1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
30 #include "workarounds.h"
32 /**************************************************************************
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
41 const char *efx_loopback_mode_names
[] = {
42 [LOOPBACK_NONE
] = "NONE",
43 [LOOPBACK_DATA
] = "DATAPATH",
44 [LOOPBACK_GMAC
] = "GMAC",
45 [LOOPBACK_XGMII
] = "XGMII",
46 [LOOPBACK_XGXS
] = "XGXS",
47 [LOOPBACK_XAUI
] = "XAUI",
48 [LOOPBACK_GMII
] = "GMII",
49 [LOOPBACK_SGMII
] = "SGMII",
50 [LOOPBACK_XGBR
] = "XGBR",
51 [LOOPBACK_XFI
] = "XFI",
52 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
56 [LOOPBACK_GPHY
] = "GPHY",
57 [LOOPBACK_PHYXS
] = "PHYXS",
58 [LOOPBACK_PCS
] = "PCS",
59 [LOOPBACK_PMAPMD
] = "PMA/PMD",
60 [LOOPBACK_XPORT
] = "XPORT",
61 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS
] = "GMII_WS",
66 [LOOPBACK_XFI_WS
] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
71 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
72 const char *efx_reset_type_names
[] = {
73 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
74 [RESET_TYPE_ALL
] = "ALL",
75 [RESET_TYPE_WORLD
] = "WORLD",
76 [RESET_TYPE_DISABLE
] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH
] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH
] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
86 #define EFX_MAX_MTU (9 * 1024)
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 static struct workqueue_struct
*reset_workqueue
;
94 /**************************************************************************
98 *************************************************************************/
101 * Use separate channels for TX and RX events
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
106 * This is only used in MSI-X interrupt mode
108 static unsigned int separate_tx_channels
;
109 module_param(separate_tx_channels
, uint
, 0444);
110 MODULE_PARM_DESC(separate_tx_channels
,
111 "Use separate channels for TX and RX");
113 /* This is the weight assigned to each of the (per-channel) virtual
116 static int napi_weight
= 64;
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
123 static unsigned int efx_monitor_interval
= 1 * HZ
;
125 /* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
132 static unsigned int allow_bad_hwaddr
;
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
140 static unsigned int rx_irq_mod_usec
= 60;
142 /* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
151 static unsigned int tx_irq_mod_usec
= 150;
153 /* This is the first interrupt mode to try out of:
158 static unsigned int interrupt_mode
;
160 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
167 static unsigned int rss_cpus
;
168 module_param(rss_cpus
, uint
, 0444);
169 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
171 static int phy_flash_cfg
;
172 module_param(phy_flash_cfg
, int, 0644);
173 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
175 static unsigned irq_adapt_low_thresh
= 10000;
176 module_param(irq_adapt_low_thresh
, uint
, 0644);
177 MODULE_PARM_DESC(irq_adapt_low_thresh
,
178 "Threshold score for reducing IRQ moderation");
180 static unsigned irq_adapt_high_thresh
= 20000;
181 module_param(irq_adapt_high_thresh
, uint
, 0644);
182 MODULE_PARM_DESC(irq_adapt_high_thresh
,
183 "Threshold score for increasing IRQ moderation");
185 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
186 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
187 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
188 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
189 module_param(debug
, uint
, 0);
190 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
192 /**************************************************************************
194 * Utility functions and prototypes
196 *************************************************************************/
198 static void efx_remove_channels(struct efx_nic
*efx
);
199 static void efx_remove_port(struct efx_nic
*efx
);
200 static void efx_init_napi(struct efx_nic
*efx
);
201 static void efx_fini_napi(struct efx_nic
*efx
);
202 static void efx_fini_napi_channel(struct efx_channel
*channel
);
203 static void efx_fini_struct(struct efx_nic
*efx
);
204 static void efx_start_all(struct efx_nic
*efx
);
205 static void efx_stop_all(struct efx_nic
*efx
);
207 #define EFX_ASSERT_RESET_SERIALISED(efx) \
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
214 /**************************************************************************
216 * Event queue processing
218 *************************************************************************/
220 /* Process channel's event queue
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
227 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
229 struct efx_nic
*efx
= channel
->efx
;
232 if (unlikely(efx
->reset_pending
!= RESET_TYPE_NONE
||
236 spent
= efx_nic_process_eventq(channel
, budget
);
240 /* Deliver last RX packet. */
241 if (channel
->rx_pkt
) {
242 __efx_rx_packet(channel
, channel
->rx_pkt
,
243 channel
->rx_pkt_csummed
);
244 channel
->rx_pkt
= NULL
;
247 efx_rx_strategy(channel
);
249 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel
));
254 /* Mark channel as finished processing
256 * Note that since we will not receive further interrupts for this
257 * channel before we finish processing and call the eventq_read_ack()
258 * method, there is no need to use the interrupt hold-off timers.
260 static inline void efx_channel_processed(struct efx_channel
*channel
)
262 /* The interrupt handler for this channel may set work_pending
263 * as soon as we acknowledge the events we've seen. Make sure
264 * it's cleared before then. */
265 channel
->work_pending
= false;
268 efx_nic_eventq_read_ack(channel
);
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by efx_process_channel().
276 static int efx_poll(struct napi_struct
*napi
, int budget
)
278 struct efx_channel
*channel
=
279 container_of(napi
, struct efx_channel
, napi_str
);
280 struct efx_nic
*efx
= channel
->efx
;
283 netif_vdbg(efx
, intr
, efx
->net_dev
,
284 "channel %d NAPI poll executing on CPU %d\n",
285 channel
->channel
, raw_smp_processor_id());
287 spent
= efx_process_channel(channel
, budget
);
289 if (spent
< budget
) {
290 if (channel
->channel
< efx
->n_rx_channels
&&
291 efx
->irq_rx_adaptive
&&
292 unlikely(++channel
->irq_count
== 1000)) {
293 if (unlikely(channel
->irq_mod_score
<
294 irq_adapt_low_thresh
)) {
295 if (channel
->irq_moderation
> 1) {
296 channel
->irq_moderation
-= 1;
297 efx
->type
->push_irq_moderation(channel
);
299 } else if (unlikely(channel
->irq_mod_score
>
300 irq_adapt_high_thresh
)) {
301 if (channel
->irq_moderation
<
302 efx
->irq_rx_moderation
) {
303 channel
->irq_moderation
+= 1;
304 efx
->type
->push_irq_moderation(channel
);
307 channel
->irq_count
= 0;
308 channel
->irq_mod_score
= 0;
311 efx_filter_rfs_expire(channel
);
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
319 efx_channel_processed(channel
);
325 /* Process the eventq of the specified channel immediately on this CPU
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
331 * This is for use only during a loopback self-test. It must not
332 * deliver any packets up the stack as this can result in deadlock.
334 void efx_process_channel_now(struct efx_channel
*channel
)
336 struct efx_nic
*efx
= channel
->efx
;
338 BUG_ON(channel
->channel
>= efx
->n_channels
);
339 BUG_ON(!channel
->enabled
);
340 BUG_ON(!efx
->loopback_selftest
);
342 /* Disable interrupts and wait for ISRs to complete */
343 efx_nic_disable_interrupts(efx
);
344 if (efx
->legacy_irq
) {
345 synchronize_irq(efx
->legacy_irq
);
346 efx
->legacy_irq_enabled
= false;
349 synchronize_irq(channel
->irq
);
351 /* Wait for any NAPI processing to complete */
352 napi_disable(&channel
->napi_str
);
354 /* Poll the channel */
355 efx_process_channel(channel
, channel
->eventq_mask
+ 1);
357 /* Ack the eventq. This may cause an interrupt to be generated
358 * when they are reenabled */
359 efx_channel_processed(channel
);
361 napi_enable(&channel
->napi_str
);
363 efx
->legacy_irq_enabled
= true;
364 efx_nic_enable_interrupts(efx
);
367 /* Create event queue
368 * Event queue memory allocations are done only once. If the channel
369 * is reset, the memory buffer will be reused; this guards against
370 * errors during channel reset and also simplifies interrupt handling.
372 static int efx_probe_eventq(struct efx_channel
*channel
)
374 struct efx_nic
*efx
= channel
->efx
;
375 unsigned long entries
;
377 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
378 "chan %d create event queue\n", channel
->channel
);
380 /* Build an event queue with room for one event per tx and rx buffer,
381 * plus some extra for link state events and MCDI completions. */
382 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
383 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
384 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
386 return efx_nic_probe_eventq(channel
);
389 /* Prepare channel's event queue */
390 static void efx_init_eventq(struct efx_channel
*channel
)
392 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
393 "chan %d init event queue\n", channel
->channel
);
395 channel
->eventq_read_ptr
= 0;
397 efx_nic_init_eventq(channel
);
400 static void efx_fini_eventq(struct efx_channel
*channel
)
402 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
403 "chan %d fini event queue\n", channel
->channel
);
405 efx_nic_fini_eventq(channel
);
408 static void efx_remove_eventq(struct efx_channel
*channel
)
410 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
411 "chan %d remove event queue\n", channel
->channel
);
413 efx_nic_remove_eventq(channel
);
416 /**************************************************************************
420 *************************************************************************/
422 /* Allocate and initialise a channel structure, optionally copying
423 * parameters (but not resources) from an old channel structure. */
424 static struct efx_channel
*
425 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
427 struct efx_channel
*channel
;
428 struct efx_rx_queue
*rx_queue
;
429 struct efx_tx_queue
*tx_queue
;
433 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
437 *channel
= *old_channel
;
439 channel
->napi_dev
= NULL
;
440 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
442 rx_queue
= &channel
->rx_queue
;
443 rx_queue
->buffer
= NULL
;
444 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
446 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
447 tx_queue
= &channel
->tx_queue
[j
];
448 if (tx_queue
->channel
)
449 tx_queue
->channel
= channel
;
450 tx_queue
->buffer
= NULL
;
451 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
454 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
459 channel
->channel
= i
;
461 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
462 tx_queue
= &channel
->tx_queue
[j
];
464 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
465 tx_queue
->channel
= channel
;
469 rx_queue
= &channel
->rx_queue
;
471 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
472 (unsigned long)rx_queue
);
477 static int efx_probe_channel(struct efx_channel
*channel
)
479 struct efx_tx_queue
*tx_queue
;
480 struct efx_rx_queue
*rx_queue
;
483 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
484 "creating channel %d\n", channel
->channel
);
486 rc
= efx_probe_eventq(channel
);
490 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
491 rc
= efx_probe_tx_queue(tx_queue
);
496 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
497 rc
= efx_probe_rx_queue(rx_queue
);
502 channel
->n_rx_frm_trunc
= 0;
507 efx_for_each_channel_rx_queue(rx_queue
, channel
)
508 efx_remove_rx_queue(rx_queue
);
510 efx_for_each_channel_tx_queue(tx_queue
, channel
)
511 efx_remove_tx_queue(tx_queue
);
517 static void efx_set_channel_names(struct efx_nic
*efx
)
519 struct efx_channel
*channel
;
520 const char *type
= "";
523 efx_for_each_channel(channel
, efx
) {
524 number
= channel
->channel
;
525 if (efx
->n_channels
> efx
->n_rx_channels
) {
526 if (channel
->channel
< efx
->n_rx_channels
) {
530 number
-= efx
->n_rx_channels
;
533 snprintf(efx
->channel_name
[channel
->channel
],
534 sizeof(efx
->channel_name
[0]),
535 "%s%s-%d", efx
->name
, type
, number
);
539 static int efx_probe_channels(struct efx_nic
*efx
)
541 struct efx_channel
*channel
;
544 /* Restart special buffer allocation */
545 efx
->next_buffer_table
= 0;
547 efx_for_each_channel(channel
, efx
) {
548 rc
= efx_probe_channel(channel
);
550 netif_err(efx
, probe
, efx
->net_dev
,
551 "failed to create channel %d\n",
556 efx_set_channel_names(efx
);
561 efx_remove_channels(efx
);
565 /* Channels are shutdown and reinitialised whilst the NIC is running
566 * to propagate configuration changes (mtu, checksum offload), or
567 * to clear hardware error conditions
569 static void efx_init_channels(struct efx_nic
*efx
)
571 struct efx_tx_queue
*tx_queue
;
572 struct efx_rx_queue
*rx_queue
;
573 struct efx_channel
*channel
;
575 /* Calculate the rx buffer allocation parameters required to
576 * support the current MTU, including padding for header
577 * alignment and overruns.
579 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
580 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
581 efx
->type
->rx_buffer_hash_size
+
582 efx
->type
->rx_buffer_padding
);
583 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
+
584 sizeof(struct efx_rx_page_state
));
586 /* Initialise the channels */
587 efx_for_each_channel(channel
, efx
) {
588 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
589 "init chan %d\n", channel
->channel
);
591 efx_init_eventq(channel
);
593 efx_for_each_channel_tx_queue(tx_queue
, channel
)
594 efx_init_tx_queue(tx_queue
);
596 /* The rx buffer allocation strategy is MTU dependent */
597 efx_rx_strategy(channel
);
599 efx_for_each_channel_rx_queue(rx_queue
, channel
)
600 efx_init_rx_queue(rx_queue
);
602 WARN_ON(channel
->rx_pkt
!= NULL
);
603 efx_rx_strategy(channel
);
607 /* This enables event queue processing and packet transmission.
609 * Note that this function is not allowed to fail, since that would
610 * introduce too much complexity into the suspend/resume path.
612 static void efx_start_channel(struct efx_channel
*channel
)
614 struct efx_rx_queue
*rx_queue
;
616 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
617 "starting chan %d\n", channel
->channel
);
619 /* The interrupt handler for this channel may set work_pending
620 * as soon as we enable it. Make sure it's cleared before
621 * then. Similarly, make sure it sees the enabled flag set. */
622 channel
->work_pending
= false;
623 channel
->enabled
= true;
626 /* Fill the queues before enabling NAPI */
627 efx_for_each_channel_rx_queue(rx_queue
, channel
)
628 efx_fast_push_rx_descriptors(rx_queue
);
630 napi_enable(&channel
->napi_str
);
633 /* This disables event queue processing and packet transmission.
634 * This function does not guarantee that all queue processing
635 * (e.g. RX refill) is complete.
637 static void efx_stop_channel(struct efx_channel
*channel
)
639 if (!channel
->enabled
)
642 netif_dbg(channel
->efx
, ifdown
, channel
->efx
->net_dev
,
643 "stop chan %d\n", channel
->channel
);
645 channel
->enabled
= false;
646 napi_disable(&channel
->napi_str
);
649 static void efx_fini_channels(struct efx_nic
*efx
)
651 struct efx_channel
*channel
;
652 struct efx_tx_queue
*tx_queue
;
653 struct efx_rx_queue
*rx_queue
;
656 EFX_ASSERT_RESET_SERIALISED(efx
);
657 BUG_ON(efx
->port_enabled
);
659 rc
= efx_nic_flush_queues(efx
);
660 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
661 /* Schedule a reset to recover from the flush failure. The
662 * descriptor caches reference memory we're about to free,
663 * but falcon_reconfigure_mac_wrapper() won't reconnect
664 * the MACs because of the pending reset. */
665 netif_err(efx
, drv
, efx
->net_dev
,
666 "Resetting to recover from flush failure\n");
667 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
669 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
671 netif_dbg(efx
, drv
, efx
->net_dev
,
672 "successfully flushed all queues\n");
675 efx_for_each_channel(channel
, efx
) {
676 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
677 "shut down chan %d\n", channel
->channel
);
679 efx_for_each_channel_rx_queue(rx_queue
, channel
)
680 efx_fini_rx_queue(rx_queue
);
681 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
682 efx_fini_tx_queue(tx_queue
);
683 efx_fini_eventq(channel
);
687 static void efx_remove_channel(struct efx_channel
*channel
)
689 struct efx_tx_queue
*tx_queue
;
690 struct efx_rx_queue
*rx_queue
;
692 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
693 "destroy chan %d\n", channel
->channel
);
695 efx_for_each_channel_rx_queue(rx_queue
, channel
)
696 efx_remove_rx_queue(rx_queue
);
697 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
698 efx_remove_tx_queue(tx_queue
);
699 efx_remove_eventq(channel
);
702 static void efx_remove_channels(struct efx_nic
*efx
)
704 struct efx_channel
*channel
;
706 efx_for_each_channel(channel
, efx
)
707 efx_remove_channel(channel
);
711 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
713 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
714 u32 old_rxq_entries
, old_txq_entries
;
719 efx_fini_channels(efx
);
722 memset(other_channel
, 0, sizeof(other_channel
));
723 for (i
= 0; i
< efx
->n_channels
; i
++) {
724 channel
= efx_alloc_channel(efx
, i
, efx
->channel
[i
]);
729 other_channel
[i
] = channel
;
732 /* Swap entry counts and channel pointers */
733 old_rxq_entries
= efx
->rxq_entries
;
734 old_txq_entries
= efx
->txq_entries
;
735 efx
->rxq_entries
= rxq_entries
;
736 efx
->txq_entries
= txq_entries
;
737 for (i
= 0; i
< efx
->n_channels
; i
++) {
738 channel
= efx
->channel
[i
];
739 efx
->channel
[i
] = other_channel
[i
];
740 other_channel
[i
] = channel
;
743 rc
= efx_probe_channels(efx
);
749 /* Destroy old channels */
750 for (i
= 0; i
< efx
->n_channels
; i
++) {
751 efx_fini_napi_channel(other_channel
[i
]);
752 efx_remove_channel(other_channel
[i
]);
755 /* Free unused channel structures */
756 for (i
= 0; i
< efx
->n_channels
; i
++)
757 kfree(other_channel
[i
]);
759 efx_init_channels(efx
);
765 efx
->rxq_entries
= old_rxq_entries
;
766 efx
->txq_entries
= old_txq_entries
;
767 for (i
= 0; i
< efx
->n_channels
; i
++) {
768 channel
= efx
->channel
[i
];
769 efx
->channel
[i
] = other_channel
[i
];
770 other_channel
[i
] = channel
;
775 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
777 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
780 /**************************************************************************
784 **************************************************************************/
786 /* This ensures that the kernel is kept informed (via
787 * netif_carrier_on/off) of the link status, and also maintains the
788 * link status's stop on the port's TX queue.
790 void efx_link_status_changed(struct efx_nic
*efx
)
792 struct efx_link_state
*link_state
= &efx
->link_state
;
794 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
795 * that no events are triggered between unregister_netdev() and the
796 * driver unloading. A more general condition is that NETDEV_CHANGE
797 * can only be generated between NETDEV_UP and NETDEV_DOWN */
798 if (!netif_running(efx
->net_dev
))
801 if (efx
->port_inhibited
) {
802 netif_carrier_off(efx
->net_dev
);
806 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
807 efx
->n_link_state_changes
++;
810 netif_carrier_on(efx
->net_dev
);
812 netif_carrier_off(efx
->net_dev
);
815 /* Status message for kernel log */
816 if (link_state
->up
) {
817 netif_info(efx
, link
, efx
->net_dev
,
818 "link up at %uMbps %s-duplex (MTU %d)%s\n",
819 link_state
->speed
, link_state
->fd
? "full" : "half",
821 (efx
->promiscuous
? " [PROMISC]" : ""));
823 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
828 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
830 efx
->link_advertising
= advertising
;
832 if (advertising
& ADVERTISED_Pause
)
833 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
835 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
836 if (advertising
& ADVERTISED_Asym_Pause
)
837 efx
->wanted_fc
^= EFX_FC_TX
;
841 void efx_link_set_wanted_fc(struct efx_nic
*efx
, enum efx_fc_type wanted_fc
)
843 efx
->wanted_fc
= wanted_fc
;
844 if (efx
->link_advertising
) {
845 if (wanted_fc
& EFX_FC_RX
)
846 efx
->link_advertising
|= (ADVERTISED_Pause
|
847 ADVERTISED_Asym_Pause
);
849 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
850 ADVERTISED_Asym_Pause
);
851 if (wanted_fc
& EFX_FC_TX
)
852 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
856 static void efx_fini_port(struct efx_nic
*efx
);
858 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
859 * the MAC appropriately. All other PHY configuration changes are pushed
860 * through phy_op->set_settings(), and pushed asynchronously to the MAC
861 * through efx_monitor().
863 * Callers must hold the mac_lock
865 int __efx_reconfigure_port(struct efx_nic
*efx
)
867 enum efx_phy_mode phy_mode
;
870 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
872 /* Serialise the promiscuous flag with efx_set_multicast_list. */
873 if (efx_dev_registered(efx
)) {
874 netif_addr_lock_bh(efx
->net_dev
);
875 netif_addr_unlock_bh(efx
->net_dev
);
878 /* Disable PHY transmit in mac level loopbacks */
879 phy_mode
= efx
->phy_mode
;
880 if (LOOPBACK_INTERNAL(efx
))
881 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
883 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
885 rc
= efx
->type
->reconfigure_port(efx
);
888 efx
->phy_mode
= phy_mode
;
893 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
895 int efx_reconfigure_port(struct efx_nic
*efx
)
899 EFX_ASSERT_RESET_SERIALISED(efx
);
901 mutex_lock(&efx
->mac_lock
);
902 rc
= __efx_reconfigure_port(efx
);
903 mutex_unlock(&efx
->mac_lock
);
908 /* Asynchronous work item for changing MAC promiscuity and multicast
909 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
911 static void efx_mac_work(struct work_struct
*data
)
913 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
915 mutex_lock(&efx
->mac_lock
);
916 if (efx
->port_enabled
) {
917 efx
->type
->push_multicast_hash(efx
);
918 efx
->mac_op
->reconfigure(efx
);
920 mutex_unlock(&efx
->mac_lock
);
923 static int efx_probe_port(struct efx_nic
*efx
)
925 unsigned char *perm_addr
;
928 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
931 efx
->phy_mode
= PHY_MODE_SPECIAL
;
933 /* Connect up MAC/PHY operations table */
934 rc
= efx
->type
->probe_port(efx
);
938 /* Sanity check MAC address */
939 perm_addr
= efx
->net_dev
->perm_addr
;
940 if (is_valid_ether_addr(perm_addr
)) {
941 memcpy(efx
->net_dev
->dev_addr
, perm_addr
, ETH_ALEN
);
943 netif_err(efx
, probe
, efx
->net_dev
, "invalid MAC address %pM\n",
945 if (!allow_bad_hwaddr
) {
949 random_ether_addr(efx
->net_dev
->dev_addr
);
950 netif_info(efx
, probe
, efx
->net_dev
,
951 "using locally-generated MAC %pM\n",
952 efx
->net_dev
->dev_addr
);
958 efx
->type
->remove_port(efx
);
962 static int efx_init_port(struct efx_nic
*efx
)
966 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
968 mutex_lock(&efx
->mac_lock
);
970 rc
= efx
->phy_op
->init(efx
);
974 efx
->port_initialized
= true;
976 /* Reconfigure the MAC before creating dma queues (required for
977 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
978 efx
->mac_op
->reconfigure(efx
);
980 /* Ensure the PHY advertises the correct flow control settings */
981 rc
= efx
->phy_op
->reconfigure(efx
);
985 mutex_unlock(&efx
->mac_lock
);
989 efx
->phy_op
->fini(efx
);
991 mutex_unlock(&efx
->mac_lock
);
995 static void efx_start_port(struct efx_nic
*efx
)
997 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
998 BUG_ON(efx
->port_enabled
);
1000 mutex_lock(&efx
->mac_lock
);
1001 efx
->port_enabled
= true;
1003 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1004 * and then cancelled by efx_flush_all() */
1005 efx
->type
->push_multicast_hash(efx
);
1006 efx
->mac_op
->reconfigure(efx
);
1008 mutex_unlock(&efx
->mac_lock
);
1011 /* Prevent efx_mac_work() and efx_monitor() from working */
1012 static void efx_stop_port(struct efx_nic
*efx
)
1014 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1016 mutex_lock(&efx
->mac_lock
);
1017 efx
->port_enabled
= false;
1018 mutex_unlock(&efx
->mac_lock
);
1020 /* Serialise against efx_set_multicast_list() */
1021 if (efx_dev_registered(efx
)) {
1022 netif_addr_lock_bh(efx
->net_dev
);
1023 netif_addr_unlock_bh(efx
->net_dev
);
1027 static void efx_fini_port(struct efx_nic
*efx
)
1029 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1031 if (!efx
->port_initialized
)
1034 efx
->phy_op
->fini(efx
);
1035 efx
->port_initialized
= false;
1037 efx
->link_state
.up
= false;
1038 efx_link_status_changed(efx
);
1041 static void efx_remove_port(struct efx_nic
*efx
)
1043 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1045 efx
->type
->remove_port(efx
);
1048 /**************************************************************************
1052 **************************************************************************/
1054 /* This configures the PCI device to enable I/O and DMA. */
1055 static int efx_init_io(struct efx_nic
*efx
)
1057 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1058 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1062 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1064 rc
= pci_enable_device(pci_dev
);
1066 netif_err(efx
, probe
, efx
->net_dev
,
1067 "failed to enable PCI device\n");
1071 pci_set_master(pci_dev
);
1073 /* Set the PCI DMA mask. Try all possibilities from our
1074 * genuine mask down to 32 bits, because some architectures
1075 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1076 * masks event though they reject 46 bit masks.
1078 while (dma_mask
> 0x7fffffffUL
) {
1079 if (pci_dma_supported(pci_dev
, dma_mask
) &&
1080 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
1085 netif_err(efx
, probe
, efx
->net_dev
,
1086 "could not find a suitable DMA mask\n");
1089 netif_dbg(efx
, probe
, efx
->net_dev
,
1090 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1091 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
1093 /* pci_set_consistent_dma_mask() is not *allowed* to
1094 * fail with a mask that pci_set_dma_mask() accepted,
1095 * but just in case...
1097 netif_err(efx
, probe
, efx
->net_dev
,
1098 "failed to set consistent DMA mask\n");
1102 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, EFX_MEM_BAR
);
1103 rc
= pci_request_region(pci_dev
, EFX_MEM_BAR
, "sfc");
1105 netif_err(efx
, probe
, efx
->net_dev
,
1106 "request for memory BAR failed\n");
1111 /* bug22643: If SR-IOV is enabled then tx push over a write combined
1112 * mapping is unsafe. We need to disable write combining in this case.
1113 * MSI is unsupported when SR-IOV is enabled, and the firmware will
1114 * have removed the MSI capability. So write combining is safe if
1115 * there is an MSI capability.
1117 use_wc
= (!EFX_WORKAROUND_22643(efx
) ||
1118 pci_find_capability(pci_dev
, PCI_CAP_ID_MSI
));
1120 efx
->membase
= ioremap_wc(efx
->membase_phys
,
1121 efx
->type
->mem_map_size
);
1123 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
1124 efx
->type
->mem_map_size
);
1125 if (!efx
->membase
) {
1126 netif_err(efx
, probe
, efx
->net_dev
,
1127 "could not map memory BAR at %llx+%x\n",
1128 (unsigned long long)efx
->membase_phys
,
1129 efx
->type
->mem_map_size
);
1133 netif_dbg(efx
, probe
, efx
->net_dev
,
1134 "memory BAR at %llx+%x (virtual %p)\n",
1135 (unsigned long long)efx
->membase_phys
,
1136 efx
->type
->mem_map_size
, efx
->membase
);
1141 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1143 efx
->membase_phys
= 0;
1145 pci_disable_device(efx
->pci_dev
);
1150 static void efx_fini_io(struct efx_nic
*efx
)
1152 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1155 iounmap(efx
->membase
);
1156 efx
->membase
= NULL
;
1159 if (efx
->membase_phys
) {
1160 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1161 efx
->membase_phys
= 0;
1164 pci_disable_device(efx
->pci_dev
);
1167 /* Get number of channels wanted. Each channel will have its own IRQ,
1168 * 1 RX queue and/or 2 TX queues. */
1169 static int efx_wanted_channels(void)
1171 cpumask_var_t core_mask
;
1178 if (unlikely(!zalloc_cpumask_var(&core_mask
, GFP_KERNEL
))) {
1180 "sfc: RSS disabled due to allocation failure\n");
1185 for_each_online_cpu(cpu
) {
1186 if (!cpumask_test_cpu(cpu
, core_mask
)) {
1188 cpumask_or(core_mask
, core_mask
,
1189 topology_core_cpumask(cpu
));
1193 free_cpumask_var(core_mask
);
1198 efx_init_rx_cpu_rmap(struct efx_nic
*efx
, struct msix_entry
*xentries
)
1200 #ifdef CONFIG_RFS_ACCEL
1203 efx
->net_dev
->rx_cpu_rmap
= alloc_irq_cpu_rmap(efx
->n_rx_channels
);
1204 if (!efx
->net_dev
->rx_cpu_rmap
)
1206 for (i
= 0; i
< efx
->n_rx_channels
; i
++) {
1207 rc
= irq_cpu_rmap_add(efx
->net_dev
->rx_cpu_rmap
,
1208 xentries
[i
].vector
);
1210 free_irq_cpu_rmap(efx
->net_dev
->rx_cpu_rmap
);
1211 efx
->net_dev
->rx_cpu_rmap
= NULL
;
1219 /* Probe the number and type of interrupts we are able to obtain, and
1220 * the resulting numbers of channels and RX queues.
1222 static int efx_probe_interrupts(struct efx_nic
*efx
)
1225 min_t(int, efx
->type
->phys_addr_channels
, EFX_MAX_CHANNELS
);
1228 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1229 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1232 n_channels
= efx_wanted_channels();
1233 if (separate_tx_channels
)
1235 n_channels
= min(n_channels
, max_channels
);
1237 for (i
= 0; i
< n_channels
; i
++)
1238 xentries
[i
].entry
= i
;
1239 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, n_channels
);
1241 netif_err(efx
, drv
, efx
->net_dev
,
1242 "WARNING: Insufficient MSI-X vectors"
1243 " available (%d < %d).\n", rc
, n_channels
);
1244 netif_err(efx
, drv
, efx
->net_dev
,
1245 "WARNING: Performance may be reduced.\n");
1246 EFX_BUG_ON_PARANOID(rc
>= n_channels
);
1248 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
1253 efx
->n_channels
= n_channels
;
1254 if (separate_tx_channels
) {
1255 efx
->n_tx_channels
=
1256 max(efx
->n_channels
/ 2, 1U);
1257 efx
->n_rx_channels
=
1258 max(efx
->n_channels
-
1259 efx
->n_tx_channels
, 1U);
1261 efx
->n_tx_channels
= efx
->n_channels
;
1262 efx
->n_rx_channels
= efx
->n_channels
;
1264 rc
= efx_init_rx_cpu_rmap(efx
, xentries
);
1266 pci_disable_msix(efx
->pci_dev
);
1269 for (i
= 0; i
< n_channels
; i
++)
1270 efx_get_channel(efx
, i
)->irq
=
1273 /* Fall back to single channel MSI */
1274 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1275 netif_err(efx
, drv
, efx
->net_dev
,
1276 "could not enable MSI-X\n");
1280 /* Try single interrupt MSI */
1281 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1282 efx
->n_channels
= 1;
1283 efx
->n_rx_channels
= 1;
1284 efx
->n_tx_channels
= 1;
1285 rc
= pci_enable_msi(efx
->pci_dev
);
1287 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1289 netif_err(efx
, drv
, efx
->net_dev
,
1290 "could not enable MSI\n");
1291 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1295 /* Assume legacy interrupts */
1296 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1297 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
1298 efx
->n_rx_channels
= 1;
1299 efx
->n_tx_channels
= 1;
1300 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1306 static void efx_remove_interrupts(struct efx_nic
*efx
)
1308 struct efx_channel
*channel
;
1310 /* Remove MSI/MSI-X interrupts */
1311 efx_for_each_channel(channel
, efx
)
1313 pci_disable_msi(efx
->pci_dev
);
1314 pci_disable_msix(efx
->pci_dev
);
1316 /* Remove legacy interrupt */
1317 efx
->legacy_irq
= 0;
1320 static void efx_set_channels(struct efx_nic
*efx
)
1322 efx
->tx_channel_offset
=
1323 separate_tx_channels
? efx
->n_channels
- efx
->n_tx_channels
: 0;
1326 static int efx_probe_nic(struct efx_nic
*efx
)
1331 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1333 /* Carry out hardware-type specific initialisation */
1334 rc
= efx
->type
->probe(efx
);
1338 /* Determine the number of channels and queues by trying to hook
1339 * in MSI-X interrupts. */
1340 rc
= efx_probe_interrupts(efx
);
1344 if (efx
->n_channels
> 1)
1345 get_random_bytes(&efx
->rx_hash_key
, sizeof(efx
->rx_hash_key
));
1346 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1347 efx
->rx_indir_table
[i
] = i
% efx
->n_rx_channels
;
1349 efx_set_channels(efx
);
1350 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1351 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1353 /* Initialise the interrupt moderation settings */
1354 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true);
1359 efx
->type
->remove(efx
);
1363 static void efx_remove_nic(struct efx_nic
*efx
)
1365 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1367 efx_remove_interrupts(efx
);
1368 efx
->type
->remove(efx
);
1371 /**************************************************************************
1373 * NIC startup/shutdown
1375 *************************************************************************/
1377 static int efx_probe_all(struct efx_nic
*efx
)
1381 rc
= efx_probe_nic(efx
);
1383 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1387 rc
= efx_probe_port(efx
);
1389 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1393 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1394 rc
= efx_probe_channels(efx
);
1398 rc
= efx_probe_filters(efx
);
1400 netif_err(efx
, probe
, efx
->net_dev
,
1401 "failed to create filter tables\n");
1408 efx_remove_channels(efx
);
1410 efx_remove_port(efx
);
1412 efx_remove_nic(efx
);
1417 /* Called after previous invocation(s) of efx_stop_all, restarts the
1418 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1419 * and ensures that the port is scheduled to be reconfigured.
1420 * This function is safe to call multiple times when the NIC is in any
1422 static void efx_start_all(struct efx_nic
*efx
)
1424 struct efx_channel
*channel
;
1426 EFX_ASSERT_RESET_SERIALISED(efx
);
1428 /* Check that it is appropriate to restart the interface. All
1429 * of these flags are safe to read under just the rtnl lock */
1430 if (efx
->port_enabled
)
1432 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1434 if (efx_dev_registered(efx
) && !netif_running(efx
->net_dev
))
1437 /* Mark the port as enabled so port reconfigurations can start, then
1438 * restart the transmit interface early so the watchdog timer stops */
1439 efx_start_port(efx
);
1441 if (efx_dev_registered(efx
) && !efx
->port_inhibited
)
1442 netif_tx_wake_all_queues(efx
->net_dev
);
1444 efx_for_each_channel(channel
, efx
)
1445 efx_start_channel(channel
);
1447 if (efx
->legacy_irq
)
1448 efx
->legacy_irq_enabled
= true;
1449 efx_nic_enable_interrupts(efx
);
1451 /* Switch to event based MCDI completions after enabling interrupts.
1452 * If a reset has been scheduled, then we need to stay in polled mode.
1453 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1454 * reset_pending [modified from an atomic context], we instead guarantee
1455 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1456 efx_mcdi_mode_event(efx
);
1457 if (efx
->reset_pending
!= RESET_TYPE_NONE
)
1458 efx_mcdi_mode_poll(efx
);
1460 /* Start the hardware monitor if there is one. Otherwise (we're link
1461 * event driven), we have to poll the PHY because after an event queue
1462 * flush, we could have a missed a link state change */
1463 if (efx
->type
->monitor
!= NULL
) {
1464 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1465 efx_monitor_interval
);
1467 mutex_lock(&efx
->mac_lock
);
1468 if (efx
->phy_op
->poll(efx
))
1469 efx_link_status_changed(efx
);
1470 mutex_unlock(&efx
->mac_lock
);
1473 efx
->type
->start_stats(efx
);
1476 /* Flush all delayed work. Should only be called when no more delayed work
1477 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1478 * since we're holding the rtnl_lock at this point. */
1479 static void efx_flush_all(struct efx_nic
*efx
)
1481 /* Make sure the hardware monitor is stopped */
1482 cancel_delayed_work_sync(&efx
->monitor_work
);
1483 /* Stop scheduled port reconfigurations */
1484 cancel_work_sync(&efx
->mac_work
);
1487 /* Quiesce hardware and software without bringing the link down.
1488 * Safe to call multiple times, when the nic and interface is in any
1489 * state. The caller is guaranteed to subsequently be in a position
1490 * to modify any hardware and software state they see fit without
1492 static void efx_stop_all(struct efx_nic
*efx
)
1494 struct efx_channel
*channel
;
1496 EFX_ASSERT_RESET_SERIALISED(efx
);
1498 /* port_enabled can be read safely under the rtnl lock */
1499 if (!efx
->port_enabled
)
1502 efx
->type
->stop_stats(efx
);
1504 /* Switch to MCDI polling on Siena before disabling interrupts */
1505 efx_mcdi_mode_poll(efx
);
1507 /* Disable interrupts and wait for ISR to complete */
1508 efx_nic_disable_interrupts(efx
);
1509 if (efx
->legacy_irq
) {
1510 synchronize_irq(efx
->legacy_irq
);
1511 efx
->legacy_irq_enabled
= false;
1513 efx_for_each_channel(channel
, efx
) {
1515 synchronize_irq(channel
->irq
);
1518 /* Stop all NAPI processing and synchronous rx refills */
1519 efx_for_each_channel(channel
, efx
)
1520 efx_stop_channel(channel
);
1522 /* Stop all asynchronous port reconfigurations. Since all
1523 * event processing has already been stopped, there is no
1524 * window to loose phy events */
1527 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1530 /* Stop the kernel transmit interface late, so the watchdog
1531 * timer isn't ticking over the flush */
1532 if (efx_dev_registered(efx
)) {
1533 netif_tx_stop_all_queues(efx
->net_dev
);
1534 netif_tx_lock_bh(efx
->net_dev
);
1535 netif_tx_unlock_bh(efx
->net_dev
);
1539 static void efx_remove_all(struct efx_nic
*efx
)
1541 efx_remove_filters(efx
);
1542 efx_remove_channels(efx
);
1543 efx_remove_port(efx
);
1544 efx_remove_nic(efx
);
1547 /**************************************************************************
1549 * Interrupt moderation
1551 **************************************************************************/
1553 static unsigned irq_mod_ticks(int usecs
, int resolution
)
1556 return 0; /* cannot receive interrupts ahead of time :-) */
1557 if (usecs
< resolution
)
1558 return 1; /* never round down to 0 */
1559 return usecs
/ resolution
;
1562 /* Set interrupt moderation parameters */
1563 void efx_init_irq_moderation(struct efx_nic
*efx
, int tx_usecs
, int rx_usecs
,
1566 struct efx_channel
*channel
;
1567 unsigned tx_ticks
= irq_mod_ticks(tx_usecs
, EFX_IRQ_MOD_RESOLUTION
);
1568 unsigned rx_ticks
= irq_mod_ticks(rx_usecs
, EFX_IRQ_MOD_RESOLUTION
);
1570 EFX_ASSERT_RESET_SERIALISED(efx
);
1572 efx
->irq_rx_adaptive
= rx_adaptive
;
1573 efx
->irq_rx_moderation
= rx_ticks
;
1574 efx_for_each_channel(channel
, efx
) {
1575 if (efx_channel_has_rx_queue(channel
))
1576 channel
->irq_moderation
= rx_ticks
;
1577 else if (efx_channel_has_tx_queues(channel
))
1578 channel
->irq_moderation
= tx_ticks
;
1582 /**************************************************************************
1586 **************************************************************************/
1588 /* Run periodically off the general workqueue */
1589 static void efx_monitor(struct work_struct
*data
)
1591 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1594 netif_vdbg(efx
, timer
, efx
->net_dev
,
1595 "hardware monitor executing on CPU %d\n",
1596 raw_smp_processor_id());
1597 BUG_ON(efx
->type
->monitor
== NULL
);
1599 /* If the mac_lock is already held then it is likely a port
1600 * reconfiguration is already in place, which will likely do
1601 * most of the work of monitor() anyway. */
1602 if (mutex_trylock(&efx
->mac_lock
)) {
1603 if (efx
->port_enabled
)
1604 efx
->type
->monitor(efx
);
1605 mutex_unlock(&efx
->mac_lock
);
1608 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1609 efx_monitor_interval
);
1612 /**************************************************************************
1616 *************************************************************************/
1619 * Context: process, rtnl_lock() held.
1621 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1623 struct efx_nic
*efx
= netdev_priv(net_dev
);
1624 struct mii_ioctl_data
*data
= if_mii(ifr
);
1626 EFX_ASSERT_RESET_SERIALISED(efx
);
1628 /* Convert phy_id from older PRTAD/DEVAD format */
1629 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1630 (data
->phy_id
& 0xfc00) == 0x0400)
1631 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1633 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1636 /**************************************************************************
1640 **************************************************************************/
1642 static void efx_init_napi(struct efx_nic
*efx
)
1644 struct efx_channel
*channel
;
1646 efx_for_each_channel(channel
, efx
) {
1647 channel
->napi_dev
= efx
->net_dev
;
1648 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1649 efx_poll
, napi_weight
);
1653 static void efx_fini_napi_channel(struct efx_channel
*channel
)
1655 if (channel
->napi_dev
)
1656 netif_napi_del(&channel
->napi_str
);
1657 channel
->napi_dev
= NULL
;
1660 static void efx_fini_napi(struct efx_nic
*efx
)
1662 struct efx_channel
*channel
;
1664 efx_for_each_channel(channel
, efx
)
1665 efx_fini_napi_channel(channel
);
1668 /**************************************************************************
1670 * Kernel netpoll interface
1672 *************************************************************************/
1674 #ifdef CONFIG_NET_POLL_CONTROLLER
1676 /* Although in the common case interrupts will be disabled, this is not
1677 * guaranteed. However, all our work happens inside the NAPI callback,
1678 * so no locking is required.
1680 static void efx_netpoll(struct net_device
*net_dev
)
1682 struct efx_nic
*efx
= netdev_priv(net_dev
);
1683 struct efx_channel
*channel
;
1685 efx_for_each_channel(channel
, efx
)
1686 efx_schedule_channel(channel
);
1691 /**************************************************************************
1693 * Kernel net device interface
1695 *************************************************************************/
1697 /* Context: process, rtnl_lock() held. */
1698 static int efx_net_open(struct net_device
*net_dev
)
1700 struct efx_nic
*efx
= netdev_priv(net_dev
);
1701 EFX_ASSERT_RESET_SERIALISED(efx
);
1703 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
1704 raw_smp_processor_id());
1706 if (efx
->state
== STATE_DISABLED
)
1708 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1710 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
1713 /* Notify the kernel of the link state polled during driver load,
1714 * before the monitor starts running */
1715 efx_link_status_changed(efx
);
1721 /* Context: process, rtnl_lock() held.
1722 * Note that the kernel will ignore our return code; this method
1723 * should really be a void.
1725 static int efx_net_stop(struct net_device
*net_dev
)
1727 struct efx_nic
*efx
= netdev_priv(net_dev
);
1729 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
1730 raw_smp_processor_id());
1732 if (efx
->state
!= STATE_DISABLED
) {
1733 /* Stop the device and flush all the channels */
1735 efx_fini_channels(efx
);
1736 efx_init_channels(efx
);
1742 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1743 static struct rtnl_link_stats64
*efx_net_stats(struct net_device
*net_dev
, struct rtnl_link_stats64
*stats
)
1745 struct efx_nic
*efx
= netdev_priv(net_dev
);
1746 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1748 spin_lock_bh(&efx
->stats_lock
);
1749 efx
->type
->update_stats(efx
);
1750 spin_unlock_bh(&efx
->stats_lock
);
1752 stats
->rx_packets
= mac_stats
->rx_packets
;
1753 stats
->tx_packets
= mac_stats
->tx_packets
;
1754 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1755 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1756 stats
->rx_dropped
= efx
->n_rx_nodesc_drop_cnt
;
1757 stats
->multicast
= mac_stats
->rx_multicast
;
1758 stats
->collisions
= mac_stats
->tx_collision
;
1759 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1760 mac_stats
->rx_length_error
);
1761 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1762 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1763 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1764 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1765 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1767 stats
->rx_errors
= (stats
->rx_length_errors
+
1768 stats
->rx_crc_errors
+
1769 stats
->rx_frame_errors
+
1770 mac_stats
->rx_symbol_error
);
1771 stats
->tx_errors
= (stats
->tx_window_errors
+
1777 /* Context: netif_tx_lock held, BHs disabled. */
1778 static void efx_watchdog(struct net_device
*net_dev
)
1780 struct efx_nic
*efx
= netdev_priv(net_dev
);
1782 netif_err(efx
, tx_err
, efx
->net_dev
,
1783 "TX stuck with port_enabled=%d: resetting channels\n",
1786 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
1790 /* Context: process, rtnl_lock() held. */
1791 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1793 struct efx_nic
*efx
= netdev_priv(net_dev
);
1796 EFX_ASSERT_RESET_SERIALISED(efx
);
1798 if (new_mtu
> EFX_MAX_MTU
)
1803 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
1805 efx_fini_channels(efx
);
1807 mutex_lock(&efx
->mac_lock
);
1808 /* Reconfigure the MAC before enabling the dma queues so that
1809 * the RX buffers don't overflow */
1810 net_dev
->mtu
= new_mtu
;
1811 efx
->mac_op
->reconfigure(efx
);
1812 mutex_unlock(&efx
->mac_lock
);
1814 efx_init_channels(efx
);
1820 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1822 struct efx_nic
*efx
= netdev_priv(net_dev
);
1823 struct sockaddr
*addr
= data
;
1824 char *new_addr
= addr
->sa_data
;
1826 EFX_ASSERT_RESET_SERIALISED(efx
);
1828 if (!is_valid_ether_addr(new_addr
)) {
1829 netif_err(efx
, drv
, efx
->net_dev
,
1830 "invalid ethernet MAC address requested: %pM\n",
1835 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1837 /* Reconfigure the MAC */
1838 mutex_lock(&efx
->mac_lock
);
1839 efx
->mac_op
->reconfigure(efx
);
1840 mutex_unlock(&efx
->mac_lock
);
1845 /* Context: netif_addr_lock held, BHs disabled. */
1846 static void efx_set_multicast_list(struct net_device
*net_dev
)
1848 struct efx_nic
*efx
= netdev_priv(net_dev
);
1849 struct netdev_hw_addr
*ha
;
1850 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1854 efx
->promiscuous
= !!(net_dev
->flags
& IFF_PROMISC
);
1856 /* Build multicast hash table */
1857 if (efx
->promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1858 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1860 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1861 netdev_for_each_mc_addr(ha
, net_dev
) {
1862 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1863 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1864 set_bit_le(bit
, mc_hash
->byte
);
1867 /* Broadcast packets go through the multicast hash filter.
1868 * ether_crc_le() of the broadcast address is 0xbe2612ff
1869 * so we always add bit 0xff to the mask.
1871 set_bit_le(0xff, mc_hash
->byte
);
1874 if (efx
->port_enabled
)
1875 queue_work(efx
->workqueue
, &efx
->mac_work
);
1876 /* Otherwise efx_start_port() will do this */
1879 static const struct net_device_ops efx_netdev_ops
= {
1880 .ndo_open
= efx_net_open
,
1881 .ndo_stop
= efx_net_stop
,
1882 .ndo_get_stats64
= efx_net_stats
,
1883 .ndo_tx_timeout
= efx_watchdog
,
1884 .ndo_start_xmit
= efx_hard_start_xmit
,
1885 .ndo_validate_addr
= eth_validate_addr
,
1886 .ndo_do_ioctl
= efx_ioctl
,
1887 .ndo_change_mtu
= efx_change_mtu
,
1888 .ndo_set_mac_address
= efx_set_mac_address
,
1889 .ndo_set_multicast_list
= efx_set_multicast_list
,
1890 #ifdef CONFIG_NET_POLL_CONTROLLER
1891 .ndo_poll_controller
= efx_netpoll
,
1893 .ndo_setup_tc
= efx_setup_tc
,
1894 #ifdef CONFIG_RFS_ACCEL
1895 .ndo_rx_flow_steer
= efx_filter_rfs
,
1899 static void efx_update_name(struct efx_nic
*efx
)
1901 strcpy(efx
->name
, efx
->net_dev
->name
);
1902 efx_mtd_rename(efx
);
1903 efx_set_channel_names(efx
);
1906 static int efx_netdev_event(struct notifier_block
*this,
1907 unsigned long event
, void *ptr
)
1909 struct net_device
*net_dev
= ptr
;
1911 if (net_dev
->netdev_ops
== &efx_netdev_ops
&&
1912 event
== NETDEV_CHANGENAME
)
1913 efx_update_name(netdev_priv(net_dev
));
1918 static struct notifier_block efx_netdev_notifier
= {
1919 .notifier_call
= efx_netdev_event
,
1923 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1925 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
1926 return sprintf(buf
, "%d\n", efx
->phy_type
);
1928 static DEVICE_ATTR(phy_type
, 0644, show_phy_type
, NULL
);
1930 static int efx_register_netdev(struct efx_nic
*efx
)
1932 struct net_device
*net_dev
= efx
->net_dev
;
1933 struct efx_channel
*channel
;
1936 net_dev
->watchdog_timeo
= 5 * HZ
;
1937 net_dev
->irq
= efx
->pci_dev
->irq
;
1938 net_dev
->netdev_ops
= &efx_netdev_ops
;
1939 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1941 /* Clear MAC statistics */
1942 efx
->mac_op
->update_stats(efx
);
1943 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1947 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
1950 efx_update_name(efx
);
1952 rc
= register_netdevice(net_dev
);
1956 efx_for_each_channel(channel
, efx
) {
1957 struct efx_tx_queue
*tx_queue
;
1958 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1959 efx_init_tx_queue_core_txq(tx_queue
);
1962 /* Always start with carrier off; PHY events will detect the link */
1963 netif_carrier_off(efx
->net_dev
);
1967 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1969 netif_err(efx
, drv
, efx
->net_dev
,
1970 "failed to init net dev attributes\n");
1971 goto fail_registered
;
1978 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
1982 unregister_netdev(net_dev
);
1986 static void efx_unregister_netdev(struct efx_nic
*efx
)
1988 struct efx_channel
*channel
;
1989 struct efx_tx_queue
*tx_queue
;
1994 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
1996 /* Free up any skbs still remaining. This has to happen before
1997 * we try to unregister the netdev as running their destructors
1998 * may be needed to get the device ref. count to 0. */
1999 efx_for_each_channel(channel
, efx
) {
2000 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2001 efx_release_tx_buffers(tx_queue
);
2004 if (efx_dev_registered(efx
)) {
2005 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2006 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2007 unregister_netdev(efx
->net_dev
);
2011 /**************************************************************************
2013 * Device reset and suspend
2015 **************************************************************************/
2017 /* Tears down the entire software state and most of the hardware state
2019 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2021 EFX_ASSERT_RESET_SERIALISED(efx
);
2024 mutex_lock(&efx
->mac_lock
);
2026 efx_fini_channels(efx
);
2027 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
2028 efx
->phy_op
->fini(efx
);
2029 efx
->type
->fini(efx
);
2032 /* This function will always ensure that the locks acquired in
2033 * efx_reset_down() are released. A failure return code indicates
2034 * that we were unable to reinitialise the hardware, and the
2035 * driver should be disabled. If ok is false, then the rx and tx
2036 * engines are not restarted, pending a RESET_DISABLE. */
2037 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2041 EFX_ASSERT_RESET_SERIALISED(efx
);
2043 rc
= efx
->type
->init(efx
);
2045 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2052 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
2053 rc
= efx
->phy_op
->init(efx
);
2056 if (efx
->phy_op
->reconfigure(efx
))
2057 netif_err(efx
, drv
, efx
->net_dev
,
2058 "could not restore PHY settings\n");
2061 efx
->mac_op
->reconfigure(efx
);
2063 efx_init_channels(efx
);
2064 efx_restore_filters(efx
);
2066 mutex_unlock(&efx
->mac_lock
);
2073 efx
->port_initialized
= false;
2075 mutex_unlock(&efx
->mac_lock
);
2080 /* Reset the NIC using the specified method. Note that the reset may
2081 * fail, in which case the card will be left in an unusable state.
2083 * Caller must hold the rtnl_lock.
2085 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2090 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2091 RESET_TYPE(method
));
2093 efx_reset_down(efx
, method
);
2095 rc
= efx
->type
->reset(efx
, method
);
2097 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2101 /* Allow resets to be rescheduled. */
2102 efx
->reset_pending
= RESET_TYPE_NONE
;
2104 /* Reinitialise bus-mastering, which may have been turned off before
2105 * the reset was scheduled. This is still appropriate, even in the
2106 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2107 * can respond to requests. */
2108 pci_set_master(efx
->pci_dev
);
2111 /* Leave device stopped if necessary */
2112 disabled
= rc
|| method
== RESET_TYPE_DISABLE
;
2113 rc2
= efx_reset_up(efx
, method
, !disabled
);
2121 dev_close(efx
->net_dev
);
2122 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2123 efx
->state
= STATE_DISABLED
;
2125 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2130 /* The worker thread exists so that code that cannot sleep can
2131 * schedule a reset for later.
2133 static void efx_reset_work(struct work_struct
*data
)
2135 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2137 if (efx
->reset_pending
== RESET_TYPE_NONE
)
2140 /* If we're not RUNNING then don't reset. Leave the reset_pending
2141 * flag set so that efx_pci_probe_main will be retried */
2142 if (efx
->state
!= STATE_RUNNING
) {
2143 netif_info(efx
, drv
, efx
->net_dev
,
2144 "scheduled reset quenched. NIC not RUNNING\n");
2149 (void)efx_reset(efx
, efx
->reset_pending
);
2153 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2155 enum reset_type method
;
2157 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
2158 netif_info(efx
, drv
, efx
->net_dev
,
2159 "quenching already scheduled reset\n");
2164 case RESET_TYPE_INVISIBLE
:
2165 case RESET_TYPE_ALL
:
2166 case RESET_TYPE_WORLD
:
2167 case RESET_TYPE_DISABLE
:
2170 case RESET_TYPE_RX_RECOVERY
:
2171 case RESET_TYPE_RX_DESC_FETCH
:
2172 case RESET_TYPE_TX_DESC_FETCH
:
2173 case RESET_TYPE_TX_SKIP
:
2174 method
= RESET_TYPE_INVISIBLE
;
2176 case RESET_TYPE_MC_FAILURE
:
2178 method
= RESET_TYPE_ALL
;
2183 netif_dbg(efx
, drv
, efx
->net_dev
,
2184 "scheduling %s reset for %s\n",
2185 RESET_TYPE(method
), RESET_TYPE(type
));
2187 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2188 RESET_TYPE(method
));
2190 efx
->reset_pending
= method
;
2192 /* efx_process_channel() will no longer read events once a
2193 * reset is scheduled. So switch back to poll'd MCDI completions. */
2194 efx_mcdi_mode_poll(efx
);
2196 queue_work(reset_workqueue
, &efx
->reset_work
);
2199 /**************************************************************************
2201 * List of NICs we support
2203 **************************************************************************/
2205 /* PCI device ID table */
2206 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table
) = {
2207 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_A_P_DEVID
),
2208 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2209 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_B_P_DEVID
),
2210 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2211 {PCI_DEVICE(EFX_VENDID_SFC
, BETHPAGE_A_P_DEVID
),
2212 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2213 {PCI_DEVICE(EFX_VENDID_SFC
, SIENA_A_P_DEVID
),
2214 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2215 {0} /* end of list */
2218 /**************************************************************************
2220 * Dummy PHY/MAC operations
2222 * Can be used for some unimplemented operations
2223 * Needed so all function pointers are valid and do not have to be tested
2226 **************************************************************************/
2227 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2231 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2233 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2238 static struct efx_phy_operations efx_dummy_phy_operations
= {
2239 .init
= efx_port_dummy_op_int
,
2240 .reconfigure
= efx_port_dummy_op_int
,
2241 .poll
= efx_port_dummy_op_poll
,
2242 .fini
= efx_port_dummy_op_void
,
2245 /**************************************************************************
2249 **************************************************************************/
2251 /* This zeroes out and then fills in the invariants in a struct
2252 * efx_nic (including all sub-structures).
2254 static int efx_init_struct(struct efx_nic
*efx
, struct efx_nic_type
*type
,
2255 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2259 /* Initialise common structures */
2260 memset(efx
, 0, sizeof(*efx
));
2261 spin_lock_init(&efx
->biu_lock
);
2262 #ifdef CONFIG_SFC_MTD
2263 INIT_LIST_HEAD(&efx
->mtd_list
);
2265 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2266 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2267 efx
->pci_dev
= pci_dev
;
2268 efx
->msg_enable
= debug
;
2269 efx
->state
= STATE_INIT
;
2270 efx
->reset_pending
= RESET_TYPE_NONE
;
2271 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2273 efx
->net_dev
= net_dev
;
2274 efx
->rx_checksum_enabled
= true;
2275 spin_lock_init(&efx
->stats_lock
);
2276 mutex_init(&efx
->mac_lock
);
2277 efx
->mac_op
= type
->default_mac_ops
;
2278 efx
->phy_op
= &efx_dummy_phy_operations
;
2279 efx
->mdio
.dev
= net_dev
;
2280 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2282 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2283 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
2284 if (!efx
->channel
[i
])
2290 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
2292 /* Higher numbered interrupt modes are less capable! */
2293 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2296 /* Would be good to use the net_dev name, but we're too early */
2297 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2299 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2300 if (!efx
->workqueue
)
2306 efx_fini_struct(efx
);
2310 static void efx_fini_struct(struct efx_nic
*efx
)
2314 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
2315 kfree(efx
->channel
[i
]);
2317 if (efx
->workqueue
) {
2318 destroy_workqueue(efx
->workqueue
);
2319 efx
->workqueue
= NULL
;
2323 /**************************************************************************
2327 **************************************************************************/
2329 /* Main body of final NIC shutdown code
2330 * This is called only at module unload (or hotplug removal).
2332 static void efx_pci_remove_main(struct efx_nic
*efx
)
2334 #ifdef CONFIG_RFS_ACCEL
2335 free_irq_cpu_rmap(efx
->net_dev
->rx_cpu_rmap
);
2336 efx
->net_dev
->rx_cpu_rmap
= NULL
;
2338 efx_nic_fini_interrupt(efx
);
2339 efx_fini_channels(efx
);
2341 efx
->type
->fini(efx
);
2343 efx_remove_all(efx
);
2346 /* Final NIC shutdown
2347 * This is called only at module unload (or hotplug removal).
2349 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2351 struct efx_nic
*efx
;
2353 efx
= pci_get_drvdata(pci_dev
);
2357 /* Mark the NIC as fini, then stop the interface */
2359 efx
->state
= STATE_FINI
;
2360 dev_close(efx
->net_dev
);
2362 /* Allow any queued efx_resets() to complete */
2365 efx_unregister_netdev(efx
);
2367 efx_mtd_remove(efx
);
2369 /* Wait for any scheduled resets to complete. No more will be
2370 * scheduled from this point because efx_stop_all() has been
2371 * called, we are no longer registered with driverlink, and
2372 * the net_device's have been removed. */
2373 cancel_work_sync(&efx
->reset_work
);
2375 efx_pci_remove_main(efx
);
2378 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2380 pci_set_drvdata(pci_dev
, NULL
);
2381 efx_fini_struct(efx
);
2382 free_netdev(efx
->net_dev
);
2385 /* Main body of NIC initialisation
2386 * This is called at module load (or hotplug insertion, theoretically).
2388 static int efx_pci_probe_main(struct efx_nic
*efx
)
2392 /* Do start-of-day initialisation */
2393 rc
= efx_probe_all(efx
);
2399 rc
= efx
->type
->init(efx
);
2401 netif_err(efx
, probe
, efx
->net_dev
,
2402 "failed to initialise NIC\n");
2406 rc
= efx_init_port(efx
);
2408 netif_err(efx
, probe
, efx
->net_dev
,
2409 "failed to initialise port\n");
2413 efx_init_channels(efx
);
2415 rc
= efx_nic_init_interrupt(efx
);
2422 efx_fini_channels(efx
);
2425 efx
->type
->fini(efx
);
2428 efx_remove_all(efx
);
2433 /* NIC initialisation
2435 * This is called at module load (or hotplug insertion,
2436 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2437 * sets up and registers the network devices with the kernel and hooks
2438 * the interrupt service routine. It does not prepare the device for
2439 * transmission; this is left to the first time one of the network
2440 * interfaces is brought up (i.e. efx_net_open).
2442 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2443 const struct pci_device_id
*entry
)
2445 struct efx_nic_type
*type
= (struct efx_nic_type
*) entry
->driver_data
;
2446 struct net_device
*net_dev
;
2447 struct efx_nic
*efx
;
2450 /* Allocate and initialise a struct net_device and struct efx_nic */
2451 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
2455 net_dev
->features
|= (type
->offload_features
| NETIF_F_SG
|
2456 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2458 if (type
->offload_features
& NETIF_F_V6_CSUM
)
2459 net_dev
->features
|= NETIF_F_TSO6
;
2460 /* Mask for features that also apply to VLAN devices */
2461 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2462 NETIF_F_HIGHDMA
| NETIF_F_TSO
);
2463 efx
= netdev_priv(net_dev
);
2464 pci_set_drvdata(pci_dev
, efx
);
2465 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2466 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2470 netif_info(efx
, probe
, efx
->net_dev
,
2471 "Solarflare Communications NIC detected\n");
2473 /* Set up basic I/O (BAR mappings etc) */
2474 rc
= efx_init_io(efx
);
2478 /* No serialisation is required with the reset path because
2479 * we're in STATE_INIT. */
2480 for (i
= 0; i
< 5; i
++) {
2481 rc
= efx_pci_probe_main(efx
);
2483 /* Serialise against efx_reset(). No more resets will be
2484 * scheduled since efx_stop_all() has been called, and we
2485 * have not and never have been registered with either
2486 * the rtnetlink or driverlink layers. */
2487 cancel_work_sync(&efx
->reset_work
);
2490 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
2491 /* If there was a scheduled reset during
2492 * probe, the NIC is probably hosed anyway */
2493 efx_pci_remove_main(efx
);
2500 /* Retry if a recoverably reset event has been scheduled */
2501 if ((efx
->reset_pending
!= RESET_TYPE_INVISIBLE
) &&
2502 (efx
->reset_pending
!= RESET_TYPE_ALL
))
2505 efx
->reset_pending
= RESET_TYPE_NONE
;
2509 netif_err(efx
, probe
, efx
->net_dev
, "Could not reset NIC\n");
2513 /* Switch to the running state before we expose the device to the OS,
2514 * so that dev_open()|efx_start_all() will actually start the device */
2515 efx
->state
= STATE_RUNNING
;
2517 rc
= efx_register_netdev(efx
);
2521 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
2524 efx_mtd_probe(efx
); /* allowed to fail */
2529 efx_pci_remove_main(efx
);
2534 efx_fini_struct(efx
);
2537 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
2538 free_netdev(net_dev
);
2542 static int efx_pm_freeze(struct device
*dev
)
2544 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2546 efx
->state
= STATE_FINI
;
2548 netif_device_detach(efx
->net_dev
);
2551 efx_fini_channels(efx
);
2556 static int efx_pm_thaw(struct device
*dev
)
2558 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2560 efx
->state
= STATE_INIT
;
2562 efx_init_channels(efx
);
2564 mutex_lock(&efx
->mac_lock
);
2565 efx
->phy_op
->reconfigure(efx
);
2566 mutex_unlock(&efx
->mac_lock
);
2570 netif_device_attach(efx
->net_dev
);
2572 efx
->state
= STATE_RUNNING
;
2574 efx
->type
->resume_wol(efx
);
2576 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2577 queue_work(reset_workqueue
, &efx
->reset_work
);
2582 static int efx_pm_poweroff(struct device
*dev
)
2584 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2585 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2587 efx
->type
->fini(efx
);
2589 efx
->reset_pending
= RESET_TYPE_NONE
;
2591 pci_save_state(pci_dev
);
2592 return pci_set_power_state(pci_dev
, PCI_D3hot
);
2595 /* Used for both resume and restore */
2596 static int efx_pm_resume(struct device
*dev
)
2598 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2599 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2602 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
2605 pci_restore_state(pci_dev
);
2606 rc
= pci_enable_device(pci_dev
);
2609 pci_set_master(efx
->pci_dev
);
2610 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
2613 rc
= efx
->type
->init(efx
);
2620 static int efx_pm_suspend(struct device
*dev
)
2625 rc
= efx_pm_poweroff(dev
);
2631 static struct dev_pm_ops efx_pm_ops
= {
2632 .suspend
= efx_pm_suspend
,
2633 .resume
= efx_pm_resume
,
2634 .freeze
= efx_pm_freeze
,
2635 .thaw
= efx_pm_thaw
,
2636 .poweroff
= efx_pm_poweroff
,
2637 .restore
= efx_pm_resume
,
2640 static struct pci_driver efx_pci_driver
= {
2641 .name
= KBUILD_MODNAME
,
2642 .id_table
= efx_pci_table
,
2643 .probe
= efx_pci_probe
,
2644 .remove
= efx_pci_remove
,
2645 .driver
.pm
= &efx_pm_ops
,
2648 /**************************************************************************
2650 * Kernel module interface
2652 *************************************************************************/
2654 module_param(interrupt_mode
, uint
, 0444);
2655 MODULE_PARM_DESC(interrupt_mode
,
2656 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2658 static int __init
efx_init_module(void)
2662 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2664 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2668 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
2669 if (!reset_workqueue
) {
2674 rc
= pci_register_driver(&efx_pci_driver
);
2681 destroy_workqueue(reset_workqueue
);
2683 unregister_netdevice_notifier(&efx_netdev_notifier
);
2688 static void __exit
efx_exit_module(void)
2690 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2692 pci_unregister_driver(&efx_pci_driver
);
2693 destroy_workqueue(reset_workqueue
);
2694 unregister_netdevice_notifier(&efx_netdev_notifier
);
2698 module_init(efx_init_module
);
2699 module_exit(efx_exit_module
);
2701 MODULE_AUTHOR("Solarflare Communications and "
2702 "Michael Brown <mbrown@fensystems.co.uk>");
2703 MODULE_DESCRIPTION("Solarflare Communications network driver");
2704 MODULE_LICENSE("GPL");
2705 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);