1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/if_ether.h>
47 #include <linux/aer.h>
49 #include <linux/dca.h>
57 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
58 __stringify(BUILD) "-k" __stringify(KFIX)
59 char igb_driver_name
[] = "igb";
60 char igb_driver_version
[] = DRV_VERSION
;
61 static const char igb_driver_string
[] =
62 "Intel(R) Gigabit Ethernet Network Driver";
63 static const char igb_copyright
[] = "Copyright (c) 2007-2011 Intel Corporation.";
65 static const struct e1000_info
*igb_info_tbl
[] = {
66 [board_82575
] = &e1000_82575_info
,
69 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl
) = {
70 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_COPPER
), board_82575
},
71 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_FIBER
), board_82575
},
72 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_SERDES
), board_82575
},
73 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_SGMII
), board_82575
},
74 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_COPPER
), board_82575
},
75 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_FIBER
), board_82575
},
76 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_QUAD_FIBER
), board_82575
},
77 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_SERDES
), board_82575
},
78 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_SGMII
), board_82575
},
79 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_COPPER_DUAL
), board_82575
},
80 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SGMII
), board_82575
},
81 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SERDES
), board_82575
},
82 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_BACKPLANE
), board_82575
},
83 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SFP
), board_82575
},
84 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
85 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS
), board_82575
},
86 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS_SERDES
), board_82575
},
87 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
88 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
89 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES_QUAD
), board_82575
},
90 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER_ET2
), board_82575
},
91 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER
), board_82575
},
92 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
93 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
94 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
95 /* required last entry */
99 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
101 void igb_reset(struct igb_adapter
*);
102 static int igb_setup_all_tx_resources(struct igb_adapter
*);
103 static int igb_setup_all_rx_resources(struct igb_adapter
*);
104 static void igb_free_all_tx_resources(struct igb_adapter
*);
105 static void igb_free_all_rx_resources(struct igb_adapter
*);
106 static void igb_setup_mrqc(struct igb_adapter
*);
107 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
108 static void __devexit
igb_remove(struct pci_dev
*pdev
);
109 static void igb_init_hw_timer(struct igb_adapter
*adapter
);
110 static int igb_sw_init(struct igb_adapter
*);
111 static int igb_open(struct net_device
*);
112 static int igb_close(struct net_device
*);
113 static void igb_configure_tx(struct igb_adapter
*);
114 static void igb_configure_rx(struct igb_adapter
*);
115 static void igb_clean_all_tx_rings(struct igb_adapter
*);
116 static void igb_clean_all_rx_rings(struct igb_adapter
*);
117 static void igb_clean_tx_ring(struct igb_ring
*);
118 static void igb_clean_rx_ring(struct igb_ring
*);
119 static void igb_set_rx_mode(struct net_device
*);
120 static void igb_update_phy_info(unsigned long);
121 static void igb_watchdog(unsigned long);
122 static void igb_watchdog_task(struct work_struct
*);
123 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
124 static struct rtnl_link_stats64
*igb_get_stats64(struct net_device
*dev
,
125 struct rtnl_link_stats64
*stats
);
126 static int igb_change_mtu(struct net_device
*, int);
127 static int igb_set_mac(struct net_device
*, void *);
128 static void igb_set_uta(struct igb_adapter
*adapter
);
129 static irqreturn_t
igb_intr(int irq
, void *);
130 static irqreturn_t
igb_intr_msi(int irq
, void *);
131 static irqreturn_t
igb_msix_other(int irq
, void *);
132 static irqreturn_t
igb_msix_ring(int irq
, void *);
133 #ifdef CONFIG_IGB_DCA
134 static void igb_update_dca(struct igb_q_vector
*);
135 static void igb_setup_dca(struct igb_adapter
*);
136 #endif /* CONFIG_IGB_DCA */
137 static bool igb_clean_tx_irq(struct igb_q_vector
*);
138 static int igb_poll(struct napi_struct
*, int);
139 static bool igb_clean_rx_irq_adv(struct igb_q_vector
*, int *, int);
140 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
141 static void igb_tx_timeout(struct net_device
*);
142 static void igb_reset_task(struct work_struct
*);
143 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
144 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
145 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
146 static void igb_restore_vlan(struct igb_adapter
*);
147 static void igb_rar_set_qsel(struct igb_adapter
*, u8
*, u32
, u8
);
148 static void igb_ping_all_vfs(struct igb_adapter
*);
149 static void igb_msg_task(struct igb_adapter
*);
150 static void igb_vmm_control(struct igb_adapter
*);
151 static int igb_set_vf_mac(struct igb_adapter
*, int, unsigned char *);
152 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
);
153 static int igb_ndo_set_vf_mac(struct net_device
*netdev
, int vf
, u8
*mac
);
154 static int igb_ndo_set_vf_vlan(struct net_device
*netdev
,
155 int vf
, u16 vlan
, u8 qos
);
156 static int igb_ndo_set_vf_bw(struct net_device
*netdev
, int vf
, int tx_rate
);
157 static int igb_ndo_get_vf_config(struct net_device
*netdev
, int vf
,
158 struct ifla_vf_info
*ivi
);
159 static void igb_check_vf_rate_limit(struct igb_adapter
*);
162 static int igb_suspend(struct pci_dev
*, pm_message_t
);
163 static int igb_resume(struct pci_dev
*);
165 static void igb_shutdown(struct pci_dev
*);
166 #ifdef CONFIG_IGB_DCA
167 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
168 static struct notifier_block dca_notifier
= {
169 .notifier_call
= igb_notify_dca
,
174 #ifdef CONFIG_NET_POLL_CONTROLLER
175 /* for netdump / net console */
176 static void igb_netpoll(struct net_device
*);
178 #ifdef CONFIG_PCI_IOV
179 static unsigned int max_vfs
= 0;
180 module_param(max_vfs
, uint
, 0);
181 MODULE_PARM_DESC(max_vfs
, "Maximum number of virtual functions to allocate "
182 "per physical function");
183 #endif /* CONFIG_PCI_IOV */
185 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
186 pci_channel_state_t
);
187 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
188 static void igb_io_resume(struct pci_dev
*);
190 static struct pci_error_handlers igb_err_handler
= {
191 .error_detected
= igb_io_error_detected
,
192 .slot_reset
= igb_io_slot_reset
,
193 .resume
= igb_io_resume
,
197 static struct pci_driver igb_driver
= {
198 .name
= igb_driver_name
,
199 .id_table
= igb_pci_tbl
,
201 .remove
= __devexit_p(igb_remove
),
203 /* Power Management Hooks */
204 .suspend
= igb_suspend
,
205 .resume
= igb_resume
,
207 .shutdown
= igb_shutdown
,
208 .err_handler
= &igb_err_handler
211 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
212 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
213 MODULE_LICENSE("GPL");
214 MODULE_VERSION(DRV_VERSION
);
216 struct igb_reg_info
{
221 static const struct igb_reg_info igb_reg_info_tbl
[] = {
223 /* General Registers */
224 {E1000_CTRL
, "CTRL"},
225 {E1000_STATUS
, "STATUS"},
226 {E1000_CTRL_EXT
, "CTRL_EXT"},
228 /* Interrupt Registers */
232 {E1000_RCTL
, "RCTL"},
233 {E1000_RDLEN(0), "RDLEN"},
234 {E1000_RDH(0), "RDH"},
235 {E1000_RDT(0), "RDT"},
236 {E1000_RXDCTL(0), "RXDCTL"},
237 {E1000_RDBAL(0), "RDBAL"},
238 {E1000_RDBAH(0), "RDBAH"},
241 {E1000_TCTL
, "TCTL"},
242 {E1000_TDBAL(0), "TDBAL"},
243 {E1000_TDBAH(0), "TDBAH"},
244 {E1000_TDLEN(0), "TDLEN"},
245 {E1000_TDH(0), "TDH"},
246 {E1000_TDT(0), "TDT"},
247 {E1000_TXDCTL(0), "TXDCTL"},
248 {E1000_TDFH
, "TDFH"},
249 {E1000_TDFT
, "TDFT"},
250 {E1000_TDFHS
, "TDFHS"},
251 {E1000_TDFPC
, "TDFPC"},
253 /* List Terminator */
258 * igb_regdump - register printout routine
260 static void igb_regdump(struct e1000_hw
*hw
, struct igb_reg_info
*reginfo
)
266 switch (reginfo
->ofs
) {
268 for (n
= 0; n
< 4; n
++)
269 regs
[n
] = rd32(E1000_RDLEN(n
));
272 for (n
= 0; n
< 4; n
++)
273 regs
[n
] = rd32(E1000_RDH(n
));
276 for (n
= 0; n
< 4; n
++)
277 regs
[n
] = rd32(E1000_RDT(n
));
279 case E1000_RXDCTL(0):
280 for (n
= 0; n
< 4; n
++)
281 regs
[n
] = rd32(E1000_RXDCTL(n
));
284 for (n
= 0; n
< 4; n
++)
285 regs
[n
] = rd32(E1000_RDBAL(n
));
288 for (n
= 0; n
< 4; n
++)
289 regs
[n
] = rd32(E1000_RDBAH(n
));
292 for (n
= 0; n
< 4; n
++)
293 regs
[n
] = rd32(E1000_RDBAL(n
));
296 for (n
= 0; n
< 4; n
++)
297 regs
[n
] = rd32(E1000_TDBAH(n
));
300 for (n
= 0; n
< 4; n
++)
301 regs
[n
] = rd32(E1000_TDLEN(n
));
304 for (n
= 0; n
< 4; n
++)
305 regs
[n
] = rd32(E1000_TDH(n
));
308 for (n
= 0; n
< 4; n
++)
309 regs
[n
] = rd32(E1000_TDT(n
));
311 case E1000_TXDCTL(0):
312 for (n
= 0; n
< 4; n
++)
313 regs
[n
] = rd32(E1000_TXDCTL(n
));
316 printk(KERN_INFO
"%-15s %08x\n",
317 reginfo
->name
, rd32(reginfo
->ofs
));
321 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-3]");
322 printk(KERN_INFO
"%-15s ", rname
);
323 for (n
= 0; n
< 4; n
++)
324 printk(KERN_CONT
"%08x ", regs
[n
]);
325 printk(KERN_CONT
"\n");
329 * igb_dump - Print registers, tx-rings and rx-rings
331 static void igb_dump(struct igb_adapter
*adapter
)
333 struct net_device
*netdev
= adapter
->netdev
;
334 struct e1000_hw
*hw
= &adapter
->hw
;
335 struct igb_reg_info
*reginfo
;
337 struct igb_ring
*tx_ring
;
338 union e1000_adv_tx_desc
*tx_desc
;
339 struct my_u0
{ u64 a
; u64 b
; } *u0
;
340 struct igb_buffer
*buffer_info
;
341 struct igb_ring
*rx_ring
;
342 union e1000_adv_rx_desc
*rx_desc
;
346 if (!netif_msg_hw(adapter
))
349 /* Print netdevice Info */
351 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
352 printk(KERN_INFO
"Device Name state "
353 "trans_start last_rx\n");
354 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
361 /* Print Registers */
362 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
363 printk(KERN_INFO
" Register Name Value\n");
364 for (reginfo
= (struct igb_reg_info
*)igb_reg_info_tbl
;
365 reginfo
->name
; reginfo
++) {
366 igb_regdump(hw
, reginfo
);
369 /* Print TX Ring Summary */
370 if (!netdev
|| !netif_running(netdev
))
373 dev_info(&adapter
->pdev
->dev
, "TX Rings Summary\n");
374 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
375 " leng ntw timestamp\n");
376 for (n
= 0; n
< adapter
->num_tx_queues
; n
++) {
377 tx_ring
= adapter
->tx_ring
[n
];
378 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
379 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
380 n
, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
381 (u64
)buffer_info
->dma
,
383 buffer_info
->next_to_watch
,
384 (u64
)buffer_info
->time_stamp
);
388 if (!netif_msg_tx_done(adapter
))
389 goto rx_ring_summary
;
391 dev_info(&adapter
->pdev
->dev
, "TX Rings Dump\n");
393 /* Transmit Descriptor Formats
395 * Advanced Transmit Descriptor
396 * +--------------------------------------------------------------+
397 * 0 | Buffer Address [63:0] |
398 * +--------------------------------------------------------------+
399 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
400 * +--------------------------------------------------------------+
401 * 63 46 45 40 39 38 36 35 32 31 24 15 0
404 for (n
= 0; n
< adapter
->num_tx_queues
; n
++) {
405 tx_ring
= adapter
->tx_ring
[n
];
406 printk(KERN_INFO
"------------------------------------\n");
407 printk(KERN_INFO
"TX QUEUE INDEX = %d\n", tx_ring
->queue_index
);
408 printk(KERN_INFO
"------------------------------------\n");
409 printk(KERN_INFO
"T [desc] [address 63:0 ] "
410 "[PlPOCIStDDM Ln] [bi->dma ] "
411 "leng ntw timestamp bi->skb\n");
413 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
414 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
415 buffer_info
= &tx_ring
->buffer_info
[i
];
416 u0
= (struct my_u0
*)tx_desc
;
417 printk(KERN_INFO
"T [0x%03X] %016llX %016llX %016llX"
418 " %04X %3X %016llX %p", i
,
421 (u64
)buffer_info
->dma
,
423 buffer_info
->next_to_watch
,
424 (u64
)buffer_info
->time_stamp
,
426 if (i
== tx_ring
->next_to_use
&&
427 i
== tx_ring
->next_to_clean
)
428 printk(KERN_CONT
" NTC/U\n");
429 else if (i
== tx_ring
->next_to_use
)
430 printk(KERN_CONT
" NTU\n");
431 else if (i
== tx_ring
->next_to_clean
)
432 printk(KERN_CONT
" NTC\n");
434 printk(KERN_CONT
"\n");
436 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
437 print_hex_dump(KERN_INFO
, "",
439 16, 1, phys_to_virt(buffer_info
->dma
),
440 buffer_info
->length
, true);
444 /* Print RX Rings Summary */
446 dev_info(&adapter
->pdev
->dev
, "RX Rings Summary\n");
447 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
448 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
449 rx_ring
= adapter
->rx_ring
[n
];
450 printk(KERN_INFO
" %5d %5X %5X\n", n
,
451 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
455 if (!netif_msg_rx_status(adapter
))
458 dev_info(&adapter
->pdev
->dev
, "RX Rings Dump\n");
460 /* Advanced Receive Descriptor (Read) Format
462 * +-----------------------------------------------------+
463 * 0 | Packet Buffer Address [63:1] |A0/NSE|
464 * +----------------------------------------------+------+
465 * 8 | Header Buffer Address [63:1] | DD |
466 * +-----------------------------------------------------+
469 * Advanced Receive Descriptor (Write-Back) Format
471 * 63 48 47 32 31 30 21 20 17 16 4 3 0
472 * +------------------------------------------------------+
473 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
474 * | Checksum Ident | | | | Type | Type |
475 * +------------------------------------------------------+
476 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
477 * +------------------------------------------------------+
478 * 63 48 47 32 31 20 19 0
481 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
482 rx_ring
= adapter
->rx_ring
[n
];
483 printk(KERN_INFO
"------------------------------------\n");
484 printk(KERN_INFO
"RX QUEUE INDEX = %d\n", rx_ring
->queue_index
);
485 printk(KERN_INFO
"------------------------------------\n");
486 printk(KERN_INFO
"R [desc] [ PktBuf A0] "
487 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
488 "<-- Adv Rx Read format\n");
489 printk(KERN_INFO
"RWB[desc] [PcsmIpSHl PtRs] "
490 "[vl er S cks ln] ---------------- [bi->skb] "
491 "<-- Adv Rx Write-Back format\n");
493 for (i
= 0; i
< rx_ring
->count
; i
++) {
494 buffer_info
= &rx_ring
->buffer_info
[i
];
495 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
496 u0
= (struct my_u0
*)rx_desc
;
497 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
498 if (staterr
& E1000_RXD_STAT_DD
) {
499 /* Descriptor Done */
500 printk(KERN_INFO
"RWB[0x%03X] %016llX "
501 "%016llX ---------------- %p", i
,
506 printk(KERN_INFO
"R [0x%03X] %016llX "
507 "%016llX %016llX %p", i
,
510 (u64
)buffer_info
->dma
,
513 if (netif_msg_pktdata(adapter
)) {
514 print_hex_dump(KERN_INFO
, "",
517 phys_to_virt(buffer_info
->dma
),
518 rx_ring
->rx_buffer_len
, true);
519 if (rx_ring
->rx_buffer_len
521 print_hex_dump(KERN_INFO
, "",
525 buffer_info
->page_dma
+
526 buffer_info
->page_offset
),
531 if (i
== rx_ring
->next_to_use
)
532 printk(KERN_CONT
" NTU\n");
533 else if (i
== rx_ring
->next_to_clean
)
534 printk(KERN_CONT
" NTC\n");
536 printk(KERN_CONT
"\n");
547 * igb_read_clock - read raw cycle counter (to be used by time counter)
549 static cycle_t
igb_read_clock(const struct cyclecounter
*tc
)
551 struct igb_adapter
*adapter
=
552 container_of(tc
, struct igb_adapter
, cycles
);
553 struct e1000_hw
*hw
= &adapter
->hw
;
558 * The timestamp latches on lowest register read. For the 82580
559 * the lowest register is SYSTIMR instead of SYSTIML. However we never
560 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
562 if (hw
->mac
.type
== e1000_82580
) {
563 stamp
= rd32(E1000_SYSTIMR
) >> 8;
564 shift
= IGB_82580_TSYNC_SHIFT
;
567 stamp
|= (u64
)rd32(E1000_SYSTIML
) << shift
;
568 stamp
|= (u64
)rd32(E1000_SYSTIMH
) << (shift
+ 32);
573 * igb_get_hw_dev - return device
574 * used by hardware layer to print debugging information
576 struct net_device
*igb_get_hw_dev(struct e1000_hw
*hw
)
578 struct igb_adapter
*adapter
= hw
->back
;
579 return adapter
->netdev
;
583 * igb_init_module - Driver Registration Routine
585 * igb_init_module is the first routine called when the driver is
586 * loaded. All it does is register with the PCI subsystem.
588 static int __init
igb_init_module(void)
591 printk(KERN_INFO
"%s - version %s\n",
592 igb_driver_string
, igb_driver_version
);
594 printk(KERN_INFO
"%s\n", igb_copyright
);
596 #ifdef CONFIG_IGB_DCA
597 dca_register_notify(&dca_notifier
);
599 ret
= pci_register_driver(&igb_driver
);
603 module_init(igb_init_module
);
606 * igb_exit_module - Driver Exit Cleanup Routine
608 * igb_exit_module is called just before the driver is removed
611 static void __exit
igb_exit_module(void)
613 #ifdef CONFIG_IGB_DCA
614 dca_unregister_notify(&dca_notifier
);
616 pci_unregister_driver(&igb_driver
);
619 module_exit(igb_exit_module
);
621 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
623 * igb_cache_ring_register - Descriptor ring to register mapping
624 * @adapter: board private structure to initialize
626 * Once we know the feature-set enabled for the device, we'll cache
627 * the register offset the descriptor ring is assigned to.
629 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
632 u32 rbase_offset
= adapter
->vfs_allocated_count
;
634 switch (adapter
->hw
.mac
.type
) {
636 /* The queues are allocated for virtualization such that VF 0
637 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
638 * In order to avoid collision we start at the first free queue
639 * and continue consuming queues in the same sequence
641 if (adapter
->vfs_allocated_count
) {
642 for (; i
< adapter
->rss_queues
; i
++)
643 adapter
->rx_ring
[i
]->reg_idx
= rbase_offset
+
650 for (; i
< adapter
->num_rx_queues
; i
++)
651 adapter
->rx_ring
[i
]->reg_idx
= rbase_offset
+ i
;
652 for (; j
< adapter
->num_tx_queues
; j
++)
653 adapter
->tx_ring
[j
]->reg_idx
= rbase_offset
+ j
;
658 static void igb_free_queues(struct igb_adapter
*adapter
)
662 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
663 kfree(adapter
->tx_ring
[i
]);
664 adapter
->tx_ring
[i
] = NULL
;
666 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
667 kfree(adapter
->rx_ring
[i
]);
668 adapter
->rx_ring
[i
] = NULL
;
670 adapter
->num_rx_queues
= 0;
671 adapter
->num_tx_queues
= 0;
675 * igb_alloc_queues - Allocate memory for all rings
676 * @adapter: board private structure to initialize
678 * We allocate one ring per queue at run-time since we don't know the
679 * number of queues at compile-time.
681 static int igb_alloc_queues(struct igb_adapter
*adapter
)
683 struct igb_ring
*ring
;
686 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
687 ring
= kzalloc(sizeof(struct igb_ring
), GFP_KERNEL
);
690 ring
->count
= adapter
->tx_ring_count
;
691 ring
->queue_index
= i
;
692 ring
->dev
= &adapter
->pdev
->dev
;
693 ring
->netdev
= adapter
->netdev
;
694 /* For 82575, context index must be unique per ring. */
695 if (adapter
->hw
.mac
.type
== e1000_82575
)
696 ring
->flags
= IGB_RING_FLAG_TX_CTX_IDX
;
697 adapter
->tx_ring
[i
] = ring
;
700 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
701 ring
= kzalloc(sizeof(struct igb_ring
), GFP_KERNEL
);
704 ring
->count
= adapter
->rx_ring_count
;
705 ring
->queue_index
= i
;
706 ring
->dev
= &adapter
->pdev
->dev
;
707 ring
->netdev
= adapter
->netdev
;
708 ring
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
709 ring
->flags
= IGB_RING_FLAG_RX_CSUM
; /* enable rx checksum */
710 /* set flag indicating ring supports SCTP checksum offload */
711 if (adapter
->hw
.mac
.type
>= e1000_82576
)
712 ring
->flags
|= IGB_RING_FLAG_RX_SCTP_CSUM
;
713 adapter
->rx_ring
[i
] = ring
;
716 igb_cache_ring_register(adapter
);
721 igb_free_queues(adapter
);
726 #define IGB_N0_QUEUE -1
727 static void igb_assign_vector(struct igb_q_vector
*q_vector
, int msix_vector
)
730 struct igb_adapter
*adapter
= q_vector
->adapter
;
731 struct e1000_hw
*hw
= &adapter
->hw
;
733 int rx_queue
= IGB_N0_QUEUE
;
734 int tx_queue
= IGB_N0_QUEUE
;
736 if (q_vector
->rx_ring
)
737 rx_queue
= q_vector
->rx_ring
->reg_idx
;
738 if (q_vector
->tx_ring
)
739 tx_queue
= q_vector
->tx_ring
->reg_idx
;
741 switch (hw
->mac
.type
) {
743 /* The 82575 assigns vectors using a bitmask, which matches the
744 bitmask for the EICR/EIMS/EIMC registers. To assign one
745 or more queues to a vector, we write the appropriate bits
746 into the MSIXBM register for that vector. */
747 if (rx_queue
> IGB_N0_QUEUE
)
748 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
749 if (tx_queue
> IGB_N0_QUEUE
)
750 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
751 if (!adapter
->msix_entries
&& msix_vector
== 0)
752 msixbm
|= E1000_EIMS_OTHER
;
753 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
754 q_vector
->eims_value
= msixbm
;
757 /* 82576 uses a table-based method for assigning vectors.
758 Each queue has a single entry in the table to which we write
759 a vector number along with a "valid" bit. Sadly, the layout
760 of the table is somewhat counterintuitive. */
761 if (rx_queue
> IGB_N0_QUEUE
) {
762 index
= (rx_queue
& 0x7);
763 ivar
= array_rd32(E1000_IVAR0
, index
);
765 /* vector goes into low byte of register */
766 ivar
= ivar
& 0xFFFFFF00;
767 ivar
|= msix_vector
| E1000_IVAR_VALID
;
769 /* vector goes into third byte of register */
770 ivar
= ivar
& 0xFF00FFFF;
771 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
773 array_wr32(E1000_IVAR0
, index
, ivar
);
775 if (tx_queue
> IGB_N0_QUEUE
) {
776 index
= (tx_queue
& 0x7);
777 ivar
= array_rd32(E1000_IVAR0
, index
);
779 /* vector goes into second byte of register */
780 ivar
= ivar
& 0xFFFF00FF;
781 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
783 /* vector goes into high byte of register */
784 ivar
= ivar
& 0x00FFFFFF;
785 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
787 array_wr32(E1000_IVAR0
, index
, ivar
);
789 q_vector
->eims_value
= 1 << msix_vector
;
793 /* 82580 uses the same table-based approach as 82576 but has fewer
794 entries as a result we carry over for queues greater than 4. */
795 if (rx_queue
> IGB_N0_QUEUE
) {
796 index
= (rx_queue
>> 1);
797 ivar
= array_rd32(E1000_IVAR0
, index
);
798 if (rx_queue
& 0x1) {
799 /* vector goes into third byte of register */
800 ivar
= ivar
& 0xFF00FFFF;
801 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
803 /* vector goes into low byte of register */
804 ivar
= ivar
& 0xFFFFFF00;
805 ivar
|= msix_vector
| E1000_IVAR_VALID
;
807 array_wr32(E1000_IVAR0
, index
, ivar
);
809 if (tx_queue
> IGB_N0_QUEUE
) {
810 index
= (tx_queue
>> 1);
811 ivar
= array_rd32(E1000_IVAR0
, index
);
812 if (tx_queue
& 0x1) {
813 /* vector goes into high byte of register */
814 ivar
= ivar
& 0x00FFFFFF;
815 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
817 /* vector goes into second byte of register */
818 ivar
= ivar
& 0xFFFF00FF;
819 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
821 array_wr32(E1000_IVAR0
, index
, ivar
);
823 q_vector
->eims_value
= 1 << msix_vector
;
830 /* add q_vector eims value to global eims_enable_mask */
831 adapter
->eims_enable_mask
|= q_vector
->eims_value
;
833 /* configure q_vector to set itr on first interrupt */
834 q_vector
->set_itr
= 1;
838 * igb_configure_msix - Configure MSI-X hardware
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
843 static void igb_configure_msix(struct igb_adapter
*adapter
)
847 struct e1000_hw
*hw
= &adapter
->hw
;
849 adapter
->eims_enable_mask
= 0;
851 /* set vector for other causes, i.e. link changes */
852 switch (hw
->mac
.type
) {
854 tmp
= rd32(E1000_CTRL_EXT
);
855 /* enable MSI-X PBA support*/
856 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp
|= E1000_CTRL_EXT_EIAME
;
860 tmp
|= E1000_CTRL_EXT_IRCA
;
862 wr32(E1000_CTRL_EXT
, tmp
);
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector
++,
867 adapter
->eims_other
= E1000_EIMS_OTHER
;
874 /* Turn on MSI-X capability first, or our settings
875 * won't stick. And it will take days to debug. */
876 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
877 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
880 /* enable msix_other interrupt */
881 adapter
->eims_other
= 1 << vector
;
882 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
884 wr32(E1000_IVAR_MISC
, tmp
);
887 /* do nothing, since nothing else supports MSI-X */
889 } /* switch (hw->mac.type) */
891 adapter
->eims_enable_mask
|= adapter
->eims_other
;
893 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
894 igb_assign_vector(adapter
->q_vector
[i
], vector
++);
900 * igb_request_msix - Initialize MSI-X interrupts
902 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
905 static int igb_request_msix(struct igb_adapter
*adapter
)
907 struct net_device
*netdev
= adapter
->netdev
;
908 struct e1000_hw
*hw
= &adapter
->hw
;
909 int i
, err
= 0, vector
= 0;
911 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
912 igb_msix_other
, 0, netdev
->name
, adapter
);
917 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
918 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
920 q_vector
->itr_register
= hw
->hw_addr
+ E1000_EITR(vector
);
922 if (q_vector
->rx_ring
&& q_vector
->tx_ring
)
923 sprintf(q_vector
->name
, "%s-TxRx-%u", netdev
->name
,
924 q_vector
->rx_ring
->queue_index
);
925 else if (q_vector
->tx_ring
)
926 sprintf(q_vector
->name
, "%s-tx-%u", netdev
->name
,
927 q_vector
->tx_ring
->queue_index
);
928 else if (q_vector
->rx_ring
)
929 sprintf(q_vector
->name
, "%s-rx-%u", netdev
->name
,
930 q_vector
->rx_ring
->queue_index
);
932 sprintf(q_vector
->name
, "%s-unused", netdev
->name
);
934 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
935 igb_msix_ring
, 0, q_vector
->name
,
942 igb_configure_msix(adapter
);
948 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
950 if (adapter
->msix_entries
) {
951 pci_disable_msix(adapter
->pdev
);
952 kfree(adapter
->msix_entries
);
953 adapter
->msix_entries
= NULL
;
954 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
955 pci_disable_msi(adapter
->pdev
);
960 * igb_free_q_vectors - Free memory allocated for interrupt vectors
961 * @adapter: board private structure to initialize
963 * This function frees the memory allocated to the q_vectors. In addition if
964 * NAPI is enabled it will delete any references to the NAPI struct prior
965 * to freeing the q_vector.
967 static void igb_free_q_vectors(struct igb_adapter
*adapter
)
971 for (v_idx
= 0; v_idx
< adapter
->num_q_vectors
; v_idx
++) {
972 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
973 adapter
->q_vector
[v_idx
] = NULL
;
976 netif_napi_del(&q_vector
->napi
);
979 adapter
->num_q_vectors
= 0;
983 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
985 * This function resets the device so that it has 0 rx queues, tx queues, and
986 * MSI-X interrupts allocated.
988 static void igb_clear_interrupt_scheme(struct igb_adapter
*adapter
)
990 igb_free_queues(adapter
);
991 igb_free_q_vectors(adapter
);
992 igb_reset_interrupt_capability(adapter
);
996 * igb_set_interrupt_capability - set MSI or MSI-X if supported
998 * Attempt to configure interrupts using the best available
999 * capabilities of the hardware and kernel.
1001 static int igb_set_interrupt_capability(struct igb_adapter
*adapter
)
1006 /* Number of supported queues. */
1007 adapter
->num_rx_queues
= adapter
->rss_queues
;
1008 if (adapter
->vfs_allocated_count
)
1009 adapter
->num_tx_queues
= 1;
1011 adapter
->num_tx_queues
= adapter
->rss_queues
;
1013 /* start with one vector for every rx queue */
1014 numvecs
= adapter
->num_rx_queues
;
1016 /* if tx handler is separate add 1 for every tx queue */
1017 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
))
1018 numvecs
+= adapter
->num_tx_queues
;
1020 /* store the number of vectors reserved for queues */
1021 adapter
->num_q_vectors
= numvecs
;
1023 /* add 1 vector for link status interrupts */
1025 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
1027 if (!adapter
->msix_entries
)
1030 for (i
= 0; i
< numvecs
; i
++)
1031 adapter
->msix_entries
[i
].entry
= i
;
1033 err
= pci_enable_msix(adapter
->pdev
,
1034 adapter
->msix_entries
,
1039 igb_reset_interrupt_capability(adapter
);
1041 /* If we can't do MSI-X, try MSI */
1043 #ifdef CONFIG_PCI_IOV
1044 /* disable SR-IOV for non MSI-X configurations */
1045 if (adapter
->vf_data
) {
1046 struct e1000_hw
*hw
= &adapter
->hw
;
1047 /* disable iov and allow time for transactions to clear */
1048 pci_disable_sriov(adapter
->pdev
);
1051 kfree(adapter
->vf_data
);
1052 adapter
->vf_data
= NULL
;
1053 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
1055 dev_info(&adapter
->pdev
->dev
, "IOV Disabled\n");
1058 adapter
->vfs_allocated_count
= 0;
1059 adapter
->rss_queues
= 1;
1060 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
1061 adapter
->num_rx_queues
= 1;
1062 adapter
->num_tx_queues
= 1;
1063 adapter
->num_q_vectors
= 1;
1064 if (!pci_enable_msi(adapter
->pdev
))
1065 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
1067 /* Notify the stack of the (possibly) reduced queue counts. */
1068 netif_set_real_num_tx_queues(adapter
->netdev
, adapter
->num_tx_queues
);
1069 return netif_set_real_num_rx_queues(adapter
->netdev
,
1070 adapter
->num_rx_queues
);
1074 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1075 * @adapter: board private structure to initialize
1077 * We allocate one q_vector per queue interrupt. If allocation fails we
1080 static int igb_alloc_q_vectors(struct igb_adapter
*adapter
)
1082 struct igb_q_vector
*q_vector
;
1083 struct e1000_hw
*hw
= &adapter
->hw
;
1086 for (v_idx
= 0; v_idx
< adapter
->num_q_vectors
; v_idx
++) {
1087 q_vector
= kzalloc(sizeof(struct igb_q_vector
), GFP_KERNEL
);
1090 q_vector
->adapter
= adapter
;
1091 q_vector
->itr_register
= hw
->hw_addr
+ E1000_EITR(0);
1092 q_vector
->itr_val
= IGB_START_ITR
;
1093 netif_napi_add(adapter
->netdev
, &q_vector
->napi
, igb_poll
, 64);
1094 adapter
->q_vector
[v_idx
] = q_vector
;
1099 igb_free_q_vectors(adapter
);
1103 static void igb_map_rx_ring_to_vector(struct igb_adapter
*adapter
,
1104 int ring_idx
, int v_idx
)
1106 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
1108 q_vector
->rx_ring
= adapter
->rx_ring
[ring_idx
];
1109 q_vector
->rx_ring
->q_vector
= q_vector
;
1110 q_vector
->itr_val
= adapter
->rx_itr_setting
;
1111 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
1112 q_vector
->itr_val
= IGB_START_ITR
;
1115 static void igb_map_tx_ring_to_vector(struct igb_adapter
*adapter
,
1116 int ring_idx
, int v_idx
)
1118 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
1120 q_vector
->tx_ring
= adapter
->tx_ring
[ring_idx
];
1121 q_vector
->tx_ring
->q_vector
= q_vector
;
1122 q_vector
->itr_val
= adapter
->tx_itr_setting
;
1123 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
1124 q_vector
->itr_val
= IGB_START_ITR
;
1128 * igb_map_ring_to_vector - maps allocated queues to vectors
1130 * This function maps the recently allocated queues to vectors.
1132 static int igb_map_ring_to_vector(struct igb_adapter
*adapter
)
1137 if ((adapter
->num_q_vectors
< adapter
->num_rx_queues
) ||
1138 (adapter
->num_q_vectors
< adapter
->num_tx_queues
))
1141 if (adapter
->num_q_vectors
>=
1142 (adapter
->num_rx_queues
+ adapter
->num_tx_queues
)) {
1143 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1144 igb_map_rx_ring_to_vector(adapter
, i
, v_idx
++);
1145 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1146 igb_map_tx_ring_to_vector(adapter
, i
, v_idx
++);
1148 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1149 if (i
< adapter
->num_tx_queues
)
1150 igb_map_tx_ring_to_vector(adapter
, i
, v_idx
);
1151 igb_map_rx_ring_to_vector(adapter
, i
, v_idx
++);
1153 for (; i
< adapter
->num_tx_queues
; i
++)
1154 igb_map_tx_ring_to_vector(adapter
, i
, v_idx
++);
1160 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1162 * This function initializes the interrupts and allocates all of the queues.
1164 static int igb_init_interrupt_scheme(struct igb_adapter
*adapter
)
1166 struct pci_dev
*pdev
= adapter
->pdev
;
1169 err
= igb_set_interrupt_capability(adapter
);
1173 err
= igb_alloc_q_vectors(adapter
);
1175 dev_err(&pdev
->dev
, "Unable to allocate memory for vectors\n");
1176 goto err_alloc_q_vectors
;
1179 err
= igb_alloc_queues(adapter
);
1181 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1182 goto err_alloc_queues
;
1185 err
= igb_map_ring_to_vector(adapter
);
1187 dev_err(&pdev
->dev
, "Invalid q_vector to ring mapping\n");
1188 goto err_map_queues
;
1194 igb_free_queues(adapter
);
1196 igb_free_q_vectors(adapter
);
1197 err_alloc_q_vectors
:
1198 igb_reset_interrupt_capability(adapter
);
1203 * igb_request_irq - initialize interrupts
1205 * Attempts to configure interrupts using the best available
1206 * capabilities of the hardware and kernel.
1208 static int igb_request_irq(struct igb_adapter
*adapter
)
1210 struct net_device
*netdev
= adapter
->netdev
;
1211 struct pci_dev
*pdev
= adapter
->pdev
;
1214 if (adapter
->msix_entries
) {
1215 err
= igb_request_msix(adapter
);
1218 /* fall back to MSI */
1219 igb_clear_interrupt_scheme(adapter
);
1220 if (!pci_enable_msi(adapter
->pdev
))
1221 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
1222 igb_free_all_tx_resources(adapter
);
1223 igb_free_all_rx_resources(adapter
);
1224 adapter
->num_tx_queues
= 1;
1225 adapter
->num_rx_queues
= 1;
1226 adapter
->num_q_vectors
= 1;
1227 err
= igb_alloc_q_vectors(adapter
);
1230 "Unable to allocate memory for vectors\n");
1233 err
= igb_alloc_queues(adapter
);
1236 "Unable to allocate memory for queues\n");
1237 igb_free_q_vectors(adapter
);
1240 igb_setup_all_tx_resources(adapter
);
1241 igb_setup_all_rx_resources(adapter
);
1243 igb_assign_vector(adapter
->q_vector
[0], 0);
1246 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1247 err
= request_irq(adapter
->pdev
->irq
, igb_intr_msi
, 0,
1248 netdev
->name
, adapter
);
1252 /* fall back to legacy interrupts */
1253 igb_reset_interrupt_capability(adapter
);
1254 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
1257 err
= request_irq(adapter
->pdev
->irq
, igb_intr
, IRQF_SHARED
,
1258 netdev
->name
, adapter
);
1261 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
1268 static void igb_free_irq(struct igb_adapter
*adapter
)
1270 if (adapter
->msix_entries
) {
1273 free_irq(adapter
->msix_entries
[vector
++].vector
, adapter
);
1275 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
1276 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
1277 free_irq(adapter
->msix_entries
[vector
++].vector
,
1281 free_irq(adapter
->pdev
->irq
, adapter
);
1286 * igb_irq_disable - Mask off interrupt generation on the NIC
1287 * @adapter: board private structure
1289 static void igb_irq_disable(struct igb_adapter
*adapter
)
1291 struct e1000_hw
*hw
= &adapter
->hw
;
1294 * we need to be careful when disabling interrupts. The VFs are also
1295 * mapped into these registers and so clearing the bits can cause
1296 * issues on the VF drivers so we only need to clear what we set
1298 if (adapter
->msix_entries
) {
1299 u32 regval
= rd32(E1000_EIAM
);
1300 wr32(E1000_EIAM
, regval
& ~adapter
->eims_enable_mask
);
1301 wr32(E1000_EIMC
, adapter
->eims_enable_mask
);
1302 regval
= rd32(E1000_EIAC
);
1303 wr32(E1000_EIAC
, regval
& ~adapter
->eims_enable_mask
);
1307 wr32(E1000_IMC
, ~0);
1309 if (adapter
->msix_entries
) {
1311 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1312 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1314 synchronize_irq(adapter
->pdev
->irq
);
1319 * igb_irq_enable - Enable default interrupt generation settings
1320 * @adapter: board private structure
1322 static void igb_irq_enable(struct igb_adapter
*adapter
)
1324 struct e1000_hw
*hw
= &adapter
->hw
;
1326 if (adapter
->msix_entries
) {
1327 u32 ims
= E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
;
1328 u32 regval
= rd32(E1000_EIAC
);
1329 wr32(E1000_EIAC
, regval
| adapter
->eims_enable_mask
);
1330 regval
= rd32(E1000_EIAM
);
1331 wr32(E1000_EIAM
, regval
| adapter
->eims_enable_mask
);
1332 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
1333 if (adapter
->vfs_allocated_count
) {
1334 wr32(E1000_MBVFIMR
, 0xFF);
1335 ims
|= E1000_IMS_VMMB
;
1337 if (adapter
->hw
.mac
.type
== e1000_82580
)
1338 ims
|= E1000_IMS_DRSTA
;
1340 wr32(E1000_IMS
, ims
);
1342 wr32(E1000_IMS
, IMS_ENABLE_MASK
|
1344 wr32(E1000_IAM
, IMS_ENABLE_MASK
|
1349 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
1351 struct e1000_hw
*hw
= &adapter
->hw
;
1352 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1353 u16 old_vid
= adapter
->mng_vlan_id
;
1355 if (hw
->mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1356 /* add VID to filter table */
1357 igb_vfta_set(hw
, vid
, true);
1358 adapter
->mng_vlan_id
= vid
;
1360 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1363 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
1365 !vlan_group_get_device(adapter
->vlgrp
, old_vid
)) {
1366 /* remove VID from filter table */
1367 igb_vfta_set(hw
, old_vid
, false);
1372 * igb_release_hw_control - release control of the h/w to f/w
1373 * @adapter: address of board private structure
1375 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1376 * For ASF and Pass Through versions of f/w this means that the
1377 * driver is no longer loaded.
1380 static void igb_release_hw_control(struct igb_adapter
*adapter
)
1382 struct e1000_hw
*hw
= &adapter
->hw
;
1385 /* Let firmware take over control of h/w */
1386 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1387 wr32(E1000_CTRL_EXT
,
1388 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1392 * igb_get_hw_control - get control of the h/w from f/w
1393 * @adapter: address of board private structure
1395 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1396 * For ASF and Pass Through versions of f/w this means that
1397 * the driver is loaded.
1400 static void igb_get_hw_control(struct igb_adapter
*adapter
)
1402 struct e1000_hw
*hw
= &adapter
->hw
;
1405 /* Let firmware know the driver has taken over */
1406 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1407 wr32(E1000_CTRL_EXT
,
1408 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1412 * igb_configure - configure the hardware for RX and TX
1413 * @adapter: private board structure
1415 static void igb_configure(struct igb_adapter
*adapter
)
1417 struct net_device
*netdev
= adapter
->netdev
;
1420 igb_get_hw_control(adapter
);
1421 igb_set_rx_mode(netdev
);
1423 igb_restore_vlan(adapter
);
1425 igb_setup_tctl(adapter
);
1426 igb_setup_mrqc(adapter
);
1427 igb_setup_rctl(adapter
);
1429 igb_configure_tx(adapter
);
1430 igb_configure_rx(adapter
);
1432 igb_rx_fifo_flush_82575(&adapter
->hw
);
1434 /* call igb_desc_unused which always leaves
1435 * at least 1 descriptor unused to make sure
1436 * next_to_use != next_to_clean */
1437 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1438 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
1439 igb_alloc_rx_buffers_adv(ring
, igb_desc_unused(ring
));
1444 * igb_power_up_link - Power up the phy/serdes link
1445 * @adapter: address of board private structure
1447 void igb_power_up_link(struct igb_adapter
*adapter
)
1449 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)
1450 igb_power_up_phy_copper(&adapter
->hw
);
1452 igb_power_up_serdes_link_82575(&adapter
->hw
);
1456 * igb_power_down_link - Power down the phy/serdes link
1457 * @adapter: address of board private structure
1459 static void igb_power_down_link(struct igb_adapter
*adapter
)
1461 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)
1462 igb_power_down_phy_copper_82575(&adapter
->hw
);
1464 igb_shutdown_serdes_link_82575(&adapter
->hw
);
1468 * igb_up - Open the interface and prepare it to handle traffic
1469 * @adapter: board private structure
1471 int igb_up(struct igb_adapter
*adapter
)
1473 struct e1000_hw
*hw
= &adapter
->hw
;
1476 /* hardware has been reset, we need to reload some things */
1477 igb_configure(adapter
);
1479 clear_bit(__IGB_DOWN
, &adapter
->state
);
1481 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
1482 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
1483 napi_enable(&q_vector
->napi
);
1485 if (adapter
->msix_entries
)
1486 igb_configure_msix(adapter
);
1488 igb_assign_vector(adapter
->q_vector
[0], 0);
1490 /* Clear any pending interrupts. */
1492 igb_irq_enable(adapter
);
1494 /* notify VFs that reset has been completed */
1495 if (adapter
->vfs_allocated_count
) {
1496 u32 reg_data
= rd32(E1000_CTRL_EXT
);
1497 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
1498 wr32(E1000_CTRL_EXT
, reg_data
);
1501 netif_tx_start_all_queues(adapter
->netdev
);
1503 /* start the watchdog. */
1504 hw
->mac
.get_link_status
= 1;
1505 schedule_work(&adapter
->watchdog_task
);
1510 void igb_down(struct igb_adapter
*adapter
)
1512 struct net_device
*netdev
= adapter
->netdev
;
1513 struct e1000_hw
*hw
= &adapter
->hw
;
1517 /* signal that we're down so the interrupt handler does not
1518 * reschedule our watchdog timer */
1519 set_bit(__IGB_DOWN
, &adapter
->state
);
1521 /* disable receives in the hardware */
1522 rctl
= rd32(E1000_RCTL
);
1523 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1524 /* flush and sleep below */
1526 netif_tx_stop_all_queues(netdev
);
1528 /* disable transmits in the hardware */
1529 tctl
= rd32(E1000_TCTL
);
1530 tctl
&= ~E1000_TCTL_EN
;
1531 wr32(E1000_TCTL
, tctl
);
1532 /* flush both disables and wait for them to finish */
1536 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
1537 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
1538 napi_disable(&q_vector
->napi
);
1541 igb_irq_disable(adapter
);
1543 del_timer_sync(&adapter
->watchdog_timer
);
1544 del_timer_sync(&adapter
->phy_info_timer
);
1546 netif_carrier_off(netdev
);
1548 /* record the stats before reset*/
1549 spin_lock(&adapter
->stats64_lock
);
1550 igb_update_stats(adapter
, &adapter
->stats64
);
1551 spin_unlock(&adapter
->stats64_lock
);
1553 adapter
->link_speed
= 0;
1554 adapter
->link_duplex
= 0;
1556 if (!pci_channel_offline(adapter
->pdev
))
1558 igb_clean_all_tx_rings(adapter
);
1559 igb_clean_all_rx_rings(adapter
);
1560 #ifdef CONFIG_IGB_DCA
1562 /* since we reset the hardware DCA settings were cleared */
1563 igb_setup_dca(adapter
);
1567 void igb_reinit_locked(struct igb_adapter
*adapter
)
1569 WARN_ON(in_interrupt());
1570 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
1574 clear_bit(__IGB_RESETTING
, &adapter
->state
);
1577 void igb_reset(struct igb_adapter
*adapter
)
1579 struct pci_dev
*pdev
= adapter
->pdev
;
1580 struct e1000_hw
*hw
= &adapter
->hw
;
1581 struct e1000_mac_info
*mac
= &hw
->mac
;
1582 struct e1000_fc_info
*fc
= &hw
->fc
;
1583 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
1586 /* Repartition Pba for greater than 9k mtu
1587 * To take effect CTRL.RST is required.
1589 switch (mac
->type
) {
1592 pba
= rd32(E1000_RXPBS
);
1593 pba
= igb_rxpbs_adjust_82580(pba
);
1596 pba
= rd32(E1000_RXPBS
);
1597 pba
&= E1000_RXPBS_SIZE_MASK_82576
;
1601 pba
= E1000_PBA_34K
;
1605 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
1606 (mac
->type
< e1000_82576
)) {
1607 /* adjust PBA for jumbo frames */
1608 wr32(E1000_PBA
, pba
);
1610 /* To maintain wire speed transmits, the Tx FIFO should be
1611 * large enough to accommodate two full transmit packets,
1612 * rounded up to the next 1KB and expressed in KB. Likewise,
1613 * the Rx FIFO should be large enough to accommodate at least
1614 * one full receive packet and is similarly rounded up and
1615 * expressed in KB. */
1616 pba
= rd32(E1000_PBA
);
1617 /* upper 16 bits has Tx packet buffer allocation size in KB */
1618 tx_space
= pba
>> 16;
1619 /* lower 16 bits has Rx packet buffer allocation size in KB */
1621 /* the tx fifo also stores 16 bytes of information about the tx
1622 * but don't include ethernet FCS because hardware appends it */
1623 min_tx_space
= (adapter
->max_frame_size
+
1624 sizeof(union e1000_adv_tx_desc
) -
1626 min_tx_space
= ALIGN(min_tx_space
, 1024);
1627 min_tx_space
>>= 10;
1628 /* software strips receive CRC, so leave room for it */
1629 min_rx_space
= adapter
->max_frame_size
;
1630 min_rx_space
= ALIGN(min_rx_space
, 1024);
1631 min_rx_space
>>= 10;
1633 /* If current Tx allocation is less than the min Tx FIFO size,
1634 * and the min Tx FIFO size is less than the current Rx FIFO
1635 * allocation, take space away from current Rx allocation */
1636 if (tx_space
< min_tx_space
&&
1637 ((min_tx_space
- tx_space
) < pba
)) {
1638 pba
= pba
- (min_tx_space
- tx_space
);
1640 /* if short on rx space, rx wins and must trump tx
1642 if (pba
< min_rx_space
)
1645 wr32(E1000_PBA
, pba
);
1648 /* flow control settings */
1649 /* The high water mark must be low enough to fit one full frame
1650 * (or the size used for early receive) above it in the Rx FIFO.
1651 * Set it to the lower of:
1652 * - 90% of the Rx FIFO size, or
1653 * - the full Rx FIFO size minus one full frame */
1654 hwm
= min(((pba
<< 10) * 9 / 10),
1655 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
1657 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
1658 fc
->low_water
= fc
->high_water
- 16;
1659 fc
->pause_time
= 0xFFFF;
1661 fc
->current_mode
= fc
->requested_mode
;
1663 /* disable receive for all VFs and wait one second */
1664 if (adapter
->vfs_allocated_count
) {
1666 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++)
1667 adapter
->vf_data
[i
].flags
&= IGB_VF_FLAG_PF_SET_MAC
;
1669 /* ping all the active vfs to let them know we are going down */
1670 igb_ping_all_vfs(adapter
);
1672 /* disable transmits and receives */
1673 wr32(E1000_VFRE
, 0);
1674 wr32(E1000_VFTE
, 0);
1677 /* Allow time for pending master requests to run */
1678 hw
->mac
.ops
.reset_hw(hw
);
1681 if (hw
->mac
.ops
.init_hw(hw
))
1682 dev_err(&pdev
->dev
, "Hardware Error\n");
1683 if (hw
->mac
.type
> e1000_82580
) {
1684 if (adapter
->flags
& IGB_FLAG_DMAC
) {
1688 * DMA Coalescing high water mark needs to be higher
1689 * than * the * Rx threshold. The Rx threshold is
1690 * currently * pba - 6, so we * should use a high water
1691 * mark of pba * - 4. */
1692 hwm
= (pba
- 4) << 10;
1694 reg
= (((pba
-6) << E1000_DMACR_DMACTHR_SHIFT
)
1695 & E1000_DMACR_DMACTHR_MASK
);
1697 /* transition to L0x or L1 if available..*/
1698 reg
|= (E1000_DMACR_DMAC_EN
| E1000_DMACR_DMAC_LX_MASK
);
1700 /* watchdog timer= +-1000 usec in 32usec intervals */
1702 wr32(E1000_DMACR
, reg
);
1704 /* no lower threshold to disable coalescing(smart fifb)
1706 wr32(E1000_DMCRTRH
, 0);
1708 /* set hwm to PBA - 2 * max frame size */
1709 wr32(E1000_FCRTC
, hwm
);
1712 * This sets the time to wait before requesting tran-
1713 * sition to * low power state to number of usecs needed
1714 * to receive 1 512 * byte frame at gigabit line rate
1716 reg
= rd32(E1000_DMCTLX
);
1717 reg
|= IGB_DMCTLX_DCFLUSH_DIS
;
1719 /* Delay 255 usec before entering Lx state. */
1721 wr32(E1000_DMCTLX
, reg
);
1723 /* free space in Tx packet buffer to wake from DMAC */
1726 (IGB_TX_BUF_4096
+ adapter
->max_frame_size
))
1729 /* make low power state decision controlled by DMAC */
1730 reg
= rd32(E1000_PCIEMISC
);
1731 reg
|= E1000_PCIEMISC_LX_DECISION
;
1732 wr32(E1000_PCIEMISC
, reg
);
1733 } /* end if IGB_FLAG_DMAC set */
1735 if (hw
->mac
.type
== e1000_82580
) {
1736 u32 reg
= rd32(E1000_PCIEMISC
);
1737 wr32(E1000_PCIEMISC
,
1738 reg
& ~E1000_PCIEMISC_LX_DECISION
);
1740 if (!netif_running(adapter
->netdev
))
1741 igb_power_down_link(adapter
);
1743 igb_update_mng_vlan(adapter
);
1745 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1746 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
1748 igb_get_phy_info(hw
);
1751 static const struct net_device_ops igb_netdev_ops
= {
1752 .ndo_open
= igb_open
,
1753 .ndo_stop
= igb_close
,
1754 .ndo_start_xmit
= igb_xmit_frame_adv
,
1755 .ndo_get_stats64
= igb_get_stats64
,
1756 .ndo_set_rx_mode
= igb_set_rx_mode
,
1757 .ndo_set_multicast_list
= igb_set_rx_mode
,
1758 .ndo_set_mac_address
= igb_set_mac
,
1759 .ndo_change_mtu
= igb_change_mtu
,
1760 .ndo_do_ioctl
= igb_ioctl
,
1761 .ndo_tx_timeout
= igb_tx_timeout
,
1762 .ndo_validate_addr
= eth_validate_addr
,
1763 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
1764 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1765 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1766 .ndo_set_vf_mac
= igb_ndo_set_vf_mac
,
1767 .ndo_set_vf_vlan
= igb_ndo_set_vf_vlan
,
1768 .ndo_set_vf_tx_rate
= igb_ndo_set_vf_bw
,
1769 .ndo_get_vf_config
= igb_ndo_get_vf_config
,
1770 #ifdef CONFIG_NET_POLL_CONTROLLER
1771 .ndo_poll_controller
= igb_netpoll
,
1776 * igb_probe - Device Initialization Routine
1777 * @pdev: PCI device information struct
1778 * @ent: entry in igb_pci_tbl
1780 * Returns 0 on success, negative on failure
1782 * igb_probe initializes an adapter identified by a pci_dev structure.
1783 * The OS initialization, configuring of the adapter private structure,
1784 * and a hardware reset occur.
1786 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1787 const struct pci_device_id
*ent
)
1789 struct net_device
*netdev
;
1790 struct igb_adapter
*adapter
;
1791 struct e1000_hw
*hw
;
1792 u16 eeprom_data
= 0;
1794 static int global_quad_port_a
; /* global quad port a indication */
1795 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1796 unsigned long mmio_start
, mmio_len
;
1797 int err
, pci_using_dac
;
1798 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1799 u8 part_str
[E1000_PBANUM_LENGTH
];
1801 /* Catch broken hardware that put the wrong VF device ID in
1802 * the PCIe SR-IOV capability.
1804 if (pdev
->is_virtfn
) {
1805 WARN(1, KERN_ERR
"%s (%hx:%hx) should not be a VF!\n",
1806 pci_name(pdev
), pdev
->vendor
, pdev
->device
);
1810 err
= pci_enable_device_mem(pdev
);
1815 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1817 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1821 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1823 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1825 dev_err(&pdev
->dev
, "No usable DMA "
1826 "configuration, aborting\n");
1832 err
= pci_request_selected_regions(pdev
, pci_select_bars(pdev
,
1838 pci_enable_pcie_error_reporting(pdev
);
1840 pci_set_master(pdev
);
1841 pci_save_state(pdev
);
1844 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
),
1845 IGB_ABS_MAX_TX_QUEUES
);
1847 goto err_alloc_etherdev
;
1849 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1851 pci_set_drvdata(pdev
, netdev
);
1852 adapter
= netdev_priv(netdev
);
1853 adapter
->netdev
= netdev
;
1854 adapter
->pdev
= pdev
;
1857 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1859 mmio_start
= pci_resource_start(pdev
, 0);
1860 mmio_len
= pci_resource_len(pdev
, 0);
1863 hw
->hw_addr
= ioremap(mmio_start
, mmio_len
);
1867 netdev
->netdev_ops
= &igb_netdev_ops
;
1868 igb_set_ethtool_ops(netdev
);
1869 netdev
->watchdog_timeo
= 5 * HZ
;
1871 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1873 netdev
->mem_start
= mmio_start
;
1874 netdev
->mem_end
= mmio_start
+ mmio_len
;
1876 /* PCI config space info */
1877 hw
->vendor_id
= pdev
->vendor
;
1878 hw
->device_id
= pdev
->device
;
1879 hw
->revision_id
= pdev
->revision
;
1880 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1881 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1883 /* Copy the default MAC, PHY and NVM function pointers */
1884 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1885 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1886 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1887 /* Initialize skew-specific constants */
1888 err
= ei
->get_invariants(hw
);
1892 /* setup the private structure */
1893 err
= igb_sw_init(adapter
);
1897 igb_get_bus_info_pcie(hw
);
1899 hw
->phy
.autoneg_wait_to_complete
= false;
1901 /* Copper options */
1902 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1903 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1904 hw
->phy
.disable_polarity_correction
= false;
1905 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1908 if (igb_check_reset_block(hw
))
1909 dev_info(&pdev
->dev
,
1910 "PHY reset is blocked due to SOL/IDER session.\n");
1912 netdev
->features
= NETIF_F_SG
|
1914 NETIF_F_HW_VLAN_TX
|
1915 NETIF_F_HW_VLAN_RX
|
1916 NETIF_F_HW_VLAN_FILTER
;
1918 netdev
->features
|= NETIF_F_IPV6_CSUM
;
1919 netdev
->features
|= NETIF_F_TSO
;
1920 netdev
->features
|= NETIF_F_TSO6
;
1921 netdev
->features
|= NETIF_F_GRO
;
1923 netdev
->vlan_features
|= NETIF_F_TSO
;
1924 netdev
->vlan_features
|= NETIF_F_TSO6
;
1925 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
1926 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
1927 netdev
->vlan_features
|= NETIF_F_SG
;
1929 if (pci_using_dac
) {
1930 netdev
->features
|= NETIF_F_HIGHDMA
;
1931 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1934 if (hw
->mac
.type
>= e1000_82576
)
1935 netdev
->features
|= NETIF_F_SCTP_CSUM
;
1937 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(hw
);
1939 /* before reading the NVM, reset the controller to put the device in a
1940 * known good starting state */
1941 hw
->mac
.ops
.reset_hw(hw
);
1943 /* make sure the NVM is good */
1944 if (hw
->nvm
.ops
.validate(hw
) < 0) {
1945 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1950 /* copy the MAC address out of the NVM */
1951 if (hw
->mac
.ops
.read_mac_addr(hw
))
1952 dev_err(&pdev
->dev
, "NVM Read Error\n");
1954 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1955 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1957 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1958 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1963 setup_timer(&adapter
->watchdog_timer
, igb_watchdog
,
1964 (unsigned long) adapter
);
1965 setup_timer(&adapter
->phy_info_timer
, igb_update_phy_info
,
1966 (unsigned long) adapter
);
1968 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1969 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1971 /* Initialize link properties that are user-changeable */
1972 adapter
->fc_autoneg
= true;
1973 hw
->mac
.autoneg
= true;
1974 hw
->phy
.autoneg_advertised
= 0x2f;
1976 hw
->fc
.requested_mode
= e1000_fc_default
;
1977 hw
->fc
.current_mode
= e1000_fc_default
;
1979 igb_validate_mdi_setting(hw
);
1981 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1982 * enable the ACPI Magic Packet filter
1985 if (hw
->bus
.func
== 0)
1986 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1987 else if (hw
->mac
.type
== e1000_82580
)
1988 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
1989 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
1991 else if (hw
->bus
.func
== 1)
1992 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1994 if (eeprom_data
& eeprom_apme_mask
)
1995 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1997 /* now that we have the eeprom settings, apply the special cases where
1998 * the eeprom may be wrong or the board simply won't support wake on
1999 * lan on a particular port */
2000 switch (pdev
->device
) {
2001 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
2002 adapter
->eeprom_wol
= 0;
2004 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
2005 case E1000_DEV_ID_82576_FIBER
:
2006 case E1000_DEV_ID_82576_SERDES
:
2007 /* Wake events only supported on port A for dual fiber
2008 * regardless of eeprom setting */
2009 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
2010 adapter
->eeprom_wol
= 0;
2012 case E1000_DEV_ID_82576_QUAD_COPPER
:
2013 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
2014 /* if quad port adapter, disable WoL on all but port A */
2015 if (global_quad_port_a
!= 0)
2016 adapter
->eeprom_wol
= 0;
2018 adapter
->flags
|= IGB_FLAG_QUAD_PORT_A
;
2019 /* Reset for multiple quad port adapters */
2020 if (++global_quad_port_a
== 4)
2021 global_quad_port_a
= 0;
2025 /* initialize the wol settings based on the eeprom settings */
2026 adapter
->wol
= adapter
->eeprom_wol
;
2027 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
2029 /* reset the hardware with the new settings */
2032 /* let the f/w know that the h/w is now under the control of the
2034 igb_get_hw_control(adapter
);
2036 strcpy(netdev
->name
, "eth%d");
2037 err
= register_netdev(netdev
);
2041 /* carrier off reporting is important to ethtool even BEFORE open */
2042 netif_carrier_off(netdev
);
2044 #ifdef CONFIG_IGB_DCA
2045 if (dca_add_requester(&pdev
->dev
) == 0) {
2046 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
2047 dev_info(&pdev
->dev
, "DCA enabled\n");
2048 igb_setup_dca(adapter
);
2052 /* do hw tstamp init after resetting */
2053 igb_init_hw_timer(adapter
);
2055 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
2056 /* print bus type/speed/width info */
2057 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
2059 ((hw
->bus
.speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
2060 (hw
->bus
.speed
== e1000_bus_speed_5000
) ? "5.0Gb/s" :
2062 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
2063 (hw
->bus
.width
== e1000_bus_width_pcie_x2
) ? "Width x2" :
2064 (hw
->bus
.width
== e1000_bus_width_pcie_x1
) ? "Width x1" :
2068 ret_val
= igb_read_part_string(hw
, part_str
, E1000_PBANUM_LENGTH
);
2070 strcpy(part_str
, "Unknown");
2071 dev_info(&pdev
->dev
, "%s: PBA No: %s\n", netdev
->name
, part_str
);
2072 dev_info(&pdev
->dev
,
2073 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2074 adapter
->msix_entries
? "MSI-X" :
2075 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
2076 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
2077 switch (hw
->mac
.type
) {
2079 igb_set_eee_i350(hw
);
2087 igb_release_hw_control(adapter
);
2089 if (!igb_check_reset_block(hw
))
2092 if (hw
->flash_address
)
2093 iounmap(hw
->flash_address
);
2095 igb_clear_interrupt_scheme(adapter
);
2096 iounmap(hw
->hw_addr
);
2098 free_netdev(netdev
);
2100 pci_release_selected_regions(pdev
,
2101 pci_select_bars(pdev
, IORESOURCE_MEM
));
2104 pci_disable_device(pdev
);
2109 * igb_remove - Device Removal Routine
2110 * @pdev: PCI device information struct
2112 * igb_remove is called by the PCI subsystem to alert the driver
2113 * that it should release a PCI device. The could be caused by a
2114 * Hot-Plug event, or because the driver is going to be removed from
2117 static void __devexit
igb_remove(struct pci_dev
*pdev
)
2119 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2120 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2121 struct e1000_hw
*hw
= &adapter
->hw
;
2124 * The watchdog timer may be rescheduled, so explicitly
2125 * disable watchdog from being rescheduled.
2127 set_bit(__IGB_DOWN
, &adapter
->state
);
2128 del_timer_sync(&adapter
->watchdog_timer
);
2129 del_timer_sync(&adapter
->phy_info_timer
);
2131 cancel_work_sync(&adapter
->reset_task
);
2132 cancel_work_sync(&adapter
->watchdog_task
);
2134 #ifdef CONFIG_IGB_DCA
2135 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
2136 dev_info(&pdev
->dev
, "DCA disabled\n");
2137 dca_remove_requester(&pdev
->dev
);
2138 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
2139 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
2143 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2144 * would have already happened in close and is redundant. */
2145 igb_release_hw_control(adapter
);
2147 unregister_netdev(netdev
);
2149 igb_clear_interrupt_scheme(adapter
);
2151 #ifdef CONFIG_PCI_IOV
2152 /* reclaim resources allocated to VFs */
2153 if (adapter
->vf_data
) {
2154 /* disable iov and allow time for transactions to clear */
2155 pci_disable_sriov(pdev
);
2158 kfree(adapter
->vf_data
);
2159 adapter
->vf_data
= NULL
;
2160 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
2162 dev_info(&pdev
->dev
, "IOV Disabled\n");
2166 iounmap(hw
->hw_addr
);
2167 if (hw
->flash_address
)
2168 iounmap(hw
->flash_address
);
2169 pci_release_selected_regions(pdev
,
2170 pci_select_bars(pdev
, IORESOURCE_MEM
));
2172 free_netdev(netdev
);
2174 pci_disable_pcie_error_reporting(pdev
);
2176 pci_disable_device(pdev
);
2180 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2181 * @adapter: board private structure to initialize
2183 * This function initializes the vf specific data storage and then attempts to
2184 * allocate the VFs. The reason for ordering it this way is because it is much
2185 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2186 * the memory for the VFs.
2188 static void __devinit
igb_probe_vfs(struct igb_adapter
* adapter
)
2190 #ifdef CONFIG_PCI_IOV
2191 struct pci_dev
*pdev
= adapter
->pdev
;
2193 if (adapter
->vfs_allocated_count
) {
2194 adapter
->vf_data
= kcalloc(adapter
->vfs_allocated_count
,
2195 sizeof(struct vf_data_storage
),
2197 /* if allocation failed then we do not support SR-IOV */
2198 if (!adapter
->vf_data
) {
2199 adapter
->vfs_allocated_count
= 0;
2200 dev_err(&pdev
->dev
, "Unable to allocate memory for VF "
2205 if (pci_enable_sriov(pdev
, adapter
->vfs_allocated_count
)) {
2206 kfree(adapter
->vf_data
);
2207 adapter
->vf_data
= NULL
;
2208 #endif /* CONFIG_PCI_IOV */
2209 adapter
->vfs_allocated_count
= 0;
2210 #ifdef CONFIG_PCI_IOV
2212 unsigned char mac_addr
[ETH_ALEN
];
2214 dev_info(&pdev
->dev
, "%d vfs allocated\n",
2215 adapter
->vfs_allocated_count
);
2216 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
2217 random_ether_addr(mac_addr
);
2218 igb_set_vf_mac(adapter
, i
, mac_addr
);
2220 /* DMA Coalescing is not supported in IOV mode. */
2221 if (adapter
->flags
& IGB_FLAG_DMAC
)
2222 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2224 #endif /* CONFIG_PCI_IOV */
2229 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2230 * @adapter: board private structure to initialize
2232 * igb_init_hw_timer initializes the function pointer and values for the hw
2233 * timer found in hardware.
2235 static void igb_init_hw_timer(struct igb_adapter
*adapter
)
2237 struct e1000_hw
*hw
= &adapter
->hw
;
2239 switch (hw
->mac
.type
) {
2242 memset(&adapter
->cycles
, 0, sizeof(adapter
->cycles
));
2243 adapter
->cycles
.read
= igb_read_clock
;
2244 adapter
->cycles
.mask
= CLOCKSOURCE_MASK(64);
2245 adapter
->cycles
.mult
= 1;
2247 * The 82580 timesync updates the system timer every 8ns by 8ns
2248 * and the value cannot be shifted. Instead we need to shift
2249 * the registers to generate a 64bit timer value. As a result
2250 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2251 * 24 in order to generate a larger value for synchronization.
2253 adapter
->cycles
.shift
= IGB_82580_TSYNC_SHIFT
;
2254 /* disable system timer temporarily by setting bit 31 */
2255 wr32(E1000_TSAUXC
, 0x80000000);
2258 /* Set registers so that rollover occurs soon to test this. */
2259 wr32(E1000_SYSTIMR
, 0x00000000);
2260 wr32(E1000_SYSTIML
, 0x80000000);
2261 wr32(E1000_SYSTIMH
, 0x000000FF);
2264 /* enable system timer by clearing bit 31 */
2265 wr32(E1000_TSAUXC
, 0x0);
2268 timecounter_init(&adapter
->clock
,
2270 ktime_to_ns(ktime_get_real()));
2272 * Synchronize our NIC clock against system wall clock. NIC
2273 * time stamp reading requires ~3us per sample, each sample
2274 * was pretty stable even under load => only require 10
2275 * samples for each offset comparison.
2277 memset(&adapter
->compare
, 0, sizeof(adapter
->compare
));
2278 adapter
->compare
.source
= &adapter
->clock
;
2279 adapter
->compare
.target
= ktime_get_real
;
2280 adapter
->compare
.num_samples
= 10;
2281 timecompare_update(&adapter
->compare
, 0);
2285 * Initialize hardware timer: we keep it running just in case
2286 * that some program needs it later on.
2288 memset(&adapter
->cycles
, 0, sizeof(adapter
->cycles
));
2289 adapter
->cycles
.read
= igb_read_clock
;
2290 adapter
->cycles
.mask
= CLOCKSOURCE_MASK(64);
2291 adapter
->cycles
.mult
= 1;
2293 * Scale the NIC clock cycle by a large factor so that
2294 * relatively small clock corrections can be added or
2295 * subtracted at each clock tick. The drawbacks of a large
2296 * factor are a) that the clock register overflows more quickly
2297 * (not such a big deal) and b) that the increment per tick has
2298 * to fit into 24 bits. As a result we need to use a shift of
2299 * 19 so we can fit a value of 16 into the TIMINCA register.
2301 adapter
->cycles
.shift
= IGB_82576_TSYNC_SHIFT
;
2303 (1 << E1000_TIMINCA_16NS_SHIFT
) |
2304 (16 << IGB_82576_TSYNC_SHIFT
));
2306 /* Set registers so that rollover occurs soon to test this. */
2307 wr32(E1000_SYSTIML
, 0x00000000);
2308 wr32(E1000_SYSTIMH
, 0xFF800000);
2311 timecounter_init(&adapter
->clock
,
2313 ktime_to_ns(ktime_get_real()));
2315 * Synchronize our NIC clock against system wall clock. NIC
2316 * time stamp reading requires ~3us per sample, each sample
2317 * was pretty stable even under load => only require 10
2318 * samples for each offset comparison.
2320 memset(&adapter
->compare
, 0, sizeof(adapter
->compare
));
2321 adapter
->compare
.source
= &adapter
->clock
;
2322 adapter
->compare
.target
= ktime_get_real
;
2323 adapter
->compare
.num_samples
= 10;
2324 timecompare_update(&adapter
->compare
, 0);
2327 /* 82575 does not support timesync */
2335 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2336 * @adapter: board private structure to initialize
2338 * igb_sw_init initializes the Adapter private data structure.
2339 * Fields are initialized based on PCI device information and
2340 * OS network device settings (MTU size).
2342 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
2344 struct e1000_hw
*hw
= &adapter
->hw
;
2345 struct net_device
*netdev
= adapter
->netdev
;
2346 struct pci_dev
*pdev
= adapter
->pdev
;
2348 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
2350 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
2351 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
2352 adapter
->rx_itr_setting
= IGB_DEFAULT_ITR
;
2353 adapter
->tx_itr_setting
= IGB_DEFAULT_ITR
;
2355 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2356 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2358 spin_lock_init(&adapter
->stats64_lock
);
2359 #ifdef CONFIG_PCI_IOV
2360 switch (hw
->mac
.type
) {
2364 dev_warn(&pdev
->dev
,
2365 "Maximum of 7 VFs per PF, using max\n");
2366 adapter
->vfs_allocated_count
= 7;
2368 adapter
->vfs_allocated_count
= max_vfs
;
2373 #endif /* CONFIG_PCI_IOV */
2374 adapter
->rss_queues
= min_t(u32
, IGB_MAX_RX_QUEUES
, num_online_cpus());
2377 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2378 * then we should combine the queues into a queue pair in order to
2379 * conserve interrupts due to limited supply
2381 if ((adapter
->rss_queues
> 4) ||
2382 ((adapter
->rss_queues
> 1) && (adapter
->vfs_allocated_count
> 6)))
2383 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
2385 /* This call may decrease the number of queues */
2386 if (igb_init_interrupt_scheme(adapter
)) {
2387 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
2391 igb_probe_vfs(adapter
);
2393 /* Explicitly disable IRQ since the NIC can be in any state. */
2394 igb_irq_disable(adapter
);
2396 if (hw
->mac
.type
== e1000_i350
)
2397 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2399 set_bit(__IGB_DOWN
, &adapter
->state
);
2404 * igb_open - Called when a network interface is made active
2405 * @netdev: network interface device structure
2407 * Returns 0 on success, negative value on failure
2409 * The open entry point is called when a network interface is made
2410 * active by the system (IFF_UP). At this point all resources needed
2411 * for transmit and receive operations are allocated, the interrupt
2412 * handler is registered with the OS, the watchdog timer is started,
2413 * and the stack is notified that the interface is ready.
2415 static int igb_open(struct net_device
*netdev
)
2417 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2418 struct e1000_hw
*hw
= &adapter
->hw
;
2422 /* disallow open during test */
2423 if (test_bit(__IGB_TESTING
, &adapter
->state
))
2426 netif_carrier_off(netdev
);
2428 /* allocate transmit descriptors */
2429 err
= igb_setup_all_tx_resources(adapter
);
2433 /* allocate receive descriptors */
2434 err
= igb_setup_all_rx_resources(adapter
);
2438 igb_power_up_link(adapter
);
2440 /* before we allocate an interrupt, we must be ready to handle it.
2441 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2442 * as soon as we call pci_request_irq, so we have to setup our
2443 * clean_rx handler before we do so. */
2444 igb_configure(adapter
);
2446 err
= igb_request_irq(adapter
);
2450 /* From here on the code is the same as igb_up() */
2451 clear_bit(__IGB_DOWN
, &adapter
->state
);
2453 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2454 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2455 napi_enable(&q_vector
->napi
);
2458 /* Clear any pending interrupts. */
2461 igb_irq_enable(adapter
);
2463 /* notify VFs that reset has been completed */
2464 if (adapter
->vfs_allocated_count
) {
2465 u32 reg_data
= rd32(E1000_CTRL_EXT
);
2466 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
2467 wr32(E1000_CTRL_EXT
, reg_data
);
2470 netif_tx_start_all_queues(netdev
);
2472 /* start the watchdog. */
2473 hw
->mac
.get_link_status
= 1;
2474 schedule_work(&adapter
->watchdog_task
);
2479 igb_release_hw_control(adapter
);
2480 igb_power_down_link(adapter
);
2481 igb_free_all_rx_resources(adapter
);
2483 igb_free_all_tx_resources(adapter
);
2491 * igb_close - Disables a network interface
2492 * @netdev: network interface device structure
2494 * Returns 0, this is not allowed to fail
2496 * The close entry point is called when an interface is de-activated
2497 * by the OS. The hardware is still under the driver's control, but
2498 * needs to be disabled. A global MAC reset is issued to stop the
2499 * hardware, and all transmit and receive resources are freed.
2501 static int igb_close(struct net_device
*netdev
)
2503 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2505 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
2508 igb_free_irq(adapter
);
2510 igb_free_all_tx_resources(adapter
);
2511 igb_free_all_rx_resources(adapter
);
2517 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2518 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2520 * Return 0 on success, negative on failure
2522 int igb_setup_tx_resources(struct igb_ring
*tx_ring
)
2524 struct device
*dev
= tx_ring
->dev
;
2527 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2528 tx_ring
->buffer_info
= vzalloc(size
);
2529 if (!tx_ring
->buffer_info
)
2532 /* round up to nearest 4K */
2533 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
2534 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2536 tx_ring
->desc
= dma_alloc_coherent(dev
,
2544 tx_ring
->next_to_use
= 0;
2545 tx_ring
->next_to_clean
= 0;
2549 vfree(tx_ring
->buffer_info
);
2551 "Unable to allocate memory for the transmit descriptor ring\n");
2556 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2557 * (Descriptors) for all queues
2558 * @adapter: board private structure
2560 * Return 0 on success, negative on failure
2562 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
2564 struct pci_dev
*pdev
= adapter
->pdev
;
2567 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2568 err
= igb_setup_tx_resources(adapter
->tx_ring
[i
]);
2571 "Allocation for Tx Queue %u failed\n", i
);
2572 for (i
--; i
>= 0; i
--)
2573 igb_free_tx_resources(adapter
->tx_ring
[i
]);
2578 for (i
= 0; i
< IGB_ABS_MAX_TX_QUEUES
; i
++) {
2579 int r_idx
= i
% adapter
->num_tx_queues
;
2580 adapter
->multi_tx_table
[i
] = adapter
->tx_ring
[r_idx
];
2586 * igb_setup_tctl - configure the transmit control registers
2587 * @adapter: Board private structure
2589 void igb_setup_tctl(struct igb_adapter
*adapter
)
2591 struct e1000_hw
*hw
= &adapter
->hw
;
2594 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2595 wr32(E1000_TXDCTL(0), 0);
2597 /* Program the Transmit Control Register */
2598 tctl
= rd32(E1000_TCTL
);
2599 tctl
&= ~E1000_TCTL_CT
;
2600 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2601 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2603 igb_config_collision_dist(hw
);
2605 /* Enable transmits */
2606 tctl
|= E1000_TCTL_EN
;
2608 wr32(E1000_TCTL
, tctl
);
2612 * igb_configure_tx_ring - Configure transmit ring after Reset
2613 * @adapter: board private structure
2614 * @ring: tx ring to configure
2616 * Configure a transmit ring after a reset.
2618 void igb_configure_tx_ring(struct igb_adapter
*adapter
,
2619 struct igb_ring
*ring
)
2621 struct e1000_hw
*hw
= &adapter
->hw
;
2623 u64 tdba
= ring
->dma
;
2624 int reg_idx
= ring
->reg_idx
;
2626 /* disable the queue */
2627 txdctl
= rd32(E1000_TXDCTL(reg_idx
));
2628 wr32(E1000_TXDCTL(reg_idx
),
2629 txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
2633 wr32(E1000_TDLEN(reg_idx
),
2634 ring
->count
* sizeof(union e1000_adv_tx_desc
));
2635 wr32(E1000_TDBAL(reg_idx
),
2636 tdba
& 0x00000000ffffffffULL
);
2637 wr32(E1000_TDBAH(reg_idx
), tdba
>> 32);
2639 ring
->head
= hw
->hw_addr
+ E1000_TDH(reg_idx
);
2640 ring
->tail
= hw
->hw_addr
+ E1000_TDT(reg_idx
);
2641 writel(0, ring
->head
);
2642 writel(0, ring
->tail
);
2644 txdctl
|= IGB_TX_PTHRESH
;
2645 txdctl
|= IGB_TX_HTHRESH
<< 8;
2646 txdctl
|= IGB_TX_WTHRESH
<< 16;
2648 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
2649 wr32(E1000_TXDCTL(reg_idx
), txdctl
);
2653 * igb_configure_tx - Configure transmit Unit after Reset
2654 * @adapter: board private structure
2656 * Configure the Tx unit of the MAC after a reset.
2658 static void igb_configure_tx(struct igb_adapter
*adapter
)
2662 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2663 igb_configure_tx_ring(adapter
, adapter
->tx_ring
[i
]);
2667 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2668 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2670 * Returns 0 on success, negative on failure
2672 int igb_setup_rx_resources(struct igb_ring
*rx_ring
)
2674 struct device
*dev
= rx_ring
->dev
;
2677 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2678 rx_ring
->buffer_info
= vzalloc(size
);
2679 if (!rx_ring
->buffer_info
)
2682 desc_len
= sizeof(union e1000_adv_rx_desc
);
2684 /* Round up to nearest 4K */
2685 rx_ring
->size
= rx_ring
->count
* desc_len
;
2686 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2688 rx_ring
->desc
= dma_alloc_coherent(dev
,
2696 rx_ring
->next_to_clean
= 0;
2697 rx_ring
->next_to_use
= 0;
2702 vfree(rx_ring
->buffer_info
);
2703 rx_ring
->buffer_info
= NULL
;
2704 dev_err(dev
, "Unable to allocate memory for the receive descriptor"
2710 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2711 * (Descriptors) for all queues
2712 * @adapter: board private structure
2714 * Return 0 on success, negative on failure
2716 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
2718 struct pci_dev
*pdev
= adapter
->pdev
;
2721 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2722 err
= igb_setup_rx_resources(adapter
->rx_ring
[i
]);
2725 "Allocation for Rx Queue %u failed\n", i
);
2726 for (i
--; i
>= 0; i
--)
2727 igb_free_rx_resources(adapter
->rx_ring
[i
]);
2736 * igb_setup_mrqc - configure the multiple receive queue control registers
2737 * @adapter: Board private structure
2739 static void igb_setup_mrqc(struct igb_adapter
*adapter
)
2741 struct e1000_hw
*hw
= &adapter
->hw
;
2743 u32 j
, num_rx_queues
, shift
= 0, shift2
= 0;
2748 static const u8 rsshash
[40] = {
2749 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2750 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2751 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2752 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2754 /* Fill out hash function seeds */
2755 for (j
= 0; j
< 10; j
++) {
2756 u32 rsskey
= rsshash
[(j
* 4)];
2757 rsskey
|= rsshash
[(j
* 4) + 1] << 8;
2758 rsskey
|= rsshash
[(j
* 4) + 2] << 16;
2759 rsskey
|= rsshash
[(j
* 4) + 3] << 24;
2760 array_wr32(E1000_RSSRK(0), j
, rsskey
);
2763 num_rx_queues
= adapter
->rss_queues
;
2765 if (adapter
->vfs_allocated_count
) {
2766 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2767 switch (hw
->mac
.type
) {
2784 if (hw
->mac
.type
== e1000_82575
)
2788 for (j
= 0; j
< (32 * 4); j
++) {
2789 reta
.bytes
[j
& 3] = (j
% num_rx_queues
) << shift
;
2791 reta
.bytes
[j
& 3] |= num_rx_queues
<< shift2
;
2793 wr32(E1000_RETA(j
>> 2), reta
.dword
);
2797 * Disable raw packet checksumming so that RSS hash is placed in
2798 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2799 * offloads as they are enabled by default
2801 rxcsum
= rd32(E1000_RXCSUM
);
2802 rxcsum
|= E1000_RXCSUM_PCSD
;
2804 if (adapter
->hw
.mac
.type
>= e1000_82576
)
2805 /* Enable Receive Checksum Offload for SCTP */
2806 rxcsum
|= E1000_RXCSUM_CRCOFL
;
2808 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2809 wr32(E1000_RXCSUM
, rxcsum
);
2811 /* If VMDq is enabled then we set the appropriate mode for that, else
2812 * we default to RSS so that an RSS hash is calculated per packet even
2813 * if we are only using one queue */
2814 if (adapter
->vfs_allocated_count
) {
2815 if (hw
->mac
.type
> e1000_82575
) {
2816 /* Set the default pool for the PF's first queue */
2817 u32 vtctl
= rd32(E1000_VT_CTL
);
2818 vtctl
&= ~(E1000_VT_CTL_DEFAULT_POOL_MASK
|
2819 E1000_VT_CTL_DISABLE_DEF_POOL
);
2820 vtctl
|= adapter
->vfs_allocated_count
<<
2821 E1000_VT_CTL_DEFAULT_POOL_SHIFT
;
2822 wr32(E1000_VT_CTL
, vtctl
);
2824 if (adapter
->rss_queues
> 1)
2825 mrqc
= E1000_MRQC_ENABLE_VMDQ_RSS_2Q
;
2827 mrqc
= E1000_MRQC_ENABLE_VMDQ
;
2829 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
2831 igb_vmm_control(adapter
);
2834 * Generate RSS hash based on TCP port numbers and/or
2835 * IPv4/v6 src and dst addresses since UDP cannot be
2836 * hashed reliably due to IP fragmentation
2838 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4
|
2839 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
2840 E1000_MRQC_RSS_FIELD_IPV6
|
2841 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
2842 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
;
2844 wr32(E1000_MRQC
, mrqc
);
2848 * igb_setup_rctl - configure the receive control registers
2849 * @adapter: Board private structure
2851 void igb_setup_rctl(struct igb_adapter
*adapter
)
2853 struct e1000_hw
*hw
= &adapter
->hw
;
2856 rctl
= rd32(E1000_RCTL
);
2858 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2859 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
2861 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
2862 (hw
->mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2865 * enable stripping of CRC. It's unlikely this will break BMC
2866 * redirection as it did with e1000. Newer features require
2867 * that the HW strips the CRC.
2869 rctl
|= E1000_RCTL_SECRC
;
2871 /* disable store bad packets and clear size bits. */
2872 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
2874 /* enable LPE to prevent packets larger than max_frame_size */
2875 rctl
|= E1000_RCTL_LPE
;
2877 /* disable queue 0 to prevent tail write w/o re-config */
2878 wr32(E1000_RXDCTL(0), 0);
2880 /* Attention!!! For SR-IOV PF driver operations you must enable
2881 * queue drop for all VF and PF queues to prevent head of line blocking
2882 * if an un-trusted VF does not provide descriptors to hardware.
2884 if (adapter
->vfs_allocated_count
) {
2885 /* set all queue drop enable bits */
2886 wr32(E1000_QDE
, ALL_QUEUES
);
2889 wr32(E1000_RCTL
, rctl
);
2892 static inline int igb_set_vf_rlpml(struct igb_adapter
*adapter
, int size
,
2895 struct e1000_hw
*hw
= &adapter
->hw
;
2898 /* if it isn't the PF check to see if VFs are enabled and
2899 * increase the size to support vlan tags */
2900 if (vfn
< adapter
->vfs_allocated_count
&&
2901 adapter
->vf_data
[vfn
].vlans_enabled
)
2902 size
+= VLAN_TAG_SIZE
;
2904 vmolr
= rd32(E1000_VMOLR(vfn
));
2905 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
2906 vmolr
|= size
| E1000_VMOLR_LPE
;
2907 wr32(E1000_VMOLR(vfn
), vmolr
);
2913 * igb_rlpml_set - set maximum receive packet size
2914 * @adapter: board private structure
2916 * Configure maximum receivable packet size.
2918 static void igb_rlpml_set(struct igb_adapter
*adapter
)
2920 u32 max_frame_size
= adapter
->max_frame_size
;
2921 struct e1000_hw
*hw
= &adapter
->hw
;
2922 u16 pf_id
= adapter
->vfs_allocated_count
;
2925 max_frame_size
+= VLAN_TAG_SIZE
;
2927 /* if vfs are enabled we set RLPML to the largest possible request
2928 * size and set the VMOLR RLPML to the size we need */
2930 igb_set_vf_rlpml(adapter
, max_frame_size
, pf_id
);
2931 max_frame_size
= MAX_JUMBO_FRAME_SIZE
;
2934 wr32(E1000_RLPML
, max_frame_size
);
2937 static inline void igb_set_vmolr(struct igb_adapter
*adapter
,
2940 struct e1000_hw
*hw
= &adapter
->hw
;
2944 * This register exists only on 82576 and newer so if we are older then
2945 * we should exit and do nothing
2947 if (hw
->mac
.type
< e1000_82576
)
2950 vmolr
= rd32(E1000_VMOLR(vfn
));
2951 vmolr
|= E1000_VMOLR_STRVLAN
; /* Strip vlan tags */
2953 vmolr
|= E1000_VMOLR_AUPE
; /* Accept untagged packets */
2955 vmolr
&= ~(E1000_VMOLR_AUPE
); /* Tagged packets ONLY */
2957 /* clear all bits that might not be set */
2958 vmolr
&= ~(E1000_VMOLR_BAM
| E1000_VMOLR_RSSE
);
2960 if (adapter
->rss_queues
> 1 && vfn
== adapter
->vfs_allocated_count
)
2961 vmolr
|= E1000_VMOLR_RSSE
; /* enable RSS */
2963 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2966 if (vfn
<= adapter
->vfs_allocated_count
)
2967 vmolr
|= E1000_VMOLR_BAM
; /* Accept broadcast */
2969 wr32(E1000_VMOLR(vfn
), vmolr
);
2973 * igb_configure_rx_ring - Configure a receive ring after Reset
2974 * @adapter: board private structure
2975 * @ring: receive ring to be configured
2977 * Configure the Rx unit of the MAC after a reset.
2979 void igb_configure_rx_ring(struct igb_adapter
*adapter
,
2980 struct igb_ring
*ring
)
2982 struct e1000_hw
*hw
= &adapter
->hw
;
2983 u64 rdba
= ring
->dma
;
2984 int reg_idx
= ring
->reg_idx
;
2987 /* disable the queue */
2988 rxdctl
= rd32(E1000_RXDCTL(reg_idx
));
2989 wr32(E1000_RXDCTL(reg_idx
),
2990 rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
2992 /* Set DMA base address registers */
2993 wr32(E1000_RDBAL(reg_idx
),
2994 rdba
& 0x00000000ffffffffULL
);
2995 wr32(E1000_RDBAH(reg_idx
), rdba
>> 32);
2996 wr32(E1000_RDLEN(reg_idx
),
2997 ring
->count
* sizeof(union e1000_adv_rx_desc
));
2999 /* initialize head and tail */
3000 ring
->head
= hw
->hw_addr
+ E1000_RDH(reg_idx
);
3001 ring
->tail
= hw
->hw_addr
+ E1000_RDT(reg_idx
);
3002 writel(0, ring
->head
);
3003 writel(0, ring
->tail
);
3005 /* set descriptor configuration */
3006 if (ring
->rx_buffer_len
< IGB_RXBUFFER_1024
) {
3007 srrctl
= ALIGN(ring
->rx_buffer_len
, 64) <<
3008 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
3009 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3010 srrctl
|= IGB_RXBUFFER_16384
>>
3011 E1000_SRRCTL_BSIZEPKT_SHIFT
;
3013 srrctl
|= (PAGE_SIZE
/ 2) >>
3014 E1000_SRRCTL_BSIZEPKT_SHIFT
;
3016 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
3018 srrctl
= ALIGN(ring
->rx_buffer_len
, 1024) >>
3019 E1000_SRRCTL_BSIZEPKT_SHIFT
;
3020 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
3022 if (hw
->mac
.type
== e1000_82580
)
3023 srrctl
|= E1000_SRRCTL_TIMESTAMP
;
3024 /* Only set Drop Enable if we are supporting multiple queues */
3025 if (adapter
->vfs_allocated_count
|| adapter
->num_rx_queues
> 1)
3026 srrctl
|= E1000_SRRCTL_DROP_EN
;
3028 wr32(E1000_SRRCTL(reg_idx
), srrctl
);
3030 /* set filtering for VMDQ pools */
3031 igb_set_vmolr(adapter
, reg_idx
& 0x7, true);
3033 /* enable receive descriptor fetching */
3034 rxdctl
= rd32(E1000_RXDCTL(reg_idx
));
3035 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
3036 rxdctl
&= 0xFFF00000;
3037 rxdctl
|= IGB_RX_PTHRESH
;
3038 rxdctl
|= IGB_RX_HTHRESH
<< 8;
3039 rxdctl
|= IGB_RX_WTHRESH
<< 16;
3040 wr32(E1000_RXDCTL(reg_idx
), rxdctl
);
3044 * igb_configure_rx - Configure receive Unit after Reset
3045 * @adapter: board private structure
3047 * Configure the Rx unit of the MAC after a reset.
3049 static void igb_configure_rx(struct igb_adapter
*adapter
)
3053 /* set UTA to appropriate mode */
3054 igb_set_uta(adapter
);
3056 /* set the correct pool for the PF default MAC address in entry 0 */
3057 igb_rar_set_qsel(adapter
, adapter
->hw
.mac
.addr
, 0,
3058 adapter
->vfs_allocated_count
);
3060 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3061 * the Base and Length of the Rx Descriptor Ring */
3062 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3063 igb_configure_rx_ring(adapter
, adapter
->rx_ring
[i
]);
3067 * igb_free_tx_resources - Free Tx Resources per Queue
3068 * @tx_ring: Tx descriptor ring for a specific queue
3070 * Free all transmit software resources
3072 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
3074 igb_clean_tx_ring(tx_ring
);
3076 vfree(tx_ring
->buffer_info
);
3077 tx_ring
->buffer_info
= NULL
;
3079 /* if not set, then don't free */
3083 dma_free_coherent(tx_ring
->dev
, tx_ring
->size
,
3084 tx_ring
->desc
, tx_ring
->dma
);
3086 tx_ring
->desc
= NULL
;
3090 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3091 * @adapter: board private structure
3093 * Free all transmit software resources
3095 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
3099 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
3100 igb_free_tx_resources(adapter
->tx_ring
[i
]);
3103 void igb_unmap_and_free_tx_resource(struct igb_ring
*tx_ring
,
3104 struct igb_buffer
*buffer_info
)
3106 if (buffer_info
->dma
) {
3107 if (buffer_info
->mapped_as_page
)
3108 dma_unmap_page(tx_ring
->dev
,
3110 buffer_info
->length
,
3113 dma_unmap_single(tx_ring
->dev
,
3115 buffer_info
->length
,
3117 buffer_info
->dma
= 0;
3119 if (buffer_info
->skb
) {
3120 dev_kfree_skb_any(buffer_info
->skb
);
3121 buffer_info
->skb
= NULL
;
3123 buffer_info
->time_stamp
= 0;
3124 buffer_info
->length
= 0;
3125 buffer_info
->next_to_watch
= 0;
3126 buffer_info
->mapped_as_page
= false;
3130 * igb_clean_tx_ring - Free Tx Buffers
3131 * @tx_ring: ring to be cleaned
3133 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
3135 struct igb_buffer
*buffer_info
;
3139 if (!tx_ring
->buffer_info
)
3141 /* Free all the Tx ring sk_buffs */
3143 for (i
= 0; i
< tx_ring
->count
; i
++) {
3144 buffer_info
= &tx_ring
->buffer_info
[i
];
3145 igb_unmap_and_free_tx_resource(tx_ring
, buffer_info
);
3148 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
3149 memset(tx_ring
->buffer_info
, 0, size
);
3151 /* Zero out the descriptor ring */
3152 memset(tx_ring
->desc
, 0, tx_ring
->size
);
3154 tx_ring
->next_to_use
= 0;
3155 tx_ring
->next_to_clean
= 0;
3159 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3160 * @adapter: board private structure
3162 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
3166 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
3167 igb_clean_tx_ring(adapter
->tx_ring
[i
]);
3171 * igb_free_rx_resources - Free Rx Resources
3172 * @rx_ring: ring to clean the resources from
3174 * Free all receive software resources
3176 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
3178 igb_clean_rx_ring(rx_ring
);
3180 vfree(rx_ring
->buffer_info
);
3181 rx_ring
->buffer_info
= NULL
;
3183 /* if not set, then don't free */
3187 dma_free_coherent(rx_ring
->dev
, rx_ring
->size
,
3188 rx_ring
->desc
, rx_ring
->dma
);
3190 rx_ring
->desc
= NULL
;
3194 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3195 * @adapter: board private structure
3197 * Free all receive software resources
3199 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
3203 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3204 igb_free_rx_resources(adapter
->rx_ring
[i
]);
3208 * igb_clean_rx_ring - Free Rx Buffers per Queue
3209 * @rx_ring: ring to free buffers from
3211 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
3213 struct igb_buffer
*buffer_info
;
3217 if (!rx_ring
->buffer_info
)
3220 /* Free all the Rx ring sk_buffs */
3221 for (i
= 0; i
< rx_ring
->count
; i
++) {
3222 buffer_info
= &rx_ring
->buffer_info
[i
];
3223 if (buffer_info
->dma
) {
3224 dma_unmap_single(rx_ring
->dev
,
3226 rx_ring
->rx_buffer_len
,
3228 buffer_info
->dma
= 0;
3231 if (buffer_info
->skb
) {
3232 dev_kfree_skb(buffer_info
->skb
);
3233 buffer_info
->skb
= NULL
;
3235 if (buffer_info
->page_dma
) {
3236 dma_unmap_page(rx_ring
->dev
,
3237 buffer_info
->page_dma
,
3240 buffer_info
->page_dma
= 0;
3242 if (buffer_info
->page
) {
3243 put_page(buffer_info
->page
);
3244 buffer_info
->page
= NULL
;
3245 buffer_info
->page_offset
= 0;
3249 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
3250 memset(rx_ring
->buffer_info
, 0, size
);
3252 /* Zero out the descriptor ring */
3253 memset(rx_ring
->desc
, 0, rx_ring
->size
);
3255 rx_ring
->next_to_clean
= 0;
3256 rx_ring
->next_to_use
= 0;
3260 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3261 * @adapter: board private structure
3263 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
3267 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3268 igb_clean_rx_ring(adapter
->rx_ring
[i
]);
3272 * igb_set_mac - Change the Ethernet Address of the NIC
3273 * @netdev: network interface device structure
3274 * @p: pointer to an address structure
3276 * Returns 0 on success, negative on failure
3278 static int igb_set_mac(struct net_device
*netdev
, void *p
)
3280 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3281 struct e1000_hw
*hw
= &adapter
->hw
;
3282 struct sockaddr
*addr
= p
;
3284 if (!is_valid_ether_addr(addr
->sa_data
))
3285 return -EADDRNOTAVAIL
;
3287 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3288 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3290 /* set the correct pool for the new PF MAC address in entry 0 */
3291 igb_rar_set_qsel(adapter
, hw
->mac
.addr
, 0,
3292 adapter
->vfs_allocated_count
);
3298 * igb_write_mc_addr_list - write multicast addresses to MTA
3299 * @netdev: network interface device structure
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 * 0 on no addresses written
3304 * X on writing X addresses to MTA
3306 static int igb_write_mc_addr_list(struct net_device
*netdev
)
3308 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3309 struct e1000_hw
*hw
= &adapter
->hw
;
3310 struct netdev_hw_addr
*ha
;
3314 if (netdev_mc_empty(netdev
)) {
3315 /* nothing to program, so clear mc list */
3316 igb_update_mc_addr_list(hw
, NULL
, 0);
3317 igb_restore_vf_multicasts(adapter
);
3321 mta_list
= kzalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3325 /* The shared function expects a packed array of only addresses. */
3327 netdev_for_each_mc_addr(ha
, netdev
)
3328 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3330 igb_update_mc_addr_list(hw
, mta_list
, i
);
3333 return netdev_mc_count(netdev
);
3337 * igb_write_uc_addr_list - write unicast addresses to RAR table
3338 * @netdev: network interface device structure
3340 * Writes unicast address list to the RAR table.
3341 * Returns: -ENOMEM on failure/insufficient address space
3342 * 0 on no addresses written
3343 * X on writing X addresses to the RAR table
3345 static int igb_write_uc_addr_list(struct net_device
*netdev
)
3347 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3348 struct e1000_hw
*hw
= &adapter
->hw
;
3349 unsigned int vfn
= adapter
->vfs_allocated_count
;
3350 unsigned int rar_entries
= hw
->mac
.rar_entry_count
- (vfn
+ 1);
3353 /* return ENOMEM indicating insufficient memory for addresses */
3354 if (netdev_uc_count(netdev
) > rar_entries
)
3357 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3358 struct netdev_hw_addr
*ha
;
3360 netdev_for_each_uc_addr(ha
, netdev
) {
3363 igb_rar_set_qsel(adapter
, ha
->addr
,
3369 /* write the addresses in reverse order to avoid write combining */
3370 for (; rar_entries
> 0 ; rar_entries
--) {
3371 wr32(E1000_RAH(rar_entries
), 0);
3372 wr32(E1000_RAL(rar_entries
), 0);
3380 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3381 * @netdev: network interface device structure
3383 * The set_rx_mode entry point is called whenever the unicast or multicast
3384 * address lists or the network interface flags are updated. This routine is
3385 * responsible for configuring the hardware for proper unicast, multicast,
3386 * promiscuous mode, and all-multi behavior.
3388 static void igb_set_rx_mode(struct net_device
*netdev
)
3390 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3391 struct e1000_hw
*hw
= &adapter
->hw
;
3392 unsigned int vfn
= adapter
->vfs_allocated_count
;
3393 u32 rctl
, vmolr
= 0;
3396 /* Check for Promiscuous and All Multicast modes */
3397 rctl
= rd32(E1000_RCTL
);
3399 /* clear the effected bits */
3400 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_VFE
);
3402 if (netdev
->flags
& IFF_PROMISC
) {
3403 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3404 vmolr
|= (E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
);
3406 if (netdev
->flags
& IFF_ALLMULTI
) {
3407 rctl
|= E1000_RCTL_MPE
;
3408 vmolr
|= E1000_VMOLR_MPME
;
3411 * Write addresses to the MTA, if the attempt fails
3412 * then we should just turn on promiscuous mode so
3413 * that we can at least receive multicast traffic
3415 count
= igb_write_mc_addr_list(netdev
);
3417 rctl
|= E1000_RCTL_MPE
;
3418 vmolr
|= E1000_VMOLR_MPME
;
3420 vmolr
|= E1000_VMOLR_ROMPE
;
3424 * Write addresses to available RAR registers, if there is not
3425 * sufficient space to store all the addresses then enable
3426 * unicast promiscuous mode
3428 count
= igb_write_uc_addr_list(netdev
);
3430 rctl
|= E1000_RCTL_UPE
;
3431 vmolr
|= E1000_VMOLR_ROPE
;
3433 rctl
|= E1000_RCTL_VFE
;
3435 wr32(E1000_RCTL
, rctl
);
3438 * In order to support SR-IOV and eventually VMDq it is necessary to set
3439 * the VMOLR to enable the appropriate modes. Without this workaround
3440 * we will have issues with VLAN tag stripping not being done for frames
3441 * that are only arriving because we are the default pool
3443 if (hw
->mac
.type
< e1000_82576
)
3446 vmolr
|= rd32(E1000_VMOLR(vfn
)) &
3447 ~(E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
| E1000_VMOLR_ROMPE
);
3448 wr32(E1000_VMOLR(vfn
), vmolr
);
3449 igb_restore_vf_multicasts(adapter
);
3452 static void igb_check_wvbr(struct igb_adapter
*adapter
)
3454 struct e1000_hw
*hw
= &adapter
->hw
;
3457 switch (hw
->mac
.type
) {
3460 if (!(wvbr
= rd32(E1000_WVBR
)))
3467 adapter
->wvbr
|= wvbr
;
3470 #define IGB_STAGGERED_QUEUE_OFFSET 8
3472 static void igb_spoof_check(struct igb_adapter
*adapter
)
3479 for(j
= 0; j
< adapter
->vfs_allocated_count
; j
++) {
3480 if (adapter
->wvbr
& (1 << j
) ||
3481 adapter
->wvbr
& (1 << (j
+ IGB_STAGGERED_QUEUE_OFFSET
))) {
3482 dev_warn(&adapter
->pdev
->dev
,
3483 "Spoof event(s) detected on VF %d\n", j
);
3486 (1 << (j
+ IGB_STAGGERED_QUEUE_OFFSET
)));
3491 /* Need to wait a few seconds after link up to get diagnostic information from
3493 static void igb_update_phy_info(unsigned long data
)
3495 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
3496 igb_get_phy_info(&adapter
->hw
);
3500 * igb_has_link - check shared code for link and determine up/down
3501 * @adapter: pointer to driver private info
3503 bool igb_has_link(struct igb_adapter
*adapter
)
3505 struct e1000_hw
*hw
= &adapter
->hw
;
3506 bool link_active
= false;
3509 /* get_link_status is set on LSC (link status) interrupt or
3510 * rx sequence error interrupt. get_link_status will stay
3511 * false until the e1000_check_for_link establishes link
3512 * for copper adapters ONLY
3514 switch (hw
->phy
.media_type
) {
3515 case e1000_media_type_copper
:
3516 if (hw
->mac
.get_link_status
) {
3517 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3518 link_active
= !hw
->mac
.get_link_status
;
3523 case e1000_media_type_internal_serdes
:
3524 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3525 link_active
= hw
->mac
.serdes_has_link
;
3528 case e1000_media_type_unknown
:
3536 * igb_watchdog - Timer Call-back
3537 * @data: pointer to adapter cast into an unsigned long
3539 static void igb_watchdog(unsigned long data
)
3541 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
3542 /* Do the rest outside of interrupt context */
3543 schedule_work(&adapter
->watchdog_task
);
3546 static void igb_watchdog_task(struct work_struct
*work
)
3548 struct igb_adapter
*adapter
= container_of(work
,
3551 struct e1000_hw
*hw
= &adapter
->hw
;
3552 struct net_device
*netdev
= adapter
->netdev
;
3553 u32 link
, ctrl_ext
, thstat
;
3556 link
= igb_has_link(adapter
);
3558 if (!netif_carrier_ok(netdev
)) {
3560 hw
->mac
.ops
.get_speed_and_duplex(hw
,
3561 &adapter
->link_speed
,
3562 &adapter
->link_duplex
);
3564 ctrl
= rd32(E1000_CTRL
);
3565 /* Links status message must follow this format */
3566 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
3567 "Flow Control: %s\n",
3569 adapter
->link_speed
,
3570 adapter
->link_duplex
== FULL_DUPLEX
?
3571 "Full Duplex" : "Half Duplex",
3572 ((ctrl
& E1000_CTRL_TFCE
) &&
3573 (ctrl
& E1000_CTRL_RFCE
)) ? "RX/TX" :
3574 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3575 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None")));
3577 /* check for thermal sensor event on i350,
3579 if (hw
->mac
.type
== e1000_i350
) {
3580 thstat
= rd32(E1000_THSTAT
);
3581 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3582 if ((hw
->phy
.media_type
==
3583 e1000_media_type_copper
) && !(ctrl_ext
&
3584 E1000_CTRL_EXT_LINK_MODE_SGMII
)) {
3586 E1000_THSTAT_LINK_THROTTLE
) {
3587 printk(KERN_INFO
"igb: %s The "
3588 "network adapter link "
3589 "speed was downshifted "
3596 /* adjust timeout factor according to speed/duplex */
3597 adapter
->tx_timeout_factor
= 1;
3598 switch (adapter
->link_speed
) {
3600 adapter
->tx_timeout_factor
= 14;
3603 /* maybe add some timeout factor ? */
3607 netif_carrier_on(netdev
);
3609 igb_ping_all_vfs(adapter
);
3610 igb_check_vf_rate_limit(adapter
);
3612 /* link state has changed, schedule phy info update */
3613 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3614 mod_timer(&adapter
->phy_info_timer
,
3615 round_jiffies(jiffies
+ 2 * HZ
));
3618 if (netif_carrier_ok(netdev
)) {
3619 adapter
->link_speed
= 0;
3620 adapter
->link_duplex
= 0;
3621 /* check for thermal sensor event on i350
3623 if (hw
->mac
.type
== e1000_i350
) {
3624 thstat
= rd32(E1000_THSTAT
);
3625 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3626 if ((hw
->phy
.media_type
==
3627 e1000_media_type_copper
) && !(ctrl_ext
&
3628 E1000_CTRL_EXT_LINK_MODE_SGMII
)) {
3629 if (thstat
& E1000_THSTAT_PWR_DOWN
) {
3630 printk(KERN_ERR
"igb: %s The "
3631 "network adapter was stopped "
3632 "because it overheated.\n",
3637 /* Links status message must follow this format */
3638 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
3640 netif_carrier_off(netdev
);
3642 igb_ping_all_vfs(adapter
);
3644 /* link state has changed, schedule phy info update */
3645 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3646 mod_timer(&adapter
->phy_info_timer
,
3647 round_jiffies(jiffies
+ 2 * HZ
));
3651 spin_lock(&adapter
->stats64_lock
);
3652 igb_update_stats(adapter
, &adapter
->stats64
);
3653 spin_unlock(&adapter
->stats64_lock
);
3655 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3656 struct igb_ring
*tx_ring
= adapter
->tx_ring
[i
];
3657 if (!netif_carrier_ok(netdev
)) {
3658 /* We've lost link, so the controller stops DMA,
3659 * but we've got queued Tx work that's never going
3660 * to get done, so reset controller to flush Tx.
3661 * (Do the reset outside of interrupt context). */
3662 if (igb_desc_unused(tx_ring
) + 1 < tx_ring
->count
) {
3663 adapter
->tx_timeout_count
++;
3664 schedule_work(&adapter
->reset_task
);
3665 /* return immediately since reset is imminent */
3670 /* Force detection of hung controller every watchdog period */
3671 tx_ring
->detect_tx_hung
= true;
3674 /* Cause software interrupt to ensure rx ring is cleaned */
3675 if (adapter
->msix_entries
) {
3677 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
3678 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
3679 eics
|= q_vector
->eims_value
;
3681 wr32(E1000_EICS
, eics
);
3683 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
3686 igb_spoof_check(adapter
);
3688 /* Reset the timer */
3689 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3690 mod_timer(&adapter
->watchdog_timer
,
3691 round_jiffies(jiffies
+ 2 * HZ
));
3694 enum latency_range
{
3698 latency_invalid
= 255
3702 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3704 * Stores a new ITR value based on strictly on packet size. This
3705 * algorithm is less sophisticated than that used in igb_update_itr,
3706 * due to the difficulty of synchronizing statistics across multiple
3707 * receive rings. The divisors and thresholds used by this function
3708 * were determined based on theoretical maximum wire speed and testing
3709 * data, in order to minimize response time while increasing bulk
3711 * This functionality is controlled by the InterruptThrottleRate module
3712 * parameter (see igb_param.c)
3713 * NOTE: This function is called only when operating in a multiqueue
3714 * receive environment.
3715 * @q_vector: pointer to q_vector
3717 static void igb_update_ring_itr(struct igb_q_vector
*q_vector
)
3719 int new_val
= q_vector
->itr_val
;
3720 int avg_wire_size
= 0;
3721 struct igb_adapter
*adapter
= q_vector
->adapter
;
3722 struct igb_ring
*ring
;
3723 unsigned int packets
;
3725 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3726 * ints/sec - ITR timer value of 120 ticks.
3728 if (adapter
->link_speed
!= SPEED_1000
) {
3733 ring
= q_vector
->rx_ring
;
3735 packets
= ACCESS_ONCE(ring
->total_packets
);
3738 avg_wire_size
= ring
->total_bytes
/ packets
;
3741 ring
= q_vector
->tx_ring
;
3743 packets
= ACCESS_ONCE(ring
->total_packets
);
3746 avg_wire_size
= max_t(u32
, avg_wire_size
,
3747 ring
->total_bytes
/ packets
);
3750 /* if avg_wire_size isn't set no work was done */
3754 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3755 avg_wire_size
+= 24;
3757 /* Don't starve jumbo frames */
3758 avg_wire_size
= min(avg_wire_size
, 3000);
3760 /* Give a little boost to mid-size frames */
3761 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
3762 new_val
= avg_wire_size
/ 3;
3764 new_val
= avg_wire_size
/ 2;
3766 /* when in itr mode 3 do not exceed 20K ints/sec */
3767 if (adapter
->rx_itr_setting
== 3 && new_val
< 196)
3771 if (new_val
!= q_vector
->itr_val
) {
3772 q_vector
->itr_val
= new_val
;
3773 q_vector
->set_itr
= 1;
3776 if (q_vector
->rx_ring
) {
3777 q_vector
->rx_ring
->total_bytes
= 0;
3778 q_vector
->rx_ring
->total_packets
= 0;
3780 if (q_vector
->tx_ring
) {
3781 q_vector
->tx_ring
->total_bytes
= 0;
3782 q_vector
->tx_ring
->total_packets
= 0;
3787 * igb_update_itr - update the dynamic ITR value based on statistics
3788 * Stores a new ITR value based on packets and byte
3789 * counts during the last interrupt. The advantage of per interrupt
3790 * computation is faster updates and more accurate ITR for the current
3791 * traffic pattern. Constants in this function were computed
3792 * based on theoretical maximum wire speed and thresholds were set based
3793 * on testing data as well as attempting to minimize response time
3794 * while increasing bulk throughput.
3795 * this functionality is controlled by the InterruptThrottleRate module
3796 * parameter (see igb_param.c)
3797 * NOTE: These calculations are only valid when operating in a single-
3798 * queue environment.
3799 * @adapter: pointer to adapter
3800 * @itr_setting: current q_vector->itr_val
3801 * @packets: the number of packets during this measurement interval
3802 * @bytes: the number of bytes during this measurement interval
3804 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
3805 int packets
, int bytes
)
3807 unsigned int retval
= itr_setting
;
3810 goto update_itr_done
;
3812 switch (itr_setting
) {
3813 case lowest_latency
:
3814 /* handle TSO and jumbo frames */
3815 if (bytes
/packets
> 8000)
3816 retval
= bulk_latency
;
3817 else if ((packets
< 5) && (bytes
> 512))
3818 retval
= low_latency
;
3820 case low_latency
: /* 50 usec aka 20000 ints/s */
3821 if (bytes
> 10000) {
3822 /* this if handles the TSO accounting */
3823 if (bytes
/packets
> 8000) {
3824 retval
= bulk_latency
;
3825 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
3826 retval
= bulk_latency
;
3827 } else if ((packets
> 35)) {
3828 retval
= lowest_latency
;
3830 } else if (bytes
/packets
> 2000) {
3831 retval
= bulk_latency
;
3832 } else if (packets
<= 2 && bytes
< 512) {
3833 retval
= lowest_latency
;
3836 case bulk_latency
: /* 250 usec aka 4000 ints/s */
3837 if (bytes
> 25000) {
3839 retval
= low_latency
;
3840 } else if (bytes
< 1500) {
3841 retval
= low_latency
;
3850 static void igb_set_itr(struct igb_adapter
*adapter
)
3852 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
3854 u32 new_itr
= q_vector
->itr_val
;
3856 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3857 if (adapter
->link_speed
!= SPEED_1000
) {
3863 adapter
->rx_itr
= igb_update_itr(adapter
,
3865 q_vector
->rx_ring
->total_packets
,
3866 q_vector
->rx_ring
->total_bytes
);
3868 adapter
->tx_itr
= igb_update_itr(adapter
,
3870 q_vector
->tx_ring
->total_packets
,
3871 q_vector
->tx_ring
->total_bytes
);
3872 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
3874 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3875 if (adapter
->rx_itr_setting
== 3 && current_itr
== lowest_latency
)
3876 current_itr
= low_latency
;
3878 switch (current_itr
) {
3879 /* counts and packets in update_itr are dependent on these numbers */
3880 case lowest_latency
:
3881 new_itr
= 56; /* aka 70,000 ints/sec */
3884 new_itr
= 196; /* aka 20,000 ints/sec */
3887 new_itr
= 980; /* aka 4,000 ints/sec */
3894 q_vector
->rx_ring
->total_bytes
= 0;
3895 q_vector
->rx_ring
->total_packets
= 0;
3896 q_vector
->tx_ring
->total_bytes
= 0;
3897 q_vector
->tx_ring
->total_packets
= 0;
3899 if (new_itr
!= q_vector
->itr_val
) {
3900 /* this attempts to bias the interrupt rate towards Bulk
3901 * by adding intermediate steps when interrupt rate is
3903 new_itr
= new_itr
> q_vector
->itr_val
?
3904 max((new_itr
* q_vector
->itr_val
) /
3905 (new_itr
+ (q_vector
->itr_val
>> 2)),
3908 /* Don't write the value here; it resets the adapter's
3909 * internal timer, and causes us to delay far longer than
3910 * we should between interrupts. Instead, we write the ITR
3911 * value at the beginning of the next interrupt so the timing
3912 * ends up being correct.
3914 q_vector
->itr_val
= new_itr
;
3915 q_vector
->set_itr
= 1;
3919 #define IGB_TX_FLAGS_CSUM 0x00000001
3920 #define IGB_TX_FLAGS_VLAN 0x00000002
3921 #define IGB_TX_FLAGS_TSO 0x00000004
3922 #define IGB_TX_FLAGS_IPV4 0x00000008
3923 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3924 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3925 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3927 static inline int igb_tso_adv(struct igb_ring
*tx_ring
,
3928 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
3930 struct e1000_adv_tx_context_desc
*context_desc
;
3933 struct igb_buffer
*buffer_info
;
3934 u32 info
= 0, tu_cmd
= 0;
3938 if (skb_header_cloned(skb
)) {
3939 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3944 l4len
= tcp_hdrlen(skb
);
3947 if (skb
->protocol
== htons(ETH_P_IP
)) {
3948 struct iphdr
*iph
= ip_hdr(skb
);
3951 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3955 } else if (skb_is_gso_v6(skb
)) {
3956 ipv6_hdr(skb
)->payload_len
= 0;
3957 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3958 &ipv6_hdr(skb
)->daddr
,
3962 i
= tx_ring
->next_to_use
;
3964 buffer_info
= &tx_ring
->buffer_info
[i
];
3965 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
3966 /* VLAN MACLEN IPLEN */
3967 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
3968 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
3969 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
3970 *hdr_len
+= skb_network_offset(skb
);
3971 info
|= skb_network_header_len(skb
);
3972 *hdr_len
+= skb_network_header_len(skb
);
3973 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
3975 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3976 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
3978 if (skb
->protocol
== htons(ETH_P_IP
))
3979 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
3980 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
3982 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
3985 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
3986 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
3988 /* For 82575, context index must be unique per ring. */
3989 if (tx_ring
->flags
& IGB_RING_FLAG_TX_CTX_IDX
)
3990 mss_l4len_idx
|= tx_ring
->reg_idx
<< 4;
3992 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
3993 context_desc
->seqnum_seed
= 0;
3995 buffer_info
->time_stamp
= jiffies
;
3996 buffer_info
->next_to_watch
= i
;
3997 buffer_info
->dma
= 0;
3999 if (i
== tx_ring
->count
)
4002 tx_ring
->next_to_use
= i
;
4007 static inline bool igb_tx_csum_adv(struct igb_ring
*tx_ring
,
4008 struct sk_buff
*skb
, u32 tx_flags
)
4010 struct e1000_adv_tx_context_desc
*context_desc
;
4011 struct device
*dev
= tx_ring
->dev
;
4012 struct igb_buffer
*buffer_info
;
4013 u32 info
= 0, tu_cmd
= 0;
4016 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
4017 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
4018 i
= tx_ring
->next_to_use
;
4019 buffer_info
= &tx_ring
->buffer_info
[i
];
4020 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
4022 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
4023 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
4025 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
4026 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
4027 info
|= skb_network_header_len(skb
);
4029 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
4031 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
4033 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4036 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) {
4037 const struct vlan_ethhdr
*vhdr
=
4038 (const struct vlan_ethhdr
*)skb
->data
;
4040 protocol
= vhdr
->h_vlan_encapsulated_proto
;
4042 protocol
= skb
->protocol
;
4046 case cpu_to_be16(ETH_P_IP
):
4047 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
4048 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4049 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
4050 else if (ip_hdr(skb
)->protocol
== IPPROTO_SCTP
)
4051 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
4053 case cpu_to_be16(ETH_P_IPV6
):
4054 /* XXX what about other V6 headers?? */
4055 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4056 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
4057 else if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_SCTP
)
4058 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
4061 if (unlikely(net_ratelimit()))
4063 "partial checksum but proto=%x!\n",
4069 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
4070 context_desc
->seqnum_seed
= 0;
4071 if (tx_ring
->flags
& IGB_RING_FLAG_TX_CTX_IDX
)
4072 context_desc
->mss_l4len_idx
=
4073 cpu_to_le32(tx_ring
->reg_idx
<< 4);
4075 buffer_info
->time_stamp
= jiffies
;
4076 buffer_info
->next_to_watch
= i
;
4077 buffer_info
->dma
= 0;
4080 if (i
== tx_ring
->count
)
4082 tx_ring
->next_to_use
= i
;
4089 #define IGB_MAX_TXD_PWR 16
4090 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4092 static inline int igb_tx_map_adv(struct igb_ring
*tx_ring
, struct sk_buff
*skb
,
4095 struct igb_buffer
*buffer_info
;
4096 struct device
*dev
= tx_ring
->dev
;
4097 unsigned int hlen
= skb_headlen(skb
);
4098 unsigned int count
= 0, i
;
4100 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4102 i
= tx_ring
->next_to_use
;
4104 buffer_info
= &tx_ring
->buffer_info
[i
];
4105 BUG_ON(hlen
>= IGB_MAX_DATA_PER_TXD
);
4106 buffer_info
->length
= hlen
;
4107 /* set time_stamp *before* dma to help avoid a possible race */
4108 buffer_info
->time_stamp
= jiffies
;
4109 buffer_info
->next_to_watch
= i
;
4110 buffer_info
->dma
= dma_map_single(dev
, skb
->data
, hlen
,
4112 if (dma_mapping_error(dev
, buffer_info
->dma
))
4115 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
4116 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[f
];
4117 unsigned int len
= frag
->size
;
4121 if (i
== tx_ring
->count
)
4124 buffer_info
= &tx_ring
->buffer_info
[i
];
4125 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
4126 buffer_info
->length
= len
;
4127 buffer_info
->time_stamp
= jiffies
;
4128 buffer_info
->next_to_watch
= i
;
4129 buffer_info
->mapped_as_page
= true;
4130 buffer_info
->dma
= dma_map_page(dev
,
4135 if (dma_mapping_error(dev
, buffer_info
->dma
))
4140 tx_ring
->buffer_info
[i
].skb
= skb
;
4141 tx_ring
->buffer_info
[i
].tx_flags
= skb_shinfo(skb
)->tx_flags
;
4142 /* multiply data chunks by size of headers */
4143 tx_ring
->buffer_info
[i
].bytecount
= ((gso_segs
- 1) * hlen
) + skb
->len
;
4144 tx_ring
->buffer_info
[i
].gso_segs
= gso_segs
;
4145 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4150 dev_err(dev
, "TX DMA map failed\n");
4152 /* clear timestamp and dma mappings for failed buffer_info mapping */
4153 buffer_info
->dma
= 0;
4154 buffer_info
->time_stamp
= 0;
4155 buffer_info
->length
= 0;
4156 buffer_info
->next_to_watch
= 0;
4157 buffer_info
->mapped_as_page
= false;
4159 /* clear timestamp and dma mappings for remaining portion of packet */
4164 buffer_info
= &tx_ring
->buffer_info
[i
];
4165 igb_unmap_and_free_tx_resource(tx_ring
, buffer_info
);
4171 static inline void igb_tx_queue_adv(struct igb_ring
*tx_ring
,
4172 u32 tx_flags
, int count
, u32 paylen
,
4175 union e1000_adv_tx_desc
*tx_desc
;
4176 struct igb_buffer
*buffer_info
;
4177 u32 olinfo_status
= 0, cmd_type_len
;
4178 unsigned int i
= tx_ring
->next_to_use
;
4180 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
4181 E1000_ADVTXD_DCMD_DEXT
);
4183 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
4184 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
4186 if (tx_flags
& IGB_TX_FLAGS_TSTAMP
)
4187 cmd_type_len
|= E1000_ADVTXD_MAC_TSTAMP
;
4189 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
4190 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
4192 /* insert tcp checksum */
4193 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
4195 /* insert ip checksum */
4196 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
4197 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
4199 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
4200 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
4203 if ((tx_ring
->flags
& IGB_RING_FLAG_TX_CTX_IDX
) &&
4204 (tx_flags
& (IGB_TX_FLAGS_CSUM
|
4206 IGB_TX_FLAGS_VLAN
)))
4207 olinfo_status
|= tx_ring
->reg_idx
<< 4;
4209 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
4212 buffer_info
= &tx_ring
->buffer_info
[i
];
4213 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
4214 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4215 tx_desc
->read
.cmd_type_len
=
4216 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
4217 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
4220 if (i
== tx_ring
->count
)
4222 } while (count
> 0);
4224 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(IGB_ADVTXD_DCMD
);
4225 /* Force memory writes to complete before letting h/w
4226 * know there are new descriptors to fetch. (Only
4227 * applicable for weak-ordered memory model archs,
4228 * such as IA-64). */
4231 tx_ring
->next_to_use
= i
;
4232 writel(i
, tx_ring
->tail
);
4233 /* we need this if more than one processor can write to our tail
4234 * at a time, it syncronizes IO on IA64/Altix systems */
4238 static int __igb_maybe_stop_tx(struct igb_ring
*tx_ring
, int size
)
4240 struct net_device
*netdev
= tx_ring
->netdev
;
4242 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
4244 /* Herbert's original patch had:
4245 * smp_mb__after_netif_stop_queue();
4246 * but since that doesn't exist yet, just open code it. */
4249 /* We need to check again in a case another CPU has just
4250 * made room available. */
4251 if (igb_desc_unused(tx_ring
) < size
)
4255 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
4257 u64_stats_update_begin(&tx_ring
->tx_syncp2
);
4258 tx_ring
->tx_stats
.restart_queue2
++;
4259 u64_stats_update_end(&tx_ring
->tx_syncp2
);
4264 static inline int igb_maybe_stop_tx(struct igb_ring
*tx_ring
, int size
)
4266 if (igb_desc_unused(tx_ring
) >= size
)
4268 return __igb_maybe_stop_tx(tx_ring
, size
);
4271 netdev_tx_t
igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
4272 struct igb_ring
*tx_ring
)
4279 /* need: 1 descriptor per page,
4280 * + 2 desc gap to keep tail from touching head,
4281 * + 1 desc for skb->data,
4282 * + 1 desc for context descriptor,
4283 * otherwise try next time */
4284 if (igb_maybe_stop_tx(tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
4285 /* this is a hard error */
4286 return NETDEV_TX_BUSY
;
4289 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)) {
4290 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
4291 tx_flags
|= IGB_TX_FLAGS_TSTAMP
;
4294 if (vlan_tx_tag_present(skb
)) {
4295 tx_flags
|= IGB_TX_FLAGS_VLAN
;
4296 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
4299 if (skb
->protocol
== htons(ETH_P_IP
))
4300 tx_flags
|= IGB_TX_FLAGS_IPV4
;
4302 first
= tx_ring
->next_to_use
;
4303 if (skb_is_gso(skb
)) {
4304 tso
= igb_tso_adv(tx_ring
, skb
, tx_flags
, &hdr_len
);
4307 dev_kfree_skb_any(skb
);
4308 return NETDEV_TX_OK
;
4313 tx_flags
|= IGB_TX_FLAGS_TSO
;
4314 else if (igb_tx_csum_adv(tx_ring
, skb
, tx_flags
) &&
4315 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4316 tx_flags
|= IGB_TX_FLAGS_CSUM
;
4319 * count reflects descriptors mapped, if 0 or less then mapping error
4320 * has occurred and we need to rewind the descriptor queue
4322 count
= igb_tx_map_adv(tx_ring
, skb
, first
);
4324 dev_kfree_skb_any(skb
);
4325 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4326 tx_ring
->next_to_use
= first
;
4327 return NETDEV_TX_OK
;
4330 igb_tx_queue_adv(tx_ring
, tx_flags
, count
, skb
->len
, hdr_len
);
4332 /* Make sure there is space in the ring for the next send. */
4333 igb_maybe_stop_tx(tx_ring
, MAX_SKB_FRAGS
+ 4);
4335 return NETDEV_TX_OK
;
4338 static netdev_tx_t
igb_xmit_frame_adv(struct sk_buff
*skb
,
4339 struct net_device
*netdev
)
4341 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4342 struct igb_ring
*tx_ring
;
4345 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
4346 dev_kfree_skb_any(skb
);
4347 return NETDEV_TX_OK
;
4350 if (skb
->len
<= 0) {
4351 dev_kfree_skb_any(skb
);
4352 return NETDEV_TX_OK
;
4355 r_idx
= skb
->queue_mapping
& (IGB_ABS_MAX_TX_QUEUES
- 1);
4356 tx_ring
= adapter
->multi_tx_table
[r_idx
];
4358 /* This goes back to the question of how to logically map a tx queue
4359 * to a flow. Right now, performance is impacted slightly negatively
4360 * if using multiple tx queues. If the stack breaks away from a
4361 * single qdisc implementation, we can look at this again. */
4362 return igb_xmit_frame_ring_adv(skb
, tx_ring
);
4366 * igb_tx_timeout - Respond to a Tx Hang
4367 * @netdev: network interface device structure
4369 static void igb_tx_timeout(struct net_device
*netdev
)
4371 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4372 struct e1000_hw
*hw
= &adapter
->hw
;
4374 /* Do the reset outside of interrupt context */
4375 adapter
->tx_timeout_count
++;
4377 if (hw
->mac
.type
== e1000_82580
)
4378 hw
->dev_spec
._82575
.global_device_reset
= true;
4380 schedule_work(&adapter
->reset_task
);
4382 (adapter
->eims_enable_mask
& ~adapter
->eims_other
));
4385 static void igb_reset_task(struct work_struct
*work
)
4387 struct igb_adapter
*adapter
;
4388 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
4391 netdev_err(adapter
->netdev
, "Reset adapter\n");
4392 igb_reinit_locked(adapter
);
4396 * igb_get_stats64 - Get System Network Statistics
4397 * @netdev: network interface device structure
4398 * @stats: rtnl_link_stats64 pointer
4401 static struct rtnl_link_stats64
*igb_get_stats64(struct net_device
*netdev
,
4402 struct rtnl_link_stats64
*stats
)
4404 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4406 spin_lock(&adapter
->stats64_lock
);
4407 igb_update_stats(adapter
, &adapter
->stats64
);
4408 memcpy(stats
, &adapter
->stats64
, sizeof(*stats
));
4409 spin_unlock(&adapter
->stats64_lock
);
4415 * igb_change_mtu - Change the Maximum Transfer Unit
4416 * @netdev: network interface device structure
4417 * @new_mtu: new value for maximum frame size
4419 * Returns 0 on success, negative on failure
4421 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
4423 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4424 struct pci_dev
*pdev
= adapter
->pdev
;
4425 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4426 u32 rx_buffer_len
, i
;
4428 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
4429 dev_err(&pdev
->dev
, "Invalid MTU setting\n");
4433 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
4434 dev_err(&pdev
->dev
, "MTU > 9216 not supported.\n");
4438 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
4441 /* igb_down has a dependency on max_frame_size */
4442 adapter
->max_frame_size
= max_frame
;
4444 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4445 * means we reserve 2 more, this pushes us to allocate from the next
4447 * i.e. RXBUFFER_2048 --> size-4096 slab
4450 if (adapter
->hw
.mac
.type
== e1000_82580
)
4451 max_frame
+= IGB_TS_HDR_LEN
;
4453 if (max_frame
<= IGB_RXBUFFER_1024
)
4454 rx_buffer_len
= IGB_RXBUFFER_1024
;
4455 else if (max_frame
<= MAXIMUM_ETHERNET_VLAN_SIZE
)
4456 rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
4458 rx_buffer_len
= IGB_RXBUFFER_128
;
4460 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
+ IGB_TS_HDR_LEN
) ||
4461 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
+ IGB_TS_HDR_LEN
))
4462 rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
+ IGB_TS_HDR_LEN
;
4464 if ((adapter
->hw
.mac
.type
== e1000_82580
) &&
4465 (rx_buffer_len
== IGB_RXBUFFER_128
))
4466 rx_buffer_len
+= IGB_RXBUFFER_64
;
4468 if (netif_running(netdev
))
4471 dev_info(&pdev
->dev
, "changing MTU from %d to %d\n",
4472 netdev
->mtu
, new_mtu
);
4473 netdev
->mtu
= new_mtu
;
4475 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4476 adapter
->rx_ring
[i
]->rx_buffer_len
= rx_buffer_len
;
4478 if (netif_running(netdev
))
4483 clear_bit(__IGB_RESETTING
, &adapter
->state
);
4489 * igb_update_stats - Update the board statistics counters
4490 * @adapter: board private structure
4493 void igb_update_stats(struct igb_adapter
*adapter
,
4494 struct rtnl_link_stats64
*net_stats
)
4496 struct e1000_hw
*hw
= &adapter
->hw
;
4497 struct pci_dev
*pdev
= adapter
->pdev
;
4503 u64 _bytes
, _packets
;
4505 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4508 * Prevent stats update while adapter is being reset, or if the pci
4509 * connection is down.
4511 if (adapter
->link_speed
== 0)
4513 if (pci_channel_offline(pdev
))
4518 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
4519 u32 rqdpc_tmp
= rd32(E1000_RQDPC(i
)) & 0x0FFF;
4520 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
4522 ring
->rx_stats
.drops
+= rqdpc_tmp
;
4523 net_stats
->rx_fifo_errors
+= rqdpc_tmp
;
4526 start
= u64_stats_fetch_begin_bh(&ring
->rx_syncp
);
4527 _bytes
= ring
->rx_stats
.bytes
;
4528 _packets
= ring
->rx_stats
.packets
;
4529 } while (u64_stats_fetch_retry_bh(&ring
->rx_syncp
, start
));
4531 packets
+= _packets
;
4534 net_stats
->rx_bytes
= bytes
;
4535 net_stats
->rx_packets
= packets
;
4539 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
4540 struct igb_ring
*ring
= adapter
->tx_ring
[i
];
4542 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp
);
4543 _bytes
= ring
->tx_stats
.bytes
;
4544 _packets
= ring
->tx_stats
.packets
;
4545 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp
, start
));
4547 packets
+= _packets
;
4549 net_stats
->tx_bytes
= bytes
;
4550 net_stats
->tx_packets
= packets
;
4552 /* read stats registers */
4553 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
4554 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
4555 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
4556 rd32(E1000_GORCH
); /* clear GORCL */
4557 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
4558 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
4559 adapter
->stats
.roc
+= rd32(E1000_ROC
);
4561 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
4562 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
4563 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
4564 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
4565 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
4566 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
4567 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
4568 adapter
->stats
.sec
+= rd32(E1000_SEC
);
4570 mpc
= rd32(E1000_MPC
);
4571 adapter
->stats
.mpc
+= mpc
;
4572 net_stats
->rx_fifo_errors
+= mpc
;
4573 adapter
->stats
.scc
+= rd32(E1000_SCC
);
4574 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
4575 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
4576 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
4577 adapter
->stats
.dc
+= rd32(E1000_DC
);
4578 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
4579 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
4580 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
4581 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
4582 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
4583 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
4584 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
4585 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
4586 rd32(E1000_GOTCH
); /* clear GOTCL */
4587 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
4588 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
4589 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
4590 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
4591 adapter
->stats
.tor
+= rd32(E1000_TORH
);
4592 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
4593 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
4595 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
4596 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
4597 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
4598 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
4599 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
4600 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
4602 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
4603 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
4605 adapter
->stats
.tpt
+= rd32(E1000_TPT
);
4606 adapter
->stats
.colc
+= rd32(E1000_COLC
);
4608 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
4609 /* read internal phy specific stats */
4610 reg
= rd32(E1000_CTRL_EXT
);
4611 if (!(reg
& E1000_CTRL_EXT_LINK_MODE_MASK
)) {
4612 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
4613 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
4616 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
4617 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
4619 adapter
->stats
.iac
+= rd32(E1000_IAC
);
4620 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
4621 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
4622 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
4623 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
4624 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
4625 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
4626 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
4627 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
4629 /* Fill out the OS statistics structure */
4630 net_stats
->multicast
= adapter
->stats
.mprc
;
4631 net_stats
->collisions
= adapter
->stats
.colc
;
4635 /* RLEC on some newer hardware can be incorrect so build
4636 * our own version based on RUC and ROC */
4637 net_stats
->rx_errors
= adapter
->stats
.rxerrc
+
4638 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4639 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4640 adapter
->stats
.cexterr
;
4641 net_stats
->rx_length_errors
= adapter
->stats
.ruc
+
4643 net_stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
4644 net_stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
4645 net_stats
->rx_missed_errors
= adapter
->stats
.mpc
;
4648 net_stats
->tx_errors
= adapter
->stats
.ecol
+
4649 adapter
->stats
.latecol
;
4650 net_stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
4651 net_stats
->tx_window_errors
= adapter
->stats
.latecol
;
4652 net_stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
4654 /* Tx Dropped needs to be maintained elsewhere */
4657 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
4658 if ((adapter
->link_speed
== SPEED_1000
) &&
4659 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
4660 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
4661 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
4665 /* Management Stats */
4666 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
4667 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
4668 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
4671 reg
= rd32(E1000_MANC
);
4672 if (reg
& E1000_MANC_EN_BMC2OS
) {
4673 adapter
->stats
.o2bgptc
+= rd32(E1000_O2BGPTC
);
4674 adapter
->stats
.o2bspc
+= rd32(E1000_O2BSPC
);
4675 adapter
->stats
.b2ospc
+= rd32(E1000_B2OSPC
);
4676 adapter
->stats
.b2ogprc
+= rd32(E1000_B2OGPRC
);
4680 static irqreturn_t
igb_msix_other(int irq
, void *data
)
4682 struct igb_adapter
*adapter
= data
;
4683 struct e1000_hw
*hw
= &adapter
->hw
;
4684 u32 icr
= rd32(E1000_ICR
);
4685 /* reading ICR causes bit 31 of EICR to be cleared */
4687 if (icr
& E1000_ICR_DRSTA
)
4688 schedule_work(&adapter
->reset_task
);
4690 if (icr
& E1000_ICR_DOUTSYNC
) {
4691 /* HW is reporting DMA is out of sync */
4692 adapter
->stats
.doosync
++;
4693 /* The DMA Out of Sync is also indication of a spoof event
4694 * in IOV mode. Check the Wrong VM Behavior register to
4695 * see if it is really a spoof event. */
4696 igb_check_wvbr(adapter
);
4699 /* Check for a mailbox event */
4700 if (icr
& E1000_ICR_VMMB
)
4701 igb_msg_task(adapter
);
4703 if (icr
& E1000_ICR_LSC
) {
4704 hw
->mac
.get_link_status
= 1;
4705 /* guard against interrupt when we're going down */
4706 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4707 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4710 if (adapter
->vfs_allocated_count
)
4711 wr32(E1000_IMS
, E1000_IMS_LSC
|
4713 E1000_IMS_DOUTSYNC
);
4715 wr32(E1000_IMS
, E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
);
4716 wr32(E1000_EIMS
, adapter
->eims_other
);
4721 static void igb_write_itr(struct igb_q_vector
*q_vector
)
4723 struct igb_adapter
*adapter
= q_vector
->adapter
;
4724 u32 itr_val
= q_vector
->itr_val
& 0x7FFC;
4726 if (!q_vector
->set_itr
)
4732 if (adapter
->hw
.mac
.type
== e1000_82575
)
4733 itr_val
|= itr_val
<< 16;
4735 itr_val
|= 0x8000000;
4737 writel(itr_val
, q_vector
->itr_register
);
4738 q_vector
->set_itr
= 0;
4741 static irqreturn_t
igb_msix_ring(int irq
, void *data
)
4743 struct igb_q_vector
*q_vector
= data
;
4745 /* Write the ITR value calculated from the previous interrupt. */
4746 igb_write_itr(q_vector
);
4748 napi_schedule(&q_vector
->napi
);
4753 #ifdef CONFIG_IGB_DCA
4754 static void igb_update_dca(struct igb_q_vector
*q_vector
)
4756 struct igb_adapter
*adapter
= q_vector
->adapter
;
4757 struct e1000_hw
*hw
= &adapter
->hw
;
4758 int cpu
= get_cpu();
4760 if (q_vector
->cpu
== cpu
)
4763 if (q_vector
->tx_ring
) {
4764 int q
= q_vector
->tx_ring
->reg_idx
;
4765 u32 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
4766 if (hw
->mac
.type
== e1000_82575
) {
4767 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
4768 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
4770 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
4771 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
4772 E1000_DCA_TXCTRL_CPUID_SHIFT
;
4774 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
4775 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
4777 if (q_vector
->rx_ring
) {
4778 int q
= q_vector
->rx_ring
->reg_idx
;
4779 u32 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
4780 if (hw
->mac
.type
== e1000_82575
) {
4781 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
4782 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
4784 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
4785 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
4786 E1000_DCA_RXCTRL_CPUID_SHIFT
;
4788 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
4789 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
4790 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
4791 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
4793 q_vector
->cpu
= cpu
;
4798 static void igb_setup_dca(struct igb_adapter
*adapter
)
4800 struct e1000_hw
*hw
= &adapter
->hw
;
4803 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
4806 /* Always use CB2 mode, difference is masked in the CB driver. */
4807 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
4809 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
4810 adapter
->q_vector
[i
]->cpu
= -1;
4811 igb_update_dca(adapter
->q_vector
[i
]);
4815 static int __igb_notify_dca(struct device
*dev
, void *data
)
4817 struct net_device
*netdev
= dev_get_drvdata(dev
);
4818 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4819 struct pci_dev
*pdev
= adapter
->pdev
;
4820 struct e1000_hw
*hw
= &adapter
->hw
;
4821 unsigned long event
= *(unsigned long *)data
;
4824 case DCA_PROVIDER_ADD
:
4825 /* if already enabled, don't do it again */
4826 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4828 if (dca_add_requester(dev
) == 0) {
4829 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
4830 dev_info(&pdev
->dev
, "DCA enabled\n");
4831 igb_setup_dca(adapter
);
4834 /* Fall Through since DCA is disabled. */
4835 case DCA_PROVIDER_REMOVE
:
4836 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
4837 /* without this a class_device is left
4838 * hanging around in the sysfs model */
4839 dca_remove_requester(dev
);
4840 dev_info(&pdev
->dev
, "DCA disabled\n");
4841 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
4842 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
4850 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
4855 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
4858 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
4860 #endif /* CONFIG_IGB_DCA */
4862 static void igb_ping_all_vfs(struct igb_adapter
*adapter
)
4864 struct e1000_hw
*hw
= &adapter
->hw
;
4868 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++) {
4869 ping
= E1000_PF_CONTROL_MSG
;
4870 if (adapter
->vf_data
[i
].flags
& IGB_VF_FLAG_CTS
)
4871 ping
|= E1000_VT_MSGTYPE_CTS
;
4872 igb_write_mbx(hw
, &ping
, 1, i
);
4876 static int igb_set_vf_promisc(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
4878 struct e1000_hw
*hw
= &adapter
->hw
;
4879 u32 vmolr
= rd32(E1000_VMOLR(vf
));
4880 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
4882 vf_data
->flags
&= ~(IGB_VF_FLAG_UNI_PROMISC
|
4883 IGB_VF_FLAG_MULTI_PROMISC
);
4884 vmolr
&= ~(E1000_VMOLR_ROPE
| E1000_VMOLR_ROMPE
| E1000_VMOLR_MPME
);
4886 if (*msgbuf
& E1000_VF_SET_PROMISC_MULTICAST
) {
4887 vmolr
|= E1000_VMOLR_MPME
;
4888 vf_data
->flags
|= IGB_VF_FLAG_MULTI_PROMISC
;
4889 *msgbuf
&= ~E1000_VF_SET_PROMISC_MULTICAST
;
4892 * if we have hashes and we are clearing a multicast promisc
4893 * flag we need to write the hashes to the MTA as this step
4894 * was previously skipped
4896 if (vf_data
->num_vf_mc_hashes
> 30) {
4897 vmolr
|= E1000_VMOLR_MPME
;
4898 } else if (vf_data
->num_vf_mc_hashes
) {
4900 vmolr
|= E1000_VMOLR_ROMPE
;
4901 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
4902 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
4906 wr32(E1000_VMOLR(vf
), vmolr
);
4908 /* there are flags left unprocessed, likely not supported */
4909 if (*msgbuf
& E1000_VT_MSGINFO_MASK
)
4916 static int igb_set_vf_multicasts(struct igb_adapter
*adapter
,
4917 u32
*msgbuf
, u32 vf
)
4919 int n
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
4920 u16
*hash_list
= (u16
*)&msgbuf
[1];
4921 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
4924 /* salt away the number of multicast addresses assigned
4925 * to this VF for later use to restore when the PF multi cast
4928 vf_data
->num_vf_mc_hashes
= n
;
4930 /* only up to 30 hash values supported */
4934 /* store the hashes for later use */
4935 for (i
= 0; i
< n
; i
++)
4936 vf_data
->vf_mc_hashes
[i
] = hash_list
[i
];
4938 /* Flush and reset the mta with the new values */
4939 igb_set_rx_mode(adapter
->netdev
);
4944 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
)
4946 struct e1000_hw
*hw
= &adapter
->hw
;
4947 struct vf_data_storage
*vf_data
;
4950 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
4951 u32 vmolr
= rd32(E1000_VMOLR(i
));
4952 vmolr
&= ~(E1000_VMOLR_ROMPE
| E1000_VMOLR_MPME
);
4954 vf_data
= &adapter
->vf_data
[i
];
4956 if ((vf_data
->num_vf_mc_hashes
> 30) ||
4957 (vf_data
->flags
& IGB_VF_FLAG_MULTI_PROMISC
)) {
4958 vmolr
|= E1000_VMOLR_MPME
;
4959 } else if (vf_data
->num_vf_mc_hashes
) {
4960 vmolr
|= E1000_VMOLR_ROMPE
;
4961 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
4962 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
4964 wr32(E1000_VMOLR(i
), vmolr
);
4968 static void igb_clear_vf_vfta(struct igb_adapter
*adapter
, u32 vf
)
4970 struct e1000_hw
*hw
= &adapter
->hw
;
4971 u32 pool_mask
, reg
, vid
;
4974 pool_mask
= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
4976 /* Find the vlan filter for this id */
4977 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
4978 reg
= rd32(E1000_VLVF(i
));
4980 /* remove the vf from the pool */
4983 /* if pool is empty then remove entry from vfta */
4984 if (!(reg
& E1000_VLVF_POOLSEL_MASK
) &&
4985 (reg
& E1000_VLVF_VLANID_ENABLE
)) {
4987 vid
= reg
& E1000_VLVF_VLANID_MASK
;
4988 igb_vfta_set(hw
, vid
, false);
4991 wr32(E1000_VLVF(i
), reg
);
4994 adapter
->vf_data
[vf
].vlans_enabled
= 0;
4997 static s32
igb_vlvf_set(struct igb_adapter
*adapter
, u32 vid
, bool add
, u32 vf
)
4999 struct e1000_hw
*hw
= &adapter
->hw
;
5002 /* The vlvf table only exists on 82576 hardware and newer */
5003 if (hw
->mac
.type
< e1000_82576
)
5006 /* we only need to do this if VMDq is enabled */
5007 if (!adapter
->vfs_allocated_count
)
5010 /* Find the vlan filter for this id */
5011 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
5012 reg
= rd32(E1000_VLVF(i
));
5013 if ((reg
& E1000_VLVF_VLANID_ENABLE
) &&
5014 vid
== (reg
& E1000_VLVF_VLANID_MASK
))
5019 if (i
== E1000_VLVF_ARRAY_SIZE
) {
5020 /* Did not find a matching VLAN ID entry that was
5021 * enabled. Search for a free filter entry, i.e.
5022 * one without the enable bit set
5024 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
5025 reg
= rd32(E1000_VLVF(i
));
5026 if (!(reg
& E1000_VLVF_VLANID_ENABLE
))
5030 if (i
< E1000_VLVF_ARRAY_SIZE
) {
5031 /* Found an enabled/available entry */
5032 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
5034 /* if !enabled we need to set this up in vfta */
5035 if (!(reg
& E1000_VLVF_VLANID_ENABLE
)) {
5036 /* add VID to filter table */
5037 igb_vfta_set(hw
, vid
, true);
5038 reg
|= E1000_VLVF_VLANID_ENABLE
;
5040 reg
&= ~E1000_VLVF_VLANID_MASK
;
5042 wr32(E1000_VLVF(i
), reg
);
5044 /* do not modify RLPML for PF devices */
5045 if (vf
>= adapter
->vfs_allocated_count
)
5048 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
5050 reg
= rd32(E1000_VMOLR(vf
));
5051 size
= reg
& E1000_VMOLR_RLPML_MASK
;
5053 reg
&= ~E1000_VMOLR_RLPML_MASK
;
5055 wr32(E1000_VMOLR(vf
), reg
);
5058 adapter
->vf_data
[vf
].vlans_enabled
++;
5062 if (i
< E1000_VLVF_ARRAY_SIZE
) {
5063 /* remove vf from the pool */
5064 reg
&= ~(1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
));
5065 /* if pool is empty then remove entry from vfta */
5066 if (!(reg
& E1000_VLVF_POOLSEL_MASK
)) {
5068 igb_vfta_set(hw
, vid
, false);
5070 wr32(E1000_VLVF(i
), reg
);
5072 /* do not modify RLPML for PF devices */
5073 if (vf
>= adapter
->vfs_allocated_count
)
5076 adapter
->vf_data
[vf
].vlans_enabled
--;
5077 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
5079 reg
= rd32(E1000_VMOLR(vf
));
5080 size
= reg
& E1000_VMOLR_RLPML_MASK
;
5082 reg
&= ~E1000_VMOLR_RLPML_MASK
;
5084 wr32(E1000_VMOLR(vf
), reg
);
5091 static void igb_set_vmvir(struct igb_adapter
*adapter
, u32 vid
, u32 vf
)
5093 struct e1000_hw
*hw
= &adapter
->hw
;
5096 wr32(E1000_VMVIR(vf
), (vid
| E1000_VMVIR_VLANA_DEFAULT
));
5098 wr32(E1000_VMVIR(vf
), 0);
5101 static int igb_ndo_set_vf_vlan(struct net_device
*netdev
,
5102 int vf
, u16 vlan
, u8 qos
)
5105 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5107 if ((vf
>= adapter
->vfs_allocated_count
) || (vlan
> 4095) || (qos
> 7))
5110 err
= igb_vlvf_set(adapter
, vlan
, !!vlan
, vf
);
5113 igb_set_vmvir(adapter
, vlan
| (qos
<< VLAN_PRIO_SHIFT
), vf
);
5114 igb_set_vmolr(adapter
, vf
, !vlan
);
5115 adapter
->vf_data
[vf
].pf_vlan
= vlan
;
5116 adapter
->vf_data
[vf
].pf_qos
= qos
;
5117 dev_info(&adapter
->pdev
->dev
,
5118 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan
, qos
, vf
);
5119 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
5120 dev_warn(&adapter
->pdev
->dev
,
5121 "The VF VLAN has been set,"
5122 " but the PF device is not up.\n");
5123 dev_warn(&adapter
->pdev
->dev
,
5124 "Bring the PF device up before"
5125 " attempting to use the VF device.\n");
5128 igb_vlvf_set(adapter
, adapter
->vf_data
[vf
].pf_vlan
,
5130 igb_set_vmvir(adapter
, vlan
, vf
);
5131 igb_set_vmolr(adapter
, vf
, true);
5132 adapter
->vf_data
[vf
].pf_vlan
= 0;
5133 adapter
->vf_data
[vf
].pf_qos
= 0;
5139 static int igb_set_vf_vlan(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
5141 int add
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
5142 int vid
= (msgbuf
[1] & E1000_VLVF_VLANID_MASK
);
5144 return igb_vlvf_set(adapter
, vid
, add
, vf
);
5147 static inline void igb_vf_reset(struct igb_adapter
*adapter
, u32 vf
)
5149 /* clear flags - except flag that indicates PF has set the MAC */
5150 adapter
->vf_data
[vf
].flags
&= IGB_VF_FLAG_PF_SET_MAC
;
5151 adapter
->vf_data
[vf
].last_nack
= jiffies
;
5153 /* reset offloads to defaults */
5154 igb_set_vmolr(adapter
, vf
, true);
5156 /* reset vlans for device */
5157 igb_clear_vf_vfta(adapter
, vf
);
5158 if (adapter
->vf_data
[vf
].pf_vlan
)
5159 igb_ndo_set_vf_vlan(adapter
->netdev
, vf
,
5160 adapter
->vf_data
[vf
].pf_vlan
,
5161 adapter
->vf_data
[vf
].pf_qos
);
5163 igb_clear_vf_vfta(adapter
, vf
);
5165 /* reset multicast table array for vf */
5166 adapter
->vf_data
[vf
].num_vf_mc_hashes
= 0;
5168 /* Flush and reset the mta with the new values */
5169 igb_set_rx_mode(adapter
->netdev
);
5172 static void igb_vf_reset_event(struct igb_adapter
*adapter
, u32 vf
)
5174 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
5176 /* generate a new mac address as we were hotplug removed/added */
5177 if (!(adapter
->vf_data
[vf
].flags
& IGB_VF_FLAG_PF_SET_MAC
))
5178 random_ether_addr(vf_mac
);
5180 /* process remaining reset events */
5181 igb_vf_reset(adapter
, vf
);
5184 static void igb_vf_reset_msg(struct igb_adapter
*adapter
, u32 vf
)
5186 struct e1000_hw
*hw
= &adapter
->hw
;
5187 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
5188 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
5190 u8
*addr
= (u8
*)(&msgbuf
[1]);
5192 /* process all the same items cleared in a function level reset */
5193 igb_vf_reset(adapter
, vf
);
5195 /* set vf mac address */
5196 igb_rar_set_qsel(adapter
, vf_mac
, rar_entry
, vf
);
5198 /* enable transmit and receive for vf */
5199 reg
= rd32(E1000_VFTE
);
5200 wr32(E1000_VFTE
, reg
| (1 << vf
));
5201 reg
= rd32(E1000_VFRE
);
5202 wr32(E1000_VFRE
, reg
| (1 << vf
));
5204 adapter
->vf_data
[vf
].flags
|= IGB_VF_FLAG_CTS
;
5206 /* reply to reset with ack and vf mac address */
5207 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_ACK
;
5208 memcpy(addr
, vf_mac
, 6);
5209 igb_write_mbx(hw
, msgbuf
, 3, vf
);
5212 static int igb_set_vf_mac_addr(struct igb_adapter
*adapter
, u32
*msg
, int vf
)
5215 * The VF MAC Address is stored in a packed array of bytes
5216 * starting at the second 32 bit word of the msg array
5218 unsigned char *addr
= (char *)&msg
[1];
5221 if (is_valid_ether_addr(addr
))
5222 err
= igb_set_vf_mac(adapter
, vf
, addr
);
5227 static void igb_rcv_ack_from_vf(struct igb_adapter
*adapter
, u32 vf
)
5229 struct e1000_hw
*hw
= &adapter
->hw
;
5230 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
5231 u32 msg
= E1000_VT_MSGTYPE_NACK
;
5233 /* if device isn't clear to send it shouldn't be reading either */
5234 if (!(vf_data
->flags
& IGB_VF_FLAG_CTS
) &&
5235 time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
))) {
5236 igb_write_mbx(hw
, &msg
, 1, vf
);
5237 vf_data
->last_nack
= jiffies
;
5241 static void igb_rcv_msg_from_vf(struct igb_adapter
*adapter
, u32 vf
)
5243 struct pci_dev
*pdev
= adapter
->pdev
;
5244 u32 msgbuf
[E1000_VFMAILBOX_SIZE
];
5245 struct e1000_hw
*hw
= &adapter
->hw
;
5246 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
5249 retval
= igb_read_mbx(hw
, msgbuf
, E1000_VFMAILBOX_SIZE
, vf
);
5252 /* if receive failed revoke VF CTS stats and restart init */
5253 dev_err(&pdev
->dev
, "Error receiving message from VF\n");
5254 vf_data
->flags
&= ~IGB_VF_FLAG_CTS
;
5255 if (!time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
)))
5260 /* this is a message we already processed, do nothing */
5261 if (msgbuf
[0] & (E1000_VT_MSGTYPE_ACK
| E1000_VT_MSGTYPE_NACK
))
5265 * until the vf completes a reset it should not be
5266 * allowed to start any configuration.
5269 if (msgbuf
[0] == E1000_VF_RESET
) {
5270 igb_vf_reset_msg(adapter
, vf
);
5274 if (!(vf_data
->flags
& IGB_VF_FLAG_CTS
)) {
5275 if (!time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
)))
5281 switch ((msgbuf
[0] & 0xFFFF)) {
5282 case E1000_VF_SET_MAC_ADDR
:
5284 if (!(vf_data
->flags
& IGB_VF_FLAG_PF_SET_MAC
))
5285 retval
= igb_set_vf_mac_addr(adapter
, msgbuf
, vf
);
5287 dev_warn(&pdev
->dev
,
5288 "VF %d attempted to override administratively "
5289 "set MAC address\nReload the VF driver to "
5290 "resume operations\n", vf
);
5292 case E1000_VF_SET_PROMISC
:
5293 retval
= igb_set_vf_promisc(adapter
, msgbuf
, vf
);
5295 case E1000_VF_SET_MULTICAST
:
5296 retval
= igb_set_vf_multicasts(adapter
, msgbuf
, vf
);
5298 case E1000_VF_SET_LPE
:
5299 retval
= igb_set_vf_rlpml(adapter
, msgbuf
[1], vf
);
5301 case E1000_VF_SET_VLAN
:
5303 if (vf_data
->pf_vlan
)
5304 dev_warn(&pdev
->dev
,
5305 "VF %d attempted to override administratively "
5306 "set VLAN tag\nReload the VF driver to "
5307 "resume operations\n", vf
);
5309 retval
= igb_set_vf_vlan(adapter
, msgbuf
, vf
);
5312 dev_err(&pdev
->dev
, "Unhandled Msg %08x\n", msgbuf
[0]);
5317 msgbuf
[0] |= E1000_VT_MSGTYPE_CTS
;
5319 /* notify the VF of the results of what it sent us */
5321 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
5323 msgbuf
[0] |= E1000_VT_MSGTYPE_ACK
;
5325 igb_write_mbx(hw
, msgbuf
, 1, vf
);
5328 static void igb_msg_task(struct igb_adapter
*adapter
)
5330 struct e1000_hw
*hw
= &adapter
->hw
;
5333 for (vf
= 0; vf
< adapter
->vfs_allocated_count
; vf
++) {
5334 /* process any reset requests */
5335 if (!igb_check_for_rst(hw
, vf
))
5336 igb_vf_reset_event(adapter
, vf
);
5338 /* process any messages pending */
5339 if (!igb_check_for_msg(hw
, vf
))
5340 igb_rcv_msg_from_vf(adapter
, vf
);
5342 /* process any acks */
5343 if (!igb_check_for_ack(hw
, vf
))
5344 igb_rcv_ack_from_vf(adapter
, vf
);
5349 * igb_set_uta - Set unicast filter table address
5350 * @adapter: board private structure
5352 * The unicast table address is a register array of 32-bit registers.
5353 * The table is meant to be used in a way similar to how the MTA is used
5354 * however due to certain limitations in the hardware it is necessary to
5355 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5356 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5358 static void igb_set_uta(struct igb_adapter
*adapter
)
5360 struct e1000_hw
*hw
= &adapter
->hw
;
5363 /* The UTA table only exists on 82576 hardware and newer */
5364 if (hw
->mac
.type
< e1000_82576
)
5367 /* we only need to do this if VMDq is enabled */
5368 if (!adapter
->vfs_allocated_count
)
5371 for (i
= 0; i
< hw
->mac
.uta_reg_count
; i
++)
5372 array_wr32(E1000_UTA
, i
, ~0);
5376 * igb_intr_msi - Interrupt Handler
5377 * @irq: interrupt number
5378 * @data: pointer to a network interface device structure
5380 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
5382 struct igb_adapter
*adapter
= data
;
5383 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
5384 struct e1000_hw
*hw
= &adapter
->hw
;
5385 /* read ICR disables interrupts using IAM */
5386 u32 icr
= rd32(E1000_ICR
);
5388 igb_write_itr(q_vector
);
5390 if (icr
& E1000_ICR_DRSTA
)
5391 schedule_work(&adapter
->reset_task
);
5393 if (icr
& E1000_ICR_DOUTSYNC
) {
5394 /* HW is reporting DMA is out of sync */
5395 adapter
->stats
.doosync
++;
5398 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
5399 hw
->mac
.get_link_status
= 1;
5400 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5401 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
5404 napi_schedule(&q_vector
->napi
);
5410 * igb_intr - Legacy Interrupt Handler
5411 * @irq: interrupt number
5412 * @data: pointer to a network interface device structure
5414 static irqreturn_t
igb_intr(int irq
, void *data
)
5416 struct igb_adapter
*adapter
= data
;
5417 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
5418 struct e1000_hw
*hw
= &adapter
->hw
;
5419 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5420 * need for the IMC write */
5421 u32 icr
= rd32(E1000_ICR
);
5423 return IRQ_NONE
; /* Not our interrupt */
5425 igb_write_itr(q_vector
);
5427 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5428 * not set, then the adapter didn't send an interrupt */
5429 if (!(icr
& E1000_ICR_INT_ASSERTED
))
5432 if (icr
& E1000_ICR_DRSTA
)
5433 schedule_work(&adapter
->reset_task
);
5435 if (icr
& E1000_ICR_DOUTSYNC
) {
5436 /* HW is reporting DMA is out of sync */
5437 adapter
->stats
.doosync
++;
5440 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
5441 hw
->mac
.get_link_status
= 1;
5442 /* guard against interrupt when we're going down */
5443 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5444 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
5447 napi_schedule(&q_vector
->napi
);
5452 static inline void igb_ring_irq_enable(struct igb_q_vector
*q_vector
)
5454 struct igb_adapter
*adapter
= q_vector
->adapter
;
5455 struct e1000_hw
*hw
= &adapter
->hw
;
5457 if ((q_vector
->rx_ring
&& (adapter
->rx_itr_setting
& 3)) ||
5458 (!q_vector
->rx_ring
&& (adapter
->tx_itr_setting
& 3))) {
5459 if (!adapter
->msix_entries
)
5460 igb_set_itr(adapter
);
5462 igb_update_ring_itr(q_vector
);
5465 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
5466 if (adapter
->msix_entries
)
5467 wr32(E1000_EIMS
, q_vector
->eims_value
);
5469 igb_irq_enable(adapter
);
5474 * igb_poll - NAPI Rx polling callback
5475 * @napi: napi polling structure
5476 * @budget: count of how many packets we should handle
5478 static int igb_poll(struct napi_struct
*napi
, int budget
)
5480 struct igb_q_vector
*q_vector
= container_of(napi
,
5481 struct igb_q_vector
,
5483 int tx_clean_complete
= 1, work_done
= 0;
5485 #ifdef CONFIG_IGB_DCA
5486 if (q_vector
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
5487 igb_update_dca(q_vector
);
5489 if (q_vector
->tx_ring
)
5490 tx_clean_complete
= igb_clean_tx_irq(q_vector
);
5492 if (q_vector
->rx_ring
)
5493 igb_clean_rx_irq_adv(q_vector
, &work_done
, budget
);
5495 if (!tx_clean_complete
)
5498 /* If not enough Rx work done, exit the polling mode */
5499 if (work_done
< budget
) {
5500 napi_complete(napi
);
5501 igb_ring_irq_enable(q_vector
);
5508 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5509 * @adapter: board private structure
5510 * @shhwtstamps: timestamp structure to update
5511 * @regval: unsigned 64bit system time value.
5513 * We need to convert the system time value stored in the RX/TXSTMP registers
5514 * into a hwtstamp which can be used by the upper level timestamping functions
5516 static void igb_systim_to_hwtstamp(struct igb_adapter
*adapter
,
5517 struct skb_shared_hwtstamps
*shhwtstamps
,
5523 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5524 * 24 to match clock shift we setup earlier.
5526 if (adapter
->hw
.mac
.type
== e1000_82580
)
5527 regval
<<= IGB_82580_TSYNC_SHIFT
;
5529 ns
= timecounter_cyc2time(&adapter
->clock
, regval
);
5530 timecompare_update(&adapter
->compare
, ns
);
5531 memset(shhwtstamps
, 0, sizeof(struct skb_shared_hwtstamps
));
5532 shhwtstamps
->hwtstamp
= ns_to_ktime(ns
);
5533 shhwtstamps
->syststamp
= timecompare_transform(&adapter
->compare
, ns
);
5537 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5538 * @q_vector: pointer to q_vector containing needed info
5539 * @buffer: pointer to igb_buffer structure
5541 * If we were asked to do hardware stamping and such a time stamp is
5542 * available, then it must have been for this skb here because we only
5543 * allow only one such packet into the queue.
5545 static void igb_tx_hwtstamp(struct igb_q_vector
*q_vector
, struct igb_buffer
*buffer_info
)
5547 struct igb_adapter
*adapter
= q_vector
->adapter
;
5548 struct e1000_hw
*hw
= &adapter
->hw
;
5549 struct skb_shared_hwtstamps shhwtstamps
;
5552 /* if skb does not support hw timestamp or TX stamp not valid exit */
5553 if (likely(!(buffer_info
->tx_flags
& SKBTX_HW_TSTAMP
)) ||
5554 !(rd32(E1000_TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
))
5557 regval
= rd32(E1000_TXSTMPL
);
5558 regval
|= (u64
)rd32(E1000_TXSTMPH
) << 32;
5560 igb_systim_to_hwtstamp(adapter
, &shhwtstamps
, regval
);
5561 skb_tstamp_tx(buffer_info
->skb
, &shhwtstamps
);
5565 * igb_clean_tx_irq - Reclaim resources after transmit completes
5566 * @q_vector: pointer to q_vector containing needed info
5567 * returns true if ring is completely cleaned
5569 static bool igb_clean_tx_irq(struct igb_q_vector
*q_vector
)
5571 struct igb_adapter
*adapter
= q_vector
->adapter
;
5572 struct igb_ring
*tx_ring
= q_vector
->tx_ring
;
5573 struct net_device
*netdev
= tx_ring
->netdev
;
5574 struct e1000_hw
*hw
= &adapter
->hw
;
5575 struct igb_buffer
*buffer_info
;
5576 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
5577 unsigned int total_bytes
= 0, total_packets
= 0;
5578 unsigned int i
, eop
, count
= 0;
5579 bool cleaned
= false;
5581 i
= tx_ring
->next_to_clean
;
5582 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
5583 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
5585 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
5586 (count
< tx_ring
->count
)) {
5587 rmb(); /* read buffer_info after eop_desc status */
5588 for (cleaned
= false; !cleaned
; count
++) {
5589 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
5590 buffer_info
= &tx_ring
->buffer_info
[i
];
5591 cleaned
= (i
== eop
);
5593 if (buffer_info
->skb
) {
5594 total_bytes
+= buffer_info
->bytecount
;
5595 /* gso_segs is currently only valid for tcp */
5596 total_packets
+= buffer_info
->gso_segs
;
5597 igb_tx_hwtstamp(q_vector
, buffer_info
);
5600 igb_unmap_and_free_tx_resource(tx_ring
, buffer_info
);
5601 tx_desc
->wb
.status
= 0;
5604 if (i
== tx_ring
->count
)
5607 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
5608 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
5611 tx_ring
->next_to_clean
= i
;
5613 if (unlikely(count
&&
5614 netif_carrier_ok(netdev
) &&
5615 igb_desc_unused(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
5616 /* Make sure that anybody stopping the queue after this
5617 * sees the new next_to_clean.
5620 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
5621 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
5622 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
5624 u64_stats_update_begin(&tx_ring
->tx_syncp
);
5625 tx_ring
->tx_stats
.restart_queue
++;
5626 u64_stats_update_end(&tx_ring
->tx_syncp
);
5630 if (tx_ring
->detect_tx_hung
) {
5631 /* Detect a transmit hang in hardware, this serializes the
5632 * check with the clearing of time_stamp and movement of i */
5633 tx_ring
->detect_tx_hung
= false;
5634 if (tx_ring
->buffer_info
[i
].time_stamp
&&
5635 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
5636 (adapter
->tx_timeout_factor
* HZ
)) &&
5637 !(rd32(E1000_STATUS
) & E1000_STATUS_TXOFF
)) {
5639 /* detected Tx unit hang */
5640 dev_err(tx_ring
->dev
,
5641 "Detected Tx Unit Hang\n"
5645 " next_to_use <%x>\n"
5646 " next_to_clean <%x>\n"
5647 "buffer_info[next_to_clean]\n"
5648 " time_stamp <%lx>\n"
5649 " next_to_watch <%x>\n"
5651 " desc.status <%x>\n",
5652 tx_ring
->queue_index
,
5653 readl(tx_ring
->head
),
5654 readl(tx_ring
->tail
),
5655 tx_ring
->next_to_use
,
5656 tx_ring
->next_to_clean
,
5657 tx_ring
->buffer_info
[eop
].time_stamp
,
5660 eop_desc
->wb
.status
);
5661 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
5664 tx_ring
->total_bytes
+= total_bytes
;
5665 tx_ring
->total_packets
+= total_packets
;
5666 u64_stats_update_begin(&tx_ring
->tx_syncp
);
5667 tx_ring
->tx_stats
.bytes
+= total_bytes
;
5668 tx_ring
->tx_stats
.packets
+= total_packets
;
5669 u64_stats_update_end(&tx_ring
->tx_syncp
);
5670 return count
< tx_ring
->count
;
5674 * igb_receive_skb - helper function to handle rx indications
5675 * @q_vector: structure containing interrupt and ring information
5676 * @skb: packet to send up
5677 * @vlan_tag: vlan tag for packet
5679 static void igb_receive_skb(struct igb_q_vector
*q_vector
,
5680 struct sk_buff
*skb
,
5683 struct igb_adapter
*adapter
= q_vector
->adapter
;
5685 if (vlan_tag
&& adapter
->vlgrp
)
5686 vlan_gro_receive(&q_vector
->napi
, adapter
->vlgrp
,
5689 napi_gro_receive(&q_vector
->napi
, skb
);
5692 static inline void igb_rx_checksum_adv(struct igb_ring
*ring
,
5693 u32 status_err
, struct sk_buff
*skb
)
5695 skb_checksum_none_assert(skb
);
5697 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5698 if (!(ring
->flags
& IGB_RING_FLAG_RX_CSUM
) ||
5699 (status_err
& E1000_RXD_STAT_IXSM
))
5702 /* TCP/UDP checksum error bit is set */
5704 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
5706 * work around errata with sctp packets where the TCPE aka
5707 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5708 * packets, (aka let the stack check the crc32c)
5710 if ((skb
->len
== 60) &&
5711 (ring
->flags
& IGB_RING_FLAG_RX_SCTP_CSUM
)) {
5712 u64_stats_update_begin(&ring
->rx_syncp
);
5713 ring
->rx_stats
.csum_err
++;
5714 u64_stats_update_end(&ring
->rx_syncp
);
5716 /* let the stack verify checksum errors */
5719 /* It must be a TCP or UDP packet with a valid checksum */
5720 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
5721 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
5723 dev_dbg(ring
->dev
, "cksum success: bits %08X\n", status_err
);
5726 static void igb_rx_hwtstamp(struct igb_q_vector
*q_vector
, u32 staterr
,
5727 struct sk_buff
*skb
)
5729 struct igb_adapter
*adapter
= q_vector
->adapter
;
5730 struct e1000_hw
*hw
= &adapter
->hw
;
5734 * If this bit is set, then the RX registers contain the time stamp. No
5735 * other packet will be time stamped until we read these registers, so
5736 * read the registers to make them available again. Because only one
5737 * packet can be time stamped at a time, we know that the register
5738 * values must belong to this one here and therefore we don't need to
5739 * compare any of the additional attributes stored for it.
5741 * If nothing went wrong, then it should have a shared tx_flags that we
5742 * can turn into a skb_shared_hwtstamps.
5744 if (staterr
& E1000_RXDADV_STAT_TSIP
) {
5745 u32
*stamp
= (u32
*)skb
->data
;
5746 regval
= le32_to_cpu(*(stamp
+ 2));
5747 regval
|= (u64
)le32_to_cpu(*(stamp
+ 3)) << 32;
5748 skb_pull(skb
, IGB_TS_HDR_LEN
);
5750 if(!(rd32(E1000_TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
5753 regval
= rd32(E1000_RXSTMPL
);
5754 regval
|= (u64
)rd32(E1000_RXSTMPH
) << 32;
5757 igb_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), regval
);
5759 static inline u16
igb_get_hlen(struct igb_ring
*rx_ring
,
5760 union e1000_adv_rx_desc
*rx_desc
)
5762 /* HW will not DMA in data larger than the given buffer, even if it
5763 * parses the (NFS, of course) header to be larger. In that case, it
5764 * fills the header buffer and spills the rest into the page.
5766 u16 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
5767 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
5768 if (hlen
> rx_ring
->rx_buffer_len
)
5769 hlen
= rx_ring
->rx_buffer_len
;
5773 static bool igb_clean_rx_irq_adv(struct igb_q_vector
*q_vector
,
5774 int *work_done
, int budget
)
5776 struct igb_ring
*rx_ring
= q_vector
->rx_ring
;
5777 struct net_device
*netdev
= rx_ring
->netdev
;
5778 struct device
*dev
= rx_ring
->dev
;
5779 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
5780 struct igb_buffer
*buffer_info
, *next_buffer
;
5781 struct sk_buff
*skb
;
5782 bool cleaned
= false;
5783 int cleaned_count
= 0;
5784 int current_node
= numa_node_id();
5785 unsigned int total_bytes
= 0, total_packets
= 0;
5791 i
= rx_ring
->next_to_clean
;
5792 buffer_info
= &rx_ring
->buffer_info
[i
];
5793 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
5794 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
5796 while (staterr
& E1000_RXD_STAT_DD
) {
5797 if (*work_done
>= budget
)
5800 rmb(); /* read descriptor and rx_buffer_info after status DD */
5802 skb
= buffer_info
->skb
;
5803 prefetch(skb
->data
- NET_IP_ALIGN
);
5804 buffer_info
->skb
= NULL
;
5807 if (i
== rx_ring
->count
)
5810 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
5812 next_buffer
= &rx_ring
->buffer_info
[i
];
5814 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
5818 if (buffer_info
->dma
) {
5819 dma_unmap_single(dev
, buffer_info
->dma
,
5820 rx_ring
->rx_buffer_len
,
5822 buffer_info
->dma
= 0;
5823 if (rx_ring
->rx_buffer_len
>= IGB_RXBUFFER_1024
) {
5824 skb_put(skb
, length
);
5827 skb_put(skb
, igb_get_hlen(rx_ring
, rx_desc
));
5831 dma_unmap_page(dev
, buffer_info
->page_dma
,
5832 PAGE_SIZE
/ 2, DMA_FROM_DEVICE
);
5833 buffer_info
->page_dma
= 0;
5835 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
5837 buffer_info
->page_offset
,
5840 if ((page_count(buffer_info
->page
) != 1) ||
5841 (page_to_nid(buffer_info
->page
) != current_node
))
5842 buffer_info
->page
= NULL
;
5844 get_page(buffer_info
->page
);
5847 skb
->data_len
+= length
;
5848 skb
->truesize
+= length
;
5851 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
5852 buffer_info
->skb
= next_buffer
->skb
;
5853 buffer_info
->dma
= next_buffer
->dma
;
5854 next_buffer
->skb
= skb
;
5855 next_buffer
->dma
= 0;
5859 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
5860 dev_kfree_skb_irq(skb
);
5864 if (staterr
& (E1000_RXDADV_STAT_TSIP
| E1000_RXDADV_STAT_TS
))
5865 igb_rx_hwtstamp(q_vector
, staterr
, skb
);
5866 total_bytes
+= skb
->len
;
5869 igb_rx_checksum_adv(rx_ring
, staterr
, skb
);
5871 skb
->protocol
= eth_type_trans(skb
, netdev
);
5872 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
5874 vlan_tag
= ((staterr
& E1000_RXD_STAT_VP
) ?
5875 le16_to_cpu(rx_desc
->wb
.upper
.vlan
) : 0);
5877 igb_receive_skb(q_vector
, skb
, vlan_tag
);
5880 rx_desc
->wb
.upper
.status_error
= 0;
5882 /* return some buffers to hardware, one at a time is too slow */
5883 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
5884 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
5888 /* use prefetched values */
5890 buffer_info
= next_buffer
;
5891 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
5894 rx_ring
->next_to_clean
= i
;
5895 cleaned_count
= igb_desc_unused(rx_ring
);
5898 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
5900 rx_ring
->total_packets
+= total_packets
;
5901 rx_ring
->total_bytes
+= total_bytes
;
5902 u64_stats_update_begin(&rx_ring
->rx_syncp
);
5903 rx_ring
->rx_stats
.packets
+= total_packets
;
5904 rx_ring
->rx_stats
.bytes
+= total_bytes
;
5905 u64_stats_update_end(&rx_ring
->rx_syncp
);
5910 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5911 * @adapter: address of board private structure
5913 void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
, int cleaned_count
)
5915 struct net_device
*netdev
= rx_ring
->netdev
;
5916 union e1000_adv_rx_desc
*rx_desc
;
5917 struct igb_buffer
*buffer_info
;
5918 struct sk_buff
*skb
;
5922 i
= rx_ring
->next_to_use
;
5923 buffer_info
= &rx_ring
->buffer_info
[i
];
5925 bufsz
= rx_ring
->rx_buffer_len
;
5927 while (cleaned_count
--) {
5928 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
5930 if ((bufsz
< IGB_RXBUFFER_1024
) && !buffer_info
->page_dma
) {
5931 if (!buffer_info
->page
) {
5932 buffer_info
->page
= netdev_alloc_page(netdev
);
5933 if (unlikely(!buffer_info
->page
)) {
5934 u64_stats_update_begin(&rx_ring
->rx_syncp
);
5935 rx_ring
->rx_stats
.alloc_failed
++;
5936 u64_stats_update_end(&rx_ring
->rx_syncp
);
5939 buffer_info
->page_offset
= 0;
5941 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
5943 buffer_info
->page_dma
=
5944 dma_map_page(rx_ring
->dev
, buffer_info
->page
,
5945 buffer_info
->page_offset
,
5948 if (dma_mapping_error(rx_ring
->dev
,
5949 buffer_info
->page_dma
)) {
5950 buffer_info
->page_dma
= 0;
5951 u64_stats_update_begin(&rx_ring
->rx_syncp
);
5952 rx_ring
->rx_stats
.alloc_failed
++;
5953 u64_stats_update_end(&rx_ring
->rx_syncp
);
5958 skb
= buffer_info
->skb
;
5960 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
5961 if (unlikely(!skb
)) {
5962 u64_stats_update_begin(&rx_ring
->rx_syncp
);
5963 rx_ring
->rx_stats
.alloc_failed
++;
5964 u64_stats_update_end(&rx_ring
->rx_syncp
);
5968 buffer_info
->skb
= skb
;
5970 if (!buffer_info
->dma
) {
5971 buffer_info
->dma
= dma_map_single(rx_ring
->dev
,
5975 if (dma_mapping_error(rx_ring
->dev
,
5976 buffer_info
->dma
)) {
5977 buffer_info
->dma
= 0;
5978 u64_stats_update_begin(&rx_ring
->rx_syncp
);
5979 rx_ring
->rx_stats
.alloc_failed
++;
5980 u64_stats_update_end(&rx_ring
->rx_syncp
);
5984 /* Refresh the desc even if buffer_addrs didn't change because
5985 * each write-back erases this info. */
5986 if (bufsz
< IGB_RXBUFFER_1024
) {
5987 rx_desc
->read
.pkt_addr
=
5988 cpu_to_le64(buffer_info
->page_dma
);
5989 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
5991 rx_desc
->read
.pkt_addr
= cpu_to_le64(buffer_info
->dma
);
5992 rx_desc
->read
.hdr_addr
= 0;
5996 if (i
== rx_ring
->count
)
5998 buffer_info
= &rx_ring
->buffer_info
[i
];
6002 if (rx_ring
->next_to_use
!= i
) {
6003 rx_ring
->next_to_use
= i
;
6005 i
= (rx_ring
->count
- 1);
6009 /* Force memory writes to complete before letting h/w
6010 * know there are new descriptors to fetch. (Only
6011 * applicable for weak-ordered memory model archs,
6012 * such as IA-64). */
6014 writel(i
, rx_ring
->tail
);
6024 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6026 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6027 struct mii_ioctl_data
*data
= if_mii(ifr
);
6029 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6034 data
->phy_id
= adapter
->hw
.phy
.addr
;
6037 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
6049 * igb_hwtstamp_ioctl - control hardware time stamping
6054 * Outgoing time stamping can be enabled and disabled. Play nice and
6055 * disable it when requested, although it shouldn't case any overhead
6056 * when no packet needs it. At most one packet in the queue may be
6057 * marked for time stamping, otherwise it would be impossible to tell
6058 * for sure to which packet the hardware time stamp belongs.
6060 * Incoming time stamping has to be configured via the hardware
6061 * filters. Not all combinations are supported, in particular event
6062 * type has to be specified. Matching the kind of event packet is
6063 * not supported, with the exception of "all V2 events regardless of
6067 static int igb_hwtstamp_ioctl(struct net_device
*netdev
,
6068 struct ifreq
*ifr
, int cmd
)
6070 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6071 struct e1000_hw
*hw
= &adapter
->hw
;
6072 struct hwtstamp_config config
;
6073 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
6074 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
6075 u32 tsync_rx_cfg
= 0;
6080 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6083 /* reserved for future extensions */
6087 switch (config
.tx_type
) {
6088 case HWTSTAMP_TX_OFF
:
6090 case HWTSTAMP_TX_ON
:
6096 switch (config
.rx_filter
) {
6097 case HWTSTAMP_FILTER_NONE
:
6100 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
6101 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
6102 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
6103 case HWTSTAMP_FILTER_ALL
:
6105 * register TSYNCRXCFG must be set, therefore it is not
6106 * possible to time stamp both Sync and Delay_Req messages
6107 * => fall back to time stamping all packets
6109 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
6110 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
6112 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
6113 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
6114 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE
;
6117 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
6118 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
6119 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE
;
6122 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6123 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6124 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
6125 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE
;
6128 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6130 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6131 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6132 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
6133 tsync_rx_cfg
= E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE
;
6136 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6138 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
6139 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6140 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6141 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
6142 config
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
6149 if (hw
->mac
.type
== e1000_82575
) {
6150 if (tsync_rx_ctl
| tsync_tx_ctl
)
6156 * Per-packet timestamping only works if all packets are
6157 * timestamped, so enable timestamping in all packets as
6158 * long as one rx filter was configured.
6160 if ((hw
->mac
.type
== e1000_82580
) && tsync_rx_ctl
) {
6161 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
6162 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
6165 /* enable/disable TX */
6166 regval
= rd32(E1000_TSYNCTXCTL
);
6167 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
6168 regval
|= tsync_tx_ctl
;
6169 wr32(E1000_TSYNCTXCTL
, regval
);
6171 /* enable/disable RX */
6172 regval
= rd32(E1000_TSYNCRXCTL
);
6173 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
6174 regval
|= tsync_rx_ctl
;
6175 wr32(E1000_TSYNCRXCTL
, regval
);
6177 /* define which PTP packets are time stamped */
6178 wr32(E1000_TSYNCRXCFG
, tsync_rx_cfg
);
6180 /* define ethertype filter for timestamped packets */
6183 (E1000_ETQF_FILTER_ENABLE
| /* enable filter */
6184 E1000_ETQF_1588
| /* enable timestamping */
6185 ETH_P_1588
)); /* 1588 eth protocol type */
6187 wr32(E1000_ETQF(3), 0);
6189 #define PTP_PORT 319
6190 /* L4 Queue Filter[3]: filter by destination port and protocol */
6192 u32 ftqf
= (IPPROTO_UDP
/* UDP */
6193 | E1000_FTQF_VF_BP
/* VF not compared */
6194 | E1000_FTQF_1588_TIME_STAMP
/* Enable Timestamping */
6195 | E1000_FTQF_MASK
); /* mask all inputs */
6196 ftqf
&= ~E1000_FTQF_MASK_PROTO_BP
; /* enable protocol check */
6198 wr32(E1000_IMIR(3), htons(PTP_PORT
));
6199 wr32(E1000_IMIREXT(3),
6200 (E1000_IMIREXT_SIZE_BP
| E1000_IMIREXT_CTRL_BP
));
6201 if (hw
->mac
.type
== e1000_82576
) {
6202 /* enable source port check */
6203 wr32(E1000_SPQF(3), htons(PTP_PORT
));
6204 ftqf
&= ~E1000_FTQF_MASK_SOURCE_PORT_BP
;
6206 wr32(E1000_FTQF(3), ftqf
);
6208 wr32(E1000_FTQF(3), E1000_FTQF_MASK
);
6212 adapter
->hwtstamp_config
= config
;
6214 /* clear TX/RX time stamp registers, just to be sure */
6215 regval
= rd32(E1000_TXSTMPH
);
6216 regval
= rd32(E1000_RXSTMPH
);
6218 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
6228 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6234 return igb_mii_ioctl(netdev
, ifr
, cmd
);
6236 return igb_hwtstamp_ioctl(netdev
, ifr
, cmd
);
6242 s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
6244 struct igb_adapter
*adapter
= hw
->back
;
6247 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
6249 return -E1000_ERR_CONFIG
;
6251 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
6256 s32
igb_write_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
6258 struct igb_adapter
*adapter
= hw
->back
;
6261 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
6263 return -E1000_ERR_CONFIG
;
6265 pci_write_config_word(adapter
->pdev
, cap_offset
+ reg
, *value
);
6270 static void igb_vlan_rx_register(struct net_device
*netdev
,
6271 struct vlan_group
*grp
)
6273 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6274 struct e1000_hw
*hw
= &adapter
->hw
;
6277 igb_irq_disable(adapter
);
6278 adapter
->vlgrp
= grp
;
6281 /* enable VLAN tag insert/strip */
6282 ctrl
= rd32(E1000_CTRL
);
6283 ctrl
|= E1000_CTRL_VME
;
6284 wr32(E1000_CTRL
, ctrl
);
6286 /* Disable CFI check */
6287 rctl
= rd32(E1000_RCTL
);
6288 rctl
&= ~E1000_RCTL_CFIEN
;
6289 wr32(E1000_RCTL
, rctl
);
6291 /* disable VLAN tag insert/strip */
6292 ctrl
= rd32(E1000_CTRL
);
6293 ctrl
&= ~E1000_CTRL_VME
;
6294 wr32(E1000_CTRL
, ctrl
);
6297 igb_rlpml_set(adapter
);
6299 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
6300 igb_irq_enable(adapter
);
6303 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
6305 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6306 struct e1000_hw
*hw
= &adapter
->hw
;
6307 int pf_id
= adapter
->vfs_allocated_count
;
6309 /* attempt to add filter to vlvf array */
6310 igb_vlvf_set(adapter
, vid
, true, pf_id
);
6312 /* add the filter since PF can receive vlans w/o entry in vlvf */
6313 igb_vfta_set(hw
, vid
, true);
6316 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
6318 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6319 struct e1000_hw
*hw
= &adapter
->hw
;
6320 int pf_id
= adapter
->vfs_allocated_count
;
6323 igb_irq_disable(adapter
);
6324 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
6326 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
6327 igb_irq_enable(adapter
);
6329 /* remove vlan from VLVF table array */
6330 err
= igb_vlvf_set(adapter
, vid
, false, pf_id
);
6332 /* if vid was not present in VLVF just remove it from table */
6334 igb_vfta_set(hw
, vid
, false);
6337 static void igb_restore_vlan(struct igb_adapter
*adapter
)
6339 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
6341 if (adapter
->vlgrp
) {
6343 for (vid
= 0; vid
< VLAN_N_VID
; vid
++) {
6344 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
6346 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
6351 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
6353 struct pci_dev
*pdev
= adapter
->pdev
;
6354 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
6358 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6359 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_internal_serdes
) &&
6360 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
6361 dev_err(&pdev
->dev
, "Unsupported Speed/Duplex configuration\n");
6366 case SPEED_10
+ DUPLEX_HALF
:
6367 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
6369 case SPEED_10
+ DUPLEX_FULL
:
6370 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
6372 case SPEED_100
+ DUPLEX_HALF
:
6373 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
6375 case SPEED_100
+ DUPLEX_FULL
:
6376 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
6378 case SPEED_1000
+ DUPLEX_FULL
:
6380 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
6382 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
6384 dev_err(&pdev
->dev
, "Unsupported Speed/Duplex configuration\n");
6390 static int __igb_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
6392 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6393 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6394 struct e1000_hw
*hw
= &adapter
->hw
;
6395 u32 ctrl
, rctl
, status
;
6396 u32 wufc
= adapter
->wol
;
6401 netif_device_detach(netdev
);
6403 if (netif_running(netdev
))
6406 igb_clear_interrupt_scheme(adapter
);
6409 retval
= pci_save_state(pdev
);
6414 status
= rd32(E1000_STATUS
);
6415 if (status
& E1000_STATUS_LU
)
6416 wufc
&= ~E1000_WUFC_LNKC
;
6419 igb_setup_rctl(adapter
);
6420 igb_set_rx_mode(netdev
);
6422 /* turn on all-multi mode if wake on multicast is enabled */
6423 if (wufc
& E1000_WUFC_MC
) {
6424 rctl
= rd32(E1000_RCTL
);
6425 rctl
|= E1000_RCTL_MPE
;
6426 wr32(E1000_RCTL
, rctl
);
6429 ctrl
= rd32(E1000_CTRL
);
6430 /* advertise wake from D3Cold */
6431 #define E1000_CTRL_ADVD3WUC 0x00100000
6432 /* phy power management enable */
6433 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6434 ctrl
|= E1000_CTRL_ADVD3WUC
;
6435 wr32(E1000_CTRL
, ctrl
);
6437 /* Allow time for pending master requests to run */
6438 igb_disable_pcie_master(hw
);
6440 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
6441 wr32(E1000_WUFC
, wufc
);
6444 wr32(E1000_WUFC
, 0);
6447 *enable_wake
= wufc
|| adapter
->en_mng_pt
;
6449 igb_power_down_link(adapter
);
6451 igb_power_up_link(adapter
);
6453 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6454 * would have already happened in close and is redundant. */
6455 igb_release_hw_control(adapter
);
6457 pci_disable_device(pdev
);
6463 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
6468 retval
= __igb_shutdown(pdev
, &wake
);
6473 pci_prepare_to_sleep(pdev
);
6475 pci_wake_from_d3(pdev
, false);
6476 pci_set_power_state(pdev
, PCI_D3hot
);
6482 static int igb_resume(struct pci_dev
*pdev
)
6484 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6485 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6486 struct e1000_hw
*hw
= &adapter
->hw
;
6489 pci_set_power_state(pdev
, PCI_D0
);
6490 pci_restore_state(pdev
);
6491 pci_save_state(pdev
);
6493 err
= pci_enable_device_mem(pdev
);
6496 "igb: Cannot enable PCI device from suspend\n");
6499 pci_set_master(pdev
);
6501 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6502 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6504 if (igb_init_interrupt_scheme(adapter
)) {
6505 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
6511 /* let the f/w know that the h/w is now under the control of the
6513 igb_get_hw_control(adapter
);
6515 wr32(E1000_WUS
, ~0);
6517 if (netif_running(netdev
)) {
6518 err
= igb_open(netdev
);
6523 netif_device_attach(netdev
);
6529 static void igb_shutdown(struct pci_dev
*pdev
)
6533 __igb_shutdown(pdev
, &wake
);
6535 if (system_state
== SYSTEM_POWER_OFF
) {
6536 pci_wake_from_d3(pdev
, wake
);
6537 pci_set_power_state(pdev
, PCI_D3hot
);
6541 #ifdef CONFIG_NET_POLL_CONTROLLER
6543 * Polling 'interrupt' - used by things like netconsole to send skbs
6544 * without having to re-enable interrupts. It's not called while
6545 * the interrupt routine is executing.
6547 static void igb_netpoll(struct net_device
*netdev
)
6549 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6550 struct e1000_hw
*hw
= &adapter
->hw
;
6553 if (!adapter
->msix_entries
) {
6554 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
6555 igb_irq_disable(adapter
);
6556 napi_schedule(&q_vector
->napi
);
6560 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
6561 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
6562 wr32(E1000_EIMC
, q_vector
->eims_value
);
6563 napi_schedule(&q_vector
->napi
);
6566 #endif /* CONFIG_NET_POLL_CONTROLLER */
6569 * igb_io_error_detected - called when PCI error is detected
6570 * @pdev: Pointer to PCI device
6571 * @state: The current pci connection state
6573 * This function is called after a PCI bus error affecting
6574 * this device has been detected.
6576 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
6577 pci_channel_state_t state
)
6579 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6580 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6582 netif_device_detach(netdev
);
6584 if (state
== pci_channel_io_perm_failure
)
6585 return PCI_ERS_RESULT_DISCONNECT
;
6587 if (netif_running(netdev
))
6589 pci_disable_device(pdev
);
6591 /* Request a slot slot reset. */
6592 return PCI_ERS_RESULT_NEED_RESET
;
6596 * igb_io_slot_reset - called after the pci bus has been reset.
6597 * @pdev: Pointer to PCI device
6599 * Restart the card from scratch, as if from a cold-boot. Implementation
6600 * resembles the first-half of the igb_resume routine.
6602 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
6604 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6605 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6606 struct e1000_hw
*hw
= &adapter
->hw
;
6607 pci_ers_result_t result
;
6610 if (pci_enable_device_mem(pdev
)) {
6612 "Cannot re-enable PCI device after reset.\n");
6613 result
= PCI_ERS_RESULT_DISCONNECT
;
6615 pci_set_master(pdev
);
6616 pci_restore_state(pdev
);
6617 pci_save_state(pdev
);
6619 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6620 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6623 wr32(E1000_WUS
, ~0);
6624 result
= PCI_ERS_RESULT_RECOVERED
;
6627 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
6629 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
6630 "failed 0x%0x\n", err
);
6631 /* non-fatal, continue */
6638 * igb_io_resume - called when traffic can start flowing again.
6639 * @pdev: Pointer to PCI device
6641 * This callback is called when the error recovery driver tells us that
6642 * its OK to resume normal operation. Implementation resembles the
6643 * second-half of the igb_resume routine.
6645 static void igb_io_resume(struct pci_dev
*pdev
)
6647 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6648 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6650 if (netif_running(netdev
)) {
6651 if (igb_up(adapter
)) {
6652 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
6657 netif_device_attach(netdev
);
6659 /* let the f/w know that the h/w is now under the control of the
6661 igb_get_hw_control(adapter
);
6664 static void igb_rar_set_qsel(struct igb_adapter
*adapter
, u8
*addr
, u32 index
,
6667 u32 rar_low
, rar_high
;
6668 struct e1000_hw
*hw
= &adapter
->hw
;
6670 /* HW expects these in little endian so we reverse the byte order
6671 * from network order (big endian) to little endian
6673 rar_low
= ((u32
) addr
[0] | ((u32
) addr
[1] << 8) |
6674 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
6675 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
6677 /* Indicate to hardware the Address is Valid. */
6678 rar_high
|= E1000_RAH_AV
;
6680 if (hw
->mac
.type
== e1000_82575
)
6681 rar_high
|= E1000_RAH_POOL_1
* qsel
;
6683 rar_high
|= E1000_RAH_POOL_1
<< qsel
;
6685 wr32(E1000_RAL(index
), rar_low
);
6687 wr32(E1000_RAH(index
), rar_high
);
6691 static int igb_set_vf_mac(struct igb_adapter
*adapter
,
6692 int vf
, unsigned char *mac_addr
)
6694 struct e1000_hw
*hw
= &adapter
->hw
;
6695 /* VF MAC addresses start at end of receive addresses and moves
6696 * torwards the first, as a result a collision should not be possible */
6697 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
6699 memcpy(adapter
->vf_data
[vf
].vf_mac_addresses
, mac_addr
, ETH_ALEN
);
6701 igb_rar_set_qsel(adapter
, mac_addr
, rar_entry
, vf
);
6706 static int igb_ndo_set_vf_mac(struct net_device
*netdev
, int vf
, u8
*mac
)
6708 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6709 if (!is_valid_ether_addr(mac
) || (vf
>= adapter
->vfs_allocated_count
))
6711 adapter
->vf_data
[vf
].flags
|= IGB_VF_FLAG_PF_SET_MAC
;
6712 dev_info(&adapter
->pdev
->dev
, "setting MAC %pM on VF %d\n", mac
, vf
);
6713 dev_info(&adapter
->pdev
->dev
, "Reload the VF driver to make this"
6714 " change effective.");
6715 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
6716 dev_warn(&adapter
->pdev
->dev
, "The VF MAC address has been set,"
6717 " but the PF device is not up.\n");
6718 dev_warn(&adapter
->pdev
->dev
, "Bring the PF device up before"
6719 " attempting to use the VF device.\n");
6721 return igb_set_vf_mac(adapter
, vf
, mac
);
6724 static int igb_link_mbps(int internal_link_speed
)
6726 switch (internal_link_speed
) {
6736 static void igb_set_vf_rate_limit(struct e1000_hw
*hw
, int vf
, int tx_rate
,
6743 /* Calculate the rate factor values to set */
6744 rf_int
= link_speed
/ tx_rate
;
6745 rf_dec
= (link_speed
- (rf_int
* tx_rate
));
6746 rf_dec
= (rf_dec
* (1<<E1000_RTTBCNRC_RF_INT_SHIFT
)) / tx_rate
;
6748 bcnrc_val
= E1000_RTTBCNRC_RS_ENA
;
6749 bcnrc_val
|= ((rf_int
<<E1000_RTTBCNRC_RF_INT_SHIFT
) &
6750 E1000_RTTBCNRC_RF_INT_MASK
);
6751 bcnrc_val
|= (rf_dec
& E1000_RTTBCNRC_RF_DEC_MASK
);
6756 wr32(E1000_RTTDQSEL
, vf
); /* vf X uses queue X */
6757 wr32(E1000_RTTBCNRC
, bcnrc_val
);
6760 static void igb_check_vf_rate_limit(struct igb_adapter
*adapter
)
6762 int actual_link_speed
, i
;
6763 bool reset_rate
= false;
6765 /* VF TX rate limit was not set or not supported */
6766 if ((adapter
->vf_rate_link_speed
== 0) ||
6767 (adapter
->hw
.mac
.type
!= e1000_82576
))
6770 actual_link_speed
= igb_link_mbps(adapter
->link_speed
);
6771 if (actual_link_speed
!= adapter
->vf_rate_link_speed
) {
6773 adapter
->vf_rate_link_speed
= 0;
6774 dev_info(&adapter
->pdev
->dev
,
6775 "Link speed has been changed. VF Transmit "
6776 "rate is disabled\n");
6779 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
6781 adapter
->vf_data
[i
].tx_rate
= 0;
6783 igb_set_vf_rate_limit(&adapter
->hw
, i
,
6784 adapter
->vf_data
[i
].tx_rate
,
6789 static int igb_ndo_set_vf_bw(struct net_device
*netdev
, int vf
, int tx_rate
)
6791 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6792 struct e1000_hw
*hw
= &adapter
->hw
;
6793 int actual_link_speed
;
6795 if (hw
->mac
.type
!= e1000_82576
)
6798 actual_link_speed
= igb_link_mbps(adapter
->link_speed
);
6799 if ((vf
>= adapter
->vfs_allocated_count
) ||
6800 (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
)) ||
6801 (tx_rate
< 0) || (tx_rate
> actual_link_speed
))
6804 adapter
->vf_rate_link_speed
= actual_link_speed
;
6805 adapter
->vf_data
[vf
].tx_rate
= (u16
)tx_rate
;
6806 igb_set_vf_rate_limit(hw
, vf
, tx_rate
, actual_link_speed
);
6811 static int igb_ndo_get_vf_config(struct net_device
*netdev
,
6812 int vf
, struct ifla_vf_info
*ivi
)
6814 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6815 if (vf
>= adapter
->vfs_allocated_count
)
6818 memcpy(&ivi
->mac
, adapter
->vf_data
[vf
].vf_mac_addresses
, ETH_ALEN
);
6819 ivi
->tx_rate
= adapter
->vf_data
[vf
].tx_rate
;
6820 ivi
->vlan
= adapter
->vf_data
[vf
].pf_vlan
;
6821 ivi
->qos
= adapter
->vf_data
[vf
].pf_qos
;
6825 static void igb_vmm_control(struct igb_adapter
*adapter
)
6827 struct e1000_hw
*hw
= &adapter
->hw
;
6830 switch (hw
->mac
.type
) {
6833 /* replication is not supported for 82575 */
6836 /* notify HW that the MAC is adding vlan tags */
6837 reg
= rd32(E1000_DTXCTL
);
6838 reg
|= E1000_DTXCTL_VLAN_ADDED
;
6839 wr32(E1000_DTXCTL
, reg
);
6841 /* enable replication vlan tag stripping */
6842 reg
= rd32(E1000_RPLOLR
);
6843 reg
|= E1000_RPLOLR_STRVLAN
;
6844 wr32(E1000_RPLOLR
, reg
);
6846 /* none of the above registers are supported by i350 */
6850 if (adapter
->vfs_allocated_count
) {
6851 igb_vmdq_set_loopback_pf(hw
, true);
6852 igb_vmdq_set_replication_pf(hw
, true);
6853 igb_vmdq_set_anti_spoofing_pf(hw
, true,
6854 adapter
->vfs_allocated_count
);
6856 igb_vmdq_set_loopback_pf(hw
, false);
6857 igb_vmdq_set_replication_pf(hw
, false);