1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
80 #include <linux/slab.h>
83 #include <asm/system.h>
84 #include <asm/div64.h>
89 #include "s2io-regs.h"
91 #define DRV_VERSION "2.0.26.28"
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name
[] = "Neterion";
95 static const char s2io_driver_version
[] = DRV_VERSION
;
97 static const int rxd_size
[2] = {32, 48};
98 static const int rxd_count
[2] = {127, 85};
100 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
104 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
105 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
125 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
137 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
139 {"tmac_data_octets"},
143 {"tmac_pause_ctrl_frms"},
147 {"tmac_any_err_frms"},
148 {"tmac_ttl_less_fb_octets"},
149 {"tmac_vld_ip_octets"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
163 {"rmac_out_rng_len_err_frms"},
165 {"rmac_pause_ctrl_frms"},
166 {"rmac_unsup_ctrl_frms"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
170 {"rmac_discarded_frms"},
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
177 {"rmac_jabber_frms"},
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
191 {"rmac_err_drp_udp"},
192 {"rmac_xgmii_err_sym"},
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
212 {"rmac_accepted_ip"},
216 {"new_rd_req_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
221 {"new_wr_req_rtry_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
234 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
253 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
321 {"prc_pcix_err_cnt"},
328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
342 init_timer(&timer); \
343 timer.function = handle; \
344 timer.data = (unsigned long)arg; \
345 mod_timer(&timer, (jiffies + exp)) \
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
350 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
351 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
352 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
353 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
354 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
355 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
359 static void s2io_vlan_rx_register(struct net_device
*dev
,
360 struct vlan_group
*grp
)
363 struct s2io_nic
*nic
= netdev_priv(dev
);
364 unsigned long flags
[MAX_TX_FIFOS
];
365 struct config_param
*config
= &nic
->config
;
366 struct mac_info
*mac_control
= &nic
->mac_control
;
368 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
369 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
371 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
376 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
377 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
379 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
383 /* Unregister the vlan */
384 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
387 struct s2io_nic
*nic
= netdev_priv(dev
);
388 unsigned long flags
[MAX_TX_FIFOS
];
389 struct config_param
*config
= &nic
->config
;
390 struct mac_info
*mac_control
= &nic
->mac_control
;
392 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
393 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
395 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
399 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
401 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
402 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
404 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
409 * Constants to be programmed into the Xena's registers, to configure
414 static const u64 herc_act_dtx_cfg
[] = {
416 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
418 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
420 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
422 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
424 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
426 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
428 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
430 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
435 static const u64 xena_dtx_cfg
[] = {
437 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
439 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
441 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
443 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
445 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
447 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
452 * Constants for Fixing the MacAddress problem seen mostly on
455 static const u64 fix_mac
[] = {
456 0x0060000000000000ULL
, 0x0060600000000000ULL
,
457 0x0040600000000000ULL
, 0x0000600000000000ULL
,
458 0x0020600000000000ULL
, 0x0060600000000000ULL
,
459 0x0020600000000000ULL
, 0x0060600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0000600000000000ULL
,
469 0x0040600000000000ULL
, 0x0060600000000000ULL
,
473 MODULE_LICENSE("GPL");
474 MODULE_VERSION(DRV_VERSION
);
477 /* Module Loadable parameters. */
478 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
479 S2IO_PARM_INT(rx_ring_num
, 1);
480 S2IO_PARM_INT(multiq
, 0);
481 S2IO_PARM_INT(rx_ring_mode
, 1);
482 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
483 S2IO_PARM_INT(rmac_pause_time
, 0x100);
484 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
485 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
486 S2IO_PARM_INT(shared_splits
, 0);
487 S2IO_PARM_INT(tmac_util_period
, 5);
488 S2IO_PARM_INT(rmac_util_period
, 5);
489 S2IO_PARM_INT(l3l4hdr_size
, 128);
490 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
492 /* Frequency of Rx desc syncs expressed as power of 2 */
493 S2IO_PARM_INT(rxsync_frequency
, 3);
494 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
495 S2IO_PARM_INT(intr_type
, 2);
496 /* Large receive offload feature */
498 /* Max pkts to be aggregated by LRO at one time. If not specified,
499 * aggregation happens until we hit max IP pkt size(64K)
501 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
502 S2IO_PARM_INT(indicate_max_pkts
, 0);
504 S2IO_PARM_INT(napi
, 1);
505 S2IO_PARM_INT(ufo
, 0);
506 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
508 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
509 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
510 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
511 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
512 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
513 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
515 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
516 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
517 module_param_array(rts_frm_len
, uint
, NULL
, 0);
521 * This table lists all the devices that this driver supports.
523 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
524 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
525 PCI_ANY_ID
, PCI_ANY_ID
},
526 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
527 PCI_ANY_ID
, PCI_ANY_ID
},
528 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
529 PCI_ANY_ID
, PCI_ANY_ID
},
530 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
531 PCI_ANY_ID
, PCI_ANY_ID
},
535 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
537 static struct pci_error_handlers s2io_err_handler
= {
538 .error_detected
= s2io_io_error_detected
,
539 .slot_reset
= s2io_io_slot_reset
,
540 .resume
= s2io_io_resume
,
543 static struct pci_driver s2io_driver
= {
545 .id_table
= s2io_tbl
,
546 .probe
= s2io_init_nic
,
547 .remove
= __devexit_p(s2io_rem_nic
),
548 .err_handler
= &s2io_err_handler
,
551 /* A simplifier macro used both by init and free shared_mem Fns(). */
552 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
554 /* netqueue manipulation helper functions */
555 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
557 if (!sp
->config
.multiq
) {
560 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
561 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
563 netif_tx_stop_all_queues(sp
->dev
);
566 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
568 if (!sp
->config
.multiq
)
569 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
572 netif_tx_stop_all_queues(sp
->dev
);
575 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
577 if (!sp
->config
.multiq
) {
580 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
581 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
583 netif_tx_start_all_queues(sp
->dev
);
586 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
588 if (!sp
->config
.multiq
)
589 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
592 netif_tx_start_all_queues(sp
->dev
);
595 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
597 if (!sp
->config
.multiq
) {
600 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
601 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
603 netif_tx_wake_all_queues(sp
->dev
);
606 static inline void s2io_wake_tx_queue(
607 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
611 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
612 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
613 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
614 if (netif_queue_stopped(fifo
->dev
)) {
615 fifo
->queue_state
= FIFO_QUEUE_START
;
616 netif_wake_queue(fifo
->dev
);
622 * init_shared_mem - Allocation and Initialization of Memory
623 * @nic: Device private variable.
624 * Description: The function allocates all the memory areas shared
625 * between the NIC and the driver. This includes Tx descriptors,
626 * Rx descriptors and the statistics block.
629 static int init_shared_mem(struct s2io_nic
*nic
)
632 void *tmp_v_addr
, *tmp_v_addr_next
;
633 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
634 struct RxD_block
*pre_rxd_blk
= NULL
;
636 int lst_size
, lst_per_page
;
637 struct net_device
*dev
= nic
->dev
;
640 struct config_param
*config
= &nic
->config
;
641 struct mac_info
*mac_control
= &nic
->mac_control
;
642 unsigned long long mem_allocated
= 0;
644 /* Allocation and initialization of TXDLs in FIFOs */
646 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
647 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
649 size
+= tx_cfg
->fifo_len
;
651 if (size
> MAX_AVAILABLE_TXDS
) {
653 "Too many TxDs requested: %d, max supported: %d\n",
654 size
, MAX_AVAILABLE_TXDS
);
659 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
660 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
662 size
= tx_cfg
->fifo_len
;
664 * Legal values are from 2 to 8192
667 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
668 "Valid lengths are 2 through 8192\n",
674 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
675 lst_per_page
= PAGE_SIZE
/ lst_size
;
677 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
678 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
679 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
680 int fifo_len
= tx_cfg
->fifo_len
;
681 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
683 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
684 if (!fifo
->list_info
) {
685 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
688 mem_allocated
+= list_holder_size
;
690 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
691 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
693 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
694 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
696 fifo
->tx_curr_put_info
.offset
= 0;
697 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
698 fifo
->tx_curr_get_info
.offset
= 0;
699 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
702 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
705 for (j
= 0; j
< page_num
; j
++) {
709 tmp_v
= pci_alloc_consistent(nic
->pdev
,
713 "pci_alloc_consistent failed for TxDL\n");
716 /* If we got a zero DMA address(can happen on
717 * certain platforms like PPC), reallocate.
718 * Store virtual address of page we don't want,
722 mac_control
->zerodma_virt_addr
= tmp_v
;
724 "%s: Zero DMA address for TxDL. "
725 "Virtual address %p\n",
727 tmp_v
= pci_alloc_consistent(nic
->pdev
,
731 "pci_alloc_consistent failed for TxDL\n");
734 mem_allocated
+= PAGE_SIZE
;
736 while (k
< lst_per_page
) {
737 int l
= (j
* lst_per_page
) + k
;
738 if (l
== tx_cfg
->fifo_len
)
740 fifo
->list_info
[l
].list_virt_addr
=
741 tmp_v
+ (k
* lst_size
);
742 fifo
->list_info
[l
].list_phy_addr
=
743 tmp_p
+ (k
* lst_size
);
749 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
750 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
751 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
753 size
= tx_cfg
->fifo_len
;
754 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
755 if (!fifo
->ufo_in_band_v
)
757 mem_allocated
+= (size
* sizeof(u64
));
760 /* Allocation and initialization of RXDs in Rings */
762 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
763 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
764 struct ring_info
*ring
= &mac_control
->rings
[i
];
766 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
767 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
768 "multiple of RxDs per Block\n",
772 size
+= rx_cfg
->num_rxd
;
773 ring
->block_count
= rx_cfg
->num_rxd
/
774 (rxd_count
[nic
->rxd_mode
] + 1);
775 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
777 if (nic
->rxd_mode
== RXD_MODE_1
)
778 size
= (size
* (sizeof(struct RxD1
)));
780 size
= (size
* (sizeof(struct RxD3
)));
782 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
783 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
784 struct ring_info
*ring
= &mac_control
->rings
[i
];
786 ring
->rx_curr_get_info
.block_index
= 0;
787 ring
->rx_curr_get_info
.offset
= 0;
788 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
789 ring
->rx_curr_put_info
.block_index
= 0;
790 ring
->rx_curr_put_info
.offset
= 0;
791 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
795 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
796 /* Allocating all the Rx blocks */
797 for (j
= 0; j
< blk_cnt
; j
++) {
798 struct rx_block_info
*rx_blocks
;
801 rx_blocks
= &ring
->rx_blocks
[j
];
802 size
= SIZE_OF_BLOCK
; /* size is always page size */
803 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
805 if (tmp_v_addr
== NULL
) {
807 * In case of failure, free_shared_mem()
808 * is called, which should free any
809 * memory that was alloced till the
812 rx_blocks
->block_virt_addr
= tmp_v_addr
;
815 mem_allocated
+= size
;
816 memset(tmp_v_addr
, 0, size
);
818 size
= sizeof(struct rxd_info
) *
819 rxd_count
[nic
->rxd_mode
];
820 rx_blocks
->block_virt_addr
= tmp_v_addr
;
821 rx_blocks
->block_dma_addr
= tmp_p_addr
;
822 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
823 if (!rx_blocks
->rxds
)
825 mem_allocated
+= size
;
826 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
827 rx_blocks
->rxds
[l
].virt_addr
=
828 rx_blocks
->block_virt_addr
+
829 (rxd_size
[nic
->rxd_mode
] * l
);
830 rx_blocks
->rxds
[l
].dma_addr
=
831 rx_blocks
->block_dma_addr
+
832 (rxd_size
[nic
->rxd_mode
] * l
);
835 /* Interlinking all Rx Blocks */
836 for (j
= 0; j
< blk_cnt
; j
++) {
837 int next
= (j
+ 1) % blk_cnt
;
838 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
839 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
840 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
841 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
843 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
844 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
845 (unsigned long)tmp_v_addr_next
;
846 pre_rxd_blk
->pNext_RxD_Blk_physical
=
847 (u64
)tmp_p_addr_next
;
850 if (nic
->rxd_mode
== RXD_MODE_3B
) {
852 * Allocation of Storages for buffer addresses in 2BUFF mode
853 * and the buffers as well.
855 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
856 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
857 struct ring_info
*ring
= &mac_control
->rings
[i
];
859 blk_cnt
= rx_cfg
->num_rxd
/
860 (rxd_count
[nic
->rxd_mode
] + 1);
861 size
= sizeof(struct buffAdd
*) * blk_cnt
;
862 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
865 mem_allocated
+= size
;
866 for (j
= 0; j
< blk_cnt
; j
++) {
869 size
= sizeof(struct buffAdd
) *
870 (rxd_count
[nic
->rxd_mode
] + 1);
871 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
874 mem_allocated
+= size
;
875 while (k
!= rxd_count
[nic
->rxd_mode
]) {
876 ba
= &ring
->ba
[j
][k
];
877 size
= BUF0_LEN
+ ALIGN_SIZE
;
878 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
881 mem_allocated
+= size
;
882 tmp
= (unsigned long)ba
->ba_0_org
;
884 tmp
&= ~((unsigned long)ALIGN_SIZE
);
885 ba
->ba_0
= (void *)tmp
;
887 size
= BUF1_LEN
+ ALIGN_SIZE
;
888 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
891 mem_allocated
+= size
;
892 tmp
= (unsigned long)ba
->ba_1_org
;
894 tmp
&= ~((unsigned long)ALIGN_SIZE
);
895 ba
->ba_1
= (void *)tmp
;
902 /* Allocation and initialization of Statistics block */
903 size
= sizeof(struct stat_block
);
904 mac_control
->stats_mem
=
905 pci_alloc_consistent(nic
->pdev
, size
,
906 &mac_control
->stats_mem_phy
);
908 if (!mac_control
->stats_mem
) {
910 * In case of failure, free_shared_mem() is called, which
911 * should free any memory that was alloced till the
916 mem_allocated
+= size
;
917 mac_control
->stats_mem_sz
= size
;
919 tmp_v_addr
= mac_control
->stats_mem
;
920 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
921 memset(tmp_v_addr
, 0, size
);
922 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
923 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
924 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
929 * free_shared_mem - Free the allocated Memory
930 * @nic: Device private variable.
931 * Description: This function is to free all memory locations allocated by
932 * the init_shared_mem() function and return it to the kernel.
935 static void free_shared_mem(struct s2io_nic
*nic
)
937 int i
, j
, blk_cnt
, size
;
939 dma_addr_t tmp_p_addr
;
940 int lst_size
, lst_per_page
;
941 struct net_device
*dev
;
943 struct config_param
*config
;
944 struct mac_info
*mac_control
;
945 struct stat_block
*stats
;
946 struct swStat
*swstats
;
953 config
= &nic
->config
;
954 mac_control
= &nic
->mac_control
;
955 stats
= mac_control
->stats_info
;
956 swstats
= &stats
->sw_stat
;
958 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
959 lst_per_page
= PAGE_SIZE
/ lst_size
;
961 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
962 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
963 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
965 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
966 for (j
= 0; j
< page_num
; j
++) {
967 int mem_blks
= (j
* lst_per_page
);
968 struct list_info_hold
*fli
;
970 if (!fifo
->list_info
)
973 fli
= &fifo
->list_info
[mem_blks
];
974 if (!fli
->list_virt_addr
)
976 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
979 swstats
->mem_freed
+= PAGE_SIZE
;
981 /* If we got a zero DMA address during allocation,
984 if (mac_control
->zerodma_virt_addr
) {
985 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
986 mac_control
->zerodma_virt_addr
,
989 "%s: Freeing TxDL with zero DMA address. "
990 "Virtual address %p\n",
991 dev
->name
, mac_control
->zerodma_virt_addr
);
992 swstats
->mem_freed
+= PAGE_SIZE
;
994 kfree(fifo
->list_info
);
995 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
996 sizeof(struct list_info_hold
);
999 size
= SIZE_OF_BLOCK
;
1000 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1001 struct ring_info
*ring
= &mac_control
->rings
[i
];
1003 blk_cnt
= ring
->block_count
;
1004 for (j
= 0; j
< blk_cnt
; j
++) {
1005 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1006 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1007 if (tmp_v_addr
== NULL
)
1009 pci_free_consistent(nic
->pdev
, size
,
1010 tmp_v_addr
, tmp_p_addr
);
1011 swstats
->mem_freed
+= size
;
1012 kfree(ring
->rx_blocks
[j
].rxds
);
1013 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1014 rxd_count
[nic
->rxd_mode
];
1018 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1019 /* Freeing buffer storage addresses in 2BUFF mode. */
1020 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1021 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1022 struct ring_info
*ring
= &mac_control
->rings
[i
];
1024 blk_cnt
= rx_cfg
->num_rxd
/
1025 (rxd_count
[nic
->rxd_mode
] + 1);
1026 for (j
= 0; j
< blk_cnt
; j
++) {
1030 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1031 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1032 kfree(ba
->ba_0_org
);
1033 swstats
->mem_freed
+=
1034 BUF0_LEN
+ ALIGN_SIZE
;
1035 kfree(ba
->ba_1_org
);
1036 swstats
->mem_freed
+=
1037 BUF1_LEN
+ ALIGN_SIZE
;
1041 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1042 (rxd_count
[nic
->rxd_mode
] + 1);
1045 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1050 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1051 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1052 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1054 if (fifo
->ufo_in_band_v
) {
1055 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1057 kfree(fifo
->ufo_in_band_v
);
1061 if (mac_control
->stats_mem
) {
1062 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1063 pci_free_consistent(nic
->pdev
,
1064 mac_control
->stats_mem_sz
,
1065 mac_control
->stats_mem
,
1066 mac_control
->stats_mem_phy
);
1071 * s2io_verify_pci_mode -
1074 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1076 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1077 register u64 val64
= 0;
1080 val64
= readq(&bar0
->pci_mode
);
1081 mode
= (u8
)GET_PCI_MODE(val64
);
1083 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1084 return -1; /* Unknown PCI mode */
1088 #define NEC_VENID 0x1033
1089 #define NEC_DEVID 0x0125
1090 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1092 struct pci_dev
*tdev
= NULL
;
1093 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1094 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1095 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1104 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1106 * s2io_print_pci_mode -
1108 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1110 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1111 register u64 val64
= 0;
1113 struct config_param
*config
= &nic
->config
;
1114 const char *pcimode
;
1116 val64
= readq(&bar0
->pci_mode
);
1117 mode
= (u8
)GET_PCI_MODE(val64
);
1119 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1120 return -1; /* Unknown PCI mode */
1122 config
->bus_speed
= bus_speed
[mode
];
1124 if (s2io_on_nec_bridge(nic
->pdev
)) {
1125 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1131 case PCI_MODE_PCI_33
:
1132 pcimode
= "33MHz PCI bus";
1134 case PCI_MODE_PCI_66
:
1135 pcimode
= "66MHz PCI bus";
1137 case PCI_MODE_PCIX_M1_66
:
1138 pcimode
= "66MHz PCIX(M1) bus";
1140 case PCI_MODE_PCIX_M1_100
:
1141 pcimode
= "100MHz PCIX(M1) bus";
1143 case PCI_MODE_PCIX_M1_133
:
1144 pcimode
= "133MHz PCIX(M1) bus";
1146 case PCI_MODE_PCIX_M2_66
:
1147 pcimode
= "133MHz PCIX(M2) bus";
1149 case PCI_MODE_PCIX_M2_100
:
1150 pcimode
= "200MHz PCIX(M2) bus";
1152 case PCI_MODE_PCIX_M2_133
:
1153 pcimode
= "266MHz PCIX(M2) bus";
1156 pcimode
= "unsupported bus!";
1160 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1161 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1167 * init_tti - Initialization transmit traffic interrupt scheme
1168 * @nic: device private variable
1169 * @link: link status (UP/DOWN) used to enable/disable continuous
1170 * transmit interrupts
1171 * Description: The function configures transmit traffic interrupts
1172 * Return Value: SUCCESS on success and
1176 static int init_tti(struct s2io_nic
*nic
, int link
)
1178 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1179 register u64 val64
= 0;
1181 struct config_param
*config
= &nic
->config
;
1183 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1185 * TTI Initialization. Default Tx timer gets us about
1186 * 250 interrupts per sec. Continuous interrupts are enabled
1189 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1190 int count
= (nic
->config
.bus_speed
* 125)/2;
1191 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1193 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1195 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1200 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1201 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1202 writeq(val64
, &bar0
->tti_data1_mem
);
1204 if (nic
->config
.intr_type
== MSI_X
) {
1205 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208 TTI_DATA2_MEM_TX_UFC_D(0x300);
1210 if ((nic
->config
.tx_steering_type
==
1211 TX_DEFAULT_STEERING
) &&
1212 (config
->tx_fifo_num
> 1) &&
1213 (i
>= nic
->udp_fifo_idx
) &&
1214 (i
< (nic
->udp_fifo_idx
+
1215 nic
->total_udp_fifos
)))
1216 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219 TTI_DATA2_MEM_TX_UFC_D(0x120);
1221 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x80);
1227 writeq(val64
, &bar0
->tti_data2_mem
);
1229 val64
= TTI_CMD_MEM_WE
|
1230 TTI_CMD_MEM_STROBE_NEW_CMD
|
1231 TTI_CMD_MEM_OFFSET(i
);
1232 writeq(val64
, &bar0
->tti_command_mem
);
1234 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1235 TTI_CMD_MEM_STROBE_NEW_CMD
,
1236 S2IO_BIT_RESET
) != SUCCESS
)
1244 * init_nic - Initialization of hardware
1245 * @nic: device private variable
1246 * Description: The function sequentially configures every block
1247 * of the H/W from their reset values.
1248 * Return Value: SUCCESS on success and
1249 * '-1' on failure (endian settings incorrect).
1252 static int init_nic(struct s2io_nic
*nic
)
1254 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1255 struct net_device
*dev
= nic
->dev
;
1256 register u64 val64
= 0;
1261 unsigned long long mem_share
;
1263 struct config_param
*config
= &nic
->config
;
1264 struct mac_info
*mac_control
= &nic
->mac_control
;
1266 /* to set the swapper controle on the card */
1267 if (s2io_set_swapper(nic
)) {
1268 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1273 * Herc requires EOI to be removed from reset before XGXS, so..
1275 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1276 val64
= 0xA500000000ULL
;
1277 writeq(val64
, &bar0
->sw_reset
);
1279 val64
= readq(&bar0
->sw_reset
);
1282 /* Remove XGXS from reset state */
1284 writeq(val64
, &bar0
->sw_reset
);
1286 val64
= readq(&bar0
->sw_reset
);
1288 /* Ensure that it's safe to access registers by checking
1289 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1291 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1292 for (i
= 0; i
< 50; i
++) {
1293 val64
= readq(&bar0
->adapter_status
);
1294 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1302 /* Enable Receiving broadcasts */
1303 add
= &bar0
->mac_cfg
;
1304 val64
= readq(&bar0
->mac_cfg
);
1305 val64
|= MAC_RMAC_BCAST_ENABLE
;
1306 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1307 writel((u32
)val64
, add
);
1308 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1309 writel((u32
) (val64
>> 32), (add
+ 4));
1311 /* Read registers in all blocks */
1312 val64
= readq(&bar0
->mac_int_mask
);
1313 val64
= readq(&bar0
->mc_int_mask
);
1314 val64
= readq(&bar0
->xgxs_int_mask
);
1318 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1320 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1321 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1322 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1323 &bar0
->dtx_control
, UF
);
1325 msleep(1); /* Necessary!! */
1329 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1330 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1331 &bar0
->dtx_control
, UF
);
1332 val64
= readq(&bar0
->dtx_control
);
1337 /* Tx DMA Initialization */
1339 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1340 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1341 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1342 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1344 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1345 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1347 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1348 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1350 if (i
== (config
->tx_fifo_num
- 1)) {
1357 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1362 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1372 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1383 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1386 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1387 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1389 val64
= readq(&bar0
->tx_fifo_partition_0
);
1390 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1391 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1394 * Initialization of Tx_PA_CONFIG register to ignore packet
1395 * integrity checking.
1397 val64
= readq(&bar0
->tx_pa_cfg
);
1398 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1399 TX_PA_CFG_IGNORE_SNAP_OUI
|
1400 TX_PA_CFG_IGNORE_LLC_CTRL
|
1401 TX_PA_CFG_IGNORE_L2_ERR
;
1402 writeq(val64
, &bar0
->tx_pa_cfg
);
1404 /* Rx DMA intialization. */
1406 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1407 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1409 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1411 writeq(val64
, &bar0
->rx_queue_priority
);
1414 * Allocating equal share of memory to all the
1418 if (nic
->device_type
& XFRAME_II_DEVICE
)
1423 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1426 mem_share
= (mem_size
/ config
->rx_ring_num
+
1427 mem_size
% config
->rx_ring_num
);
1428 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1431 mem_share
= (mem_size
/ config
->rx_ring_num
);
1432 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1435 mem_share
= (mem_size
/ config
->rx_ring_num
);
1436 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1439 mem_share
= (mem_size
/ config
->rx_ring_num
);
1440 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1443 mem_share
= (mem_size
/ config
->rx_ring_num
);
1444 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1447 mem_share
= (mem_size
/ config
->rx_ring_num
);
1448 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1451 mem_share
= (mem_size
/ config
->rx_ring_num
);
1452 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1455 mem_share
= (mem_size
/ config
->rx_ring_num
);
1456 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1460 writeq(val64
, &bar0
->rx_queue_cfg
);
1463 * Filling Tx round robin registers
1464 * as per the number of FIFOs for equal scheduling priority
1466 switch (config
->tx_fifo_num
) {
1469 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1470 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1471 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1472 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1473 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1476 val64
= 0x0001000100010001ULL
;
1477 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1479 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1480 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1481 val64
= 0x0001000100000000ULL
;
1482 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1485 val64
= 0x0001020001020001ULL
;
1486 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1487 val64
= 0x0200010200010200ULL
;
1488 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1489 val64
= 0x0102000102000102ULL
;
1490 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1491 val64
= 0x0001020001020001ULL
;
1492 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1493 val64
= 0x0200010200000000ULL
;
1494 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1497 val64
= 0x0001020300010203ULL
;
1498 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1499 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1500 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1501 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1502 val64
= 0x0001020300000000ULL
;
1503 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1506 val64
= 0x0001020304000102ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1508 val64
= 0x0304000102030400ULL
;
1509 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1510 val64
= 0x0102030400010203ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1512 val64
= 0x0400010203040001ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1514 val64
= 0x0203040000000000ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1518 val64
= 0x0001020304050001ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1520 val64
= 0x0203040500010203ULL
;
1521 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1522 val64
= 0x0405000102030405ULL
;
1523 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1524 val64
= 0x0001020304050001ULL
;
1525 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1526 val64
= 0x0203040500000000ULL
;
1527 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1530 val64
= 0x0001020304050600ULL
;
1531 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1532 val64
= 0x0102030405060001ULL
;
1533 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1534 val64
= 0x0203040506000102ULL
;
1535 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1536 val64
= 0x0304050600010203ULL
;
1537 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1538 val64
= 0x0405060000000000ULL
;
1539 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1542 val64
= 0x0001020304050607ULL
;
1543 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1544 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1545 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1546 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1547 val64
= 0x0001020300000000ULL
;
1548 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1552 /* Enable all configured Tx FIFO partitions */
1553 val64
= readq(&bar0
->tx_fifo_partition_0
);
1554 val64
|= (TX_FIFO_PARTITION_EN
);
1555 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1557 /* Filling the Rx round robin registers as per the
1558 * number of Rings and steering based on QoS with
1561 switch (config
->rx_ring_num
) {
1564 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1565 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1566 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1567 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1568 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1570 val64
= 0x8080808080808080ULL
;
1571 writeq(val64
, &bar0
->rts_qos_steering
);
1574 val64
= 0x0001000100010001ULL
;
1575 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1576 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1577 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1578 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1579 val64
= 0x0001000100000000ULL
;
1580 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1582 val64
= 0x8080808040404040ULL
;
1583 writeq(val64
, &bar0
->rts_qos_steering
);
1586 val64
= 0x0001020001020001ULL
;
1587 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1588 val64
= 0x0200010200010200ULL
;
1589 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1590 val64
= 0x0102000102000102ULL
;
1591 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1592 val64
= 0x0001020001020001ULL
;
1593 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1594 val64
= 0x0200010200000000ULL
;
1595 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1597 val64
= 0x8080804040402020ULL
;
1598 writeq(val64
, &bar0
->rts_qos_steering
);
1601 val64
= 0x0001020300010203ULL
;
1602 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1603 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1604 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1605 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1606 val64
= 0x0001020300000000ULL
;
1607 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1609 val64
= 0x8080404020201010ULL
;
1610 writeq(val64
, &bar0
->rts_qos_steering
);
1613 val64
= 0x0001020304000102ULL
;
1614 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1615 val64
= 0x0304000102030400ULL
;
1616 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1617 val64
= 0x0102030400010203ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1619 val64
= 0x0400010203040001ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1621 val64
= 0x0203040000000000ULL
;
1622 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1624 val64
= 0x8080404020201008ULL
;
1625 writeq(val64
, &bar0
->rts_qos_steering
);
1628 val64
= 0x0001020304050001ULL
;
1629 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1630 val64
= 0x0203040500010203ULL
;
1631 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1632 val64
= 0x0405000102030405ULL
;
1633 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1634 val64
= 0x0001020304050001ULL
;
1635 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1636 val64
= 0x0203040500000000ULL
;
1637 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1639 val64
= 0x8080404020100804ULL
;
1640 writeq(val64
, &bar0
->rts_qos_steering
);
1643 val64
= 0x0001020304050600ULL
;
1644 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1645 val64
= 0x0102030405060001ULL
;
1646 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1647 val64
= 0x0203040506000102ULL
;
1648 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1649 val64
= 0x0304050600010203ULL
;
1650 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1651 val64
= 0x0405060000000000ULL
;
1652 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1654 val64
= 0x8080402010080402ULL
;
1655 writeq(val64
, &bar0
->rts_qos_steering
);
1658 val64
= 0x0001020304050607ULL
;
1659 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1660 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1661 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1662 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1663 val64
= 0x0001020300000000ULL
;
1664 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1666 val64
= 0x8040201008040201ULL
;
1667 writeq(val64
, &bar0
->rts_qos_steering
);
1673 for (i
= 0; i
< 8; i
++)
1674 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1676 /* Set the default rts frame length for the rings configured */
1677 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1678 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1679 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1681 /* Set the frame length for the configured rings
1682 * desired by the user
1684 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1685 /* If rts_frm_len[i] == 0 then it is assumed that user not
1686 * specified frame length steering.
1687 * If the user provides the frame length then program
1688 * the rts_frm_len register for those values or else
1689 * leave it as it is.
1691 if (rts_frm_len
[i
] != 0) {
1692 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1693 &bar0
->rts_frm_len_n
[i
]);
1697 /* Disable differentiated services steering logic */
1698 for (i
= 0; i
< 64; i
++) {
1699 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1701 "%s: rts_ds_steer failed on codepoint %d\n",
1707 /* Program statistics memory */
1708 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1710 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1711 val64
= STAT_BC(0x320);
1712 writeq(val64
, &bar0
->stat_byte_cnt
);
1716 * Initializing the sampling rate for the device to calculate the
1717 * bandwidth utilization.
1719 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1720 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1721 writeq(val64
, &bar0
->mac_link_util
);
1724 * Initializing the Transmit and Receive Traffic Interrupt
1728 /* Initialize TTI */
1729 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1732 /* RTI Initialization */
1733 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1735 * Programmed to generate Apprx 500 Intrs per
1738 int count
= (nic
->config
.bus_speed
* 125)/4;
1739 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1741 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1747 writeq(val64
, &bar0
->rti_data1_mem
);
1749 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751 if (nic
->config
.intr_type
== MSI_X
)
1752 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753 RTI_DATA2_MEM_RX_UFC_D(0x40));
1755 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756 RTI_DATA2_MEM_RX_UFC_D(0x80));
1757 writeq(val64
, &bar0
->rti_data2_mem
);
1759 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1760 val64
= RTI_CMD_MEM_WE
|
1761 RTI_CMD_MEM_STROBE_NEW_CMD
|
1762 RTI_CMD_MEM_OFFSET(i
);
1763 writeq(val64
, &bar0
->rti_command_mem
);
1766 * Once the operation completes, the Strobe bit of the
1767 * command register will be reset. We poll for this
1768 * particular condition. We wait for a maximum of 500ms
1769 * for the operation to complete, if it's not complete
1770 * by then we return error.
1774 val64
= readq(&bar0
->rti_command_mem
);
1775 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1779 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1789 * Initializing proper values as Pause threshold into all
1790 * the 8 Queues on Rx side.
1792 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1793 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1795 /* Disable RMAC PAD STRIPPING */
1796 add
= &bar0
->mac_cfg
;
1797 val64
= readq(&bar0
->mac_cfg
);
1798 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1799 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1800 writel((u32
) (val64
), add
);
1801 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1802 writel((u32
) (val64
>> 32), (add
+ 4));
1803 val64
= readq(&bar0
->mac_cfg
);
1805 /* Enable FCS stripping by adapter */
1806 add
= &bar0
->mac_cfg
;
1807 val64
= readq(&bar0
->mac_cfg
);
1808 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1809 if (nic
->device_type
== XFRAME_II_DEVICE
)
1810 writeq(val64
, &bar0
->mac_cfg
);
1812 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1813 writel((u32
) (val64
), add
);
1814 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1815 writel((u32
) (val64
>> 32), (add
+ 4));
1819 * Set the time value to be inserted in the pause frame
1820 * generated by xena.
1822 val64
= readq(&bar0
->rmac_pause_cfg
);
1823 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1825 writeq(val64
, &bar0
->rmac_pause_cfg
);
1828 * Set the Threshold Limit for Generating the pause frame
1829 * If the amount of data in any Queue exceeds ratio of
1830 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831 * pause frame is generated
1834 for (i
= 0; i
< 4; i
++) {
1835 val64
|= (((u64
)0xFF00 |
1836 nic
->mac_control
.mc_pause_threshold_q0q3
)
1839 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1842 for (i
= 0; i
< 4; i
++) {
1843 val64
|= (((u64
)0xFF00 |
1844 nic
->mac_control
.mc_pause_threshold_q4q7
)
1847 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1850 * TxDMA will stop Read request if the number of read split has
1851 * exceeded the limit pointed by shared_splits
1853 val64
= readq(&bar0
->pic_control
);
1854 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1855 writeq(val64
, &bar0
->pic_control
);
1857 if (nic
->config
.bus_speed
== 266) {
1858 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1859 writeq(0x0, &bar0
->read_retry_delay
);
1860 writeq(0x0, &bar0
->write_retry_delay
);
1864 * Programming the Herc to split every write transaction
1865 * that does not start on an ADB to reduce disconnects.
1867 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1868 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1869 MISC_LINK_STABILITY_PRD(3);
1870 writeq(val64
, &bar0
->misc_control
);
1871 val64
= readq(&bar0
->pic_control2
);
1872 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873 writeq(val64
, &bar0
->pic_control2
);
1875 if (strstr(nic
->product_name
, "CX4")) {
1876 val64
= TMAC_AVG_IPG(0x17);
1877 writeq(val64
, &bar0
->tmac_avg_ipg
);
1882 #define LINK_UP_DOWN_INTERRUPT 1
1883 #define MAC_RMAC_ERR_TIMER 2
1885 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1887 if (nic
->device_type
== XFRAME_II_DEVICE
)
1888 return LINK_UP_DOWN_INTERRUPT
;
1890 return MAC_RMAC_ERR_TIMER
;
1894 * do_s2io_write_bits - update alarm bits in alarm register
1895 * @value: alarm bits
1896 * @flag: interrupt status
1897 * @addr: address value
1898 * Description: update alarm bits in alarm register
1902 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1906 temp64
= readq(addr
);
1908 if (flag
== ENABLE_INTRS
)
1909 temp64
&= ~((u64
)value
);
1911 temp64
|= ((u64
)value
);
1912 writeq(temp64
, addr
);
1915 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1917 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1918 register u64 gen_int_mask
= 0;
1921 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1922 if (mask
& TX_DMA_INTR
) {
1923 gen_int_mask
|= TXDMA_INT_M
;
1925 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1926 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1927 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1928 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1930 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1931 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1932 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1933 &bar0
->pfc_err_mask
);
1935 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1936 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1937 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1939 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1940 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1941 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1942 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1943 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1945 flag
, &bar0
->pcc_err_mask
);
1947 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1948 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1950 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1951 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1952 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1953 flag
, &bar0
->lso_err_mask
);
1955 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1956 flag
, &bar0
->tpa_err_mask
);
1958 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1961 if (mask
& TX_MAC_INTR
) {
1962 gen_int_mask
|= TXMAC_INT_M
;
1963 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1964 &bar0
->mac_int_mask
);
1965 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1966 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1967 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1968 flag
, &bar0
->mac_tmac_err_mask
);
1971 if (mask
& TX_XGXS_INTR
) {
1972 gen_int_mask
|= TXXGXS_INT_M
;
1973 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1974 &bar0
->xgxs_int_mask
);
1975 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1976 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1977 flag
, &bar0
->xgxs_txgxs_err_mask
);
1980 if (mask
& RX_DMA_INTR
) {
1981 gen_int_mask
|= RXDMA_INT_M
;
1982 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1983 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1984 flag
, &bar0
->rxdma_int_mask
);
1985 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1986 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1987 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1988 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1989 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1990 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1991 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1992 &bar0
->prc_pcix_err_mask
);
1993 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1994 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1995 &bar0
->rpa_err_mask
);
1996 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1997 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1998 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1999 RDA_FRM_ECC_SG_ERR
|
2000 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2001 flag
, &bar0
->rda_err_mask
);
2002 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2003 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2004 flag
, &bar0
->rti_err_mask
);
2007 if (mask
& RX_MAC_INTR
) {
2008 gen_int_mask
|= RXMAC_INT_M
;
2009 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2010 &bar0
->mac_int_mask
);
2011 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2012 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2013 RMAC_DOUBLE_ECC_ERR
);
2014 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2015 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2016 do_s2io_write_bits(interruptible
,
2017 flag
, &bar0
->mac_rmac_err_mask
);
2020 if (mask
& RX_XGXS_INTR
) {
2021 gen_int_mask
|= RXXGXS_INT_M
;
2022 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2023 &bar0
->xgxs_int_mask
);
2024 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2025 &bar0
->xgxs_rxgxs_err_mask
);
2028 if (mask
& MC_INTR
) {
2029 gen_int_mask
|= MC_INT_M
;
2030 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2031 flag
, &bar0
->mc_int_mask
);
2032 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2033 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2034 &bar0
->mc_err_mask
);
2036 nic
->general_int_mask
= gen_int_mask
;
2038 /* Remove this line when alarm interrupts are enabled */
2039 nic
->general_int_mask
= 0;
2043 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2044 * @nic: device private variable,
2045 * @mask: A mask indicating which Intr block must be modified and,
2046 * @flag: A flag indicating whether to enable or disable the Intrs.
2047 * Description: This function will either disable or enable the interrupts
2048 * depending on the flag argument. The mask argument can be used to
2049 * enable/disable any Intr block.
2050 * Return Value: NONE.
2053 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2055 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2056 register u64 temp64
= 0, intr_mask
= 0;
2058 intr_mask
= nic
->general_int_mask
;
2060 /* Top level interrupt classification */
2061 /* PIC Interrupts */
2062 if (mask
& TX_PIC_INTR
) {
2063 /* Enable PIC Intrs in the general intr mask register */
2064 intr_mask
|= TXPIC_INT_M
;
2065 if (flag
== ENABLE_INTRS
) {
2067 * If Hercules adapter enable GPIO otherwise
2068 * disable all PCIX, Flash, MDIO, IIC and GPIO
2069 * interrupts for now.
2072 if (s2io_link_fault_indication(nic
) ==
2073 LINK_UP_DOWN_INTERRUPT
) {
2074 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2075 &bar0
->pic_int_mask
);
2076 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2077 &bar0
->gpio_int_mask
);
2079 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2080 } else if (flag
== DISABLE_INTRS
) {
2082 * Disable PIC Intrs in the general
2083 * intr mask register
2085 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2089 /* Tx traffic interrupts */
2090 if (mask
& TX_TRAFFIC_INTR
) {
2091 intr_mask
|= TXTRAFFIC_INT_M
;
2092 if (flag
== ENABLE_INTRS
) {
2094 * Enable all the Tx side interrupts
2095 * writing 0 Enables all 64 TX interrupt levels
2097 writeq(0x0, &bar0
->tx_traffic_mask
);
2098 } else if (flag
== DISABLE_INTRS
) {
2100 * Disable Tx Traffic Intrs in the general intr mask
2103 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2107 /* Rx traffic interrupts */
2108 if (mask
& RX_TRAFFIC_INTR
) {
2109 intr_mask
|= RXTRAFFIC_INT_M
;
2110 if (flag
== ENABLE_INTRS
) {
2111 /* writing 0 Enables all 8 RX interrupt levels */
2112 writeq(0x0, &bar0
->rx_traffic_mask
);
2113 } else if (flag
== DISABLE_INTRS
) {
2115 * Disable Rx Traffic Intrs in the general intr mask
2118 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2122 temp64
= readq(&bar0
->general_int_mask
);
2123 if (flag
== ENABLE_INTRS
)
2124 temp64
&= ~((u64
)intr_mask
);
2126 temp64
= DISABLE_ALL_INTRS
;
2127 writeq(temp64
, &bar0
->general_int_mask
);
2129 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2133 * verify_pcc_quiescent- Checks for PCC quiescent state
2134 * Return: 1 If PCC is quiescence
2135 * 0 If PCC is not quiescence
2137 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2140 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2141 u64 val64
= readq(&bar0
->adapter_status
);
2143 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2145 if (flag
== false) {
2146 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2147 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2150 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2154 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2155 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2156 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2159 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2160 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2168 * verify_xena_quiescence - Checks whether the H/W is ready
2169 * Description: Returns whether the H/W is ready to go or not. Depending
2170 * on whether adapter enable bit was written or not the comparison
2171 * differs and the calling function passes the input argument flag to
2173 * Return: 1 If xena is quiescence
2174 * 0 If Xena is not quiescence
2177 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2180 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2181 u64 val64
= readq(&bar0
->adapter_status
);
2182 mode
= s2io_verify_pci_mode(sp
);
2184 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2185 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2188 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2189 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2192 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2193 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2196 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2197 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2200 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2201 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2204 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2205 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2208 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2209 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2212 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2213 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2218 * In PCI 33 mode, the P_PLL is not used, and therefore,
2219 * the the P_PLL_LOCK bit in the adapter_status register will
2222 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2223 sp
->device_type
== XFRAME_II_DEVICE
&&
2224 mode
!= PCI_MODE_PCI_33
) {
2225 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2228 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2229 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2230 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2237 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2238 * @sp: Pointer to device specifc structure
2240 * New procedure to clear mac address reading problems on Alpha platforms
2244 static void fix_mac_address(struct s2io_nic
*sp
)
2246 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2250 while (fix_mac
[i
] != END_SIGN
) {
2251 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2253 val64
= readq(&bar0
->gpio_control
);
2258 * start_nic - Turns the device on
2259 * @nic : device private variable.
2261 * This function actually turns the device on. Before this function is
2262 * called,all Registers are configured from their reset states
2263 * and shared memory is allocated but the NIC is still quiescent. On
2264 * calling this function, the device interrupts are cleared and the NIC is
2265 * literally switched on by writing into the adapter control register.
2267 * SUCCESS on success and -1 on failure.
2270 static int start_nic(struct s2io_nic
*nic
)
2272 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2273 struct net_device
*dev
= nic
->dev
;
2274 register u64 val64
= 0;
2276 struct config_param
*config
= &nic
->config
;
2277 struct mac_info
*mac_control
= &nic
->mac_control
;
2279 /* PRC Initialization and configuration */
2280 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2281 struct ring_info
*ring
= &mac_control
->rings
[i
];
2283 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2284 &bar0
->prc_rxd0_n
[i
]);
2286 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2287 if (nic
->rxd_mode
== RXD_MODE_1
)
2288 val64
|= PRC_CTRL_RC_ENABLED
;
2290 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2291 if (nic
->device_type
== XFRAME_II_DEVICE
)
2292 val64
|= PRC_CTRL_GROUP_READS
;
2293 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2298 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2299 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 val64
= readq(&bar0
->rx_pa_cfg
);
2301 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2302 writeq(val64
, &bar0
->rx_pa_cfg
);
2305 if (vlan_tag_strip
== 0) {
2306 val64
= readq(&bar0
->rx_pa_cfg
);
2307 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2308 writeq(val64
, &bar0
->rx_pa_cfg
);
2309 nic
->vlan_strip_flag
= 0;
2313 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 * for around 100ms, which is approximately the time required
2315 * for the device to be ready for operation.
2317 val64
= readq(&bar0
->mc_rldram_mrs
);
2318 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2319 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2320 val64
= readq(&bar0
->mc_rldram_mrs
);
2322 msleep(100); /* Delay by around 100 ms. */
2324 /* Enabling ECC Protection. */
2325 val64
= readq(&bar0
->adapter_control
);
2326 val64
&= ~ADAPTER_ECC_EN
;
2327 writeq(val64
, &bar0
->adapter_control
);
2330 * Verify if the device is ready to be enabled, if so enable
2333 val64
= readq(&bar0
->adapter_status
);
2334 if (!verify_xena_quiescence(nic
)) {
2335 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2336 "Adapter status reads: 0x%llx\n",
2337 dev
->name
, (unsigned long long)val64
);
2342 * With some switches, link might be already up at this point.
2343 * Because of this weird behavior, when we enable laser,
2344 * we may not get link. We need to handle this. We cannot
2345 * figure out which switch is misbehaving. So we are forced to
2346 * make a global change.
2349 /* Enabling Laser. */
2350 val64
= readq(&bar0
->adapter_control
);
2351 val64
|= ADAPTER_EOI_TX_ON
;
2352 writeq(val64
, &bar0
->adapter_control
);
2354 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2356 * Dont see link state interrupts initially on some switches,
2357 * so directly scheduling the link state task here.
2359 schedule_work(&nic
->set_link_task
);
2361 /* SXE-002: Initialize link and activity LED */
2362 subid
= nic
->pdev
->subsystem_device
;
2363 if (((subid
& 0xFF) >= 0x07) &&
2364 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2365 val64
= readq(&bar0
->gpio_control
);
2366 val64
|= 0x0000800000000000ULL
;
2367 writeq(val64
, &bar0
->gpio_control
);
2368 val64
= 0x0411040400000000ULL
;
2369 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2377 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2378 struct TxD
*txdlp
, int get_off
)
2380 struct s2io_nic
*nic
= fifo_data
->nic
;
2381 struct sk_buff
*skb
;
2386 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2387 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2388 sizeof(u64
), PCI_DMA_TODEVICE
);
2392 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2394 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2397 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2398 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2399 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2402 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2403 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2404 if (!txds
->Buffer_Pointer
)
2406 pci_unmap_page(nic
->pdev
,
2407 (dma_addr_t
)txds
->Buffer_Pointer
,
2408 frag
->size
, PCI_DMA_TODEVICE
);
2411 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2423 static void free_tx_buffers(struct s2io_nic
*nic
)
2425 struct net_device
*dev
= nic
->dev
;
2426 struct sk_buff
*skb
;
2430 struct config_param
*config
= &nic
->config
;
2431 struct mac_info
*mac_control
= &nic
->mac_control
;
2432 struct stat_block
*stats
= mac_control
->stats_info
;
2433 struct swStat
*swstats
= &stats
->sw_stat
;
2435 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2436 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2437 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2438 unsigned long flags
;
2440 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2441 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2442 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2443 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2445 swstats
->mem_freed
+= skb
->truesize
;
2451 "%s: forcibly freeing %d skbs on FIFO%d\n",
2453 fifo
->tx_curr_get_info
.offset
= 0;
2454 fifo
->tx_curr_put_info
.offset
= 0;
2455 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2469 static void stop_nic(struct s2io_nic
*nic
)
2471 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2472 register u64 val64
= 0;
2475 /* Disable all interrupts */
2476 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2477 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2478 interruptible
|= TX_PIC_INTR
;
2479 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2481 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 val64
= readq(&bar0
->adapter_control
);
2483 val64
&= ~(ADAPTER_CNTL_EN
);
2484 writeq(val64
, &bar0
->adapter_control
);
2488 * fill_rx_buffers - Allocates the Rx side skbs
2489 * @ring_info: per ring structure
2490 * @from_card_up: If this is true, we will map the buffer to get
2491 * the dma address for buf0 and buf1 to give it to the card.
2492 * Else we will sync the already mapped buffer to give it to the card.
2494 * The function allocates Rx side skbs and puts the physical
2495 * address of these buffers into the RxD buffer pointers, so that the NIC
2496 * can DMA the received frame into these locations.
2497 * The NIC supports 3 receive modes, viz
2499 * 2. three buffer and
2500 * 3. Five buffer modes.
2501 * Each mode defines how many fragments the received frame will be split
2502 * up into by the NIC. The frame is split into L3 header, L4 Header,
2503 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 * is split into 3 fragments. As of now only single buffer mode is
2507 * SUCCESS on success or an appropriate -ve value on failure.
2509 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2512 struct sk_buff
*skb
;
2514 int off
, size
, block_no
, block_no1
;
2519 struct RxD_t
*first_rxdp
= NULL
;
2520 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2524 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2526 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2528 block_no1
= ring
->rx_curr_get_info
.block_index
;
2529 while (alloc_tab
< alloc_cnt
) {
2530 block_no
= ring
->rx_curr_put_info
.block_index
;
2532 off
= ring
->rx_curr_put_info
.offset
;
2534 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2536 rxd_index
= off
+ 1;
2538 rxd_index
+= (block_no
* ring
->rxd_count
);
2540 if ((block_no
== block_no1
) &&
2541 (off
== ring
->rx_curr_get_info
.offset
) &&
2542 (rxdp
->Host_Control
)) {
2543 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2547 if (off
&& (off
== ring
->rxd_count
)) {
2548 ring
->rx_curr_put_info
.block_index
++;
2549 if (ring
->rx_curr_put_info
.block_index
==
2551 ring
->rx_curr_put_info
.block_index
= 0;
2552 block_no
= ring
->rx_curr_put_info
.block_index
;
2554 ring
->rx_curr_put_info
.offset
= off
;
2555 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2556 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2557 ring
->dev
->name
, rxdp
);
2561 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2562 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2563 (rxdp
->Control_2
& s2BIT(0)))) {
2564 ring
->rx_curr_put_info
.offset
= off
;
2567 /* calculate size of skb based on ring mode */
2569 HEADER_ETHERNET_II_802_3_SIZE
+
2570 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2571 if (ring
->rxd_mode
== RXD_MODE_1
)
2572 size
+= NET_IP_ALIGN
;
2574 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2577 skb
= dev_alloc_skb(size
);
2579 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2583 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2585 swstats
->mem_alloc_fail_cnt
++;
2589 swstats
->mem_allocated
+= skb
->truesize
;
2591 if (ring
->rxd_mode
== RXD_MODE_1
) {
2592 /* 1 buffer mode - normal operation mode */
2593 rxdp1
= (struct RxD1
*)rxdp
;
2594 memset(rxdp
, 0, sizeof(struct RxD1
));
2595 skb_reserve(skb
, NET_IP_ALIGN
);
2596 rxdp1
->Buffer0_ptr
=
2597 pci_map_single(ring
->pdev
, skb
->data
,
2598 size
- NET_IP_ALIGN
,
2599 PCI_DMA_FROMDEVICE
);
2600 if (pci_dma_mapping_error(nic
->pdev
,
2601 rxdp1
->Buffer0_ptr
))
2602 goto pci_map_failed
;
2605 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2606 rxdp
->Host_Control
= (unsigned long)skb
;
2607 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2610 * 2 buffer mode provides 128
2611 * byte aligned receive buffers.
2614 rxdp3
= (struct RxD3
*)rxdp
;
2615 /* save buffer pointers to avoid frequent dma mapping */
2616 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2617 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2618 memset(rxdp
, 0, sizeof(struct RxD3
));
2619 /* restore the buffer pointers for dma sync*/
2620 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2621 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2623 ba
= &ring
->ba
[block_no
][off
];
2624 skb_reserve(skb
, BUF0_LEN
);
2625 tmp
= (u64
)(unsigned long)skb
->data
;
2628 skb
->data
= (void *) (unsigned long)tmp
;
2629 skb_reset_tail_pointer(skb
);
2632 rxdp3
->Buffer0_ptr
=
2633 pci_map_single(ring
->pdev
, ba
->ba_0
,
2635 PCI_DMA_FROMDEVICE
);
2636 if (pci_dma_mapping_error(nic
->pdev
,
2637 rxdp3
->Buffer0_ptr
))
2638 goto pci_map_failed
;
2640 pci_dma_sync_single_for_device(ring
->pdev
,
2641 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2643 PCI_DMA_FROMDEVICE
);
2645 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2646 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2647 /* Two buffer mode */
2650 * Buffer2 will have L3/L4 header plus
2653 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2656 PCI_DMA_FROMDEVICE
);
2658 if (pci_dma_mapping_error(nic
->pdev
,
2659 rxdp3
->Buffer2_ptr
))
2660 goto pci_map_failed
;
2663 rxdp3
->Buffer1_ptr
=
2664 pci_map_single(ring
->pdev
,
2667 PCI_DMA_FROMDEVICE
);
2669 if (pci_dma_mapping_error(nic
->pdev
,
2670 rxdp3
->Buffer1_ptr
)) {
2671 pci_unmap_single(ring
->pdev
,
2672 (dma_addr_t
)(unsigned long)
2675 PCI_DMA_FROMDEVICE
);
2676 goto pci_map_failed
;
2679 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2680 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2683 rxdp
->Control_2
|= s2BIT(0);
2684 rxdp
->Host_Control
= (unsigned long) (skb
);
2686 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2687 rxdp
->Control_1
|= RXD_OWN_XENA
;
2689 if (off
== (ring
->rxd_count
+ 1))
2691 ring
->rx_curr_put_info
.offset
= off
;
2693 rxdp
->Control_2
|= SET_RXD_MARKER
;
2694 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2697 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2701 ring
->rx_bufs_left
+= 1;
2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2712 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2718 swstats
->pci_map_fail_cnt
++;
2719 swstats
->mem_freed
+= skb
->truesize
;
2720 dev_kfree_skb_irq(skb
);
2724 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2726 struct net_device
*dev
= sp
->dev
;
2728 struct sk_buff
*skb
;
2733 struct mac_info
*mac_control
= &sp
->mac_control
;
2734 struct stat_block
*stats
= mac_control
->stats_info
;
2735 struct swStat
*swstats
= &stats
->sw_stat
;
2737 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2738 rxdp
= mac_control
->rings
[ring_no
].
2739 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2740 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2743 if (sp
->rxd_mode
== RXD_MODE_1
) {
2744 rxdp1
= (struct RxD1
*)rxdp
;
2745 pci_unmap_single(sp
->pdev
,
2746 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2748 HEADER_ETHERNET_II_802_3_SIZE
+
2749 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2750 PCI_DMA_FROMDEVICE
);
2751 memset(rxdp
, 0, sizeof(struct RxD1
));
2752 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2753 rxdp3
= (struct RxD3
*)rxdp
;
2754 ba
= &mac_control
->rings
[ring_no
].ba
[blk
][j
];
2755 pci_unmap_single(sp
->pdev
,
2756 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2758 PCI_DMA_FROMDEVICE
);
2759 pci_unmap_single(sp
->pdev
,
2760 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2762 PCI_DMA_FROMDEVICE
);
2763 pci_unmap_single(sp
->pdev
,
2764 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2766 PCI_DMA_FROMDEVICE
);
2767 memset(rxdp
, 0, sizeof(struct RxD3
));
2769 swstats
->mem_freed
+= skb
->truesize
;
2771 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2776 * free_rx_buffers - Frees all Rx buffers
2777 * @sp: device private variable.
2779 * This function will free all Rx buffers allocated by host.
2784 static void free_rx_buffers(struct s2io_nic
*sp
)
2786 struct net_device
*dev
= sp
->dev
;
2787 int i
, blk
= 0, buf_cnt
= 0;
2788 struct config_param
*config
= &sp
->config
;
2789 struct mac_info
*mac_control
= &sp
->mac_control
;
2791 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2792 struct ring_info
*ring
= &mac_control
->rings
[i
];
2794 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2795 free_rxd_blk(sp
, i
, blk
);
2797 ring
->rx_curr_put_info
.block_index
= 0;
2798 ring
->rx_curr_get_info
.block_index
= 0;
2799 ring
->rx_curr_put_info
.offset
= 0;
2800 ring
->rx_curr_get_info
.offset
= 0;
2801 ring
->rx_bufs_left
= 0;
2802 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2803 dev
->name
, buf_cnt
, i
);
2807 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2809 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2810 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2817 * s2io_poll - Rx interrupt handler for NAPI support
2818 * @napi : pointer to the napi structure.
2819 * @budget : The number of packets that were budgeted to be processed
2820 * during one pass through the 'Poll" function.
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2829 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2831 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2832 struct net_device
*dev
= ring
->dev
;
2833 int pkts_processed
= 0;
2834 u8 __iomem
*addr
= NULL
;
2836 struct s2io_nic
*nic
= netdev_priv(dev
);
2837 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2838 int budget_org
= budget
;
2840 if (unlikely(!is_s2io_card_up(nic
)))
2843 pkts_processed
= rx_intr_handler(ring
, budget
);
2844 s2io_chk_rx_buffers(nic
, ring
);
2846 if (pkts_processed
< budget_org
) {
2847 napi_complete(napi
);
2848 /*Re Enable MSI-Rx Vector*/
2849 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2850 addr
+= 7 - ring
->ring_no
;
2851 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2855 return pkts_processed
;
2858 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2860 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2861 int pkts_processed
= 0;
2862 int ring_pkts_processed
, i
;
2863 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2864 int budget_org
= budget
;
2865 struct config_param
*config
= &nic
->config
;
2866 struct mac_info
*mac_control
= &nic
->mac_control
;
2868 if (unlikely(!is_s2io_card_up(nic
)))
2871 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2872 struct ring_info
*ring
= &mac_control
->rings
[i
];
2873 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2874 s2io_chk_rx_buffers(nic
, ring
);
2875 pkts_processed
+= ring_pkts_processed
;
2876 budget
-= ring_pkts_processed
;
2880 if (pkts_processed
< budget_org
) {
2881 napi_complete(napi
);
2882 /* Re enable the Rx interrupts for the ring */
2883 writeq(0, &bar0
->rx_traffic_mask
);
2884 readl(&bar0
->rx_traffic_mask
);
2886 return pkts_processed
;
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 * s2io_netpoll - netpoll event handler entry point
2892 * @dev : pointer to the device structure.
2894 * This function will be called by upper layer to check for events on the
2895 * interface in situations where interrupts are disabled. It is used for
2896 * specific in-kernel networking tasks, such as remote consoles and kernel
2897 * debugging over the network (example netdump in RedHat).
2899 static void s2io_netpoll(struct net_device
*dev
)
2901 struct s2io_nic
*nic
= netdev_priv(dev
);
2902 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2903 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2905 struct config_param
*config
= &nic
->config
;
2906 struct mac_info
*mac_control
= &nic
->mac_control
;
2908 if (pci_channel_offline(nic
->pdev
))
2911 disable_irq(dev
->irq
);
2913 writeq(val64
, &bar0
->rx_traffic_int
);
2914 writeq(val64
, &bar0
->tx_traffic_int
);
2916 /* we need to free up the transmitted skbufs or else netpoll will
2917 * run out of skbs and will fail and eventually netpoll application such
2918 * as netdump will fail.
2920 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2921 tx_intr_handler(&mac_control
->fifos
[i
]);
2923 /* check for received packet and indicate up to network */
2924 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2925 struct ring_info
*ring
= &mac_control
->rings
[i
];
2927 rx_intr_handler(ring
, 0);
2930 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2931 struct ring_info
*ring
= &mac_control
->rings
[i
];
2933 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2935 "%s: Out of memory in Rx Netpoll!!\n",
2940 enable_irq(dev
->irq
);
2945 * rx_intr_handler - Rx interrupt handler
2946 * @ring_info: per ring structure.
2947 * @budget: budget for napi processing.
2949 * If the interrupt is because of a received frame or if the
2950 * receive ring contains fresh as yet un-processed frames,this function is
2951 * called. It picks out the RxD at which place the last Rx processing had
2952 * stopped and sends the skb to the OSM's Rx handler and then increments
2955 * No. of napi packets processed.
2957 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2959 int get_block
, put_block
;
2960 struct rx_curr_get_info get_info
, put_info
;
2962 struct sk_buff
*skb
;
2963 int pkt_cnt
= 0, napi_pkts
= 0;
2968 get_info
= ring_data
->rx_curr_get_info
;
2969 get_block
= get_info
.block_index
;
2970 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2971 put_block
= put_info
.block_index
;
2972 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2974 while (RXD_IS_UP2DT(rxdp
)) {
2976 * If your are next to put index then it's
2977 * FIFO full condition
2979 if ((get_block
== put_block
) &&
2980 (get_info
.offset
+ 1) == put_info
.offset
) {
2981 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2982 ring_data
->dev
->name
);
2985 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2987 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2988 ring_data
->dev
->name
);
2991 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2992 rxdp1
= (struct RxD1
*)rxdp
;
2993 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2996 HEADER_ETHERNET_II_802_3_SIZE
+
2999 PCI_DMA_FROMDEVICE
);
3000 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3001 rxdp3
= (struct RxD3
*)rxdp
;
3002 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3003 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3005 PCI_DMA_FROMDEVICE
);
3006 pci_unmap_single(ring_data
->pdev
,
3007 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3009 PCI_DMA_FROMDEVICE
);
3011 prefetch(skb
->data
);
3012 rx_osm_handler(ring_data
, rxdp
);
3014 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3015 rxdp
= ring_data
->rx_blocks
[get_block
].
3016 rxds
[get_info
.offset
].virt_addr
;
3017 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3018 get_info
.offset
= 0;
3019 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3021 if (get_block
== ring_data
->block_count
)
3023 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3024 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3027 if (ring_data
->nic
->config
.napi
) {
3034 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3037 if (ring_data
->lro
) {
3038 /* Clear all LRO sessions before exiting */
3039 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3040 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3042 update_L3L4_header(ring_data
->nic
, lro
);
3043 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3044 clear_lro_session(lro
);
3052 * tx_intr_handler - Transmit interrupt handler
3053 * @nic : device private variable
3055 * If an interrupt was raised to indicate DMA complete of the
3056 * Tx packet, this function is called. It identifies the last TxD
3057 * whose buffer was freed and frees all skbs whose data have already
3058 * DMA'ed into the NICs internal memory.
3063 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3065 struct s2io_nic
*nic
= fifo_data
->nic
;
3066 struct tx_curr_get_info get_info
, put_info
;
3067 struct sk_buff
*skb
= NULL
;
3070 unsigned long flags
= 0;
3072 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3073 struct swStat
*swstats
= &stats
->sw_stat
;
3075 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3078 get_info
= fifo_data
->tx_curr_get_info
;
3079 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3080 txdlp
= (struct TxD
*)
3081 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3082 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3083 (get_info
.offset
!= put_info
.offset
) &&
3084 (txdlp
->Host_Control
)) {
3085 /* Check for TxD errors */
3086 if (txdlp
->Control_1
& TXD_T_CODE
) {
3087 unsigned long long err
;
3088 err
= txdlp
->Control_1
& TXD_T_CODE
;
3090 swstats
->parity_err_cnt
++;
3093 /* update t_code statistics */
3094 err_mask
= err
>> 48;
3097 swstats
->tx_buf_abort_cnt
++;
3101 swstats
->tx_desc_abort_cnt
++;
3105 swstats
->tx_parity_err_cnt
++;
3109 swstats
->tx_link_loss_cnt
++;
3113 swstats
->tx_list_proc_err_cnt
++;
3118 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3120 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3121 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3127 /* Updating the statistics block */
3128 swstats
->mem_freed
+= skb
->truesize
;
3129 dev_kfree_skb_irq(skb
);
3132 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3133 get_info
.offset
= 0;
3134 txdlp
= (struct TxD
*)
3135 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3136 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3139 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3141 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3145 * s2io_mdio_write - Function to write in to MDIO registers
3146 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147 * @addr : address value
3148 * @value : data value
3149 * @dev : pointer to net_device structure
3151 * This function is used to write values to the MDIO registers
3154 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3155 struct net_device
*dev
)
3158 struct s2io_nic
*sp
= netdev_priv(dev
);
3159 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3161 /* address transaction */
3162 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3163 MDIO_MMD_DEV_ADDR(mmd_type
) |
3164 MDIO_MMS_PRT_ADDR(0x0);
3165 writeq(val64
, &bar0
->mdio_control
);
3166 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3167 writeq(val64
, &bar0
->mdio_control
);
3170 /* Data transaction */
3171 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3172 MDIO_MMD_DEV_ADDR(mmd_type
) |
3173 MDIO_MMS_PRT_ADDR(0x0) |
3174 MDIO_MDIO_DATA(value
) |
3175 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3176 writeq(val64
, &bar0
->mdio_control
);
3177 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3178 writeq(val64
, &bar0
->mdio_control
);
3181 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3182 MDIO_MMD_DEV_ADDR(mmd_type
) |
3183 MDIO_MMS_PRT_ADDR(0x0) |
3184 MDIO_OP(MDIO_OP_READ_TRANS
);
3185 writeq(val64
, &bar0
->mdio_control
);
3186 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3187 writeq(val64
, &bar0
->mdio_control
);
3192 * s2io_mdio_read - Function to write in to MDIO registers
3193 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194 * @addr : address value
3195 * @dev : pointer to net_device structure
3197 * This function is used to read values to the MDIO registers
3200 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3204 struct s2io_nic
*sp
= netdev_priv(dev
);
3205 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3207 /* address transaction */
3208 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3209 | MDIO_MMD_DEV_ADDR(mmd_type
)
3210 | MDIO_MMS_PRT_ADDR(0x0));
3211 writeq(val64
, &bar0
->mdio_control
);
3212 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64
, &bar0
->mdio_control
);
3216 /* Data transaction */
3217 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3218 MDIO_MMD_DEV_ADDR(mmd_type
) |
3219 MDIO_MMS_PRT_ADDR(0x0) |
3220 MDIO_OP(MDIO_OP_READ_TRANS
);
3221 writeq(val64
, &bar0
->mdio_control
);
3222 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64
, &bar0
->mdio_control
);
3226 /* Read the value from regs */
3227 rval64
= readq(&bar0
->mdio_control
);
3228 rval64
= rval64
& 0xFFFF0000;
3229 rval64
= rval64
>> 16;
3234 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3235 * @counter : counter value to be updated
3236 * @flag : flag to indicate the status
3237 * @type : counter type
3239 * This function is to check the status of the xpak counters value
3243 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3249 for (i
= 0; i
< index
; i
++)
3253 *counter
= *counter
+ 1;
3254 val64
= *regs_stat
& mask
;
3255 val64
= val64
>> (index
* 0x2);
3261 "Take Xframe NIC out of service.\n");
3263 "Excessive temperatures may result in premature transceiver failure.\n");
3267 "Take Xframe NIC out of service.\n");
3269 "Excessive bias currents may indicate imminent laser diode failure.\n");
3273 "Take Xframe NIC out of service.\n");
3275 "Excessive laser output power may saturate far-end receiver.\n");
3279 "Incorrect XPAK Alarm type\n");
3283 val64
= val64
<< (index
* 0x2);
3284 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3287 *regs_stat
= *regs_stat
& (~mask
);
3292 * s2io_updt_xpak_counter - Function to update the xpak counters
3293 * @dev : pointer to net_device struct
3295 * This function is to upate the status of the xpak counters value
3298 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3306 struct s2io_nic
*sp
= netdev_priv(dev
);
3307 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3308 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3310 /* Check the communication with the MDIO slave */
3313 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3314 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3316 "ERR: MDIO slave access failed - Returned %llx\n",
3317 (unsigned long long)val64
);
3321 /* Check for the expected value of control reg 1 */
3322 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3323 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3324 "Returned: %llx- Expected: 0x%x\n",
3325 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3329 /* Loading the DOM register to MDIO register */
3331 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3332 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3334 /* Reading the Alarm flags */
3337 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3339 flag
= CHECKBIT(val64
, 0x7);
3341 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3342 &xstats
->xpak_regs_stat
,
3345 if (CHECKBIT(val64
, 0x6))
3346 xstats
->alarm_transceiver_temp_low
++;
3348 flag
= CHECKBIT(val64
, 0x3);
3350 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3351 &xstats
->xpak_regs_stat
,
3354 if (CHECKBIT(val64
, 0x2))
3355 xstats
->alarm_laser_bias_current_low
++;
3357 flag
= CHECKBIT(val64
, 0x1);
3359 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3360 &xstats
->xpak_regs_stat
,
3363 if (CHECKBIT(val64
, 0x0))
3364 xstats
->alarm_laser_output_power_low
++;
3366 /* Reading the Warning flags */
3369 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3371 if (CHECKBIT(val64
, 0x7))
3372 xstats
->warn_transceiver_temp_high
++;
3374 if (CHECKBIT(val64
, 0x6))
3375 xstats
->warn_transceiver_temp_low
++;
3377 if (CHECKBIT(val64
, 0x3))
3378 xstats
->warn_laser_bias_current_high
++;
3380 if (CHECKBIT(val64
, 0x2))
3381 xstats
->warn_laser_bias_current_low
++;
3383 if (CHECKBIT(val64
, 0x1))
3384 xstats
->warn_laser_output_power_high
++;
3386 if (CHECKBIT(val64
, 0x0))
3387 xstats
->warn_laser_output_power_low
++;
3391 * wait_for_cmd_complete - waits for a command to complete.
3392 * @sp : private member of the device structure, which is a pointer to the
3393 * s2io_nic structure.
3394 * Description: Function that waits for a command to Write into RMAC
3395 * ADDR DATA registers to be completed and returns either success or
3396 * error depending on whether the command was complete or not.
3398 * SUCCESS on success and FAILURE on failure.
3401 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3404 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3407 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3411 val64
= readq(addr
);
3412 if (bit_state
== S2IO_BIT_RESET
) {
3413 if (!(val64
& busy_bit
)) {
3418 if (val64
& busy_bit
) {
3435 * check_pci_device_id - Checks if the device id is supported
3437 * Description: Function to check if the pci device id is supported by driver.
3438 * Return value: Actual device id if supported else PCI_ANY_ID
3440 static u16
check_pci_device_id(u16 id
)
3443 case PCI_DEVICE_ID_HERC_WIN
:
3444 case PCI_DEVICE_ID_HERC_UNI
:
3445 return XFRAME_II_DEVICE
;
3446 case PCI_DEVICE_ID_S2IO_UNI
:
3447 case PCI_DEVICE_ID_S2IO_WIN
:
3448 return XFRAME_I_DEVICE
;
3455 * s2io_reset - Resets the card.
3456 * @sp : private member of the device structure.
3457 * Description: Function to Reset the card. This function then also
3458 * restores the previously saved PCI configuration space registers as
3459 * the card reset also resets the configuration space.
3464 static void s2io_reset(struct s2io_nic
*sp
)
3466 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3471 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3472 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3473 struct stat_block
*stats
;
3474 struct swStat
*swstats
;
3476 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3477 __func__
, pci_name(sp
->pdev
));
3479 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3480 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3482 val64
= SW_RESET_ALL
;
3483 writeq(val64
, &bar0
->sw_reset
);
3484 if (strstr(sp
->product_name
, "CX4"))
3487 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3489 /* Restore the PCI state saved during initialization. */
3490 pci_restore_state(sp
->pdev
);
3491 pci_save_state(sp
->pdev
);
3492 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3493 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3498 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3499 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3501 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3505 /* Set swapper to enable I/O register access */
3506 s2io_set_swapper(sp
);
3508 /* restore mac_addr entries */
3509 do_s2io_restore_unicast_mc(sp
);
3511 /* Restore the MSIX table entries from local variables */
3512 restore_xmsi_data(sp
);
3514 /* Clear certain PCI/PCI-X fields after reset */
3515 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3516 /* Clear "detected parity error" bit */
3517 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3519 /* Clearing PCIX Ecc status register */
3520 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3522 /* Clearing PCI_STATUS error reflected here */
3523 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3526 /* Reset device statistics maintained by OS */
3527 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3529 stats
= sp
->mac_control
.stats_info
;
3530 swstats
= &stats
->sw_stat
;
3532 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3533 up_cnt
= swstats
->link_up_cnt
;
3534 down_cnt
= swstats
->link_down_cnt
;
3535 up_time
= swstats
->link_up_time
;
3536 down_time
= swstats
->link_down_time
;
3537 reset_cnt
= swstats
->soft_reset_cnt
;
3538 mem_alloc_cnt
= swstats
->mem_allocated
;
3539 mem_free_cnt
= swstats
->mem_freed
;
3540 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3542 memset(stats
, 0, sizeof(struct stat_block
));
3544 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3545 swstats
->link_up_cnt
= up_cnt
;
3546 swstats
->link_down_cnt
= down_cnt
;
3547 swstats
->link_up_time
= up_time
;
3548 swstats
->link_down_time
= down_time
;
3549 swstats
->soft_reset_cnt
= reset_cnt
;
3550 swstats
->mem_allocated
= mem_alloc_cnt
;
3551 swstats
->mem_freed
= mem_free_cnt
;
3552 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3554 /* SXE-002: Configure link and activity LED to turn it off */
3555 subid
= sp
->pdev
->subsystem_device
;
3556 if (((subid
& 0xFF) >= 0x07) &&
3557 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3558 val64
= readq(&bar0
->gpio_control
);
3559 val64
|= 0x0000800000000000ULL
;
3560 writeq(val64
, &bar0
->gpio_control
);
3561 val64
= 0x0411040400000000ULL
;
3562 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3566 * Clear spurious ECC interrupts that would have occurred on
3567 * XFRAME II cards after reset.
3569 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3570 val64
= readq(&bar0
->pcc_err_reg
);
3571 writeq(val64
, &bar0
->pcc_err_reg
);
3574 sp
->device_enabled_once
= false;
3578 * s2io_set_swapper - to set the swapper controle on the card
3579 * @sp : private member of the device structure,
3580 * pointer to the s2io_nic structure.
3581 * Description: Function to set the swapper control on the card
3582 * correctly depending on the 'endianness' of the system.
3584 * SUCCESS on success and FAILURE on failure.
3587 static int s2io_set_swapper(struct s2io_nic
*sp
)
3589 struct net_device
*dev
= sp
->dev
;
3590 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3591 u64 val64
, valt
, valr
;
3594 * Set proper endian settings and verify the same by reading
3595 * the PIF Feed-back register.
3598 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3599 if (val64
!= 0x0123456789ABCDEFULL
) {
3601 static const u64 value
[] = {
3602 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3603 0x8100008181000081ULL
, /* FE=1, SE=0 */
3604 0x4200004242000042ULL
, /* FE=0, SE=1 */
3609 writeq(value
[i
], &bar0
->swapper_ctrl
);
3610 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3611 if (val64
== 0x0123456789ABCDEFULL
)
3616 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3617 "feedback read %llx\n",
3618 dev
->name
, (unsigned long long)val64
);
3623 valr
= readq(&bar0
->swapper_ctrl
);
3626 valt
= 0x0123456789ABCDEFULL
;
3627 writeq(valt
, &bar0
->xmsi_address
);
3628 val64
= readq(&bar0
->xmsi_address
);
3630 if (val64
!= valt
) {
3632 static const u64 value
[] = {
3633 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3634 0x0081810000818100ULL
, /* FE=1, SE=0 */
3635 0x0042420000424200ULL
, /* FE=0, SE=1 */
3640 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3641 writeq(valt
, &bar0
->xmsi_address
);
3642 val64
= readq(&bar0
->xmsi_address
);
3648 unsigned long long x
= val64
;
3650 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3654 val64
= readq(&bar0
->swapper_ctrl
);
3655 val64
&= 0xFFFF000000000000ULL
;
3659 * The device by default set to a big endian format, so a
3660 * big endian driver need not set anything.
3662 val64
|= (SWAPPER_CTRL_TXP_FE
|
3663 SWAPPER_CTRL_TXP_SE
|
3664 SWAPPER_CTRL_TXD_R_FE
|
3665 SWAPPER_CTRL_TXD_W_FE
|
3666 SWAPPER_CTRL_TXF_R_FE
|
3667 SWAPPER_CTRL_RXD_R_FE
|
3668 SWAPPER_CTRL_RXD_W_FE
|
3669 SWAPPER_CTRL_RXF_W_FE
|
3670 SWAPPER_CTRL_XMSI_FE
|
3671 SWAPPER_CTRL_STATS_FE
|
3672 SWAPPER_CTRL_STATS_SE
);
3673 if (sp
->config
.intr_type
== INTA
)
3674 val64
|= SWAPPER_CTRL_XMSI_SE
;
3675 writeq(val64
, &bar0
->swapper_ctrl
);
3678 * Initially we enable all bits to make it accessible by the
3679 * driver, then we selectively enable only those bits that
3682 val64
|= (SWAPPER_CTRL_TXP_FE
|
3683 SWAPPER_CTRL_TXP_SE
|
3684 SWAPPER_CTRL_TXD_R_FE
|
3685 SWAPPER_CTRL_TXD_R_SE
|
3686 SWAPPER_CTRL_TXD_W_FE
|
3687 SWAPPER_CTRL_TXD_W_SE
|
3688 SWAPPER_CTRL_TXF_R_FE
|
3689 SWAPPER_CTRL_RXD_R_FE
|
3690 SWAPPER_CTRL_RXD_R_SE
|
3691 SWAPPER_CTRL_RXD_W_FE
|
3692 SWAPPER_CTRL_RXD_W_SE
|
3693 SWAPPER_CTRL_RXF_W_FE
|
3694 SWAPPER_CTRL_XMSI_FE
|
3695 SWAPPER_CTRL_STATS_FE
|
3696 SWAPPER_CTRL_STATS_SE
);
3697 if (sp
->config
.intr_type
== INTA
)
3698 val64
|= SWAPPER_CTRL_XMSI_SE
;
3699 writeq(val64
, &bar0
->swapper_ctrl
);
3701 val64
= readq(&bar0
->swapper_ctrl
);
3704 * Verifying if endian settings are accurate by reading a
3705 * feedback register.
3707 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3708 if (val64
!= 0x0123456789ABCDEFULL
) {
3709 /* Endian settings are incorrect, calls for another dekko. */
3711 "%s: Endian settings are wrong, feedback read %llx\n",
3712 dev
->name
, (unsigned long long)val64
);
3719 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3721 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3723 int ret
= 0, cnt
= 0;
3726 val64
= readq(&bar0
->xmsi_access
);
3727 if (!(val64
& s2BIT(15)))
3733 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3740 static void restore_xmsi_data(struct s2io_nic
*nic
)
3742 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3746 if (nic
->device_type
== XFRAME_I_DEVICE
)
3749 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3750 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3751 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3752 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3753 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3754 writeq(val64
, &bar0
->xmsi_access
);
3755 if (wait_for_msix_trans(nic
, msix_index
)) {
3756 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3757 __func__
, msix_index
);
3763 static void store_xmsi_data(struct s2io_nic
*nic
)
3765 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3766 u64 val64
, addr
, data
;
3769 if (nic
->device_type
== XFRAME_I_DEVICE
)
3772 /* Store and display */
3773 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3774 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3775 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3776 writeq(val64
, &bar0
->xmsi_access
);
3777 if (wait_for_msix_trans(nic
, msix_index
)) {
3778 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3779 __func__
, msix_index
);
3782 addr
= readq(&bar0
->xmsi_address
);
3783 data
= readq(&bar0
->xmsi_data
);
3785 nic
->msix_info
[i
].addr
= addr
;
3786 nic
->msix_info
[i
].data
= data
;
3791 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3793 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3795 u16 msi_control
; /* Temp variable */
3796 int ret
, i
, j
, msix_indx
= 1;
3798 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3799 struct swStat
*swstats
= &stats
->sw_stat
;
3801 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3802 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3803 if (!nic
->entries
) {
3804 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3806 swstats
->mem_alloc_fail_cnt
++;
3809 swstats
->mem_allocated
+= size
;
3811 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3812 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3813 if (!nic
->s2io_entries
) {
3814 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3816 swstats
->mem_alloc_fail_cnt
++;
3817 kfree(nic
->entries
);
3819 += (nic
->num_entries
* sizeof(struct msix_entry
));
3822 swstats
->mem_allocated
+= size
;
3824 nic
->entries
[0].entry
= 0;
3825 nic
->s2io_entries
[0].entry
= 0;
3826 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3827 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3828 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3830 for (i
= 1; i
< nic
->num_entries
; i
++) {
3831 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3832 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3833 nic
->s2io_entries
[i
].arg
= NULL
;
3834 nic
->s2io_entries
[i
].in_use
= 0;
3837 rx_mat
= readq(&bar0
->rx_mat
);
3838 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3839 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3840 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3841 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3842 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3845 writeq(rx_mat
, &bar0
->rx_mat
);
3846 readq(&bar0
->rx_mat
);
3848 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3849 /* We fail init if error or we get less vectors than min required */
3851 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3852 kfree(nic
->entries
);
3853 swstats
->mem_freed
+= nic
->num_entries
*
3854 sizeof(struct msix_entry
);
3855 kfree(nic
->s2io_entries
);
3856 swstats
->mem_freed
+= nic
->num_entries
*
3857 sizeof(struct s2io_msix_entry
);
3858 nic
->entries
= NULL
;
3859 nic
->s2io_entries
= NULL
;
3864 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865 * in the herc NIC. (Temp change, needs to be removed later)
3867 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3868 msi_control
|= 0x1; /* Enable MSI */
3869 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3874 /* Handle software interrupt used during MSI(X) test */
3875 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3877 struct s2io_nic
*sp
= dev_id
;
3879 sp
->msi_detected
= 1;
3880 wake_up(&sp
->msi_wait
);
3885 /* Test interrupt path by forcing a a software IRQ */
3886 static int s2io_test_msi(struct s2io_nic
*sp
)
3888 struct pci_dev
*pdev
= sp
->pdev
;
3889 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3893 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3896 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3897 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3901 init_waitqueue_head(&sp
->msi_wait
);
3902 sp
->msi_detected
= 0;
3904 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3905 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3906 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3907 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3908 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3910 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3912 if (!sp
->msi_detected
) {
3913 /* MSI(X) test failed, go back to INTx mode */
3914 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3915 "using MSI(X) during test\n",
3916 sp
->dev
->name
, pci_name(pdev
));
3921 free_irq(sp
->entries
[1].vector
, sp
);
3923 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3928 static void remove_msix_isr(struct s2io_nic
*sp
)
3933 for (i
= 0; i
< sp
->num_entries
; i
++) {
3934 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3935 int vector
= sp
->entries
[i
].vector
;
3936 void *arg
= sp
->s2io_entries
[i
].arg
;
3937 free_irq(vector
, arg
);
3942 kfree(sp
->s2io_entries
);
3944 sp
->s2io_entries
= NULL
;
3946 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3947 msi_control
&= 0xFFFE; /* Disable MSI */
3948 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3950 pci_disable_msix(sp
->pdev
);
3953 static void remove_inta_isr(struct s2io_nic
*sp
)
3955 struct net_device
*dev
= sp
->dev
;
3957 free_irq(sp
->pdev
->irq
, dev
);
3960 /* ********************************************************* *
3961 * Functions defined below concern the OS part of the driver *
3962 * ********************************************************* */
3965 * s2io_open - open entry point of the driver
3966 * @dev : pointer to the device structure.
3968 * This function is the open entry point of the driver. It mainly calls a
3969 * function to allocate Rx buffers and inserts them into the buffer
3970 * descriptors and then enables the Rx part of the NIC.
3972 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 static int s2io_open(struct net_device
*dev
)
3978 struct s2io_nic
*sp
= netdev_priv(dev
);
3979 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3983 * Make sure you have link off by default every time
3984 * Nic is initialized
3986 netif_carrier_off(dev
);
3987 sp
->last_link_state
= 0;
3989 /* Initialize H/W and enable interrupts */
3990 err
= s2io_card_up(sp
);
3992 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3994 goto hw_init_failed
;
3997 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3998 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4001 goto hw_init_failed
;
4003 s2io_start_all_tx_queue(sp
);
4007 if (sp
->config
.intr_type
== MSI_X
) {
4010 swstats
->mem_freed
+= sp
->num_entries
*
4011 sizeof(struct msix_entry
);
4013 if (sp
->s2io_entries
) {
4014 kfree(sp
->s2io_entries
);
4015 swstats
->mem_freed
+= sp
->num_entries
*
4016 sizeof(struct s2io_msix_entry
);
4023 * s2io_close -close entry point of the driver
4024 * @dev : device pointer.
4026 * This is the stop entry point of the driver. It needs to undo exactly
4027 * whatever was done by the open entry point,thus it's usually referred to
4028 * as the close function.Among other things this function mainly stops the
4029 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4035 static int s2io_close(struct net_device
*dev
)
4037 struct s2io_nic
*sp
= netdev_priv(dev
);
4038 struct config_param
*config
= &sp
->config
;
4042 /* Return if the device is already closed *
4043 * Can happen when s2io_card_up failed in change_mtu *
4045 if (!is_s2io_card_up(sp
))
4048 s2io_stop_all_tx_queue(sp
);
4049 /* delete all populated mac entries */
4050 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4051 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4052 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4053 do_s2io_delete_unicast_mc(sp
, tmp64
);
4062 * s2io_xmit - Tx entry point of te driver
4063 * @skb : the socket buffer containing the Tx data.
4064 * @dev : device pointer.
4066 * This function is the Tx entry point of the driver. S2IO NIC supports
4067 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4068 * NOTE: when device can't queue the pkt,just the trans_start variable will
4071 * 0 on success & 1 on failure.
4074 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4076 struct s2io_nic
*sp
= netdev_priv(dev
);
4077 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4080 struct TxFIFO_element __iomem
*tx_fifo
;
4081 unsigned long flags
= 0;
4083 struct fifo_info
*fifo
= NULL
;
4084 int do_spin_lock
= 1;
4086 int enable_per_list_interrupt
= 0;
4087 struct config_param
*config
= &sp
->config
;
4088 struct mac_info
*mac_control
= &sp
->mac_control
;
4089 struct stat_block
*stats
= mac_control
->stats_info
;
4090 struct swStat
*swstats
= &stats
->sw_stat
;
4092 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4094 if (unlikely(skb
->len
<= 0)) {
4095 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4096 dev_kfree_skb_any(skb
);
4097 return NETDEV_TX_OK
;
4100 if (!is_s2io_card_up(sp
)) {
4101 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4104 return NETDEV_TX_OK
;
4108 if (vlan_tx_tag_present(skb
))
4109 vlan_tag
= vlan_tx_tag_get(skb
);
4110 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4111 if (skb
->protocol
== htons(ETH_P_IP
)) {
4116 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4117 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4120 if (ip
->protocol
== IPPROTO_TCP
) {
4121 queue_len
= sp
->total_tcp_fifos
;
4122 queue
= (ntohs(th
->source
) +
4124 sp
->fifo_selector
[queue_len
- 1];
4125 if (queue
>= queue_len
)
4126 queue
= queue_len
- 1;
4127 } else if (ip
->protocol
== IPPROTO_UDP
) {
4128 queue_len
= sp
->total_udp_fifos
;
4129 queue
= (ntohs(th
->source
) +
4131 sp
->fifo_selector
[queue_len
- 1];
4132 if (queue
>= queue_len
)
4133 queue
= queue_len
- 1;
4134 queue
+= sp
->udp_fifo_idx
;
4135 if (skb
->len
> 1024)
4136 enable_per_list_interrupt
= 1;
4141 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4142 /* get fifo number based on skb->priority value */
4143 queue
= config
->fifo_mapping
4144 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4145 fifo
= &mac_control
->fifos
[queue
];
4148 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4150 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4151 return NETDEV_TX_LOCKED
;
4154 if (sp
->config
.multiq
) {
4155 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4156 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4157 return NETDEV_TX_BUSY
;
4159 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4160 if (netif_queue_stopped(dev
)) {
4161 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4162 return NETDEV_TX_BUSY
;
4166 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4167 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4168 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4170 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4171 /* Avoid "put" pointer going beyond "get" pointer */
4172 if (txdp
->Host_Control
||
4173 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4174 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4175 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4177 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4178 return NETDEV_TX_OK
;
4181 offload_type
= s2io_offload_type(skb
);
4182 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4183 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4184 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4186 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4187 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4191 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4192 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4193 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4194 if (enable_per_list_interrupt
)
4195 if (put_off
& (queue_len
>> 5))
4196 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4198 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4199 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4202 frg_len
= skb_headlen(skb
);
4203 if (offload_type
== SKB_GSO_UDP
) {
4206 ufo_size
= s2io_udp_mss(skb
);
4208 txdp
->Control_1
|= TXD_UFO_EN
;
4209 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4210 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4212 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213 fifo
->ufo_in_band_v
[put_off
] =
4214 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4216 fifo
->ufo_in_band_v
[put_off
] =
4217 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4219 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4220 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4221 fifo
->ufo_in_band_v
,
4224 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4225 goto pci_map_failed
;
4229 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4230 frg_len
, PCI_DMA_TODEVICE
);
4231 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4232 goto pci_map_failed
;
4234 txdp
->Host_Control
= (unsigned long)skb
;
4235 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4236 if (offload_type
== SKB_GSO_UDP
)
4237 txdp
->Control_1
|= TXD_UFO_EN
;
4239 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4240 /* For fragmented SKB. */
4241 for (i
= 0; i
< frg_cnt
; i
++) {
4242 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4243 /* A '0' length fragment will be ignored */
4247 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4251 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4252 if (offload_type
== SKB_GSO_UDP
)
4253 txdp
->Control_1
|= TXD_UFO_EN
;
4255 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4257 if (offload_type
== SKB_GSO_UDP
)
4258 frg_cnt
++; /* as Txd0 was used for inband header */
4260 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4261 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4262 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4264 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4267 val64
|= TX_FIFO_SPECIAL_FUNC
;
4269 writeq(val64
, &tx_fifo
->List_Control
);
4274 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4276 fifo
->tx_curr_put_info
.offset
= put_off
;
4278 /* Avoid "put" pointer going beyond "get" pointer */
4279 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4280 swstats
->fifo_full_cnt
++;
4282 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4286 swstats
->mem_allocated
+= skb
->truesize
;
4287 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4289 if (sp
->config
.intr_type
== MSI_X
)
4290 tx_intr_handler(fifo
);
4292 return NETDEV_TX_OK
;
4295 swstats
->pci_map_fail_cnt
++;
4296 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4297 swstats
->mem_freed
+= skb
->truesize
;
4299 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4300 return NETDEV_TX_OK
;
4304 s2io_alarm_handle(unsigned long data
)
4306 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4307 struct net_device
*dev
= sp
->dev
;
4309 s2io_handle_errors(dev
);
4310 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4313 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4315 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4316 struct s2io_nic
*sp
= ring
->nic
;
4317 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4319 if (unlikely(!is_s2io_card_up(sp
)))
4322 if (sp
->config
.napi
) {
4323 u8 __iomem
*addr
= NULL
;
4326 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4327 addr
+= (7 - ring
->ring_no
);
4328 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4331 napi_schedule(&ring
->napi
);
4333 rx_intr_handler(ring
, 0);
4334 s2io_chk_rx_buffers(sp
, ring
);
4340 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4343 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4344 struct s2io_nic
*sp
= fifos
->nic
;
4345 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4346 struct config_param
*config
= &sp
->config
;
4349 if (unlikely(!is_s2io_card_up(sp
)))
4352 reason
= readq(&bar0
->general_int_status
);
4353 if (unlikely(reason
== S2IO_MINUS_ONE
))
4354 /* Nothing much can be done. Get out */
4357 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4358 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4360 if (reason
& GEN_INTR_TXPIC
)
4361 s2io_txpic_intr_handle(sp
);
4363 if (reason
& GEN_INTR_TXTRAFFIC
)
4364 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4366 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4367 tx_intr_handler(&fifos
[i
]);
4369 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4370 readl(&bar0
->general_int_status
);
4373 /* The interrupt was not raised by us */
4377 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4379 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4382 val64
= readq(&bar0
->pic_int_status
);
4383 if (val64
& PIC_INT_GPIO
) {
4384 val64
= readq(&bar0
->gpio_int_reg
);
4385 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4386 (val64
& GPIO_INT_REG_LINK_UP
)) {
4388 * This is unstable state so clear both up/down
4389 * interrupt and adapter to re-evaluate the link state.
4391 val64
|= GPIO_INT_REG_LINK_DOWN
;
4392 val64
|= GPIO_INT_REG_LINK_UP
;
4393 writeq(val64
, &bar0
->gpio_int_reg
);
4394 val64
= readq(&bar0
->gpio_int_mask
);
4395 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4396 GPIO_INT_MASK_LINK_DOWN
);
4397 writeq(val64
, &bar0
->gpio_int_mask
);
4398 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4399 val64
= readq(&bar0
->adapter_status
);
4400 /* Enable Adapter */
4401 val64
= readq(&bar0
->adapter_control
);
4402 val64
|= ADAPTER_CNTL_EN
;
4403 writeq(val64
, &bar0
->adapter_control
);
4404 val64
|= ADAPTER_LED_ON
;
4405 writeq(val64
, &bar0
->adapter_control
);
4406 if (!sp
->device_enabled_once
)
4407 sp
->device_enabled_once
= 1;
4409 s2io_link(sp
, LINK_UP
);
4411 * unmask link down interrupt and mask link-up
4414 val64
= readq(&bar0
->gpio_int_mask
);
4415 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4416 val64
|= GPIO_INT_MASK_LINK_UP
;
4417 writeq(val64
, &bar0
->gpio_int_mask
);
4419 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4420 val64
= readq(&bar0
->adapter_status
);
4421 s2io_link(sp
, LINK_DOWN
);
4422 /* Link is down so unmaks link up interrupt */
4423 val64
= readq(&bar0
->gpio_int_mask
);
4424 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4425 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4426 writeq(val64
, &bar0
->gpio_int_mask
);
4429 val64
= readq(&bar0
->adapter_control
);
4430 val64
= val64
& (~ADAPTER_LED_ON
);
4431 writeq(val64
, &bar0
->adapter_control
);
4434 val64
= readq(&bar0
->gpio_int_mask
);
4438 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439 * @value: alarm bits
4440 * @addr: address value
4441 * @cnt: counter variable
4442 * Description: Check for alarm and increment the counter
4444 * 1 - if alarm bit set
4445 * 0 - if alarm bit is not set
4447 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4448 unsigned long long *cnt
)
4451 val64
= readq(addr
);
4452 if (val64
& value
) {
4453 writeq(val64
, addr
);
4462 * s2io_handle_errors - Xframe error indication handler
4463 * @nic: device private variable
4464 * Description: Handle alarms such as loss of link, single or
4465 * double ECC errors, critical and serious errors.
4469 static void s2io_handle_errors(void *dev_id
)
4471 struct net_device
*dev
= (struct net_device
*)dev_id
;
4472 struct s2io_nic
*sp
= netdev_priv(dev
);
4473 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4474 u64 temp64
= 0, val64
= 0;
4477 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4478 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4480 if (!is_s2io_card_up(sp
))
4483 if (pci_channel_offline(sp
->pdev
))
4486 memset(&sw_stat
->ring_full_cnt
, 0,
4487 sizeof(sw_stat
->ring_full_cnt
));
4489 /* Handling the XPAK counters update */
4490 if (stats
->xpak_timer_count
< 72000) {
4491 /* waiting for an hour */
4492 stats
->xpak_timer_count
++;
4494 s2io_updt_xpak_counter(dev
);
4495 /* reset the count to zero */
4496 stats
->xpak_timer_count
= 0;
4499 /* Handling link status change error Intr */
4500 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4501 val64
= readq(&bar0
->mac_rmac_err_reg
);
4502 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4503 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4504 schedule_work(&sp
->set_link_task
);
4507 /* In case of a serious error, the device will be Reset. */
4508 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4509 &sw_stat
->serious_err_cnt
))
4512 /* Check for data parity error */
4513 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4514 &sw_stat
->parity_err_cnt
))
4517 /* Check for ring full counter */
4518 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4519 val64
= readq(&bar0
->ring_bump_counter1
);
4520 for (i
= 0; i
< 4; i
++) {
4521 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4522 temp64
>>= 64 - ((i
+1)*16);
4523 sw_stat
->ring_full_cnt
[i
] += temp64
;
4526 val64
= readq(&bar0
->ring_bump_counter2
);
4527 for (i
= 0; i
< 4; i
++) {
4528 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4529 temp64
>>= 64 - ((i
+1)*16);
4530 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4534 val64
= readq(&bar0
->txdma_int_status
);
4535 /*check for pfc_err*/
4536 if (val64
& TXDMA_PFC_INT
) {
4537 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4538 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4541 &sw_stat
->pfc_err_cnt
))
4543 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4545 &sw_stat
->pfc_err_cnt
);
4548 /*check for tda_err*/
4549 if (val64
& TXDMA_TDA_INT
) {
4550 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4554 &sw_stat
->tda_err_cnt
))
4556 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4558 &sw_stat
->tda_err_cnt
);
4560 /*check for pcc_err*/
4561 if (val64
& TXDMA_PCC_INT
) {
4562 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4563 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4564 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4565 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4568 &sw_stat
->pcc_err_cnt
))
4570 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4572 &sw_stat
->pcc_err_cnt
);
4575 /*check for tti_err*/
4576 if (val64
& TXDMA_TTI_INT
) {
4577 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4579 &sw_stat
->tti_err_cnt
))
4581 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4583 &sw_stat
->tti_err_cnt
);
4586 /*check for lso_err*/
4587 if (val64
& TXDMA_LSO_INT
) {
4588 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4589 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4591 &sw_stat
->lso_err_cnt
))
4593 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4595 &sw_stat
->lso_err_cnt
);
4598 /*check for tpa_err*/
4599 if (val64
& TXDMA_TPA_INT
) {
4600 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4602 &sw_stat
->tpa_err_cnt
))
4604 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4606 &sw_stat
->tpa_err_cnt
);
4609 /*check for sm_err*/
4610 if (val64
& TXDMA_SM_INT
) {
4611 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4613 &sw_stat
->sm_err_cnt
))
4617 val64
= readq(&bar0
->mac_int_status
);
4618 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4619 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4620 &bar0
->mac_tmac_err_reg
,
4621 &sw_stat
->mac_tmac_err_cnt
))
4623 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4624 TMAC_DESC_ECC_SG_ERR
|
4625 TMAC_DESC_ECC_DB_ERR
,
4626 &bar0
->mac_tmac_err_reg
,
4627 &sw_stat
->mac_tmac_err_cnt
);
4630 val64
= readq(&bar0
->xgxs_int_status
);
4631 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4633 &bar0
->xgxs_txgxs_err_reg
,
4634 &sw_stat
->xgxs_txgxs_err_cnt
))
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4637 &bar0
->xgxs_txgxs_err_reg
,
4638 &sw_stat
->xgxs_txgxs_err_cnt
);
4641 val64
= readq(&bar0
->rxdma_int_status
);
4642 if (val64
& RXDMA_INT_RC_INT_M
) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4645 RC_PRCn_SM_ERR_ALARM
|
4646 RC_FTC_SM_ERR_ALARM
,
4648 &sw_stat
->rc_err_cnt
))
4650 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4652 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4653 &sw_stat
->rc_err_cnt
);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4657 &bar0
->prc_pcix_err_reg
,
4658 &sw_stat
->prc_pcix_err_cnt
))
4660 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4663 &bar0
->prc_pcix_err_reg
,
4664 &sw_stat
->prc_pcix_err_cnt
);
4667 if (val64
& RXDMA_INT_RPA_INT_M
) {
4668 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4670 &sw_stat
->rpa_err_cnt
))
4672 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4674 &sw_stat
->rpa_err_cnt
);
4677 if (val64
& RXDMA_INT_RDA_INT_M
) {
4678 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4679 RDA_FRM_ECC_DB_N_AERR
|
4682 RDA_RXD_ECC_DB_SERR
,
4684 &sw_stat
->rda_err_cnt
))
4686 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4687 RDA_FRM_ECC_SG_ERR
|
4691 &sw_stat
->rda_err_cnt
);
4694 if (val64
& RXDMA_INT_RTI_INT_M
) {
4695 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4697 &sw_stat
->rti_err_cnt
))
4699 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4701 &sw_stat
->rti_err_cnt
);
4704 val64
= readq(&bar0
->mac_int_status
);
4705 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4706 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4707 &bar0
->mac_rmac_err_reg
,
4708 &sw_stat
->mac_rmac_err_cnt
))
4710 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4711 RMAC_SINGLE_ECC_ERR
|
4712 RMAC_DOUBLE_ECC_ERR
,
4713 &bar0
->mac_rmac_err_reg
,
4714 &sw_stat
->mac_rmac_err_cnt
);
4717 val64
= readq(&bar0
->xgxs_int_status
);
4718 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4719 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4720 &bar0
->xgxs_rxgxs_err_reg
,
4721 &sw_stat
->xgxs_rxgxs_err_cnt
))
4725 val64
= readq(&bar0
->mc_int_status
);
4726 if (val64
& MC_INT_STATUS_MC_INT
) {
4727 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4729 &sw_stat
->mc_err_cnt
))
4732 /* Handling Ecc errors */
4733 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4734 writeq(val64
, &bar0
->mc_err_reg
);
4735 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4736 sw_stat
->double_ecc_errs
++;
4737 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4739 * Reset XframeI only if critical error
4742 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4743 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4747 sw_stat
->single_ecc_errs
++;
4753 s2io_stop_all_tx_queue(sp
);
4754 schedule_work(&sp
->rst_timer_task
);
4755 sw_stat
->soft_reset_cnt
++;
4759 * s2io_isr - ISR handler of the device .
4760 * @irq: the irq of the device.
4761 * @dev_id: a void pointer to the dev structure of the NIC.
4762 * Description: This function is the ISR handler of the device. It
4763 * identifies the reason for the interrupt and calls the relevant
4764 * service routines. As a contongency measure, this ISR allocates the
4765 * recv buffers, if their numbers are below the panic value which is
4766 * presently set to 25% of the original number of rcv buffers allocated.
4768 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769 * IRQ_NONE: will be returned if interrupt is not from our device
4771 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4773 struct net_device
*dev
= (struct net_device
*)dev_id
;
4774 struct s2io_nic
*sp
= netdev_priv(dev
);
4775 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4778 struct mac_info
*mac_control
;
4779 struct config_param
*config
;
4781 /* Pretend we handled any irq's from a disconnected card */
4782 if (pci_channel_offline(sp
->pdev
))
4785 if (!is_s2io_card_up(sp
))
4788 config
= &sp
->config
;
4789 mac_control
= &sp
->mac_control
;
4792 * Identify the cause for interrupt and call the appropriate
4793 * interrupt handler. Causes for the interrupt could be;
4798 reason
= readq(&bar0
->general_int_status
);
4800 if (unlikely(reason
== S2IO_MINUS_ONE
))
4801 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4804 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4805 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4808 if (reason
& GEN_INTR_RXTRAFFIC
) {
4809 napi_schedule(&sp
->napi
);
4810 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4811 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4812 readl(&bar0
->rx_traffic_int
);
4816 * rx_traffic_int reg is an R1 register, writing all 1's
4817 * will ensure that the actual interrupt causing bit
4818 * get's cleared and hence a read can be avoided.
4820 if (reason
& GEN_INTR_RXTRAFFIC
)
4821 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4823 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4824 struct ring_info
*ring
= &mac_control
->rings
[i
];
4826 rx_intr_handler(ring
, 0);
4831 * tx_traffic_int reg is an R1 register, writing all 1's
4832 * will ensure that the actual interrupt causing bit get's
4833 * cleared and hence a read can be avoided.
4835 if (reason
& GEN_INTR_TXTRAFFIC
)
4836 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4838 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4839 tx_intr_handler(&mac_control
->fifos
[i
]);
4841 if (reason
& GEN_INTR_TXPIC
)
4842 s2io_txpic_intr_handle(sp
);
4845 * Reallocate the buffers from the interrupt handler itself.
4847 if (!config
->napi
) {
4848 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4849 struct ring_info
*ring
= &mac_control
->rings
[i
];
4851 s2io_chk_rx_buffers(sp
, ring
);
4854 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4855 readl(&bar0
->general_int_status
);
4859 } else if (!reason
) {
4860 /* The interrupt was not raised by us */
4870 static void s2io_updt_stats(struct s2io_nic
*sp
)
4872 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4876 if (is_s2io_card_up(sp
)) {
4877 /* Apprx 30us on a 133 MHz bus */
4878 val64
= SET_UPDT_CLICKS(10) |
4879 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4880 writeq(val64
, &bar0
->stat_cfg
);
4883 val64
= readq(&bar0
->stat_cfg
);
4884 if (!(val64
& s2BIT(0)))
4888 break; /* Updt failed */
4894 * s2io_get_stats - Updates the device statistics structure.
4895 * @dev : pointer to the device structure.
4897 * This function updates the device statistics structure in the s2io_nic
4898 * structure and returns a pointer to the same.
4900 * pointer to the updated net_device_stats structure.
4902 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4904 struct s2io_nic
*sp
= netdev_priv(dev
);
4905 struct mac_info
*mac_control
= &sp
->mac_control
;
4906 struct stat_block
*stats
= mac_control
->stats_info
;
4909 /* Configure Stats for immediate updt */
4910 s2io_updt_stats(sp
);
4912 /* A device reset will cause the on-adapter statistics to be zero'ed.
4913 * This can be done while running by changing the MTU. To prevent the
4914 * system from having the stats zero'ed, the driver keeps a copy of the
4915 * last update to the system (which is also zero'ed on reset). This
4916 * enables the driver to accurately know the delta between the last
4917 * update and the current update.
4919 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4920 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4921 sp
->stats
.rx_packets
+= delta
;
4922 dev
->stats
.rx_packets
+= delta
;
4924 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4925 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4926 sp
->stats
.tx_packets
+= delta
;
4927 dev
->stats
.tx_packets
+= delta
;
4929 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4930 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4931 sp
->stats
.rx_bytes
+= delta
;
4932 dev
->stats
.rx_bytes
+= delta
;
4934 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4935 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4936 sp
->stats
.tx_bytes
+= delta
;
4937 dev
->stats
.tx_bytes
+= delta
;
4939 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4940 sp
->stats
.rx_errors
+= delta
;
4941 dev
->stats
.rx_errors
+= delta
;
4943 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4944 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4945 sp
->stats
.tx_errors
+= delta
;
4946 dev
->stats
.tx_errors
+= delta
;
4948 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4949 sp
->stats
.rx_dropped
+= delta
;
4950 dev
->stats
.rx_dropped
+= delta
;
4952 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4953 sp
->stats
.tx_dropped
+= delta
;
4954 dev
->stats
.tx_dropped
+= delta
;
4956 /* The adapter MAC interprets pause frames as multicast packets, but
4957 * does not pass them up. This erroneously increases the multicast
4958 * packet count and needs to be deducted when the multicast frame count
4961 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4962 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4963 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4964 delta
-= sp
->stats
.multicast
;
4965 sp
->stats
.multicast
+= delta
;
4966 dev
->stats
.multicast
+= delta
;
4968 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4969 le32_to_cpu(stats
->rmac_usized_frms
)) +
4970 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4971 sp
->stats
.rx_length_errors
+= delta
;
4972 dev
->stats
.rx_length_errors
+= delta
;
4974 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4975 sp
->stats
.rx_crc_errors
+= delta
;
4976 dev
->stats
.rx_crc_errors
+= delta
;
4982 * s2io_set_multicast - entry point for multicast address enable/disable.
4983 * @dev : pointer to the device structure
4985 * This function is a driver entry point which gets called by the kernel
4986 * whenever multicast addresses must be enabled/disabled. This also gets
4987 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4988 * determine, if multicast address must be enabled or if promiscuous mode
4989 * is to be disabled etc.
4994 static void s2io_set_multicast(struct net_device
*dev
)
4997 struct netdev_hw_addr
*ha
;
4998 struct s2io_nic
*sp
= netdev_priv(dev
);
4999 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5000 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
5002 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
5004 struct config_param
*config
= &sp
->config
;
5006 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
5007 /* Enable all Multicast addresses */
5008 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
5009 &bar0
->rmac_addr_data0_mem
);
5010 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
5011 &bar0
->rmac_addr_data1_mem
);
5012 val64
= RMAC_ADDR_CMD_MEM_WE
|
5013 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5014 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
5015 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5016 /* Wait till command completes */
5017 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5018 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5022 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
5023 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
5024 /* Disable all Multicast addresses */
5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5026 &bar0
->rmac_addr_data0_mem
);
5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028 &bar0
->rmac_addr_data1_mem
);
5029 val64
= RMAC_ADDR_CMD_MEM_WE
|
5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5031 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5032 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5033 /* Wait till command completes */
5034 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5035 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5039 sp
->all_multi_pos
= 0;
5042 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5043 /* Put the NIC into promiscuous mode */
5044 add
= &bar0
->mac_cfg
;
5045 val64
= readq(&bar0
->mac_cfg
);
5046 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5049 writel((u32
)val64
, add
);
5050 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5051 writel((u32
) (val64
>> 32), (add
+ 4));
5053 if (vlan_tag_strip
!= 1) {
5054 val64
= readq(&bar0
->rx_pa_cfg
);
5055 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5056 writeq(val64
, &bar0
->rx_pa_cfg
);
5057 sp
->vlan_strip_flag
= 0;
5060 val64
= readq(&bar0
->mac_cfg
);
5061 sp
->promisc_flg
= 1;
5062 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5064 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5065 /* Remove the NIC from promiscuous mode */
5066 add
= &bar0
->mac_cfg
;
5067 val64
= readq(&bar0
->mac_cfg
);
5068 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5071 writel((u32
)val64
, add
);
5072 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5073 writel((u32
) (val64
>> 32), (add
+ 4));
5075 if (vlan_tag_strip
!= 0) {
5076 val64
= readq(&bar0
->rx_pa_cfg
);
5077 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5078 writeq(val64
, &bar0
->rx_pa_cfg
);
5079 sp
->vlan_strip_flag
= 1;
5082 val64
= readq(&bar0
->mac_cfg
);
5083 sp
->promisc_flg
= 0;
5084 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5087 /* Update individual M_CAST address list */
5088 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5089 if (netdev_mc_count(dev
) >
5090 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5092 "%s: No more Rx filters can be added - "
5093 "please enable ALL_MULTI instead\n",
5098 prev_cnt
= sp
->mc_addr_count
;
5099 sp
->mc_addr_count
= netdev_mc_count(dev
);
5101 /* Clear out the previous list of Mc in the H/W. */
5102 for (i
= 0; i
< prev_cnt
; i
++) {
5103 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5104 &bar0
->rmac_addr_data0_mem
);
5105 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106 &bar0
->rmac_addr_data1_mem
);
5107 val64
= RMAC_ADDR_CMD_MEM_WE
|
5108 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5109 RMAC_ADDR_CMD_MEM_OFFSET
5110 (config
->mc_start_offset
+ i
);
5111 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5113 /* Wait for command completes */
5114 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5115 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5118 "%s: Adding Multicasts failed\n",
5124 /* Create the new Rx filter list and update the same in H/W. */
5126 netdev_for_each_mc_addr(ha
, dev
) {
5128 for (j
= 0; j
< ETH_ALEN
; j
++) {
5129 mac_addr
|= ha
->addr
[j
];
5133 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5134 &bar0
->rmac_addr_data0_mem
);
5135 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5136 &bar0
->rmac_addr_data1_mem
);
5137 val64
= RMAC_ADDR_CMD_MEM_WE
|
5138 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5139 RMAC_ADDR_CMD_MEM_OFFSET
5140 (i
+ config
->mc_start_offset
);
5141 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5143 /* Wait for command completes */
5144 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5145 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5148 "%s: Adding Multicasts failed\n",
5157 /* read from CAM unicast & multicast addresses and store it in
5158 * def_mac_addr structure
5160 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5164 struct config_param
*config
= &sp
->config
;
5166 /* store unicast & multicast mac addresses */
5167 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5168 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5169 /* if read fails disable the entry */
5170 if (mac_addr
== FAILURE
)
5171 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5172 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5176 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5177 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5180 struct config_param
*config
= &sp
->config
;
5181 /* restore unicast mac address */
5182 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5183 do_s2io_prog_unicast(sp
->dev
,
5184 sp
->def_mac_addr
[offset
].mac_addr
);
5186 /* restore multicast mac address */
5187 for (offset
= config
->mc_start_offset
;
5188 offset
< config
->max_mc_addr
; offset
++)
5189 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5192 /* add a multicast MAC address to CAM */
5193 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5197 struct config_param
*config
= &sp
->config
;
5199 for (i
= 0; i
< ETH_ALEN
; i
++) {
5201 mac_addr
|= addr
[i
];
5203 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5206 /* check if the multicast mac already preset in CAM */
5207 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5209 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5210 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5213 if (tmp64
== mac_addr
)
5216 if (i
== config
->max_mc_addr
) {
5218 "CAM full no space left for multicast MAC\n");
5221 /* Update the internal structure with this new mac address */
5222 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5224 return do_s2io_add_mac(sp
, mac_addr
, i
);
5227 /* add MAC address to CAM */
5228 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5231 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5233 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5234 &bar0
->rmac_addr_data0_mem
);
5236 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5237 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5238 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5240 /* Wait till command completes */
5241 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5242 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5244 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5249 /* deletes a specified unicast/multicast mac entry from CAM */
5250 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5253 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5254 struct config_param
*config
= &sp
->config
;
5257 offset
< config
->max_mc_addr
; offset
++) {
5258 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5259 if (tmp64
== addr
) {
5260 /* disable the entry by writing 0xffffffffffffULL */
5261 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5263 /* store the new mac list from CAM */
5264 do_s2io_store_unicast_mc(sp
);
5268 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5269 (unsigned long long)addr
);
5273 /* read mac entries from CAM */
5274 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5276 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5277 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5280 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5281 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5282 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5284 /* Wait till command completes */
5285 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5286 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5288 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5291 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5297 * s2io_set_mac_addr driver entry point
5300 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5302 struct sockaddr
*addr
= p
;
5304 if (!is_valid_ether_addr(addr
->sa_data
))
5307 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5309 /* store the MAC address in CAM */
5310 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5313 * do_s2io_prog_unicast - Programs the Xframe mac address
5314 * @dev : pointer to the device structure.
5315 * @addr: a uchar pointer to the new mac address which is to be set.
5316 * Description : This procedure will program the Xframe to receive
5317 * frames with new Mac Address
5318 * Return value: SUCCESS on success and an appropriate (-)ve integer
5319 * as defined in errno.h file on failure.
5322 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5324 struct s2io_nic
*sp
= netdev_priv(dev
);
5325 register u64 mac_addr
= 0, perm_addr
= 0;
5328 struct config_param
*config
= &sp
->config
;
5331 * Set the new MAC address as the new unicast filter and reflect this
5332 * change on the device address registered with the OS. It will be
5335 for (i
= 0; i
< ETH_ALEN
; i
++) {
5337 mac_addr
|= addr
[i
];
5339 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5342 /* check if the dev_addr is different than perm_addr */
5343 if (mac_addr
== perm_addr
)
5346 /* check if the mac already preset in CAM */
5347 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5348 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5349 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5352 if (tmp64
== mac_addr
) {
5354 "MAC addr:0x%llx already present in CAM\n",
5355 (unsigned long long)mac_addr
);
5359 if (i
== config
->max_mac_addr
) {
5360 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5363 /* Update the internal structure with this new mac address */
5364 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5366 return do_s2io_add_mac(sp
, mac_addr
, i
);
5370 * s2io_ethtool_sset - Sets different link parameters.
5371 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5372 * @info: pointer to the structure with parameters given by ethtool to set
5375 * The function sets different link parameters provided by the user onto
5381 static int s2io_ethtool_sset(struct net_device
*dev
,
5382 struct ethtool_cmd
*info
)
5384 struct s2io_nic
*sp
= netdev_priv(dev
);
5385 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5386 (info
->speed
!= SPEED_10000
) ||
5387 (info
->duplex
!= DUPLEX_FULL
))
5390 s2io_close(sp
->dev
);
5398 * s2io_ethtol_gset - Return link specific information.
5399 * @sp : private member of the device structure, pointer to the
5400 * s2io_nic structure.
5401 * @info : pointer to the structure with parameters given by ethtool
5402 * to return link information.
5404 * Returns link specific information like speed, duplex etc.. to ethtool.
5406 * return 0 on success.
5409 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5411 struct s2io_nic
*sp
= netdev_priv(dev
);
5412 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5413 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5414 info
->port
= PORT_FIBRE
;
5416 /* info->transceiver */
5417 info
->transceiver
= XCVR_EXTERNAL
;
5419 if (netif_carrier_ok(sp
->dev
)) {
5420 info
->speed
= 10000;
5421 info
->duplex
= DUPLEX_FULL
;
5427 info
->autoneg
= AUTONEG_DISABLE
;
5432 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433 * @sp : private member of the device structure, which is a pointer to the
5434 * s2io_nic structure.
5435 * @info : pointer to the structure with parameters given by ethtool to
5436 * return driver information.
5438 * Returns driver specefic information like name, version etc.. to ethtool.
5443 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5444 struct ethtool_drvinfo
*info
)
5446 struct s2io_nic
*sp
= netdev_priv(dev
);
5448 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5449 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5450 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5451 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5452 info
->regdump_len
= XENA_REG_SPACE
;
5453 info
->eedump_len
= XENA_EEPROM_SPACE
;
5457 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5458 * @sp: private member of the device structure, which is a pointer to the
5459 * s2io_nic structure.
5460 * @regs : pointer to the structure with parameters given by ethtool for
5461 * dumping the registers.
5462 * @reg_space: The input argumnet into which all the registers are dumped.
5464 * Dumps the entire register space of xFrame NIC into the user given
5470 static void s2io_ethtool_gregs(struct net_device
*dev
,
5471 struct ethtool_regs
*regs
, void *space
)
5475 u8
*reg_space
= (u8
*)space
;
5476 struct s2io_nic
*sp
= netdev_priv(dev
);
5478 regs
->len
= XENA_REG_SPACE
;
5479 regs
->version
= sp
->pdev
->subsystem_device
;
5481 for (i
= 0; i
< regs
->len
; i
+= 8) {
5482 reg
= readq(sp
->bar0
+ i
);
5483 memcpy((reg_space
+ i
), ®
, 8);
5488 * s2io_phy_id - timer function that alternates adapter LED.
5489 * @data : address of the private member of the device structure, which
5490 * is a pointer to the s2io_nic structure, provided as an u32.
5491 * Description: This is actually the timer function that alternates the
5492 * adapter LED bit of the adapter control bit to set/reset every time on
5493 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5494 * once every second.
5496 static void s2io_phy_id(unsigned long data
)
5498 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
5499 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5503 subid
= sp
->pdev
->subsystem_device
;
5504 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5505 ((subid
& 0xFF) >= 0x07)) {
5506 val64
= readq(&bar0
->gpio_control
);
5507 val64
^= GPIO_CTRL_GPIO_0
;
5508 writeq(val64
, &bar0
->gpio_control
);
5510 val64
= readq(&bar0
->adapter_control
);
5511 val64
^= ADAPTER_LED_ON
;
5512 writeq(val64
, &bar0
->adapter_control
);
5515 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5519 * s2io_ethtool_idnic - To physically identify the nic on the system.
5520 * @sp : private member of the device structure, which is a pointer to the
5521 * s2io_nic structure.
5522 * @id : pointer to the structure with identification parameters given by
5524 * Description: Used to physically identify the NIC on the system.
5525 * The Link LED will blink for a time specified by the user for
5527 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5528 * identification is possible only if it's link is up.
5530 * int , returns 0 on success
5533 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5535 u64 val64
= 0, last_gpio_ctrl_val
;
5536 struct s2io_nic
*sp
= netdev_priv(dev
);
5537 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5540 subid
= sp
->pdev
->subsystem_device
;
5541 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5542 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5543 val64
= readq(&bar0
->adapter_control
);
5544 if (!(val64
& ADAPTER_CNTL_EN
)) {
5545 pr_err("Adapter Link down, cannot blink LED\n");
5549 if (sp
->id_timer
.function
== NULL
) {
5550 init_timer(&sp
->id_timer
);
5551 sp
->id_timer
.function
= s2io_phy_id
;
5552 sp
->id_timer
.data
= (unsigned long)sp
;
5554 mod_timer(&sp
->id_timer
, jiffies
);
5556 msleep_interruptible(data
* HZ
);
5558 msleep_interruptible(MAX_FLICKER_TIME
);
5559 del_timer_sync(&sp
->id_timer
);
5561 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5562 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5563 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5569 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5570 struct ethtool_ringparam
*ering
)
5572 struct s2io_nic
*sp
= netdev_priv(dev
);
5573 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5575 if (sp
->rxd_mode
== RXD_MODE_1
) {
5576 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5577 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5579 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5580 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5583 ering
->rx_mini_max_pending
= 0;
5584 ering
->tx_max_pending
= MAX_TX_DESC
;
5586 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5587 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5588 ering
->rx_pending
= rx_desc_count
;
5589 ering
->rx_jumbo_pending
= rx_desc_count
;
5590 ering
->rx_mini_pending
= 0;
5592 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5593 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5594 ering
->tx_pending
= tx_desc_count
;
5595 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5599 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5600 * @sp : private member of the device structure, which is a pointer to the
5601 * s2io_nic structure.
5602 * @ep : pointer to the structure with pause parameters given by ethtool.
5604 * Returns the Pause frame generation and reception capability of the NIC.
5608 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5609 struct ethtool_pauseparam
*ep
)
5612 struct s2io_nic
*sp
= netdev_priv(dev
);
5613 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5615 val64
= readq(&bar0
->rmac_pause_cfg
);
5616 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5617 ep
->tx_pause
= true;
5618 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5619 ep
->rx_pause
= true;
5620 ep
->autoneg
= false;
5624 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5625 * @sp : private member of the device structure, which is a pointer to the
5626 * s2io_nic structure.
5627 * @ep : pointer to the structure with pause parameters given by ethtool.
5629 * It can be used to set or reset Pause frame generation or reception
5630 * support of the NIC.
5632 * int, returns 0 on Success
5635 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5636 struct ethtool_pauseparam
*ep
)
5639 struct s2io_nic
*sp
= netdev_priv(dev
);
5640 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5642 val64
= readq(&bar0
->rmac_pause_cfg
);
5644 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5646 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5648 val64
|= RMAC_PAUSE_RX_ENABLE
;
5650 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5651 writeq(val64
, &bar0
->rmac_pause_cfg
);
5656 * read_eeprom - reads 4 bytes of data from user given offset.
5657 * @sp : private member of the device structure, which is a pointer to the
5658 * s2io_nic structure.
5659 * @off : offset at which the data must be written
5660 * @data : Its an output parameter where the data read at the given
5663 * Will read 4 bytes of data from the user given offset and return the
5665 * NOTE: Will allow to read only part of the EEPROM visible through the
5668 * -1 on failure and 0 on success.
5671 #define S2IO_DEV_ID 5
5672 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5677 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5679 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5680 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5681 I2C_CONTROL_ADDR(off
) |
5682 I2C_CONTROL_BYTE_CNT(0x3) |
5684 I2C_CONTROL_CNTL_START
;
5685 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5687 while (exit_cnt
< 5) {
5688 val64
= readq(&bar0
->i2c_control
);
5689 if (I2C_CONTROL_CNTL_END(val64
)) {
5690 *data
= I2C_CONTROL_GET_DATA(val64
);
5699 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5700 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5701 SPI_CONTROL_BYTECNT(0x3) |
5702 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5703 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5704 val64
|= SPI_CONTROL_REQ
;
5705 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5706 while (exit_cnt
< 5) {
5707 val64
= readq(&bar0
->spi_control
);
5708 if (val64
& SPI_CONTROL_NACK
) {
5711 } else if (val64
& SPI_CONTROL_DONE
) {
5712 *data
= readq(&bar0
->spi_data
);
5725 * write_eeprom - actually writes the relevant part of the data value.
5726 * @sp : private member of the device structure, which is a pointer to the
5727 * s2io_nic structure.
5728 * @off : offset at which the data must be written
5729 * @data : The data that is to be written
5730 * @cnt : Number of bytes of the data that are actually to be written into
5731 * the Eeprom. (max of 3)
5733 * Actually writes the relevant part of the data value into the Eeprom
5734 * through the I2C bus.
5736 * 0 on success, -1 on failure.
5739 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5741 int exit_cnt
= 0, ret
= -1;
5743 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5745 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5746 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5747 I2C_CONTROL_ADDR(off
) |
5748 I2C_CONTROL_BYTE_CNT(cnt
) |
5749 I2C_CONTROL_SET_DATA((u32
)data
) |
5750 I2C_CONTROL_CNTL_START
;
5751 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5753 while (exit_cnt
< 5) {
5754 val64
= readq(&bar0
->i2c_control
);
5755 if (I2C_CONTROL_CNTL_END(val64
)) {
5756 if (!(val64
& I2C_CONTROL_NACK
))
5765 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5766 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5767 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5769 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5770 SPI_CONTROL_BYTECNT(write_cnt
) |
5771 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5772 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5773 val64
|= SPI_CONTROL_REQ
;
5774 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5775 while (exit_cnt
< 5) {
5776 val64
= readq(&bar0
->spi_control
);
5777 if (val64
& SPI_CONTROL_NACK
) {
5780 } else if (val64
& SPI_CONTROL_DONE
) {
5790 static void s2io_vpd_read(struct s2io_nic
*nic
)
5794 int i
= 0, cnt
, len
, fail
= 0;
5795 int vpd_addr
= 0x80;
5796 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5798 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5799 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5802 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5805 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5807 vpd_data
= kmalloc(256, GFP_KERNEL
);
5809 swstats
->mem_alloc_fail_cnt
++;
5812 swstats
->mem_allocated
+= 256;
5814 for (i
= 0; i
< 256; i
+= 4) {
5815 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5816 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5817 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5818 for (cnt
= 0; cnt
< 5; cnt
++) {
5820 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5825 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5829 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5830 (u32
*)&vpd_data
[i
]);
5834 /* read serial number of adapter */
5835 for (cnt
= 0; cnt
< 252; cnt
++) {
5836 if ((vpd_data
[cnt
] == 'S') &&
5837 (vpd_data
[cnt
+1] == 'N')) {
5838 len
= vpd_data
[cnt
+2];
5839 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5840 memcpy(nic
->serial_num
,
5843 memset(nic
->serial_num
+len
,
5845 VPD_STRING_LEN
-len
);
5852 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5854 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5855 nic
->product_name
[len
] = 0;
5858 swstats
->mem_freed
+= 256;
5862 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5863 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5864 * @eeprom : pointer to the user level structure provided by ethtool,
5865 * containing all relevant information.
5866 * @data_buf : user defined value to be written into Eeprom.
5867 * Description: Reads the values stored in the Eeprom at given offset
5868 * for a given length. Stores these values int the input argument data
5869 * buffer 'data_buf' and returns these to the caller (ethtool.)
5874 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5875 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5879 struct s2io_nic
*sp
= netdev_priv(dev
);
5881 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5883 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5884 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5886 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5887 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5888 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5892 memcpy((data_buf
+ i
), &valid
, 4);
5898 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5899 * @sp : private member of the device structure, which is a pointer to the
5900 * s2io_nic structure.
5901 * @eeprom : pointer to the user level structure provided by ethtool,
5902 * containing all relevant information.
5903 * @data_buf ; user defined value to be written into Eeprom.
5905 * Tries to write the user provided value in the Eeprom, at the offset
5906 * given by the user.
5908 * 0 on success, -EFAULT on failure.
5911 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5912 struct ethtool_eeprom
*eeprom
,
5915 int len
= eeprom
->len
, cnt
= 0;
5916 u64 valid
= 0, data
;
5917 struct s2io_nic
*sp
= netdev_priv(dev
);
5919 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5921 "ETHTOOL_WRITE_EEPROM Err: "
5922 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5923 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5929 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5931 valid
= (u32
)(data
<< 24);
5935 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5937 "ETHTOOL_WRITE_EEPROM Err: "
5938 "Cannot write into the specified offset\n");
5949 * s2io_register_test - reads and writes into all clock domains.
5950 * @sp : private member of the device structure, which is a pointer to the
5951 * s2io_nic structure.
5952 * @data : variable that returns the result of each of the test conducted b
5955 * Read and write into all clock domains. The NIC has 3 clock domains,
5956 * see that registers in all the three regions are accessible.
5961 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5963 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5964 u64 val64
= 0, exp_val
;
5967 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5968 if (val64
!= 0x123456789abcdefULL
) {
5970 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5973 val64
= readq(&bar0
->rmac_pause_cfg
);
5974 if (val64
!= 0xc000ffff00000000ULL
) {
5976 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5979 val64
= readq(&bar0
->rx_queue_cfg
);
5980 if (sp
->device_type
== XFRAME_II_DEVICE
)
5981 exp_val
= 0x0404040404040404ULL
;
5983 exp_val
= 0x0808080808080808ULL
;
5984 if (val64
!= exp_val
) {
5986 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5989 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5990 if (val64
!= 0x000000001923141EULL
) {
5992 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5995 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5996 writeq(val64
, &bar0
->xmsi_data
);
5997 val64
= readq(&bar0
->xmsi_data
);
5998 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
6000 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
6003 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
6004 writeq(val64
, &bar0
->xmsi_data
);
6005 val64
= readq(&bar0
->xmsi_data
);
6006 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
6008 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
6016 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6017 * @sp : private member of the device structure, which is a pointer to the
6018 * s2io_nic structure.
6019 * @data:variable that returns the result of each of the test conducted by
6022 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6028 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
6031 u64 ret_data
, org_4F0
, org_7F0
;
6032 u8 saved_4F0
= 0, saved_7F0
= 0;
6033 struct net_device
*dev
= sp
->dev
;
6035 /* Test Write Error at offset 0 */
6036 /* Note that SPI interface allows write access to all areas
6037 * of EEPROM. Hence doing all negative testing only for Xframe I.
6039 if (sp
->device_type
== XFRAME_I_DEVICE
)
6040 if (!write_eeprom(sp
, 0, 0, 3))
6043 /* Save current values at offsets 0x4F0 and 0x7F0 */
6044 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6046 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6049 /* Test Write at offset 4f0 */
6050 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6052 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6055 if (ret_data
!= 0x012345) {
6056 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6057 "Data written %llx Data read %llx\n",
6058 dev
->name
, (unsigned long long)0x12345,
6059 (unsigned long long)ret_data
);
6063 /* Reset the EEPROM data go FFFF */
6064 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6066 /* Test Write Request Error at offset 0x7c */
6067 if (sp
->device_type
== XFRAME_I_DEVICE
)
6068 if (!write_eeprom(sp
, 0x07C, 0, 3))
6071 /* Test Write Request at offset 0x7f0 */
6072 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6074 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6077 if (ret_data
!= 0x012345) {
6078 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6079 "Data written %llx Data read %llx\n",
6080 dev
->name
, (unsigned long long)0x12345,
6081 (unsigned long long)ret_data
);
6085 /* Reset the EEPROM data go FFFF */
6086 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6088 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6089 /* Test Write Error at offset 0x80 */
6090 if (!write_eeprom(sp
, 0x080, 0, 3))
6093 /* Test Write Error at offset 0xfc */
6094 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6097 /* Test Write Error at offset 0x100 */
6098 if (!write_eeprom(sp
, 0x100, 0, 3))
6101 /* Test Write Error at offset 4ec */
6102 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6106 /* Restore values at offsets 0x4F0 and 0x7F0 */
6108 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6110 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6117 * s2io_bist_test - invokes the MemBist test of the card .
6118 * @sp : private member of the device structure, which is a pointer to the
6119 * s2io_nic structure.
6120 * @data:variable that returns the result of each of the test conducted by
6123 * This invokes the MemBist test of the card. We give around
6124 * 2 secs time for the Test to complete. If it's still not complete
6125 * within this peiod, we consider that the test failed.
6127 * 0 on success and -1 on failure.
6130 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6133 int cnt
= 0, ret
= -1;
6135 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6136 bist
|= PCI_BIST_START
;
6137 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6140 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6141 if (!(bist
& PCI_BIST_START
)) {
6142 *data
= (bist
& PCI_BIST_CODE_MASK
);
6154 * s2io-link_test - verifies the link state of the nic
6155 * @sp ; private member of the device structure, which is a pointer to the
6156 * s2io_nic structure.
6157 * @data: variable that returns the result of each of the test conducted by
6160 * The function verifies the link state of the NIC and updates the input
6161 * argument 'data' appropriately.
6166 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6168 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6171 val64
= readq(&bar0
->adapter_status
);
6172 if (!(LINK_IS_UP(val64
)))
6181 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6182 * @sp - private member of the device structure, which is a pointer to the
6183 * s2io_nic structure.
6184 * @data - variable that returns the result of each of the test
6185 * conducted by the driver.
6187 * This is one of the offline test that tests the read and write
6188 * access to the RldRam chip on the NIC.
6193 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6195 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6197 int cnt
, iteration
= 0, test_fail
= 0;
6199 val64
= readq(&bar0
->adapter_control
);
6200 val64
&= ~ADAPTER_ECC_EN
;
6201 writeq(val64
, &bar0
->adapter_control
);
6203 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6204 val64
|= MC_RLDRAM_TEST_MODE
;
6205 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6207 val64
= readq(&bar0
->mc_rldram_mrs
);
6208 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6209 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6211 val64
|= MC_RLDRAM_MRS_ENABLE
;
6212 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6214 while (iteration
< 2) {
6215 val64
= 0x55555555aaaa0000ULL
;
6217 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6218 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6220 val64
= 0xaaaa5a5555550000ULL
;
6222 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6223 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6225 val64
= 0x55aaaaaaaa5a0000ULL
;
6227 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6228 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6230 val64
= (u64
) (0x0000003ffffe0100ULL
);
6231 writeq(val64
, &bar0
->mc_rldram_test_add
);
6233 val64
= MC_RLDRAM_TEST_MODE
|
6234 MC_RLDRAM_TEST_WRITE
|
6236 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6238 for (cnt
= 0; cnt
< 5; cnt
++) {
6239 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6240 if (val64
& MC_RLDRAM_TEST_DONE
)
6248 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6249 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6251 for (cnt
= 0; cnt
< 5; cnt
++) {
6252 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6253 if (val64
& MC_RLDRAM_TEST_DONE
)
6261 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6262 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6270 /* Bring the adapter out of test mode */
6271 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6277 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6278 * @sp : private member of the device structure, which is a pointer to the
6279 * s2io_nic structure.
6280 * @ethtest : pointer to a ethtool command specific structure that will be
6281 * returned to the user.
6282 * @data : variable that returns the result of each of the test
6283 * conducted by the driver.
6285 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6286 * the health of the card.
6291 static void s2io_ethtool_test(struct net_device
*dev
,
6292 struct ethtool_test
*ethtest
,
6295 struct s2io_nic
*sp
= netdev_priv(dev
);
6296 int orig_state
= netif_running(sp
->dev
);
6298 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6299 /* Offline Tests. */
6301 s2io_close(sp
->dev
);
6303 if (s2io_register_test(sp
, &data
[0]))
6304 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6308 if (s2io_rldram_test(sp
, &data
[3]))
6309 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6313 if (s2io_eeprom_test(sp
, &data
[1]))
6314 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6316 if (s2io_bist_test(sp
, &data
[4]))
6317 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6326 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6335 if (s2io_link_test(sp
, &data
[2]))
6336 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6345 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6346 struct ethtool_stats
*estats
,
6350 struct s2io_nic
*sp
= netdev_priv(dev
);
6351 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6352 struct swStat
*swstats
= &stats
->sw_stat
;
6353 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6355 s2io_updt_stats(sp
);
6357 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6358 le32_to_cpu(stats
->tmac_frms
);
6360 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6361 le32_to_cpu(stats
->tmac_data_octets
);
6362 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6364 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6365 le32_to_cpu(stats
->tmac_mcst_frms
);
6367 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6368 le32_to_cpu(stats
->tmac_bcst_frms
);
6369 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6371 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6372 le32_to_cpu(stats
->tmac_ttl_octets
);
6374 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6375 le32_to_cpu(stats
->tmac_ucst_frms
);
6377 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6378 le32_to_cpu(stats
->tmac_nucst_frms
);
6380 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6381 le32_to_cpu(stats
->tmac_any_err_frms
);
6382 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6383 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6385 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6386 le32_to_cpu(stats
->tmac_vld_ip
);
6388 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6389 le32_to_cpu(stats
->tmac_drop_ip
);
6391 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6392 le32_to_cpu(stats
->tmac_icmp
);
6394 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6395 le32_to_cpu(stats
->tmac_rst_tcp
);
6396 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6397 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6398 le32_to_cpu(stats
->tmac_udp
);
6400 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6401 le32_to_cpu(stats
->rmac_vld_frms
);
6403 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6404 le32_to_cpu(stats
->rmac_data_octets
);
6405 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6406 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6408 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6409 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6411 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6412 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6413 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6414 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6415 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6417 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6419 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6420 le32_to_cpu(stats
->rmac_ttl_octets
);
6422 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6423 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6425 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6426 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6428 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6429 le32_to_cpu(stats
->rmac_discarded_frms
);
6431 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6432 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6433 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6434 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6436 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6437 le32_to_cpu(stats
->rmac_usized_frms
);
6439 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6440 le32_to_cpu(stats
->rmac_osized_frms
);
6442 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6443 le32_to_cpu(stats
->rmac_frag_frms
);
6445 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6446 le32_to_cpu(stats
->rmac_jabber_frms
);
6447 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6448 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6449 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6450 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6451 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6452 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6454 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6455 le32_to_cpu(stats
->rmac_ip
);
6456 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6457 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6459 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6460 le32_to_cpu(stats
->rmac_drop_ip
);
6462 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6463 le32_to_cpu(stats
->rmac_icmp
);
6464 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6466 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6467 le32_to_cpu(stats
->rmac_udp
);
6469 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6470 le32_to_cpu(stats
->rmac_err_drp_udp
);
6471 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6472 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6473 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6474 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6475 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6476 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6477 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6478 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6479 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6480 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6481 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6482 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6483 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6484 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6485 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6486 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6487 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6489 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6490 le32_to_cpu(stats
->rmac_pause_cnt
);
6491 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6492 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6494 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6495 le32_to_cpu(stats
->rmac_accepted_ip
);
6496 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6497 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6498 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6499 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6500 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6503 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6504 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6505 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6506 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6507 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6508 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6509 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6510 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6511 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6512 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6513 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6514 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6516 /* Enhanced statistics exist only for Hercules */
6517 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6519 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6521 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6523 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6524 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6525 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6526 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6527 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6528 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6529 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6530 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6531 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6532 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6533 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6534 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6535 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6536 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6540 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6541 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6542 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6543 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6544 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6545 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6546 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6547 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6548 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6549 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6550 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6551 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6552 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6553 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6554 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6555 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6556 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6557 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6558 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6559 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6560 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6561 tmp_stats
[i
++] = swstats
->sending_both
;
6562 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6563 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6564 if (swstats
->num_aggregations
) {
6565 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6568 * Since 64-bit divide does not work on all platforms,
6569 * do repeated subtraction.
6571 while (tmp
>= swstats
->num_aggregations
) {
6572 tmp
-= swstats
->num_aggregations
;
6575 tmp_stats
[i
++] = count
;
6578 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6579 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6580 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6581 tmp_stats
[i
++] = swstats
->mem_allocated
;
6582 tmp_stats
[i
++] = swstats
->mem_freed
;
6583 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6584 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6585 tmp_stats
[i
++] = swstats
->link_up_time
;
6586 tmp_stats
[i
++] = swstats
->link_down_time
;
6588 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6589 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6590 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6591 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6592 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6594 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6595 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6596 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6597 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6598 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6599 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6600 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6601 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6602 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6603 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6604 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6605 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6606 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6607 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6608 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6609 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6610 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6611 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6612 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6613 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6614 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6615 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6616 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6617 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6618 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6619 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6622 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6624 return XENA_REG_SPACE
;
6628 static u32
s2io_ethtool_get_rx_csum(struct net_device
*dev
)
6630 struct s2io_nic
*sp
= netdev_priv(dev
);
6635 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6637 struct s2io_nic
*sp
= netdev_priv(dev
);
6647 static int s2io_get_eeprom_len(struct net_device
*dev
)
6649 return XENA_EEPROM_SPACE
;
6652 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6654 struct s2io_nic
*sp
= netdev_priv(dev
);
6658 return S2IO_TEST_LEN
;
6660 switch (sp
->device_type
) {
6661 case XFRAME_I_DEVICE
:
6662 return XFRAME_I_STAT_LEN
;
6663 case XFRAME_II_DEVICE
:
6664 return XFRAME_II_STAT_LEN
;
6673 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6674 u32 stringset
, u8
*data
)
6677 struct s2io_nic
*sp
= netdev_priv(dev
);
6679 switch (stringset
) {
6681 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6684 stat_size
= sizeof(ethtool_xena_stats_keys
);
6685 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6686 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6687 memcpy(data
+ stat_size
,
6688 ðtool_enhanced_stats_keys
,
6689 sizeof(ethtool_enhanced_stats_keys
));
6690 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6693 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6694 sizeof(ethtool_driver_stats_keys
));
6698 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6701 dev
->features
|= NETIF_F_IP_CSUM
;
6703 dev
->features
&= ~NETIF_F_IP_CSUM
;
6708 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6710 return (dev
->features
& NETIF_F_TSO
) != 0;
6713 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6716 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6718 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6723 static int s2io_ethtool_set_flags(struct net_device
*dev
, u32 data
)
6725 struct s2io_nic
*sp
= netdev_priv(dev
);
6729 if (ethtool_invalid_flags(dev
, data
, ETH_FLAG_LRO
))
6732 if (data
& ETH_FLAG_LRO
) {
6733 if (!(dev
->features
& NETIF_F_LRO
)) {
6734 dev
->features
|= NETIF_F_LRO
;
6737 } else if (dev
->features
& NETIF_F_LRO
) {
6738 dev
->features
&= ~NETIF_F_LRO
;
6742 if (changed
&& netif_running(dev
)) {
6743 s2io_stop_all_tx_queue(sp
);
6745 rc
= s2io_card_up(sp
);
6749 s2io_start_all_tx_queue(sp
);
6755 static const struct ethtool_ops netdev_ethtool_ops
= {
6756 .get_settings
= s2io_ethtool_gset
,
6757 .set_settings
= s2io_ethtool_sset
,
6758 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6759 .get_regs_len
= s2io_ethtool_get_regs_len
,
6760 .get_regs
= s2io_ethtool_gregs
,
6761 .get_link
= ethtool_op_get_link
,
6762 .get_eeprom_len
= s2io_get_eeprom_len
,
6763 .get_eeprom
= s2io_ethtool_geeprom
,
6764 .set_eeprom
= s2io_ethtool_seeprom
,
6765 .get_ringparam
= s2io_ethtool_gringparam
,
6766 .get_pauseparam
= s2io_ethtool_getpause_data
,
6767 .set_pauseparam
= s2io_ethtool_setpause_data
,
6768 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6769 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6770 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6771 .set_flags
= s2io_ethtool_set_flags
,
6772 .get_flags
= ethtool_op_get_flags
,
6773 .set_sg
= ethtool_op_set_sg
,
6774 .get_tso
= s2io_ethtool_op_get_tso
,
6775 .set_tso
= s2io_ethtool_op_set_tso
,
6776 .set_ufo
= ethtool_op_set_ufo
,
6777 .self_test
= s2io_ethtool_test
,
6778 .get_strings
= s2io_ethtool_get_strings
,
6779 .phys_id
= s2io_ethtool_idnic
,
6780 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6781 .get_sset_count
= s2io_get_sset_count
,
6785 * s2io_ioctl - Entry point for the Ioctl
6786 * @dev : Device pointer.
6787 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6788 * a proprietary structure used to pass information to the driver.
6789 * @cmd : This is used to distinguish between the different commands that
6790 * can be passed to the IOCTL functions.
6792 * Currently there are no special functionality supported in IOCTL, hence
6793 * function always return EOPNOTSUPPORTED
6796 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6802 * s2io_change_mtu - entry point to change MTU size for the device.
6803 * @dev : device pointer.
6804 * @new_mtu : the new MTU size for the device.
6805 * Description: A driver entry point to change MTU size for the device.
6806 * Before changing the MTU the device must be stopped.
6808 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6812 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6814 struct s2io_nic
*sp
= netdev_priv(dev
);
6817 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6818 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6823 if (netif_running(dev
)) {
6824 s2io_stop_all_tx_queue(sp
);
6826 ret
= s2io_card_up(sp
);
6828 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6832 s2io_wake_all_tx_queue(sp
);
6833 } else { /* Device is down */
6834 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6835 u64 val64
= new_mtu
;
6837 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6844 * s2io_set_link - Set the LInk status
6845 * @data: long pointer to device private structue
6846 * Description: Sets the link status for the adapter
6849 static void s2io_set_link(struct work_struct
*work
)
6851 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6853 struct net_device
*dev
= nic
->dev
;
6854 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6860 if (!netif_running(dev
))
6863 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6864 /* The card is being reset, no point doing anything */
6868 subid
= nic
->pdev
->subsystem_device
;
6869 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6871 * Allow a small delay for the NICs self initiated
6872 * cleanup to complete.
6877 val64
= readq(&bar0
->adapter_status
);
6878 if (LINK_IS_UP(val64
)) {
6879 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6880 if (verify_xena_quiescence(nic
)) {
6881 val64
= readq(&bar0
->adapter_control
);
6882 val64
|= ADAPTER_CNTL_EN
;
6883 writeq(val64
, &bar0
->adapter_control
);
6884 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6885 nic
->device_type
, subid
)) {
6886 val64
= readq(&bar0
->gpio_control
);
6887 val64
|= GPIO_CTRL_GPIO_0
;
6888 writeq(val64
, &bar0
->gpio_control
);
6889 val64
= readq(&bar0
->gpio_control
);
6891 val64
|= ADAPTER_LED_ON
;
6892 writeq(val64
, &bar0
->adapter_control
);
6894 nic
->device_enabled_once
= true;
6897 "%s: Error: device is not Quiescent\n",
6899 s2io_stop_all_tx_queue(nic
);
6902 val64
= readq(&bar0
->adapter_control
);
6903 val64
|= ADAPTER_LED_ON
;
6904 writeq(val64
, &bar0
->adapter_control
);
6905 s2io_link(nic
, LINK_UP
);
6907 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6909 val64
= readq(&bar0
->gpio_control
);
6910 val64
&= ~GPIO_CTRL_GPIO_0
;
6911 writeq(val64
, &bar0
->gpio_control
);
6912 val64
= readq(&bar0
->gpio_control
);
6915 val64
= readq(&bar0
->adapter_control
);
6916 val64
= val64
& (~ADAPTER_LED_ON
);
6917 writeq(val64
, &bar0
->adapter_control
);
6918 s2io_link(nic
, LINK_DOWN
);
6920 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6926 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6928 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6929 u64
*temp2
, int size
)
6931 struct net_device
*dev
= sp
->dev
;
6932 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6934 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6935 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6938 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6940 * As Rx frame are not going to be processed,
6941 * using same mapped address for the Rxd
6944 rxdp1
->Buffer0_ptr
= *temp0
;
6946 *skb
= dev_alloc_skb(size
);
6949 "%s: Out of memory to allocate %s\n",
6950 dev
->name
, "1 buf mode SKBs");
6951 stats
->mem_alloc_fail_cnt
++;
6954 stats
->mem_allocated
+= (*skb
)->truesize
;
6955 /* storing the mapped addr in a temp variable
6956 * such it will be used for next rxd whose
6957 * Host Control is NULL
6959 rxdp1
->Buffer0_ptr
= *temp0
=
6960 pci_map_single(sp
->pdev
, (*skb
)->data
,
6961 size
- NET_IP_ALIGN
,
6962 PCI_DMA_FROMDEVICE
);
6963 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6964 goto memalloc_failed
;
6965 rxdp
->Host_Control
= (unsigned long) (*skb
);
6967 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6968 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6969 /* Two buffer Mode */
6971 rxdp3
->Buffer2_ptr
= *temp2
;
6972 rxdp3
->Buffer0_ptr
= *temp0
;
6973 rxdp3
->Buffer1_ptr
= *temp1
;
6975 *skb
= dev_alloc_skb(size
);
6978 "%s: Out of memory to allocate %s\n",
6981 stats
->mem_alloc_fail_cnt
++;
6984 stats
->mem_allocated
+= (*skb
)->truesize
;
6985 rxdp3
->Buffer2_ptr
= *temp2
=
6986 pci_map_single(sp
->pdev
, (*skb
)->data
,
6988 PCI_DMA_FROMDEVICE
);
6989 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6990 goto memalloc_failed
;
6991 rxdp3
->Buffer0_ptr
= *temp0
=
6992 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6993 PCI_DMA_FROMDEVICE
);
6994 if (pci_dma_mapping_error(sp
->pdev
,
6995 rxdp3
->Buffer0_ptr
)) {
6996 pci_unmap_single(sp
->pdev
,
6997 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6999 PCI_DMA_FROMDEVICE
);
7000 goto memalloc_failed
;
7002 rxdp
->Host_Control
= (unsigned long) (*skb
);
7004 /* Buffer-1 will be dummy buffer not used */
7005 rxdp3
->Buffer1_ptr
= *temp1
=
7006 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
7007 PCI_DMA_FROMDEVICE
);
7008 if (pci_dma_mapping_error(sp
->pdev
,
7009 rxdp3
->Buffer1_ptr
)) {
7010 pci_unmap_single(sp
->pdev
,
7011 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
7012 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
7013 pci_unmap_single(sp
->pdev
,
7014 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
7016 PCI_DMA_FROMDEVICE
);
7017 goto memalloc_failed
;
7024 stats
->pci_map_fail_cnt
++;
7025 stats
->mem_freed
+= (*skb
)->truesize
;
7026 dev_kfree_skb(*skb
);
7030 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
7033 struct net_device
*dev
= sp
->dev
;
7034 if (sp
->rxd_mode
== RXD_MODE_1
) {
7035 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
7036 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7037 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
7038 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
7039 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
7043 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
7045 int i
, j
, k
, blk_cnt
= 0, size
;
7046 struct config_param
*config
= &sp
->config
;
7047 struct mac_info
*mac_control
= &sp
->mac_control
;
7048 struct net_device
*dev
= sp
->dev
;
7049 struct RxD_t
*rxdp
= NULL
;
7050 struct sk_buff
*skb
= NULL
;
7051 struct buffAdd
*ba
= NULL
;
7052 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
7054 /* Calculate the size based on ring mode */
7055 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
7056 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
7057 if (sp
->rxd_mode
== RXD_MODE_1
)
7058 size
+= NET_IP_ALIGN
;
7059 else if (sp
->rxd_mode
== RXD_MODE_3B
)
7060 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
7062 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7063 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7064 struct ring_info
*ring
= &mac_control
->rings
[i
];
7066 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
7068 for (j
= 0; j
< blk_cnt
; j
++) {
7069 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7070 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7071 if (sp
->rxd_mode
== RXD_MODE_3B
)
7072 ba
= &ring
->ba
[j
][k
];
7073 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7081 set_rxd_buffer_size(sp
, rxdp
, size
);
7083 /* flip the Ownership bit to Hardware */
7084 rxdp
->Control_1
|= RXD_OWN_XENA
;
7092 static int s2io_add_isr(struct s2io_nic
*sp
)
7095 struct net_device
*dev
= sp
->dev
;
7098 if (sp
->config
.intr_type
== MSI_X
)
7099 ret
= s2io_enable_msi_x(sp
);
7101 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7102 sp
->config
.intr_type
= INTA
;
7106 * Store the values of the MSIX table in
7107 * the struct s2io_nic structure
7109 store_xmsi_data(sp
);
7111 /* After proper initialization of H/W, register ISR */
7112 if (sp
->config
.intr_type
== MSI_X
) {
7113 int i
, msix_rx_cnt
= 0;
7115 for (i
= 0; i
< sp
->num_entries
; i
++) {
7116 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7117 if (sp
->s2io_entries
[i
].type
==
7119 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7121 err
= request_irq(sp
->entries
[i
].vector
,
7122 s2io_msix_ring_handle
,
7125 sp
->s2io_entries
[i
].arg
);
7126 } else if (sp
->s2io_entries
[i
].type
==
7128 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7130 err
= request_irq(sp
->entries
[i
].vector
,
7131 s2io_msix_fifo_handle
,
7134 sp
->s2io_entries
[i
].arg
);
7137 /* if either data or addr is zero print it. */
7138 if (!(sp
->msix_info
[i
].addr
&&
7139 sp
->msix_info
[i
].data
)) {
7141 "%s @Addr:0x%llx Data:0x%llx\n",
7143 (unsigned long long)
7144 sp
->msix_info
[i
].addr
,
7145 (unsigned long long)
7146 ntohl(sp
->msix_info
[i
].data
));
7150 remove_msix_isr(sp
);
7153 "%s:MSI-X-%d registration "
7154 "failed\n", dev
->name
, i
);
7157 "%s: Defaulting to INTA\n",
7159 sp
->config
.intr_type
= INTA
;
7162 sp
->s2io_entries
[i
].in_use
=
7163 MSIX_REGISTERED_SUCCESS
;
7167 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7169 "MSI-X-TX entries enabled through alarm vector\n");
7172 if (sp
->config
.intr_type
== INTA
) {
7173 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7176 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7184 static void s2io_rem_isr(struct s2io_nic
*sp
)
7186 if (sp
->config
.intr_type
== MSI_X
)
7187 remove_msix_isr(sp
);
7189 remove_inta_isr(sp
);
7192 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7195 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7196 register u64 val64
= 0;
7197 struct config_param
*config
;
7198 config
= &sp
->config
;
7200 if (!is_s2io_card_up(sp
))
7203 del_timer_sync(&sp
->alarm_timer
);
7204 /* If s2io_set_link task is executing, wait till it completes. */
7205 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7207 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7210 if (sp
->config
.napi
) {
7212 if (config
->intr_type
== MSI_X
) {
7213 for (; off
< sp
->config
.rx_ring_num
; off
++)
7214 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7217 napi_disable(&sp
->napi
);
7220 /* disable Tx and Rx traffic on the NIC */
7226 /* stop the tx queue, indicate link down */
7227 s2io_link(sp
, LINK_DOWN
);
7229 /* Check if the device is Quiescent and then Reset the NIC */
7231 /* As per the HW requirement we need to replenish the
7232 * receive buffer to avoid the ring bump. Since there is
7233 * no intention of processing the Rx frame at this pointwe are
7234 * just settting the ownership bit of rxd in Each Rx
7235 * ring to HW and set the appropriate buffer size
7236 * based on the ring mode
7238 rxd_owner_bit_reset(sp
);
7240 val64
= readq(&bar0
->adapter_status
);
7241 if (verify_xena_quiescence(sp
)) {
7242 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7249 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7250 "adapter status reads 0x%llx\n",
7251 (unsigned long long)val64
);
7258 /* Free all Tx buffers */
7259 free_tx_buffers(sp
);
7261 /* Free all Rx buffers */
7262 free_rx_buffers(sp
);
7264 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7267 static void s2io_card_down(struct s2io_nic
*sp
)
7269 do_s2io_card_down(sp
, 1);
7272 static int s2io_card_up(struct s2io_nic
*sp
)
7275 struct config_param
*config
;
7276 struct mac_info
*mac_control
;
7277 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7280 /* Initialize the H/W I/O registers */
7283 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7291 * Initializing the Rx buffers. For now we are considering only 1
7292 * Rx ring and initializing buffers into 30 Rx blocks
7294 config
= &sp
->config
;
7295 mac_control
= &sp
->mac_control
;
7297 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7298 struct ring_info
*ring
= &mac_control
->rings
[i
];
7300 ring
->mtu
= dev
->mtu
;
7301 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7302 ret
= fill_rx_buffers(sp
, ring
, 1);
7304 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7307 free_rx_buffers(sp
);
7310 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7311 ring
->rx_bufs_left
);
7314 /* Initialise napi */
7316 if (config
->intr_type
== MSI_X
) {
7317 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7318 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7320 napi_enable(&sp
->napi
);
7324 /* Maintain the state prior to the open */
7325 if (sp
->promisc_flg
)
7326 sp
->promisc_flg
= 0;
7327 if (sp
->m_cast_flg
) {
7329 sp
->all_multi_pos
= 0;
7332 /* Setting its receive mode */
7333 s2io_set_multicast(dev
);
7335 if (dev
->features
& NETIF_F_LRO
) {
7336 /* Initialize max aggregatable pkts per session based on MTU */
7337 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7338 /* Check if we can use (if specified) user provided value */
7339 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7340 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7343 /* Enable Rx Traffic and interrupts on the NIC */
7344 if (start_nic(sp
)) {
7345 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7347 free_rx_buffers(sp
);
7351 /* Add interrupt service routine */
7352 if (s2io_add_isr(sp
) != 0) {
7353 if (sp
->config
.intr_type
== MSI_X
)
7356 free_rx_buffers(sp
);
7360 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7362 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7364 /* Enable select interrupts */
7365 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7366 if (sp
->config
.intr_type
!= INTA
) {
7367 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7368 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7370 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7371 interruptible
|= TX_PIC_INTR
;
7372 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7379 * s2io_restart_nic - Resets the NIC.
7380 * @data : long pointer to the device private structure
7382 * This function is scheduled to be run by the s2io_tx_watchdog
7383 * function after 0.5 secs to reset the NIC. The idea is to reduce
7384 * the run time of the watch dog routine which is run holding a
7388 static void s2io_restart_nic(struct work_struct
*work
)
7390 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7391 struct net_device
*dev
= sp
->dev
;
7395 if (!netif_running(dev
))
7399 if (s2io_card_up(sp
)) {
7400 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7402 s2io_wake_all_tx_queue(sp
);
7403 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7409 * s2io_tx_watchdog - Watchdog for transmit side.
7410 * @dev : Pointer to net device structure
7412 * This function is triggered if the Tx Queue is stopped
7413 * for a pre-defined amount of time when the Interface is still up.
7414 * If the Interface is jammed in such a situation, the hardware is
7415 * reset (by s2io_close) and restarted again (by s2io_open) to
7416 * overcome any problem that might have been caused in the hardware.
7421 static void s2io_tx_watchdog(struct net_device
*dev
)
7423 struct s2io_nic
*sp
= netdev_priv(dev
);
7424 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7426 if (netif_carrier_ok(dev
)) {
7427 swstats
->watchdog_timer_cnt
++;
7428 schedule_work(&sp
->rst_timer_task
);
7429 swstats
->soft_reset_cnt
++;
7434 * rx_osm_handler - To perform some OS related operations on SKB.
7435 * @sp: private member of the device structure,pointer to s2io_nic structure.
7436 * @skb : the socket buffer pointer.
7437 * @len : length of the packet
7438 * @cksum : FCS checksum of the frame.
7439 * @ring_no : the ring from which this RxD was extracted.
7441 * This function is called by the Rx interrupt serivce routine to perform
7442 * some OS related operations on the SKB before passing it to the upper
7443 * layers. It mainly checks if the checksum is OK, if so adds it to the
7444 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7445 * to the upper layer. If the checksum is wrong, it increments the Rx
7446 * packet error count, frees the SKB and returns error.
7448 * SUCCESS on success and -1 on failure.
7450 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7452 struct s2io_nic
*sp
= ring_data
->nic
;
7453 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7454 struct sk_buff
*skb
= (struct sk_buff
*)
7455 ((unsigned long)rxdp
->Host_Control
);
7456 int ring_no
= ring_data
->ring_no
;
7457 u16 l3_csum
, l4_csum
;
7458 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7459 struct lro
*uninitialized_var(lro
);
7461 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7466 /* Check for parity error */
7468 swstats
->parity_err_cnt
++;
7470 err_mask
= err
>> 48;
7473 swstats
->rx_parity_err_cnt
++;
7477 swstats
->rx_abort_cnt
++;
7481 swstats
->rx_parity_abort_cnt
++;
7485 swstats
->rx_rda_fail_cnt
++;
7489 swstats
->rx_unkn_prot_cnt
++;
7493 swstats
->rx_fcs_err_cnt
++;
7497 swstats
->rx_buf_size_err_cnt
++;
7501 swstats
->rx_rxd_corrupt_cnt
++;
7505 swstats
->rx_unkn_err_cnt
++;
7509 * Drop the packet if bad transfer code. Exception being
7510 * 0x5, which could be due to unsupported IPv6 extension header.
7511 * In this case, we let stack handle the packet.
7512 * Note that in this case, since checksum will be incorrect,
7513 * stack will validate the same.
7515 if (err_mask
!= 0x5) {
7516 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7517 dev
->name
, err_mask
);
7518 dev
->stats
.rx_crc_errors
++;
7522 ring_data
->rx_bufs_left
-= 1;
7523 rxdp
->Host_Control
= 0;
7528 rxdp
->Host_Control
= 0;
7529 if (sp
->rxd_mode
== RXD_MODE_1
) {
7530 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7533 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7534 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7535 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7536 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7537 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7538 unsigned char *buff
= skb_push(skb
, buf0_len
);
7540 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7541 memcpy(buff
, ba
->ba_0
, buf0_len
);
7542 skb_put(skb
, buf2_len
);
7545 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7546 ((!ring_data
->lro
) ||
7547 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7549 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7550 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7551 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7553 * NIC verifies if the Checksum of the received
7554 * frame is Ok or not and accordingly returns
7555 * a flag in the RxD.
7557 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7558 if (ring_data
->lro
) {
7563 ret
= s2io_club_tcp_session(ring_data
,
7568 case 3: /* Begin anew */
7571 case 1: /* Aggregate */
7572 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7574 case 4: /* Flush session */
7575 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7576 queue_rx_frame(lro
->parent
,
7578 clear_lro_session(lro
);
7579 swstats
->flush_max_pkts
++;
7581 case 2: /* Flush both */
7582 lro
->parent
->data_len
= lro
->frags_len
;
7583 swstats
->sending_both
++;
7584 queue_rx_frame(lro
->parent
,
7586 clear_lro_session(lro
);
7588 case 0: /* sessions exceeded */
7589 case -1: /* non-TCP or not L2 aggregatable */
7591 * First pkt in session not
7592 * L3/L4 aggregatable
7597 "%s: Samadhana!!\n",
7604 * Packet with erroneous checksum, let the
7605 * upper layers deal with it.
7607 skb_checksum_none_assert(skb
);
7610 skb_checksum_none_assert(skb
);
7612 swstats
->mem_freed
+= skb
->truesize
;
7614 skb_record_rx_queue(skb
, ring_no
);
7615 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7617 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7622 * s2io_link - stops/starts the Tx queue.
7623 * @sp : private member of the device structure, which is a pointer to the
7624 * s2io_nic structure.
7625 * @link : inidicates whether link is UP/DOWN.
7627 * This function stops/starts the Tx queue depending on whether the link
7628 * status of the NIC is is down or up. This is called by the Alarm
7629 * interrupt handler whenever a link change interrupt comes up.
7634 static void s2io_link(struct s2io_nic
*sp
, int link
)
7636 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7637 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7639 if (link
!= sp
->last_link_state
) {
7641 if (link
== LINK_DOWN
) {
7642 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7643 s2io_stop_all_tx_queue(sp
);
7644 netif_carrier_off(dev
);
7645 if (swstats
->link_up_cnt
)
7646 swstats
->link_up_time
=
7647 jiffies
- sp
->start_time
;
7648 swstats
->link_down_cnt
++;
7650 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7651 if (swstats
->link_down_cnt
)
7652 swstats
->link_down_time
=
7653 jiffies
- sp
->start_time
;
7654 swstats
->link_up_cnt
++;
7655 netif_carrier_on(dev
);
7656 s2io_wake_all_tx_queue(sp
);
7659 sp
->last_link_state
= link
;
7660 sp
->start_time
= jiffies
;
7664 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7665 * @sp : private member of the device structure, which is a pointer to the
7666 * s2io_nic structure.
7668 * This function initializes a few of the PCI and PCI-X configuration registers
7669 * with recommended values.
7674 static void s2io_init_pci(struct s2io_nic
*sp
)
7676 u16 pci_cmd
= 0, pcix_cmd
= 0;
7678 /* Enable Data Parity Error Recovery in PCI-X command register. */
7679 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7681 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7683 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7686 /* Set the PErr Response bit in PCI command register. */
7687 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7688 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7689 (pci_cmd
| PCI_COMMAND_PARITY
));
7690 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7693 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7698 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7699 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7700 "(%d) not supported\n", tx_fifo_num
);
7702 if (tx_fifo_num
< 1)
7705 tx_fifo_num
= MAX_TX_FIFOS
;
7707 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7711 *dev_multiq
= multiq
;
7713 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7714 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7716 "Tx steering is not supported with "
7717 "one fifo. Disabling Tx steering.\n");
7718 tx_steering_type
= NO_STEERING
;
7721 if ((tx_steering_type
< NO_STEERING
) ||
7722 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7724 "Requested transmit steering not supported\n");
7725 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7726 tx_steering_type
= NO_STEERING
;
7729 if (rx_ring_num
> MAX_RX_RINGS
) {
7731 "Requested number of rx rings not supported\n");
7732 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7734 rx_ring_num
= MAX_RX_RINGS
;
7737 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7738 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7739 "Defaulting to INTA\n");
7740 *dev_intr_type
= INTA
;
7743 if ((*dev_intr_type
== MSI_X
) &&
7744 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7745 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7746 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7747 "Defaulting to INTA\n");
7748 *dev_intr_type
= INTA
;
7751 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7752 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7753 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7757 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7758 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7759 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7760 "supported\nDefaulting to %d\n",
7761 MAX_RX_BLOCKS_PER_RING
);
7762 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7769 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7770 * or Traffic class respectively.
7771 * @nic: device private variable
7772 * Description: The function configures the receive steering to
7773 * desired receive ring.
7774 * Return Value: SUCCESS on success and
7775 * '-1' on failure (endian settings incorrect).
7777 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7779 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7780 register u64 val64
= 0;
7782 if (ds_codepoint
> 63)
7785 val64
= RTS_DS_MEM_DATA(ring
);
7786 writeq(val64
, &bar0
->rts_ds_mem_data
);
7788 val64
= RTS_DS_MEM_CTRL_WE
|
7789 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7790 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7792 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7794 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7795 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7799 static const struct net_device_ops s2io_netdev_ops
= {
7800 .ndo_open
= s2io_open
,
7801 .ndo_stop
= s2io_close
,
7802 .ndo_get_stats
= s2io_get_stats
,
7803 .ndo_start_xmit
= s2io_xmit
,
7804 .ndo_validate_addr
= eth_validate_addr
,
7805 .ndo_set_multicast_list
= s2io_set_multicast
,
7806 .ndo_do_ioctl
= s2io_ioctl
,
7807 .ndo_set_mac_address
= s2io_set_mac_addr
,
7808 .ndo_change_mtu
= s2io_change_mtu
,
7809 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7810 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7811 .ndo_tx_timeout
= s2io_tx_watchdog
,
7812 #ifdef CONFIG_NET_POLL_CONTROLLER
7813 .ndo_poll_controller
= s2io_netpoll
,
7818 * s2io_init_nic - Initialization of the adapter .
7819 * @pdev : structure containing the PCI related information of the device.
7820 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7822 * The function initializes an adapter identified by the pci_dec structure.
7823 * All OS related initialization including memory and device structure and
7824 * initlaization of the device private variable is done. Also the swapper
7825 * control register is initialized to enable read and write into the I/O
7826 * registers of the device.
7828 * returns 0 on success and negative on failure.
7831 static int __devinit
7832 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7834 struct s2io_nic
*sp
;
7835 struct net_device
*dev
;
7837 int dma_flag
= false;
7838 u32 mac_up
, mac_down
;
7839 u64 val64
= 0, tmp64
= 0;
7840 struct XENA_dev_config __iomem
*bar0
= NULL
;
7842 struct config_param
*config
;
7843 struct mac_info
*mac_control
;
7845 u8 dev_intr_type
= intr_type
;
7848 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7852 ret
= pci_enable_device(pdev
);
7855 "%s: pci_enable_device failed\n", __func__
);
7859 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7860 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7862 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7864 "Unable to obtain 64bit DMA "
7865 "for consistent allocations\n");
7866 pci_disable_device(pdev
);
7869 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7870 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7872 pci_disable_device(pdev
);
7875 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7877 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7879 pci_disable_device(pdev
);
7883 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7885 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7887 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7888 pci_disable_device(pdev
);
7889 pci_release_regions(pdev
);
7893 pci_set_master(pdev
);
7894 pci_set_drvdata(pdev
, dev
);
7895 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7897 /* Private member variable initialized to s2io NIC structure */
7898 sp
= netdev_priv(dev
);
7901 sp
->high_dma_flag
= dma_flag
;
7902 sp
->device_enabled_once
= false;
7903 if (rx_ring_mode
== 1)
7904 sp
->rxd_mode
= RXD_MODE_1
;
7905 if (rx_ring_mode
== 2)
7906 sp
->rxd_mode
= RXD_MODE_3B
;
7908 sp
->config
.intr_type
= dev_intr_type
;
7910 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7911 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7912 sp
->device_type
= XFRAME_II_DEVICE
;
7914 sp
->device_type
= XFRAME_I_DEVICE
;
7917 /* Initialize some PCI/PCI-X fields of the NIC. */
7921 * Setting the device configuration parameters.
7922 * Most of these parameters can be specified by the user during
7923 * module insertion as they are module loadable parameters. If
7924 * these parameters are not not specified during load time, they
7925 * are initialized with default values.
7927 config
= &sp
->config
;
7928 mac_control
= &sp
->mac_control
;
7930 config
->napi
= napi
;
7931 config
->tx_steering_type
= tx_steering_type
;
7933 /* Tx side parameters. */
7934 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7935 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7937 config
->tx_fifo_num
= tx_fifo_num
;
7939 /* Initialize the fifos used for tx steering */
7940 if (config
->tx_fifo_num
< 5) {
7941 if (config
->tx_fifo_num
== 1)
7942 sp
->total_tcp_fifos
= 1;
7944 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7945 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7946 sp
->total_udp_fifos
= 1;
7947 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7949 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7950 FIFO_OTHER_MAX_NUM
);
7951 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7952 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7953 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7956 config
->multiq
= dev_multiq
;
7957 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7958 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7960 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7961 tx_cfg
->fifo_priority
= i
;
7964 /* mapping the QoS priority to the configured fifos */
7965 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7966 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7968 /* map the hashing selector table to the configured fifos */
7969 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7970 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7973 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7974 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7975 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7977 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7978 if (tx_cfg
->fifo_len
< 65) {
7979 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7983 /* + 2 because one Txd for skb->data and one Txd for UFO */
7984 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7986 /* Rx side parameters. */
7987 config
->rx_ring_num
= rx_ring_num
;
7988 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7989 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7990 struct ring_info
*ring
= &mac_control
->rings
[i
];
7992 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7993 rx_cfg
->ring_priority
= i
;
7994 ring
->rx_bufs_left
= 0;
7995 ring
->rxd_mode
= sp
->rxd_mode
;
7996 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7997 ring
->pdev
= sp
->pdev
;
7998 ring
->dev
= sp
->dev
;
8001 for (i
= 0; i
< rx_ring_num
; i
++) {
8002 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
8004 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
8005 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
8008 /* Setting Mac Control parameters */
8009 mac_control
->rmac_pause_time
= rmac_pause_time
;
8010 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
8011 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
8014 /* initialize the shared memory used by the NIC and the host */
8015 if (init_shared_mem(sp
)) {
8016 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
8018 goto mem_alloc_failed
;
8021 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
8023 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
8026 goto bar0_remap_failed
;
8029 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
8031 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
8034 goto bar1_remap_failed
;
8037 dev
->irq
= pdev
->irq
;
8038 dev
->base_addr
= (unsigned long)sp
->bar0
;
8040 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8041 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
8042 mac_control
->tx_FIFO_start
[j
] =
8043 (struct TxFIFO_element __iomem
*)
8044 (sp
->bar1
+ (j
* 0x00020000));
8047 /* Driver entry points */
8048 dev
->netdev_ops
= &s2io_netdev_ops
;
8049 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
8050 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8051 dev
->features
|= NETIF_F_LRO
;
8052 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
8053 if (sp
->high_dma_flag
== true)
8054 dev
->features
|= NETIF_F_HIGHDMA
;
8055 dev
->features
|= NETIF_F_TSO
;
8056 dev
->features
|= NETIF_F_TSO6
;
8057 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
8058 dev
->features
|= NETIF_F_UFO
;
8059 dev
->features
|= NETIF_F_HW_CSUM
;
8061 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
8062 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
8063 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
8065 pci_save_state(sp
->pdev
);
8067 /* Setting swapper control on the NIC, for proper reset operation */
8068 if (s2io_set_swapper(sp
)) {
8069 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
8072 goto set_swap_failed
;
8075 /* Verify if the Herc works on the slot its placed into */
8076 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8077 mode
= s2io_verify_pci_mode(sp
);
8079 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8082 goto set_swap_failed
;
8086 if (sp
->config
.intr_type
== MSI_X
) {
8087 sp
->num_entries
= config
->rx_ring_num
+ 1;
8088 ret
= s2io_enable_msi_x(sp
);
8091 ret
= s2io_test_msi(sp
);
8092 /* rollback MSI-X, will re-enable during add_isr() */
8093 remove_msix_isr(sp
);
8098 "MSI-X requested but failed to enable\n");
8099 sp
->config
.intr_type
= INTA
;
8103 if (config
->intr_type
== MSI_X
) {
8104 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8105 struct ring_info
*ring
= &mac_control
->rings
[i
];
8107 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8110 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8113 /* Not needed for Herc */
8114 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8116 * Fix for all "FFs" MAC address problems observed on
8119 fix_mac_address(sp
);
8124 * MAC address initialization.
8125 * For now only one mac address will be read and used.
8128 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8129 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8130 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8131 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8132 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8134 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8135 mac_down
= (u32
)tmp64
;
8136 mac_up
= (u32
) (tmp64
>> 32);
8138 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8139 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8140 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8141 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8142 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8143 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8145 /* Set the factory defined MAC address initially */
8146 dev
->addr_len
= ETH_ALEN
;
8147 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8148 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8150 /* initialize number of multicast & unicast MAC entries variables */
8151 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8152 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8153 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8154 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8155 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8156 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8157 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8158 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8161 /* store mac addresses from CAM to s2io_nic structure */
8162 do_s2io_store_unicast_mc(sp
);
8164 /* Configure MSIX vector for number of rings configured plus one */
8165 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8166 (config
->intr_type
== MSI_X
))
8167 sp
->num_entries
= config
->rx_ring_num
+ 1;
8169 /* Store the values of the MSIX table in the s2io_nic structure */
8170 store_xmsi_data(sp
);
8171 /* reset Nic and bring it to known state */
8175 * Initialize link state flags
8176 * and the card state parameter
8180 /* Initialize spinlocks */
8181 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8182 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8184 spin_lock_init(&fifo
->tx_lock
);
8188 * SXE-002: Configure link and activity LED to init state
8191 subid
= sp
->pdev
->subsystem_device
;
8192 if ((subid
& 0xFF) >= 0x07) {
8193 val64
= readq(&bar0
->gpio_control
);
8194 val64
|= 0x0000800000000000ULL
;
8195 writeq(val64
, &bar0
->gpio_control
);
8196 val64
= 0x0411040400000000ULL
;
8197 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8198 val64
= readq(&bar0
->gpio_control
);
8201 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8203 if (register_netdev(dev
)) {
8204 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8206 goto register_failed
;
8209 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8210 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8211 sp
->product_name
, pdev
->revision
);
8212 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8213 s2io_driver_version
);
8214 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8215 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8216 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8217 mode
= s2io_print_pci_mode(sp
);
8220 unregister_netdev(dev
);
8221 goto set_swap_failed
;
8224 switch (sp
->rxd_mode
) {
8226 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8230 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8235 switch (sp
->config
.napi
) {
8237 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8240 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8244 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8245 sp
->config
.tx_fifo_num
);
8247 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8248 sp
->config
.rx_ring_num
);
8250 switch (sp
->config
.intr_type
) {
8252 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8255 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8258 if (sp
->config
.multiq
) {
8259 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8260 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8262 fifo
->multiq
= config
->multiq
;
8264 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8267 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8270 switch (sp
->config
.tx_steering_type
) {
8272 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8275 case TX_PRIORITY_STEERING
:
8277 "%s: Priority steering enabled for transmit\n",
8280 case TX_DEFAULT_STEERING
:
8282 "%s: Default steering enabled for transmit\n",
8286 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8290 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8292 /* Initialize device name */
8293 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8296 sp
->vlan_strip_flag
= 1;
8298 sp
->vlan_strip_flag
= 0;
8301 * Make Link state as off at this point, when the Link change
8302 * interrupt comes the state will be automatically changed to
8305 netif_carrier_off(dev
);
8316 free_shared_mem(sp
);
8317 pci_disable_device(pdev
);
8318 pci_release_regions(pdev
);
8319 pci_set_drvdata(pdev
, NULL
);
8326 * s2io_rem_nic - Free the PCI device
8327 * @pdev: structure containing the PCI related information of the device.
8328 * Description: This function is called by the Pci subsystem to release a
8329 * PCI device and free up all resource held up by the device. This could
8330 * be in response to a Hot plug event or when the driver is to be removed
8334 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8336 struct net_device
*dev
= pci_get_drvdata(pdev
);
8337 struct s2io_nic
*sp
;
8340 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8344 sp
= netdev_priv(dev
);
8346 cancel_work_sync(&sp
->rst_timer_task
);
8347 cancel_work_sync(&sp
->set_link_task
);
8349 unregister_netdev(dev
);
8351 free_shared_mem(sp
);
8354 pci_release_regions(pdev
);
8355 pci_set_drvdata(pdev
, NULL
);
8357 pci_disable_device(pdev
);
8361 * s2io_starter - Entry point for the driver
8362 * Description: This function is the entry point for the driver. It verifies
8363 * the module loadable parameters and initializes PCI configuration space.
8366 static int __init
s2io_starter(void)
8368 return pci_register_driver(&s2io_driver
);
8372 * s2io_closer - Cleanup routine for the driver
8373 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8376 static __exit
void s2io_closer(void)
8378 pci_unregister_driver(&s2io_driver
);
8379 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8382 module_init(s2io_starter
);
8383 module_exit(s2io_closer
);
8385 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8386 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8387 struct s2io_nic
*sp
)
8390 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8392 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8394 "%s: Non-TCP frames not supported for LRO\n",
8399 /* Checking for DIX type or DIX type with VLAN */
8400 if ((l2_type
== 0) || (l2_type
== 4)) {
8401 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8403 * If vlan stripping is disabled and the frame is VLAN tagged,
8404 * shift the offset by the VLAN header size bytes.
8406 if ((!sp
->vlan_strip_flag
) &&
8407 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8408 ip_off
+= HEADER_VLAN_SIZE
;
8410 /* LLC, SNAP etc are considered non-mergeable */
8414 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8415 ip_len
= (u8
)((*ip
)->ihl
);
8417 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8422 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8425 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8426 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8427 (lro
->iph
->daddr
!= ip
->daddr
) ||
8428 (lro
->tcph
->source
!= tcp
->source
) ||
8429 (lro
->tcph
->dest
!= tcp
->dest
))
8434 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8436 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8439 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8440 struct iphdr
*ip
, struct tcphdr
*tcp
,
8441 u32 tcp_pyld_len
, u16 vlan_tag
)
8443 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8447 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8448 lro
->tcp_ack
= tcp
->ack_seq
;
8450 lro
->total_len
= ntohs(ip
->tot_len
);
8452 lro
->vlan_tag
= vlan_tag
;
8454 * Check if we saw TCP timestamp.
8455 * Other consistency checks have already been done.
8457 if (tcp
->doff
== 8) {
8459 ptr
= (__be32
*)(tcp
+1);
8461 lro
->cur_tsval
= ntohl(*(ptr
+1));
8462 lro
->cur_tsecr
= *(ptr
+2);
8467 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8469 struct iphdr
*ip
= lro
->iph
;
8470 struct tcphdr
*tcp
= lro
->tcph
;
8472 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8474 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8476 /* Update L3 header */
8477 ip
->tot_len
= htons(lro
->total_len
);
8479 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8482 /* Update L4 header */
8483 tcp
->ack_seq
= lro
->tcp_ack
;
8484 tcp
->window
= lro
->window
;
8486 /* Update tsecr field if this session has timestamps enabled */
8488 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8489 *(ptr
+2) = lro
->cur_tsecr
;
8492 /* Update counters required for calculation of
8493 * average no. of packets aggregated.
8495 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8496 swstats
->num_aggregations
++;
8499 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8500 struct tcphdr
*tcp
, u32 l4_pyld
)
8502 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8503 lro
->total_len
+= l4_pyld
;
8504 lro
->frags_len
+= l4_pyld
;
8505 lro
->tcp_next_seq
+= l4_pyld
;
8508 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8509 lro
->tcp_ack
= tcp
->ack_seq
;
8510 lro
->window
= tcp
->window
;
8514 /* Update tsecr and tsval from this packet */
8515 ptr
= (__be32
*)(tcp
+1);
8516 lro
->cur_tsval
= ntohl(*(ptr
+1));
8517 lro
->cur_tsecr
= *(ptr
+ 2);
8521 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8522 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8526 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8528 if (!tcp_pyld_len
) {
8529 /* Runt frame or a pure ack */
8533 if (ip
->ihl
!= 5) /* IP has options */
8536 /* If we see CE codepoint in IP header, packet is not mergeable */
8537 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8540 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8541 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8542 tcp
->syn
|| tcp
->fin
||
8543 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8545 * Currently recognize only the ack control word and
8546 * any other control field being set would result in
8547 * flushing the LRO session
8553 * Allow only one TCP timestamp option. Don't aggregate if
8554 * any other options are detected.
8556 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8559 if (tcp
->doff
== 8) {
8560 ptr
= (u8
*)(tcp
+ 1);
8561 while (*ptr
== TCPOPT_NOP
)
8563 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8566 /* Ensure timestamp value increases monotonically */
8568 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8571 /* timestamp echo reply should be non-zero */
8572 if (*((__be32
*)(ptr
+6)) == 0)
8579 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8580 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8581 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8584 struct tcphdr
*tcph
;
8587 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8589 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8594 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8596 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8597 tcph
= (struct tcphdr
*)*tcp
;
8598 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8599 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8600 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8601 if (l_lro
->in_use
) {
8602 if (check_for_socket_match(l_lro
, ip
, tcph
))
8604 /* Sock pair matched */
8607 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8608 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8609 "expected 0x%x, actual 0x%x\n",
8611 (*lro
)->tcp_next_seq
,
8614 swstats
->outof_sequence_pkts
++;
8619 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8621 ret
= 1; /* Aggregate */
8623 ret
= 2; /* Flush both */
8629 /* Before searching for available LRO objects,
8630 * check if the pkt is L3/L4 aggregatable. If not
8631 * don't create new LRO session. Just send this
8634 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8637 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8638 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8639 if (!(l_lro
->in_use
)) {
8641 ret
= 3; /* Begin anew */
8647 if (ret
== 0) { /* sessions exceeded */
8648 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8656 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8660 update_L3L4_header(sp
, *lro
);
8663 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8664 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8665 update_L3L4_header(sp
, *lro
);
8666 ret
= 4; /* Flush the LRO */
8670 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8677 static void clear_lro_session(struct lro
*lro
)
8679 static u16 lro_struct_size
= sizeof(struct lro
);
8681 memset(lro
, 0, lro_struct_size
);
8684 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8686 struct net_device
*dev
= skb
->dev
;
8687 struct s2io_nic
*sp
= netdev_priv(dev
);
8689 skb
->protocol
= eth_type_trans(skb
, dev
);
8690 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8691 /* Queueing the vlan frame to the upper layer */
8692 if (sp
->config
.napi
)
8693 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8695 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8697 if (sp
->config
.napi
)
8698 netif_receive_skb(skb
);
8704 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8705 struct sk_buff
*skb
, u32 tcp_len
)
8707 struct sk_buff
*first
= lro
->parent
;
8708 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8710 first
->len
+= tcp_len
;
8711 first
->data_len
= lro
->frags_len
;
8712 skb_pull(skb
, (skb
->len
- tcp_len
));
8713 if (skb_shinfo(first
)->frag_list
)
8714 lro
->last_frag
->next
= skb
;
8716 skb_shinfo(first
)->frag_list
= skb
;
8717 first
->truesize
+= skb
->truesize
;
8718 lro
->last_frag
= skb
;
8719 swstats
->clubbed_frms_cnt
++;
8723 * s2io_io_error_detected - called when PCI error is detected
8724 * @pdev: Pointer to PCI device
8725 * @state: The current pci connection state
8727 * This function is called after a PCI bus error affecting
8728 * this device has been detected.
8730 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8731 pci_channel_state_t state
)
8733 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8734 struct s2io_nic
*sp
= netdev_priv(netdev
);
8736 netif_device_detach(netdev
);
8738 if (state
== pci_channel_io_perm_failure
)
8739 return PCI_ERS_RESULT_DISCONNECT
;
8741 if (netif_running(netdev
)) {
8742 /* Bring down the card, while avoiding PCI I/O */
8743 do_s2io_card_down(sp
, 0);
8745 pci_disable_device(pdev
);
8747 return PCI_ERS_RESULT_NEED_RESET
;
8751 * s2io_io_slot_reset - called after the pci bus has been reset.
8752 * @pdev: Pointer to PCI device
8754 * Restart the card from scratch, as if from a cold-boot.
8755 * At this point, the card has exprienced a hard reset,
8756 * followed by fixups by BIOS, and has its config space
8757 * set up identically to what it was at cold boot.
8759 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8761 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8762 struct s2io_nic
*sp
= netdev_priv(netdev
);
8764 if (pci_enable_device(pdev
)) {
8765 pr_err("Cannot re-enable PCI device after reset.\n");
8766 return PCI_ERS_RESULT_DISCONNECT
;
8769 pci_set_master(pdev
);
8772 return PCI_ERS_RESULT_RECOVERED
;
8776 * s2io_io_resume - called when traffic can start flowing again.
8777 * @pdev: Pointer to PCI device
8779 * This callback is called when the error recovery driver tells
8780 * us that its OK to resume normal operation.
8782 static void s2io_io_resume(struct pci_dev
*pdev
)
8784 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8785 struct s2io_nic
*sp
= netdev_priv(netdev
);
8787 if (netif_running(netdev
)) {
8788 if (s2io_card_up(sp
)) {
8789 pr_err("Can't bring device back up after reset.\n");
8793 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8795 pr_err("Can't restore mac addr after reset.\n");
8800 netif_device_attach(netdev
);
8801 netif_tx_wake_all_queues(netdev
);