflag_mutex
);
870 * e1000_release_swflag_ich8lan - Release software control flag
871 * @hw: pointer to the HW structure
873 * Releases the software control flag for performing PHY and select
876 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
880 extcnf_ctrl
= er32(EXTCNF_CTRL
);
881 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
882 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
884 mutex_unlock(&swflag_mutex
);
888 * e1000_check_mng_mode_ich8lan - Checks management mode
889 * @hw: pointer to the HW structure
891 * This checks if the adapter has any manageability enabled.
892 * This is a function pointer entry point only called by read/write
893 * routines for the PHY and NVM parts.
895 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
900 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
901 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
902 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
906 * e1000_check_mng_mode_pchlan - Checks management mode
907 * @hw: pointer to the HW structure
909 * This checks if the adapter has iAMT enabled.
910 * This is a function pointer entry point only called by read/write
911 * routines for the PHY and NVM parts.
913 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
918 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
919 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
923 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
924 * @hw: pointer to the HW structure
926 * Checks if firmware is blocking the reset of the PHY.
927 * This is a function pointer entry point only called by
930 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
936 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
940 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
941 * @hw: pointer to the HW structure
943 * Assumes semaphore already acquired.
946 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
949 u32 strap
= er32(STRAP
);
952 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
954 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
958 phy_data
&= ~HV_SMB_ADDR_MASK
;
959 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
960 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
961 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
968 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
969 * @hw: pointer to the HW structure
971 * SW should configure the LCD from the NVM extended configuration region
972 * as a workaround for certain parts.
974 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
976 struct e1000_phy_info
*phy
= &hw
->phy
;
977 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
979 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
982 * Initialize the PHY from the NVM on ICH platforms. This
983 * is needed due to an issue where the NVM configuration is
984 * not properly autoloaded after power transitions.
985 * Therefore, after each PHY reset, we will load the
986 * configuration data out of the NVM manually.
988 switch (hw
->mac
.type
) {
990 if (phy
->type
!= e1000_phy_igp_3
)
993 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
994 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
995 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
1001 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
1007 ret_val
= hw
->phy
.ops
.acquire(hw
);
1011 data
= er32(FEXTNVM
);
1012 if (!(data
& sw_cfg_mask
))
1016 * Make sure HW does not configure LCD from PHY
1017 * extended configuration before SW configuration
1019 data
= er32(EXTCNF_CTRL
);
1020 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1021 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
1025 cnf_size
= er32(EXTCNF_SIZE
);
1026 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
1027 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
1031 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
1032 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
1034 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
1035 (hw
->mac
.type
== e1000_pchlan
)) ||
1036 (hw
->mac
.type
== e1000_pch2lan
)) {
1038 * HW configures the SMBus address and LEDs when the
1039 * OEM and LCD Write Enable bits are set in the NVM.
1040 * When both NVM bits are cleared, SW will configure
1043 ret_val
= e1000_write_smbus_addr(hw
);
1047 data
= er32(LEDCTL
);
1048 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1054 /* Configure LCD from extended configuration region. */
1056 /* cnf_base_addr is in DWORD */
1057 word_addr
= (u16
)(cnf_base_addr
<< 1);
1059 for (i
= 0; i
< cnf_size
; i
++) {
1060 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1065 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1070 /* Save off the PHY page for future writes. */
1071 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1072 phy_page
= reg_data
;
1076 reg_addr
&= PHY_REG_MASK
;
1077 reg_addr
|= phy_page
;
1079 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1086 hw
->phy
.ops
.release(hw
);
1091 * e1000_k1_gig_workaround_hv - K1 Si workaround
1092 * @hw: pointer to the HW structure
1093 * @link: link up bool flag
1095 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1096 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1097 * If link is down, the function will restore the default K1 setting located
1100 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1104 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1106 if (hw
->mac
.type
!= e1000_pchlan
)
1109 /* Wrap the whole flow with the sw flag */
1110 ret_val
= hw
->phy
.ops
.acquire(hw
);
1114 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1116 if (hw
->phy
.type
== e1000_phy_82578
) {
1117 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1122 status_reg
&= BM_CS_STATUS_LINK_UP
|
1123 BM_CS_STATUS_RESOLVED
|
1124 BM_CS_STATUS_SPEED_MASK
;
1126 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1127 BM_CS_STATUS_RESOLVED
|
1128 BM_CS_STATUS_SPEED_1000
))
1132 if (hw
->phy
.type
== e1000_phy_82577
) {
1133 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1138 status_reg
&= HV_M_STATUS_LINK_UP
|
1139 HV_M_STATUS_AUTONEG_COMPLETE
|
1140 HV_M_STATUS_SPEED_MASK
;
1142 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1143 HV_M_STATUS_AUTONEG_COMPLETE
|
1144 HV_M_STATUS_SPEED_1000
))
1148 /* Link stall fix for link up */
1149 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1155 /* Link stall fix for link down */
1156 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1162 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1165 hw
->phy
.ops
.release(hw
);
1171 * e1000_configure_k1_ich8lan - Configure K1 power state
1172 * @hw: pointer to the HW structure
1173 * @enable: K1 state to configure
1175 * Configure the K1 power state based on the provided parameter.
1176 * Assumes semaphore already acquired.
1178 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1180 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1188 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1189 E1000_KMRNCTRLSTA_K1_CONFIG
,
1195 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1197 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1199 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1200 E1000_KMRNCTRLSTA_K1_CONFIG
,
1206 ctrl_ext
= er32(CTRL_EXT
);
1207 ctrl_reg
= er32(CTRL
);
1209 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1210 reg
|= E1000_CTRL_FRCSPD
;
1213 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1215 ew32(CTRL
, ctrl_reg
);
1216 ew32(CTRL_EXT
, ctrl_ext
);
1224 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1225 * @hw: pointer to the HW structure
1226 * @d0_state: boolean if entering d0 or d3 device state
1228 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1229 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1230 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1232 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1238 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1241 ret_val
= hw
->phy
.ops
.acquire(hw
);
1245 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1246 mac_reg
= er32(EXTCNF_CTRL
);
1247 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1251 mac_reg
= er32(FEXTNVM
);
1252 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1255 mac_reg
= er32(PHY_CTRL
);
1257 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1261 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1264 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1265 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1267 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1268 oem_reg
|= HV_OEM_BITS_LPLU
;
1270 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1271 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1273 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1274 oem_reg
|= HV_OEM_BITS_LPLU
;
1276 /* Restart auto-neg to activate the bits */
1277 if (!e1000_check_reset_block(hw
))
1278 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1279 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1282 hw
->phy
.ops
.release(hw
);
1289 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1290 * @hw: pointer to the HW structure
1292 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1297 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1301 data
|= HV_KMRN_MDIO_SLOW
;
1303 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1309 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1310 * done after every PHY reset.
1312 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1317 if (hw
->mac
.type
!= e1000_pchlan
)
1320 /* Set MDIO slow mode before any other MDIO access */
1321 if (hw
->phy
.type
== e1000_phy_82577
) {
1322 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1327 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1328 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1329 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1330 /* Disable generation of early preamble */
1331 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1335 /* Preamble tuning for SSC */
1336 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1341 if (hw
->phy
.type
== e1000_phy_82578
) {
1343 * Return registers to default by doing a soft reset then
1344 * writing 0x3140 to the control register.
1346 if (hw
->phy
.revision
< 2) {
1347 e1000e_phy_sw_reset(hw
);
1348 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1353 ret_val
= hw
->phy
.ops
.acquire(hw
);
1358 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1359 hw
->phy
.ops
.release(hw
);
1364 * Configure the K1 Si workaround during phy reset assuming there is
1365 * link so that it disables K1 if link is in 1Gbps.
1367 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1371 /* Workaround for link disconnects on a busy hub in half duplex */
1372 ret_val
= hw
->phy
.ops
.acquire(hw
);
1375 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
,
1376 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1380 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
,
1381 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1384 hw
->phy
.ops
.release(hw
);
1390 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1391 * @hw: pointer to the HW structure
1393 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1398 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1399 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1400 mac_reg
= er32(RAL(i
));
1401 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
1402 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
1403 mac_reg
= er32(RAH(i
));
1404 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
1405 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0x8000));
1410 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1412 * @hw: pointer to the HW structure
1413 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1415 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1422 if (hw
->mac
.type
!= e1000_pch2lan
)
1425 /* disable Rx path while enabling/disabling workaround */
1426 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1427 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1433 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1434 * SHRAL/H) and initial CRC values to the MAC
1436 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1437 u8 mac_addr
[ETH_ALEN
] = {0};
1438 u32 addr_high
, addr_low
;
1440 addr_high
= er32(RAH(i
));
1441 if (!(addr_high
& E1000_RAH_AV
))
1443 addr_low
= er32(RAL(i
));
1444 mac_addr
[0] = (addr_low
& 0xFF);
1445 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1446 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1447 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1448 mac_addr
[4] = (addr_high
& 0xFF);
1449 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1451 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
1454 /* Write Rx addresses to the PHY */
1455 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1457 /* Enable jumbo frame workaround in the MAC */
1458 mac_reg
= er32(FFLT_DBG
);
1459 mac_reg
&= ~(1 << 14);
1460 mac_reg
|= (7 << 15);
1461 ew32(FFLT_DBG
, mac_reg
);
1463 mac_reg
= er32(RCTL
);
1464 mac_reg
|= E1000_RCTL_SECRC
;
1465 ew32(RCTL
, mac_reg
);
1467 ret_val
= e1000e_read_kmrn_reg(hw
,
1468 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1472 ret_val
= e1000e_write_kmrn_reg(hw
,
1473 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1477 ret_val
= e1000e_read_kmrn_reg(hw
,
1478 E1000_KMRNCTRLSTA_HD_CTRL
,
1482 data
&= ~(0xF << 8);
1484 ret_val
= e1000e_write_kmrn_reg(hw
,
1485 E1000_KMRNCTRLSTA_HD_CTRL
,
1490 /* Enable jumbo frame workaround in the PHY */
1491 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1492 data
&= ~(0x7F << 5);
1493 data
|= (0x37 << 5);
1494 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1497 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1499 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1502 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1503 data
&= ~(0x3FF << 2);
1504 data
|= (0x1A << 2);
1505 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1508 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xFE00);
1511 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1512 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1516 /* Write MAC register values back to h/w defaults */
1517 mac_reg
= er32(FFLT_DBG
);
1518 mac_reg
&= ~(0xF << 14);
1519 ew32(FFLT_DBG
, mac_reg
);
1521 mac_reg
= er32(RCTL
);
1522 mac_reg
&= ~E1000_RCTL_SECRC
;
1523 ew32(RCTL
, mac_reg
);
1525 ret_val
= e1000e_read_kmrn_reg(hw
,
1526 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1530 ret_val
= e1000e_write_kmrn_reg(hw
,
1531 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1535 ret_val
= e1000e_read_kmrn_reg(hw
,
1536 E1000_KMRNCTRLSTA_HD_CTRL
,
1540 data
&= ~(0xF << 8);
1542 ret_val
= e1000e_write_kmrn_reg(hw
,
1543 E1000_KMRNCTRLSTA_HD_CTRL
,
1548 /* Write PHY register values back to h/w defaults */
1549 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1550 data
&= ~(0x7F << 5);
1551 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1554 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1556 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1559 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1560 data
&= ~(0x3FF << 2);
1562 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1565 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1568 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1569 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1574 /* re-enable Rx path after enabling/disabling workaround */
1575 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1582 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1583 * done after every PHY reset.
1585 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1589 if (hw
->mac
.type
!= e1000_pch2lan
)
1592 /* Set MDIO slow mode before any other MDIO access */
1593 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1600 * e1000_k1_gig_workaround_lv - K1 Si workaround
1601 * @hw: pointer to the HW structure
1603 * Workaround to set the K1 beacon duration for 82579 parts
1605 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
1611 if (hw
->mac
.type
!= e1000_pch2lan
)
1614 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1615 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
1619 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
1620 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
1621 mac_reg
= er32(FEXTNVM4
);
1622 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1624 if (status_reg
& HV_M_STATUS_SPEED_1000
)
1625 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1627 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
1629 ew32(FEXTNVM4
, mac_reg
);
1637 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1638 * @hw: pointer to the HW structure
1639 * @gate: boolean set to true to gate, false to ungate
1641 * Gate/ungate the automatic PHY configuration via hardware; perform
1642 * the configuration via software instead.
1644 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
1648 if (hw
->mac
.type
!= e1000_pch2lan
)
1651 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1654 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1656 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1658 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1663 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1664 * @hw: pointer to the HW structure
1666 * Check the appropriate indication the MAC has finished configuring the
1667 * PHY after a software reset.
1669 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1671 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1673 /* Wait for basic configuration completes before proceeding */
1675 data
= er32(STATUS
);
1676 data
&= E1000_STATUS_LAN_INIT_DONE
;
1678 } while ((!data
) && --loop
);
1681 * If basic configuration is incomplete before the above loop
1682 * count reaches 0, loading the configuration from NVM will
1683 * leave the PHY in a bad state possibly resulting in no link.
1686 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1688 /* Clear the Init Done bit for the next init event */
1689 data
= er32(STATUS
);
1690 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1695 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1696 * @hw: pointer to the HW structure
1698 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1703 if (e1000_check_reset_block(hw
))
1706 /* Allow time for h/w to get to quiescent state after reset */
1709 /* Perform any necessary post-reset workarounds */
1710 switch (hw
->mac
.type
) {
1712 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1717 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1725 /* Dummy read to clear the phy wakeup bit after lcd reset */
1726 if (hw
->mac
.type
>= e1000_pchlan
)
1727 e1e_rphy(hw
, BM_WUC
, ®
);
1729 /* Configure the LCD with the extended configuration region in NVM */
1730 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1734 /* Configure the LCD with the OEM bits in NVM */
1735 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1737 if (hw
->mac
.type
== e1000_pch2lan
) {
1738 /* Ungate automatic PHY configuration on non-managed 82579 */
1739 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
1741 e1000_gate_hw_phy_config_ich8lan(hw
, false);
1744 /* Set EEE LPI Update Timer to 200usec */
1745 ret_val
= hw
->phy
.ops
.acquire(hw
);
1748 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_ADDR
,
1749 I82579_LPI_UPDATE_TIMER
);
1752 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_DATA
,
1755 hw
->phy
.ops
.release(hw
);
1763 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1764 * @hw: pointer to the HW structure
1767 * This is a function pointer entry point called by drivers
1768 * or other shared routines.
1770 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1774 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1775 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1776 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1777 e1000_gate_hw_phy_config_ich8lan(hw
, true);
1779 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1783 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1790 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1791 * @hw: pointer to the HW structure
1792 * @active: true to enable LPLU, false to disable
1794 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1795 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1796 * the phy speed. This function will manually set the LPLU bit and restart
1797 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1798 * since it configures the same bit.
1800 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1805 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1810 oem_reg
|= HV_OEM_BITS_LPLU
;
1812 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1814 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1815 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1822 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1823 * @hw: pointer to the HW structure
1824 * @active: true to enable LPLU, false to disable
1826 * Sets the LPLU D0 state according to the active flag. When
1827 * activating LPLU this function also disables smart speed
1828 * and vice versa. LPLU will not be activated unless the
1829 * device autonegotiation advertisement meets standards of
1830 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1831 * This is a function pointer entry point only called by
1832 * PHY setup routines.
1834 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1836 struct e1000_phy_info
*phy
= &hw
->phy
;
1841 if (phy
->type
== e1000_phy_ife
)
1844 phy_ctrl
= er32(PHY_CTRL
);
1847 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1848 ew32(PHY_CTRL
, phy_ctrl
);
1850 if (phy
->type
!= e1000_phy_igp_3
)
1854 * Call gig speed drop workaround on LPLU before accessing
1857 if (hw
->mac
.type
== e1000_ich8lan
)
1858 e1000e_gig_downshift_workaround_ich8lan(hw
);
1860 /* When LPLU is enabled, we should disable SmartSpeed */
1861 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1862 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1863 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1867 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1868 ew32(PHY_CTRL
, phy_ctrl
);
1870 if (phy
->type
!= e1000_phy_igp_3
)
1874 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1875 * during Dx states where the power conservation is most
1876 * important. During driver activity we should enable
1877 * SmartSpeed, so performance is maintained.
1879 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1880 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1885 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1886 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1890 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1891 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1896 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1897 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1908 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1909 * @hw: pointer to the HW structure
1910 * @active: true to enable LPLU, false to disable
1912 * Sets the LPLU D3 state according to the active flag. When
1913 * activating LPLU this function also disables smart speed
1914 * and vice versa. LPLU will not be activated unless the
1915 * device autonegotiation advertisement meets standards of
1916 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1917 * This is a function pointer entry point only called by
1918 * PHY setup routines.
1920 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1922 struct e1000_phy_info
*phy
= &hw
->phy
;
1927 phy_ctrl
= er32(PHY_CTRL
);
1930 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1931 ew32(PHY_CTRL
, phy_ctrl
);
1933 if (phy
->type
!= e1000_phy_igp_3
)
1937 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1938 * during Dx states where the power conservation is most
1939 * important. During driver activity we should enable
1940 * SmartSpeed, so performance is maintained.
1942 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1943 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1948 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1949 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1953 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1954 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1959 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1960 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1965 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1966 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1967 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1968 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1969 ew32(PHY_CTRL
, phy_ctrl
);
1971 if (phy
->type
!= e1000_phy_igp_3
)
1975 * Call gig speed drop workaround on LPLU before accessing
1978 if (hw
->mac
.type
== e1000_ich8lan
)
1979 e1000e_gig_downshift_workaround_ich8lan(hw
);
1981 /* When LPLU is enabled, we should disable SmartSpeed */
1982 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1986 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1987 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1994 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1995 * @hw: pointer to the HW structure
1996 * @bank: pointer to the variable that returns the active bank
1998 * Reads signature byte from the NVM using the flash access registers.
1999 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2001 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
2004 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2005 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
2006 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
2010 switch (hw
->mac
.type
) {
2014 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
2015 E1000_EECD_SEC1VAL_VALID_MASK
) {
2016 if (eecd
& E1000_EECD_SEC1VAL
)
2023 e_dbg("Unable to determine valid NVM bank via EEC - "
2024 "reading flash signature\n");
2027 /* set bank to 0 in case flash read fails */
2031 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
2035 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2036 E1000_ICH_NVM_SIG_VALUE
) {
2042 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
2047 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2048 E1000_ICH_NVM_SIG_VALUE
) {
2053 e_dbg("ERROR: No valid NVM bank present\n");
2054 return -E1000_ERR_NVM
;
2061 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2062 * @hw: pointer to the HW structure
2063 * @offset: The offset (in bytes) of the word(s) to read.
2064 * @words: Size of data to read in words
2065 * @data: Pointer to the word(s) to read at offset.
2067 * Reads a word(s) from the NVM using the flash access registers.
2069 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2072 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2073 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2079 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2081 e_dbg("nvm parameter(s) out of bounds\n");
2082 ret_val
= -E1000_ERR_NVM
;
2086 nvm
->ops
.acquire(hw
);
2088 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2090 e_dbg("Could not detect valid bank, assuming bank 0\n");
2094 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
2095 act_offset
+= offset
;
2098 for (i
= 0; i
< words
; i
++) {
2099 if ((dev_spec
->shadow_ram
) &&
2100 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
2101 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2103 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2112 nvm
->ops
.release(hw
);
2116 e_dbg("NVM read error: %d\n", ret_val
);
2122 * e1000_flash_cycle_init_ich8lan - Initialize flash
2123 * @hw: pointer to the HW structure
2125 * This function does initial flash setup so that a new read/write/erase cycle
2128 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2130 union ich8_hws_flash_status hsfsts
;
2131 s32 ret_val
= -E1000_ERR_NVM
;
2133 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2135 /* Check if the flash descriptor is valid */
2136 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2137 e_dbg("Flash descriptor invalid. "
2138 "SW Sequencing must be used.\n");
2139 return -E1000_ERR_NVM
;
2142 /* Clear FCERR and DAEL in hw status by writing 1 */
2143 hsfsts
.hsf_status
.flcerr
= 1;
2144 hsfsts
.hsf_status
.dael
= 1;
2146 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2149 * Either we should have a hardware SPI cycle in progress
2150 * bit to check against, in order to start a new cycle or
2151 * FDONE bit should be changed in the hardware so that it
2152 * is 1 after hardware reset, which can then be used as an
2153 * indication whether a cycle is in progress or has been
2157 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2159 * There is no cycle running at present,
2160 * so we can start a cycle.
2161 * Begin by setting Flash Cycle Done.
2163 hsfsts
.hsf_status
.flcdone
= 1;
2164 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2170 * Otherwise poll for sometime so the current
2171 * cycle has a chance to end before giving up.
2173 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2174 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2175 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2183 * Successful in waiting for previous cycle to timeout,
2184 * now set the Flash Cycle Done.
2186 hsfsts
.hsf_status
.flcdone
= 1;
2187 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2189 e_dbg("Flash controller busy, cannot get access\n");
2197 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2198 * @hw: pointer to the HW structure
2199 * @timeout: maximum time to wait for completion
2201 * This function starts a flash cycle and waits for its completion.
2203 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2205 union ich8_hws_flash_ctrl hsflctl
;
2206 union ich8_hws_flash_status hsfsts
;
2207 s32 ret_val
= -E1000_ERR_NVM
;
2210 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2211 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2212 hsflctl
.hsf_ctrl
.flcgo
= 1;
2213 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2215 /* wait till FDONE bit is set to 1 */
2217 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2218 if (hsfsts
.hsf_status
.flcdone
== 1)
2221 } while (i
++ < timeout
);
2223 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2230 * e1000_read_flash_word_ich8lan - Read word from flash
2231 * @hw: pointer to the HW structure
2232 * @offset: offset to data location
2233 * @data: pointer to the location for storing the data
2235 * Reads the flash word at offset into data. Offset is converted
2236 * to bytes before read.
2238 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2241 /* Must convert offset into bytes. */
2244 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2248 * e1000_read_flash_byte_ich8lan - Read byte from flash
2249 * @hw: pointer to the HW structure
2250 * @offset: The offset of the byte to read.
2251 * @data: Pointer to a byte to store the value read.
2253 * Reads a single byte from the NVM using the flash access registers.
2255 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2261 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2271 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2272 * @hw: pointer to the HW structure
2273 * @offset: The offset (in bytes) of the byte or word to read.
2274 * @size: Size of data to read, 1=byte 2=word
2275 * @data: Pointer to the word to store the value read.
2277 * Reads a byte or word from the NVM using the flash access registers.
2279 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2282 union ich8_hws_flash_status hsfsts
;
2283 union ich8_hws_flash_ctrl hsflctl
;
2284 u32 flash_linear_addr
;
2286 s32 ret_val
= -E1000_ERR_NVM
;
2289 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2290 return -E1000_ERR_NVM
;
2292 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2293 hw
->nvm
.flash_base_addr
;
2298 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2302 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2303 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2304 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2305 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2306 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2308 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2310 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2311 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2314 * Check if FCERR is set to 1, if set to 1, clear it
2315 * and try the whole sequence a few more times, else
2316 * read in (shift in) the Flash Data0, the order is
2317 * least significant byte first msb to lsb
2320 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2322 *data
= (u8
)(flash_data
& 0x000000FF);
2324 *data
= (u16
)(flash_data
& 0x0000FFFF);
2328 * If we've gotten here, then things are probably
2329 * completely hosed, but if the error condition is
2330 * detected, it won't hurt to give it another try...
2331 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2333 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2334 if (hsfsts
.hsf_status
.flcerr
== 1) {
2335 /* Repeat for some time before giving up. */
2337 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2338 e_dbg("Timeout error - flash cycle "
2339 "did not complete.\n");
2343 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2349 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2350 * @hw: pointer to the HW structure
2351 * @offset: The offset (in bytes) of the word(s) to write.
2352 * @words: Size of data to write in words
2353 * @data: Pointer to the word(s) to write at offset.
2355 * Writes a byte or word to the NVM using the flash access registers.
2357 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2360 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2361 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2364 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2366 e_dbg("nvm parameter(s) out of bounds\n");
2367 return -E1000_ERR_NVM
;
2370 nvm
->ops
.acquire(hw
);
2372 for (i
= 0; i
< words
; i
++) {
2373 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2374 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2377 nvm
->ops
.release(hw
);
2383 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2384 * @hw: pointer to the HW structure
2386 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2387 * which writes the checksum to the shadow ram. The changes in the shadow
2388 * ram are then committed to the EEPROM by processing each bank at a time
2389 * checking for the modified bit and writing only the pending changes.
2390 * After a successful commit, the shadow ram is cleared and is ready for
2393 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2395 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2396 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2397 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2401 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2405 if (nvm
->type
!= e1000_nvm_flash_sw
)
2408 nvm
->ops
.acquire(hw
);
2411 * We're writing to the opposite bank so if we're on bank 1,
2412 * write to bank 0 etc. We also need to erase the segment that
2413 * is going to be written
2415 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2417 e_dbg("Could not detect valid bank, assuming bank 0\n");
2422 new_bank_offset
= nvm
->flash_bank_size
;
2423 old_bank_offset
= 0;
2424 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2428 old_bank_offset
= nvm
->flash_bank_size
;
2429 new_bank_offset
= 0;
2430 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2435 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2437 * Determine whether to write the value stored
2438 * in the other NVM bank or a modified value stored
2441 if (dev_spec
->shadow_ram
[i
].modified
) {
2442 data
= dev_spec
->shadow_ram
[i
].value
;
2444 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2452 * If the word is 0x13, then make sure the signature bits
2453 * (15:14) are 11b until the commit has completed.
2454 * This will allow us to write 10b which indicates the
2455 * signature is valid. We want to do this after the write
2456 * has completed so that we don't mark the segment valid
2457 * while the write is still in progress
2459 if (i
== E1000_ICH_NVM_SIG_WORD
)
2460 data
|= E1000_ICH_NVM_SIG_MASK
;
2462 /* Convert offset to bytes. */
2463 act_offset
= (i
+ new_bank_offset
) << 1;
2466 /* Write the bytes to the new bank. */
2467 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2474 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2482 * Don't bother writing the segment valid bits if sector
2483 * programming failed.
2486 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2487 e_dbg("Flash commit failed.\n");
2492 * Finally validate the new segment by setting bit 15:14
2493 * to 10b in word 0x13 , this can be done without an
2494 * erase as well since these bits are 11 to start with
2495 * and we need to change bit 14 to 0b
2497 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2498 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2503 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2510 * And invalidate the previously valid segment by setting
2511 * its signature word (0x13) high_byte to 0b. This can be
2512 * done without an erase because flash erase sets all bits
2513 * to 1's. We can write 1's to 0's without an erase
2515 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2516 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2520 /* Great! Everything worked, we can now clear the cached entries. */
2521 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2522 dev_spec
->shadow_ram
[i
].modified
= false;
2523 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2527 nvm
->ops
.release(hw
);
2530 * Reload the EEPROM, or else modifications will not appear
2531 * until after the next adapter reset.
2534 e1000e_reload_nvm(hw
);
2540 e_dbg("NVM update error: %d\n", ret_val
);
2546 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2547 * @hw: pointer to the HW structure
2549 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2550 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2551 * calculated, in which case we need to calculate the checksum and set bit 6.
2553 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2559 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2560 * needs to be fixed. This bit is an indication that the NVM
2561 * was prepared by OEM software and did not calculate the
2562 * checksum...a likely scenario.
2564 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2568 if ((data
& 0x40) == 0) {
2570 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2573 ret_val
= e1000e_update_nvm_checksum(hw
);
2578 return e1000e_validate_nvm_checksum_generic(hw
);
2582 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2583 * @hw: pointer to the HW structure
2585 * To prevent malicious write/erase of the NVM, set it to be read-only
2586 * so that the hardware ignores all write/erase cycles of the NVM via
2587 * the flash control registers. The shadow-ram copy of the NVM will
2588 * still be updated, however any updates to this copy will not stick
2589 * across driver reloads.
2591 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2593 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2594 union ich8_flash_protected_range pr0
;
2595 union ich8_hws_flash_status hsfsts
;
2598 nvm
->ops
.acquire(hw
);
2600 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2602 /* Write-protect GbE Sector of NVM */
2603 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2604 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2605 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2606 pr0
.range
.wpe
= true;
2607 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2610 * Lock down a subset of GbE Flash Control Registers, e.g.
2611 * PR0 to prevent the write-protection from being lifted.
2612 * Once FLOCKDN is set, the registers protected by it cannot
2613 * be written until FLOCKDN is cleared by a hardware reset.
2615 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2616 hsfsts
.hsf_status
.flockdn
= true;
2617 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2619 nvm
->ops
.release(hw
);
2623 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2624 * @hw: pointer to the HW structure
2625 * @offset: The offset (in bytes) of the byte/word to read.
2626 * @size: Size of data to read, 1=byte 2=word
2627 * @data: The byte(s) to write to the NVM.
2629 * Writes one/two bytes to the NVM using the flash access registers.
2631 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2634 union ich8_hws_flash_status hsfsts
;
2635 union ich8_hws_flash_ctrl hsflctl
;
2636 u32 flash_linear_addr
;
2641 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2642 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2643 return -E1000_ERR_NVM
;
2645 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2646 hw
->nvm
.flash_base_addr
;
2651 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2655 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2656 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2657 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2658 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2659 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2661 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2664 flash_data
= (u32
)data
& 0x00FF;
2666 flash_data
= (u32
)data
;
2668 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2671 * check if FCERR is set to 1 , if set to 1, clear it
2672 * and try the whole sequence a few more times else done
2674 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2675 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2680 * If we're here, then things are most likely
2681 * completely hosed, but if the error condition
2682 * is detected, it won't hurt to give it another
2683 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2685 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2686 if (hsfsts
.hsf_status
.flcerr
== 1)
2687 /* Repeat for some time before giving up. */
2689 if (hsfsts
.hsf_status
.flcdone
== 0) {
2690 e_dbg("Timeout error - flash cycle "
2691 "did not complete.");
2694 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2700 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2701 * @hw: pointer to the HW structure
2702 * @offset: The index of the byte to read.
2703 * @data: The byte to write to the NVM.
2705 * Writes a single byte to the NVM using the flash access registers.
2707 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2710 u16 word
= (u16
)data
;
2712 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2716 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2717 * @hw: pointer to the HW structure
2718 * @offset: The offset of the byte to write.
2719 * @byte: The byte to write to the NVM.
2721 * Writes a single byte to the NVM using the flash access registers.
2722 * Goes through a retry algorithm before giving up.
2724 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2725 u32 offset
, u8 byte
)
2728 u16 program_retries
;
2730 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2734 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2735 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2737 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2741 if (program_retries
== 100)
2742 return -E1000_ERR_NVM
;
2748 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2749 * @hw: pointer to the HW structure
2750 * @bank: 0 for first bank, 1 for second bank, etc.
2752 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2753 * bank N is 4096 * N + flash_reg_addr.
2755 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2757 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2758 union ich8_hws_flash_status hsfsts
;
2759 union ich8_hws_flash_ctrl hsflctl
;
2760 u32 flash_linear_addr
;
2761 /* bank size is in 16bit words - adjust to bytes */
2762 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2765 s32 j
, iteration
, sector_size
;
2767 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2770 * Determine HW Sector size: Read BERASE bits of hw flash status
2772 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2773 * consecutive sectors. The start index for the nth Hw sector
2774 * can be calculated as = bank * 4096 + n * 256
2775 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2776 * The start index for the nth Hw sector can be calculated
2778 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2779 * (ich9 only, otherwise error condition)
2780 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2782 switch (hsfsts
.hsf_status
.berasesz
) {
2784 /* Hw sector size 256 */
2785 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2786 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2789 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2793 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2797 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2801 return -E1000_ERR_NVM
;
2804 /* Start with the base address, then add the sector offset. */
2805 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2806 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2808 for (j
= 0; j
< iteration
; j
++) {
2811 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2816 * Write a value 11 (block Erase) in Flash
2817 * Cycle field in hw flash control
2819 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2820 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2821 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2824 * Write the last 24 bits of an index within the
2825 * block into Flash Linear address field in Flash
2828 flash_linear_addr
+= (j
* sector_size
);
2829 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2831 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2832 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2837 * Check if FCERR is set to 1. If 1,
2838 * clear it and try the whole sequence
2839 * a few more times else Done
2841 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2842 if (hsfsts
.hsf_status
.flcerr
== 1)
2843 /* repeat for some time before giving up */
2845 else if (hsfsts
.hsf_status
.flcdone
== 0)
2847 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2854 * e1000_valid_led_default_ich8lan - Set the default LED settings
2855 * @hw: pointer to the HW structure
2856 * @data: Pointer to the LED settings
2858 * Reads the LED default settings from the NVM to data. If the NVM LED
2859 * settings is all 0's or F's, set the LED default to a valid LED default
2862 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2866 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2868 e_dbg("NVM Read Error\n");
2872 if (*data
== ID_LED_RESERVED_0000
||
2873 *data
== ID_LED_RESERVED_FFFF
)
2874 *data
= ID_LED_DEFAULT_ICH8LAN
;
2880 * e1000_id_led_init_pchlan - store LED configurations
2881 * @hw: pointer to the HW structure
2883 * PCH does not control LEDs via the LEDCTL register, rather it uses
2884 * the PHY LED configuration register.
2886 * PCH also does not have an "always on" or "always off" mode which
2887 * complicates the ID feature. Instead of using the "on" mode to indicate
2888 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2889 * use "link_up" mode. The LEDs will still ID on request if there is no
2890 * link based on logic in e1000_led_[on|off]_pchlan().
2892 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2894 struct e1000_mac_info
*mac
= &hw
->mac
;
2896 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2897 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2898 u16 data
, i
, temp
, shift
;
2900 /* Get default ID LED modes */
2901 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2905 mac
->ledctl_default
= er32(LEDCTL
);
2906 mac
->ledctl_mode1
= mac
->ledctl_default
;
2907 mac
->ledctl_mode2
= mac
->ledctl_default
;
2909 for (i
= 0; i
< 4; i
++) {
2910 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2913 case ID_LED_ON1_DEF2
:
2914 case ID_LED_ON1_ON2
:
2915 case ID_LED_ON1_OFF2
:
2916 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2917 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2919 case ID_LED_OFF1_DEF2
:
2920 case ID_LED_OFF1_ON2
:
2921 case ID_LED_OFF1_OFF2
:
2922 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2923 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2930 case ID_LED_DEF1_ON2
:
2931 case ID_LED_ON1_ON2
:
2932 case ID_LED_OFF1_ON2
:
2933 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2934 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2936 case ID_LED_DEF1_OFF2
:
2937 case ID_LED_ON1_OFF2
:
2938 case ID_LED_OFF1_OFF2
:
2939 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2940 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2953 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2954 * @hw: pointer to the HW structure
2956 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2957 * register, so the the bus width is hard coded.
2959 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2961 struct e1000_bus_info
*bus
= &hw
->bus
;
2964 ret_val
= e1000e_get_bus_info_pcie(hw
);
2967 * ICH devices are "PCI Express"-ish. They have
2968 * a configuration space, but do not contain
2969 * PCI Express Capability registers, so bus width
2970 * must be hardcoded.
2972 if (bus
->width
== e1000_bus_width_unknown
)
2973 bus
->width
= e1000_bus_width_pcie_x1
;
2979 * e1000_reset_hw_ich8lan - Reset the hardware
2980 * @hw: pointer to the HW structure
2982 * Does a full reset of the hardware which includes a reset of the PHY and
2985 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2987 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2993 * Prevent the PCI-E bus from sticking if there is no TLP connection
2994 * on the last TLP read/write transaction when MAC is reset.
2996 ret_val
= e1000e_disable_pcie_master(hw
);
2998 e_dbg("PCI-E Master disable polling has failed.\n");
3000 e_dbg("Masking off all interrupts\n");
3001 ew32(IMC
, 0xffffffff);
3004 * Disable the Transmit and Receive units. Then delay to allow
3005 * any pending transactions to complete before we hit the MAC
3006 * with the global reset.
3009 ew32(TCTL
, E1000_TCTL_PSP
);
3014 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3015 if (hw
->mac
.type
== e1000_ich8lan
) {
3016 /* Set Tx and Rx buffer allocation to 8k apiece. */
3017 ew32(PBA
, E1000_PBA_8K
);
3018 /* Set Packet Buffer Size to 16k. */
3019 ew32(PBS
, E1000_PBS_16K
);
3022 if (hw
->mac
.type
== e1000_pchlan
) {
3023 /* Save the NVM K1 bit setting*/
3024 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
3028 if (reg
& E1000_NVM_K1_ENABLE
)
3029 dev_spec
->nvm_k1_enabled
= true;
3031 dev_spec
->nvm_k1_enabled
= false;
3036 if (!e1000_check_reset_block(hw
)) {
3038 * Full-chip reset requires MAC and PHY reset at the same
3039 * time to make sure the interface between MAC and the
3040 * external PHY is reset.
3042 ctrl
|= E1000_CTRL_PHY_RST
;
3045 * Gate automatic PHY configuration by hardware on
3048 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3049 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3050 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3052 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
3053 e_dbg("Issuing a global reset to ich8lan\n");
3054 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
3058 e1000_release_swflag_ich8lan(hw
);
3060 if (ctrl
& E1000_CTRL_PHY_RST
) {
3061 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
3065 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
3071 * For PCH, this write will make sure that any noise
3072 * will be detected as a CRC error and be dropped rather than show up
3073 * as a bad packet to the DMA engine.
3075 if (hw
->mac
.type
== e1000_pchlan
)
3076 ew32(CRC_OFFSET
, 0x65656565);
3078 ew32(IMC
, 0xffffffff);
3081 kab
= er32(KABGTXD
);
3082 kab
|= E1000_KABGTXD_BGSQLBIAS
;
3090 * e1000_init_hw_ich8lan - Initialize the hardware
3091 * @hw: pointer to the HW structure
3093 * Prepares the hardware for transmit and receive by doing the following:
3094 * - initialize hardware bits
3095 * - initialize LED identification
3096 * - setup receive address registers
3097 * - setup flow control
3098 * - setup transmit descriptors
3099 * - clear statistics
3101 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
3103 struct e1000_mac_info
*mac
= &hw
->mac
;
3104 u32 ctrl_ext
, txdctl
, snoop
;
3108 e1000_initialize_hw_bits_ich8lan(hw
);
3110 /* Initialize identification LED */
3111 ret_val
= mac
->ops
.id_led_init(hw
);
3113 e_dbg("Error initializing identification LED\n");
3114 /* This is not fatal and we should not stop init due to this */
3116 /* Setup the receive address. */
3117 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3119 /* Zero out the Multicast HASH table */
3120 e_dbg("Zeroing the MTA\n");
3121 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3122 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3125 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3126 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3127 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3129 if (hw
->phy
.type
== e1000_phy_82578
) {
3130 e1e_rphy(hw
, BM_WUC
, &i
);
3131 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3136 /* Setup link and flow control */
3137 ret_val
= e1000_setup_link_ich8lan(hw
);
3139 /* Set the transmit descriptor write-back policy for both queues */
3140 txdctl
= er32(TXDCTL(0));
3141 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3142 E1000_TXDCTL_FULL_TX_DESC_WB
;
3143 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3144 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3145 ew32(TXDCTL(0), txdctl
);
3146 txdctl
= er32(TXDCTL(1));
3147 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3148 E1000_TXDCTL_FULL_TX_DESC_WB
;
3149 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3150 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3151 ew32(TXDCTL(1), txdctl
);
3154 * ICH8 has opposite polarity of no_snoop bits.
3155 * By default, we should use snoop behavior.
3157 if (mac
->type
== e1000_ich8lan
)
3158 snoop
= PCIE_ICH8_SNOOP_ALL
;
3160 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3161 e1000e_set_pcie_no_snoop(hw
, snoop
);
3163 ctrl_ext
= er32(CTRL_EXT
);
3164 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3165 ew32(CTRL_EXT
, ctrl_ext
);
3168 * Clear all of the statistics registers (clear on read). It is
3169 * important that we do this after we have tried to establish link
3170 * because the symbol error count will increment wildly if there
3173 e1000_clear_hw_cntrs_ich8lan(hw
);
3178 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3179 * @hw: pointer to the HW structure
3181 * Sets/Clears required hardware bits necessary for correctly setting up the
3182 * hardware for transmit and receive.
3184 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3188 /* Extended Device Control */
3189 reg
= er32(CTRL_EXT
);
3191 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3192 if (hw
->mac
.type
>= e1000_pchlan
)
3193 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3194 ew32(CTRL_EXT
, reg
);
3196 /* Transmit Descriptor Control 0 */
3197 reg
= er32(TXDCTL(0));
3199 ew32(TXDCTL(0), reg
);
3201 /* Transmit Descriptor Control 1 */
3202 reg
= er32(TXDCTL(1));
3204 ew32(TXDCTL(1), reg
);
3206 /* Transmit Arbitration Control 0 */
3207 reg
= er32(TARC(0));
3208 if (hw
->mac
.type
== e1000_ich8lan
)
3209 reg
|= (1 << 28) | (1 << 29);
3210 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3213 /* Transmit Arbitration Control 1 */
3214 reg
= er32(TARC(1));
3215 if (er32(TCTL
) & E1000_TCTL_MULR
)
3219 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3223 if (hw
->mac
.type
== e1000_ich8lan
) {
3230 * work-around descriptor data corruption issue during nfs v2 udp
3231 * traffic, just disable the nfs filtering capability
3234 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3239 * e1000_setup_link_ich8lan - Setup flow control and link settings
3240 * @hw: pointer to the HW structure
3242 * Determines which flow control settings to use, then configures flow
3243 * control. Calls the appropriate media-specific link configuration
3244 * function. Assuming the adapter has a valid link partner, a valid link
3245 * should be established. Assumes the hardware has previously been reset
3246 * and the transmitter and receiver are not enabled.
3248 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3252 if (e1000_check_reset_block(hw
))
3256 * ICH parts do not have a word in the NVM to determine
3257 * the default flow control setting, so we explicitly
3260 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3261 /* Workaround h/w hang when Tx flow control enabled */
3262 if (hw
->mac
.type
== e1000_pchlan
)
3263 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3265 hw
->fc
.requested_mode
= e1000_fc_full
;
3269 * Save off the requested flow control mode for use later. Depending
3270 * on the link partner's capabilities, we may or may not use this mode.
3272 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3274 e_dbg("After fix-ups FlowControl is now = %x\n",
3275 hw
->fc
.current_mode
);
3277 /* Continue to configure the copper link. */
3278 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3282 ew32(FCTTV
, hw
->fc
.pause_time
);
3283 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3284 (hw
->phy
.type
== e1000_phy_82579
) ||
3285 (hw
->phy
.type
== e1000_phy_82577
)) {
3286 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3288 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3294 return e1000e_set_fc_watermarks(hw
);
3298 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3299 * @hw: pointer to the HW structure
3301 * Configures the kumeran interface to the PHY to wait the appropriate time
3302 * when polling the PHY, then call the generic setup_copper_link to finish
3303 * configuring the copper link.
3305 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3312 ctrl
|= E1000_CTRL_SLU
;
3313 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3317 * Set the mac to wait the maximum time between each iteration
3318 * and increase the max iterations when polling the phy;
3319 * this fixes erroneous timeouts at 10Mbps.
3321 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3324 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3329 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3334 switch (hw
->phy
.type
) {
3335 case e1000_phy_igp_3
:
3336 ret_val
= e1000e_copper_link_setup_igp(hw
);
3341 case e1000_phy_82578
:
3342 ret_val
= e1000e_copper_link_setup_m88(hw
);
3346 case e1000_phy_82577
:
3347 case e1000_phy_82579
:
3348 ret_val
= e1000_copper_link_setup_82577(hw
);
3353 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
3357 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3359 switch (hw
->phy
.mdix
) {
3361 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3364 reg_data
|= IFE_PMC_FORCE_MDIX
;
3368 reg_data
|= IFE_PMC_AUTO_MDIX
;
3371 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
3378 return e1000e_setup_copper_link(hw
);
3382 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3383 * @hw: pointer to the HW structure
3384 * @speed: pointer to store current link speed
3385 * @duplex: pointer to store the current link duplex
3387 * Calls the generic get_speed_and_duplex to retrieve the current link
3388 * information and then calls the Kumeran lock loss workaround for links at
3391 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3396 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3400 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3401 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3402 (*speed
== SPEED_1000
)) {
3403 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3410 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3411 * @hw: pointer to the HW structure
3413 * Work-around for 82566 Kumeran PCS lock loss:
3414 * On link status change (i.e. PCI reset, speed change) and link is up and
3416 * 0) if workaround is optionally disabled do nothing
3417 * 1) wait 1ms for Kumeran link to come up
3418 * 2) check Kumeran Diagnostic register PCS lock loss bit
3419 * 3) if not set the link is locked (all is good), otherwise...
3421 * 5) repeat up to 10 times
3422 * Note: this is only called for IGP3 copper when speed is 1gb.
3424 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3426 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3432 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3436 * Make sure link is up before proceeding. If not just return.
3437 * Attempting this while link is negotiating fouled up link
3440 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3444 for (i
= 0; i
< 10; i
++) {
3445 /* read once to clear */
3446 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3449 /* and again to get new status */
3450 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3454 /* check for PCS lock */
3455 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3458 /* Issue PHY reset */
3459 e1000_phy_hw_reset(hw
);
3462 /* Disable GigE link negotiation */
3463 phy_ctrl
= er32(PHY_CTRL
);
3464 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3465 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3466 ew32(PHY_CTRL
, phy_ctrl
);
3469 * Call gig speed drop workaround on Gig disable before accessing
3472 e1000e_gig_downshift_workaround_ich8lan(hw
);
3474 /* unable to acquire PCS lock */
3475 return -E1000_ERR_PHY
;
3479 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3480 * @hw: pointer to the HW structure
3481 * @state: boolean value used to set the current Kumeran workaround state
3483 * If ICH8, set the current Kumeran workaround state (enabled - true
3484 * /disabled - false).
3486 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3489 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3491 if (hw
->mac
.type
!= e1000_ich8lan
) {
3492 e_dbg("Workaround applies to ICH8 only.\n");
3496 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3500 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3501 * @hw: pointer to the HW structure
3503 * Workaround for 82566 power-down on D3 entry:
3504 * 1) disable gigabit link
3505 * 2) write VR power-down enable
3507 * Continue if successful, else issue LCD reset and repeat
3509 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3515 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3518 /* Try the workaround twice (if needed) */
3521 reg
= er32(PHY_CTRL
);
3522 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3523 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3524 ew32(PHY_CTRL
, reg
);
3527 * Call gig speed drop workaround on Gig disable before
3528 * accessing any PHY registers
3530 if (hw
->mac
.type
== e1000_ich8lan
)
3531 e1000e_gig_downshift_workaround_ich8lan(hw
);
3533 /* Write VR power-down enable */
3534 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3535 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3536 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3538 /* Read it back and test */
3539 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3540 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3541 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3544 /* Issue PHY reset and repeat at most one more time */
3546 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3552 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3553 * @hw: pointer to the HW structure
3555 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3556 * LPLU, Gig disable, MDIC PHY reset):
3557 * 1) Set Kumeran Near-end loopback
3558 * 2) Clear Kumeran Near-end loopback
3559 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3561 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3566 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3567 (hw
->phy
.type
!= e1000_phy_igp_3
))
3570 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3574 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3575 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3579 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3580 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3585 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3586 * @hw: pointer to the HW structure
3588 * During S0 to Sx transition, it is possible the link remains at gig
3589 * instead of negotiating to a lower speed. Before going to Sx, set
3590 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3593 * Should only be called for applicable parts.
3595 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
3600 phy_ctrl
= er32(PHY_CTRL
);
3601 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3602 ew32(PHY_CTRL
, phy_ctrl
);
3604 if (hw
->mac
.type
>= e1000_pchlan
) {
3605 e1000_oem_bits_config_ich8lan(hw
, false);
3606 ret_val
= hw
->phy
.ops
.acquire(hw
);
3609 e1000_write_smbus_addr(hw
);
3610 hw
->phy
.ops
.release(hw
);
3615 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3616 * @hw: pointer to the HW structure
3618 * Return the LED back to the default configuration.
3620 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3622 if (hw
->phy
.type
== e1000_phy_ife
)
3623 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3625 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3630 * e1000_led_on_ich8lan - Turn LEDs on
3631 * @hw: pointer to the HW structure
3635 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3637 if (hw
->phy
.type
== e1000_phy_ife
)
3638 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3639 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3641 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3646 * e1000_led_off_ich8lan - Turn LEDs off
3647 * @hw: pointer to the HW structure
3649 * Turn off the LEDs.
3651 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3653 if (hw
->phy
.type
== e1000_phy_ife
)
3654 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3655 (IFE_PSCL_PROBE_MODE
|
3656 IFE_PSCL_PROBE_LEDS_OFF
));
3658 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3663 * e1000_setup_led_pchlan - Configures SW controllable LED
3664 * @hw: pointer to the HW structure
3666 * This prepares the SW controllable LED for use.
3668 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3670 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
3674 * e1000_cleanup_led_pchlan - Restore the default LED operation
3675 * @hw: pointer to the HW structure
3677 * Return the LED back to the default configuration.
3679 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3681 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
3685 * e1000_led_on_pchlan - Turn LEDs on
3686 * @hw: pointer to the HW structure
3690 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3692 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3696 * If no link, then turn LED on by setting the invert bit
3697 * for each LED that's mode is "link_up" in ledctl_mode2.
3699 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3700 for (i
= 0; i
< 3; i
++) {
3701 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3702 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3703 E1000_LEDCTL_MODE_LINK_UP
)
3705 if (led
& E1000_PHY_LED0_IVRT
)
3706 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3708 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3712 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3716 * e1000_led_off_pchlan - Turn LEDs off
3717 * @hw: pointer to the HW structure
3719 * Turn off the LEDs.
3721 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3723 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3727 * If no link, then turn LED off by clearing the invert bit
3728 * for each LED that's mode is "link_up" in ledctl_mode1.
3730 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3731 for (i
= 0; i
< 3; i
++) {
3732 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3733 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3734 E1000_LEDCTL_MODE_LINK_UP
)
3736 if (led
& E1000_PHY_LED0_IVRT
)
3737 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3739 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3743 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3747 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3748 * @hw: pointer to the HW structure
3750 * Read appropriate register for the config done bit for completion status
3751 * and configure the PHY through s/w for EEPROM-less parts.
3753 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3754 * config done bit, so only an error is logged and continues. If we were
3755 * to return with error, EEPROM-less silicon would not be able to be reset
3758 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3764 e1000e_get_cfg_done(hw
);
3766 /* Wait for indication from h/w that it has completed basic config */
3767 if (hw
->mac
.type
>= e1000_ich10lan
) {
3768 e1000_lan_init_done_ich8lan(hw
);
3770 ret_val
= e1000e_get_auto_rd_done(hw
);
3773 * When auto config read does not complete, do not
3774 * return with an error. This can happen in situations
3775 * where there is no eeprom and prevents getting link.
3777 e_dbg("Auto Read Done did not complete\n");
3782 /* Clear PHY Reset Asserted bit */
3783 status
= er32(STATUS
);
3784 if (status
& E1000_STATUS_PHYRA
)
3785 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3787 e_dbg("PHY Reset Asserted not set - needs delay\n");
3789 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3790 if (hw
->mac
.type
<= e1000_ich9lan
) {
3791 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3792 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3793 e1000e_phy_init_script_igp3(hw
);
3796 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3797 /* Maybe we should do a basic PHY config */
3798 e_dbg("EEPROM not present\n");
3799 ret_val
= -E1000_ERR_CONFIG
;
3807 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3808 * @hw: pointer to the HW structure
3810 * In the case of a PHY power down to save power, or to turn off link during a
3811 * driver unload, or wake on lan is not enabled, remove the link.
3813 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3815 /* If the management interface is not enabled, then power down */
3816 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3817 hw
->phy
.ops
.check_reset_block(hw
)))
3818 e1000_power_down_phy_copper(hw
);
3822 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3823 * @hw: pointer to the HW structure
3825 * Clears hardware counters specific to the silicon family and calls
3826 * clear_hw_cntrs_generic to clear all general purpose counters.
3828 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3832 e1000e_clear_hw_cntrs_base(hw
);
3848 /* Clear PHY statistics registers */
3849 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3850 (hw
->phy
.type
== e1000_phy_82579
) ||
3851 (hw
->phy
.type
== e1000_phy_82577
)) {
3852 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3853 e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
);
3854 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3855 e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
);
3856 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3857 e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
);
3858 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3859 e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
);
3860 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3861 e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
);
3862 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3863 e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
);
3864 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3865 e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
);
3869 static struct e1000_mac_operations ich8_mac_ops
= {
3870 .id_led_init
= e1000e_id_led_init
,
3871 /* check_mng_mode dependent on mac type */
3872 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3873 /* cleanup_led dependent on mac type */
3874 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3875 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3876 .set_lan_id
= e1000_set_lan_id_single_port
,
3877 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3878 /* led_on dependent on mac type */
3879 /* led_off dependent on mac type */
3880 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3881 .reset_hw
= e1000_reset_hw_ich8lan
,
3882 .init_hw
= e1000_init_hw_ich8lan
,
3883 .setup_link
= e1000_setup_link_ich8lan
,
3884 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3885 /* id_led_init dependent on mac type */
3888 static struct e1000_phy_operations ich8_phy_ops
= {
3889 .acquire
= e1000_acquire_swflag_ich8lan
,
3890 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3892 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3893 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3894 .read_reg
= e1000e_read_phy_reg_igp
,
3895 .release
= e1000_release_swflag_ich8lan
,
3896 .reset
= e1000_phy_hw_reset_ich8lan
,
3897 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3898 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3899 .write_reg
= e1000e_write_phy_reg_igp
,
3902 static struct e1000_nvm_operations ich8_nvm_ops
= {
3903 .acquire
= e1000_acquire_nvm_ich8lan
,
3904 .read
= e1000_read_nvm_ich8lan
,
3905 .release
= e1000_release_nvm_ich8lan
,
3906 .update
= e1000_update_nvm_checksum_ich8lan
,
3907 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3908 .validate
= e1000_validate_nvm_checksum_ich8lan
,
3909 .write
= e1000_write_nvm_ich8lan
,
3912 struct e1000_info e1000_ich8_info
= {
3913 .mac
= e1000_ich8lan
,
3914 .flags
= FLAG_HAS_WOL
3916 | FLAG_RX_CSUM_ENABLED
3917 | FLAG_HAS_CTRLEXT_ON_LOAD
3922 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3923 .get_variants
= e1000_get_variants_ich8lan
,
3924 .mac_ops
= &ich8_mac_ops
,
3925 .phy_ops
= &ich8_phy_ops
,
3926 .nvm_ops
= &ich8_nvm_ops
,
3929 struct e1000_info e1000_ich9_info
= {
3930 .mac
= e1000_ich9lan
,
3931 .flags
= FLAG_HAS_JUMBO_FRAMES
3934 | FLAG_RX_CSUM_ENABLED
3935 | FLAG_HAS_CTRLEXT_ON_LOAD
3941 .max_hw_frame_size
= DEFAULT_JUMBO
,
3942 .get_variants
= e1000_get_variants_ich8lan
,
3943 .mac_ops
= &ich8_mac_ops
,
3944 .phy_ops
= &ich8_phy_ops
,
3945 .nvm_ops
= &ich8_nvm_ops
,
3948 struct e1000_info e1000_ich10_info
= {
3949 .mac
= e1000_ich10lan
,
3950 .flags
= FLAG_HAS_JUMBO_FRAMES
3953 | FLAG_RX_CSUM_ENABLED
3954 | FLAG_HAS_CTRLEXT_ON_LOAD
3960 .max_hw_frame_size
= DEFAULT_JUMBO
,
3961 .get_variants
= e1000_get_variants_ich8lan
,
3962 .mac_ops
= &ich8_mac_ops
,
3963 .phy_ops
= &ich8_phy_ops
,
3964 .nvm_ops
= &ich8_nvm_ops
,
3967 struct e1000_info e1000_pch_info
= {
3968 .mac
= e1000_pchlan
,
3969 .flags
= FLAG_IS_ICH
3971 | FLAG_RX_CSUM_ENABLED
3972 | FLAG_HAS_CTRLEXT_ON_LOAD
3975 | FLAG_HAS_JUMBO_FRAMES
3976 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
3978 .flags2
= FLAG2_HAS_PHY_STATS
,
3980 .max_hw_frame_size
= 4096,
3981 .get_variants
= e1000_get_variants_ich8lan
,
3982 .mac_ops
= &ich8_mac_ops
,
3983 .phy_ops
= &ich8_phy_ops
,
3984 .nvm_ops
= &ich8_nvm_ops
,
3987 struct e1000_info e1000_pch2_info
= {
3988 .mac
= e1000_pch2lan
,
3989 .flags
= FLAG_IS_ICH
3991 | FLAG_RX_CSUM_ENABLED
3992 | FLAG_HAS_CTRLEXT_ON_LOAD
3995 | FLAG_HAS_JUMBO_FRAMES
3997 .flags2
= FLAG2_HAS_PHY_STATS
4000 .max_hw_frame_size
= DEFAULT_JUMBO
,
4001 .get_variants
= e1000_get_variants_ich8lan
,
4002 .mac_ops
= &ich8_mac_ops
,
4003 .phy_ops
= &ich8_phy_ops
,
4004 .nvm_ops
= &ich8_nvm_ops
,