IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / net / via-velocity.c
blob4fe05175384233c97bb182afe92ec7dff7bea8f5
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
17 * This source has not been verified for use in safety critical systems.
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
22 * Original code:
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
37 * Author: Chuang Liang-Shing, AJ Jiang
39 * Date: Jan 24, 2003
41 * MODULE_LICENSE("GPL");
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
80 #include "via-velocity.h"
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
96 int i;
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
101 writeb(0, &regs->CAMADDR);
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
116 * mac_set_cam_mask - Set a CAM mask
117 * @regs: register block for this velocity
118 * @mask: CAM mask to load
120 * Store a new mask into a CAM
122 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
124 int i;
125 /* Select CAM mask */
126 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
128 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
130 for (i = 0; i < 8; i++)
131 writeb(*mask++, &(regs->MARCAM[i]));
133 /* disable CAMEN */
134 writeb(0, &regs->CAMADDR);
136 /* Select mar */
137 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
140 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
142 int i;
143 /* Select CAM mask */
144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
146 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
148 for (i = 0; i < 8; i++)
149 writeb(*mask++, &(regs->MARCAM[i]));
151 /* disable CAMEN */
152 writeb(0, &regs->CAMADDR);
154 /* Select mar */
155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
159 * mac_set_cam - set CAM data
160 * @regs: register block of this velocity
161 * @idx: Cam index
162 * @addr: 2 or 6 bytes of CAM data
164 * Load an address or vlan tag into a CAM
166 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
168 int i;
170 /* Select CAM mask */
171 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
173 idx &= (64 - 1);
175 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
177 for (i = 0; i < 6; i++)
178 writeb(*addr++, &(regs->MARCAM[i]));
180 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
182 udelay(10);
184 writeb(0, &regs->CAMADDR);
186 /* Select mar */
187 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
191 const u8 *addr)
194 /* Select CAM mask */
195 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
197 idx &= (64 - 1);
199 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
200 writew(*((u16 *) addr), &regs->MARCAM[0]);
202 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
204 udelay(10);
206 writeb(0, &regs->CAMADDR);
208 /* Select mar */
209 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 * mac_wol_reset - reset WOL after exiting low power
215 * @regs: register block of this velocity
217 * Called after we drop out of wake on lan mode in order to
218 * reset the Wake on lan features. This function doesn't restore
219 * the rest of the logic from the result of sleep/wakeup
221 static void mac_wol_reset(struct mac_regs __iomem *regs)
224 /* Turn off SWPTAG right after leaving power mode */
225 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
226 /* clear sticky bits */
227 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
230 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
231 /* disable force PME-enable */
232 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
233 /* disable power-event config bit */
234 writew(0xFFFF, &regs->WOLCRClr);
235 /* clear power status */
236 writew(0xFFFF, &regs->WOLSRClr);
239 static const struct ethtool_ops velocity_ethtool_ops;
242 Define module options
245 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
246 MODULE_LICENSE("GPL");
247 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
249 #define VELOCITY_PARAM(N, D) \
250 static int N[MAX_UNITS] = OPTION_DEFAULT;\
251 module_param_array(N, int, NULL, 0); \
252 MODULE_PARM_DESC(N, D);
254 #define RX_DESC_MIN 64
255 #define RX_DESC_MAX 255
256 #define RX_DESC_DEF 64
257 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
259 #define TX_DESC_MIN 16
260 #define TX_DESC_MAX 256
261 #define TX_DESC_DEF 64
262 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
264 #define RX_THRESH_MIN 0
265 #define RX_THRESH_MAX 3
266 #define RX_THRESH_DEF 0
267 /* rx_thresh[] is used for controlling the receive fifo threshold.
268 0: indicate the rxfifo threshold is 128 bytes.
269 1: indicate the rxfifo threshold is 512 bytes.
270 2: indicate the rxfifo threshold is 1024 bytes.
271 3: indicate the rxfifo threshold is store & forward.
273 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
275 #define DMA_LENGTH_MIN 0
276 #define DMA_LENGTH_MAX 7
277 #define DMA_LENGTH_DEF 6
279 /* DMA_length[] is used for controlling the DMA length
280 0: 8 DWORDs
281 1: 16 DWORDs
282 2: 32 DWORDs
283 3: 64 DWORDs
284 4: 128 DWORDs
285 5: 256 DWORDs
286 6: SF(flush till emply)
287 7: SF(flush till emply)
289 VELOCITY_PARAM(DMA_length, "DMA length");
291 #define IP_ALIG_DEF 0
292 /* IP_byte_align[] is used for IP header DWORD byte aligned
293 0: indicate the IP header won't be DWORD byte aligned.(Default) .
294 1: indicate the IP header will be DWORD byte aligned.
295 In some environment, the IP header should be DWORD byte aligned,
296 or the packet will be droped when we receive it. (eg: IPVS)
298 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
300 #define FLOW_CNTL_DEF 1
301 #define FLOW_CNTL_MIN 1
302 #define FLOW_CNTL_MAX 5
304 /* flow_control[] is used for setting the flow control ability of NIC.
305 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
306 2: enable TX flow control.
307 3: enable RX flow control.
308 4: enable RX/TX flow control.
309 5: disable
311 VELOCITY_PARAM(flow_control, "Enable flow control ability");
313 #define MED_LNK_DEF 0
314 #define MED_LNK_MIN 0
315 #define MED_LNK_MAX 5
316 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
317 0: indicate autonegotiation for both speed and duplex mode
318 1: indicate 100Mbps half duplex mode
319 2: indicate 100Mbps full duplex mode
320 3: indicate 10Mbps half duplex mode
321 4: indicate 10Mbps full duplex mode
322 5: indicate 1000Mbps full duplex mode
324 Note:
325 if EEPROM have been set to the force mode, this option is ignored
326 by driver.
328 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
330 #define VAL_PKT_LEN_DEF 0
331 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
332 0: Receive frame with invalid layer 2 length (Default)
333 1: Drop frame with invalid layer 2 length
335 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
337 #define WOL_OPT_DEF 0
338 #define WOL_OPT_MIN 0
339 #define WOL_OPT_MAX 7
340 /* wol_opts[] is used for controlling wake on lan behavior.
341 0: Wake up if recevied a magic packet. (Default)
342 1: Wake up if link status is on/off.
343 2: Wake up if recevied an arp packet.
344 4: Wake up if recevied any unicast packet.
345 Those value can be sumed up to support more than one option.
347 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
349 static int rx_copybreak = 200;
350 module_param(rx_copybreak, int, 0644);
351 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
354 * Internal board variants. At the moment we have only one
356 static struct velocity_info_tbl chip_info_table[] = {
357 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
362 * Describe the PCI device identifiers that we support in this
363 * device driver. Used for hotplug autoloading.
365 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
366 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
370 MODULE_DEVICE_TABLE(pci, velocity_id_table);
373 * get_chip_name - identifier to name
374 * @id: chip identifier
376 * Given a chip identifier return a suitable description. Returns
377 * a pointer a static string valid while the driver is loaded.
379 static const char __devinit *get_chip_name(enum chip_type chip_id)
381 int i;
382 for (i = 0; chip_info_table[i].name != NULL; i++)
383 if (chip_info_table[i].chip_id == chip_id)
384 break;
385 return chip_info_table[i].name;
389 * velocity_remove1 - device unplug
390 * @pdev: PCI device being removed
392 * Device unload callback. Called on an unplug or on module
393 * unload for each active device that is present. Disconnects
394 * the device from the network layer and frees all the resources
396 static void __devexit velocity_remove1(struct pci_dev *pdev)
398 struct net_device *dev = pci_get_drvdata(pdev);
399 struct velocity_info *vptr = netdev_priv(dev);
401 unregister_netdev(dev);
402 iounmap(vptr->mac_regs);
403 pci_release_regions(pdev);
404 pci_disable_device(pdev);
405 pci_set_drvdata(pdev, NULL);
406 free_netdev(dev);
408 velocity_nics--;
412 * velocity_set_int_opt - parser for integer options
413 * @opt: pointer to option value
414 * @val: value the user requested (or -1 for default)
415 * @min: lowest value allowed
416 * @max: highest value allowed
417 * @def: default value
418 * @name: property name
419 * @dev: device name
421 * Set an integer property in the module options. This function does
422 * all the verification and checking as well as reporting so that
423 * we don't duplicate code for each option.
425 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
427 if (val == -1)
428 *opt = def;
429 else if (val < min || val > max) {
430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 devname, name, min, max);
432 *opt = def;
433 } else {
434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 devname, name, val);
436 *opt = val;
441 * velocity_set_bool_opt - parser for boolean options
442 * @opt: pointer to option value
443 * @val: value the user requested (or -1 for default)
444 * @def: default value (yes/no)
445 * @flag: numeric value to set for true.
446 * @name: property name
447 * @dev: device name
449 * Set a boolean property in the module options. This function does
450 * all the verification and checking as well as reporting so that
451 * we don't duplicate code for each option.
453 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
455 (*opt) &= (~flag);
456 if (val == -1)
457 *opt |= (def ? flag : 0);
458 else if (val < 0 || val > 1) {
459 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
460 devname, name);
461 *opt |= (def ? flag : 0);
462 } else {
463 printk(KERN_INFO "%s: set parameter %s to %s\n",
464 devname, name, val ? "TRUE" : "FALSE");
465 *opt |= (val ? flag : 0);
470 * velocity_get_options - set options on device
471 * @opts: option structure for the device
472 * @index: index of option to use in module options array
473 * @devname: device name
475 * Turn the module and command options into a single structure
476 * for the current device
478 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
481 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
482 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
483 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
484 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
486 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
487 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
488 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
489 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
490 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
491 opts->numrx = (opts->numrx & ~3);
495 * velocity_init_cam_filter - initialise CAM
496 * @vptr: velocity to program
498 * Initialize the content addressable memory used for filters. Load
499 * appropriately according to the presence of VLAN
501 static void velocity_init_cam_filter(struct velocity_info *vptr)
503 struct mac_regs __iomem *regs = vptr->mac_regs;
505 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
509 /* Disable all CAMs */
510 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 mac_set_cam_mask(regs, vptr->mCAMmask);
515 /* Enable VCAMs */
516 if (vptr->vlgrp) {
517 unsigned int vid, i = 0;
519 if (!vlan_group_get_device(vptr->vlgrp, 0))
520 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
522 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
523 if (vlan_group_get_device(vptr->vlgrp, vid)) {
524 mac_set_vlan_cam(regs, i, (u8 *) &vid);
525 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
526 if (++i >= VCAM_SIZE)
527 break;
530 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
534 static void velocity_vlan_rx_register(struct net_device *dev,
535 struct vlan_group *grp)
537 struct velocity_info *vptr = netdev_priv(dev);
539 vptr->vlgrp = grp;
542 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
544 struct velocity_info *vptr = netdev_priv(dev);
546 spin_lock_irq(&vptr->lock);
547 velocity_init_cam_filter(vptr);
548 spin_unlock_irq(&vptr->lock);
551 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
553 struct velocity_info *vptr = netdev_priv(dev);
555 spin_lock_irq(&vptr->lock);
556 vlan_group_set_device(vptr->vlgrp, vid, NULL);
557 velocity_init_cam_filter(vptr);
558 spin_unlock_irq(&vptr->lock);
561 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
563 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
567 * velocity_rx_reset - handle a receive reset
568 * @vptr: velocity we are resetting
570 * Reset the ownership and status for the receive ring side.
571 * Hand all the receive queue to the NIC.
573 static void velocity_rx_reset(struct velocity_info *vptr)
576 struct mac_regs __iomem *regs = vptr->mac_regs;
577 int i;
579 velocity_init_rx_ring_indexes(vptr);
582 * Init state, all RD entries belong to the NIC
584 for (i = 0; i < vptr->options.numrx; ++i)
585 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
587 writew(vptr->options.numrx, &regs->RBRDU);
588 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
589 writew(0, &regs->RDIdx);
590 writew(vptr->options.numrx - 1, &regs->RDCSize);
594 * velocity_get_opt_media_mode - get media selection
595 * @vptr: velocity adapter
597 * Get the media mode stored in EEPROM or module options and load
598 * mii_status accordingly. The requested link state information
599 * is also returned.
601 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
603 u32 status = 0;
605 switch (vptr->options.spd_dpx) {
606 case SPD_DPX_AUTO:
607 status = VELOCITY_AUTONEG_ENABLE;
608 break;
609 case SPD_DPX_100_FULL:
610 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
611 break;
612 case SPD_DPX_10_FULL:
613 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
614 break;
615 case SPD_DPX_100_HALF:
616 status = VELOCITY_SPEED_100;
617 break;
618 case SPD_DPX_10_HALF:
619 status = VELOCITY_SPEED_10;
620 break;
621 case SPD_DPX_1000_FULL:
622 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
623 break;
625 vptr->mii_status = status;
626 return status;
630 * safe_disable_mii_autopoll - autopoll off
631 * @regs: velocity registers
633 * Turn off the autopoll and wait for it to disable on the chip
635 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
637 u16 ww;
639 /* turn off MAUTO */
640 writeb(0, &regs->MIICR);
641 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
642 udelay(1);
643 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
644 break;
649 * enable_mii_autopoll - turn on autopolling
650 * @regs: velocity registers
652 * Enable the MII link status autopoll feature on the Velocity
653 * hardware. Wait for it to enable.
655 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
657 int ii;
659 writeb(0, &(regs->MIICR));
660 writeb(MIIADR_SWMPL, &regs->MIIADR);
662 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
663 udelay(1);
664 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
665 break;
668 writeb(MIICR_MAUTO, &regs->MIICR);
670 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
671 udelay(1);
672 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
673 break;
679 * velocity_mii_read - read MII data
680 * @regs: velocity registers
681 * @index: MII register index
682 * @data: buffer for received data
684 * Perform a single read of an MII 16bit register. Returns zero
685 * on success or -ETIMEDOUT if the PHY did not respond.
687 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
689 u16 ww;
692 * Disable MIICR_MAUTO, so that mii addr can be set normally
694 safe_disable_mii_autopoll(regs);
696 writeb(index, &regs->MIIADR);
698 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
700 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
701 if (!(readb(&regs->MIICR) & MIICR_RCMD))
702 break;
705 *data = readw(&regs->MIIDATA);
707 enable_mii_autopoll(regs);
708 if (ww == W_MAX_TIMEOUT)
709 return -ETIMEDOUT;
710 return 0;
715 * mii_check_media_mode - check media state
716 * @regs: velocity registers
718 * Check the current MII status and determine the link status
719 * accordingly
721 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
723 u32 status = 0;
724 u16 ANAR;
726 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
727 status |= VELOCITY_LINK_FAIL;
729 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
730 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
731 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
732 status |= (VELOCITY_SPEED_1000);
733 else {
734 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
735 if (ANAR & ADVERTISE_100FULL)
736 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
737 else if (ANAR & ADVERTISE_100HALF)
738 status |= VELOCITY_SPEED_100;
739 else if (ANAR & ADVERTISE_10FULL)
740 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
741 else
742 status |= (VELOCITY_SPEED_10);
745 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
746 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
747 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
748 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
749 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
750 status |= VELOCITY_AUTONEG_ENABLE;
754 return status;
758 * velocity_mii_write - write MII data
759 * @regs: velocity registers
760 * @index: MII register index
761 * @data: 16bit data for the MII register
763 * Perform a single write to an MII 16bit register. Returns zero
764 * on success or -ETIMEDOUT if the PHY did not respond.
766 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
768 u16 ww;
771 * Disable MIICR_MAUTO, so that mii addr can be set normally
773 safe_disable_mii_autopoll(regs);
775 /* MII reg offset */
776 writeb(mii_addr, &regs->MIIADR);
777 /* set MII data */
778 writew(data, &regs->MIIDATA);
780 /* turn on MIICR_WCMD */
781 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
783 /* W_MAX_TIMEOUT is the timeout period */
784 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
785 udelay(5);
786 if (!(readb(&regs->MIICR) & MIICR_WCMD))
787 break;
789 enable_mii_autopoll(regs);
791 if (ww == W_MAX_TIMEOUT)
792 return -ETIMEDOUT;
793 return 0;
797 * set_mii_flow_control - flow control setup
798 * @vptr: velocity interface
800 * Set up the flow control on this interface according to
801 * the supplied user/eeprom options.
803 static void set_mii_flow_control(struct velocity_info *vptr)
805 /*Enable or Disable PAUSE in ANAR */
806 switch (vptr->options.flow_cntl) {
807 case FLOW_CNTL_TX:
808 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 break;
812 case FLOW_CNTL_RX:
813 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
814 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
815 break;
817 case FLOW_CNTL_TX_RX:
818 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
819 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
820 break;
822 case FLOW_CNTL_DISABLE:
823 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
824 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
825 break;
826 default:
827 break;
832 * mii_set_auto_on - autonegotiate on
833 * @vptr: velocity
835 * Enable autonegotation on this interface
837 static void mii_set_auto_on(struct velocity_info *vptr)
839 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
840 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
841 else
842 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
845 static u32 check_connection_type(struct mac_regs __iomem *regs)
847 u32 status = 0;
848 u8 PHYSR0;
849 u16 ANAR;
850 PHYSR0 = readb(&regs->PHYSR0);
853 if (!(PHYSR0 & PHYSR0_LINKGD))
854 status|=VELOCITY_LINK_FAIL;
857 if (PHYSR0 & PHYSR0_FDPX)
858 status |= VELOCITY_DUPLEX_FULL;
860 if (PHYSR0 & PHYSR0_SPDG)
861 status |= VELOCITY_SPEED_1000;
862 else if (PHYSR0 & PHYSR0_SPD10)
863 status |= VELOCITY_SPEED_10;
864 else
865 status |= VELOCITY_SPEED_100;
867 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
868 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
869 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
870 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
871 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
872 status |= VELOCITY_AUTONEG_ENABLE;
876 return status;
882 * velocity_set_media_mode - set media mode
883 * @mii_status: old MII link state
885 * Check the media link state and configure the flow control
886 * PHY and also velocity hardware setup accordingly. In particular
887 * we need to set up CD polling and frame bursting.
889 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
891 u32 curr_status;
892 struct mac_regs __iomem *regs = vptr->mac_regs;
894 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
895 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
897 /* Set mii link status */
898 set_mii_flow_control(vptr);
901 Check if new status is consistent with current status
902 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
903 (mii_status==curr_status)) {
904 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
905 vptr->mii_status=check_connection_type(vptr->mac_regs);
906 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
907 return 0;
911 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
912 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
915 * If connection type is AUTO
917 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
918 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
919 /* clear force MAC mode bit */
920 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
921 /* set duplex mode of MAC according to duplex mode of MII */
922 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
923 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
924 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
926 /* enable AUTO-NEGO mode */
927 mii_set_auto_on(vptr);
928 } else {
929 u16 CTRL1000;
930 u16 ANAR;
931 u8 CHIPGCR;
934 * 1. if it's 3119, disable frame bursting in halfduplex mode
935 * and enable it in fullduplex mode
936 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
937 * 3. only enable CD heart beat counter in 10HD mode
940 /* set force MAC mode bit */
941 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
943 CHIPGCR = readb(&regs->CHIPGCR);
945 if (mii_status & VELOCITY_SPEED_1000)
946 CHIPGCR |= CHIPGCR_FCGMII;
947 else
948 CHIPGCR &= ~CHIPGCR_FCGMII;
950 if (mii_status & VELOCITY_DUPLEX_FULL) {
951 CHIPGCR |= CHIPGCR_FCFDX;
952 writeb(CHIPGCR, &regs->CHIPGCR);
953 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
954 if (vptr->rev_id < REV_ID_VT3216_A0)
955 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
956 } else {
957 CHIPGCR &= ~CHIPGCR_FCFDX;
958 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
959 writeb(CHIPGCR, &regs->CHIPGCR);
960 if (vptr->rev_id < REV_ID_VT3216_A0)
961 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
964 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
965 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
966 if ((mii_status & VELOCITY_SPEED_1000) &&
967 (mii_status & VELOCITY_DUPLEX_FULL)) {
968 CTRL1000 |= ADVERTISE_1000FULL;
970 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
972 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
973 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
974 else
975 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
977 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
978 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
979 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
980 if (mii_status & VELOCITY_SPEED_100) {
981 if (mii_status & VELOCITY_DUPLEX_FULL)
982 ANAR |= ADVERTISE_100FULL;
983 else
984 ANAR |= ADVERTISE_100HALF;
985 } else if (mii_status & VELOCITY_SPEED_10) {
986 if (mii_status & VELOCITY_DUPLEX_FULL)
987 ANAR |= ADVERTISE_10FULL;
988 else
989 ANAR |= ADVERTISE_10HALF;
991 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
992 /* enable AUTO-NEGO mode */
993 mii_set_auto_on(vptr);
994 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
996 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
997 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
998 return VELOCITY_LINK_CHANGE;
1002 * velocity_print_link_status - link status reporting
1003 * @vptr: velocity to report on
1005 * Turn the link status of the velocity card into a kernel log
1006 * description of the new link state, detailing speed and duplex
1007 * status
1009 static void velocity_print_link_status(struct velocity_info *vptr)
1012 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1013 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1014 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1015 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1017 if (vptr->mii_status & VELOCITY_SPEED_1000)
1018 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1019 else if (vptr->mii_status & VELOCITY_SPEED_100)
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1021 else
1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1024 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1025 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1026 else
1027 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1028 } else {
1029 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1030 switch (vptr->options.spd_dpx) {
1031 case SPD_DPX_1000_FULL:
1032 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1033 break;
1034 case SPD_DPX_100_HALF:
1035 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1036 break;
1037 case SPD_DPX_100_FULL:
1038 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1039 break;
1040 case SPD_DPX_10_HALF:
1041 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1042 break;
1043 case SPD_DPX_10_FULL:
1044 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1045 break;
1046 default:
1047 break;
1053 * enable_flow_control_ability - flow control
1054 * @vptr: veloity to configure
1056 * Set up flow control according to the flow control options
1057 * determined by the eeprom/configuration.
1059 static void enable_flow_control_ability(struct velocity_info *vptr)
1062 struct mac_regs __iomem *regs = vptr->mac_regs;
1064 switch (vptr->options.flow_cntl) {
1066 case FLOW_CNTL_DEFAULT:
1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1068 writel(CR0_FDXRFCEN, &regs->CR0Set);
1069 else
1070 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1072 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1073 writel(CR0_FDXTFCEN, &regs->CR0Set);
1074 else
1075 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1076 break;
1078 case FLOW_CNTL_TX:
1079 writel(CR0_FDXTFCEN, &regs->CR0Set);
1080 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1081 break;
1083 case FLOW_CNTL_RX:
1084 writel(CR0_FDXRFCEN, &regs->CR0Set);
1085 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1086 break;
1088 case FLOW_CNTL_TX_RX:
1089 writel(CR0_FDXTFCEN, &regs->CR0Set);
1090 writel(CR0_FDXRFCEN, &regs->CR0Set);
1091 break;
1093 case FLOW_CNTL_DISABLE:
1094 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1095 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1096 break;
1098 default:
1099 break;
1105 * velocity_soft_reset - soft reset
1106 * @vptr: velocity to reset
1108 * Kick off a soft reset of the velocity adapter and then poll
1109 * until the reset sequence has completed before returning.
1111 static int velocity_soft_reset(struct velocity_info *vptr)
1113 struct mac_regs __iomem *regs = vptr->mac_regs;
1114 int i = 0;
1116 writel(CR0_SFRST, &regs->CR0Set);
1118 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1119 udelay(5);
1120 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1121 break;
1124 if (i == W_MAX_TIMEOUT) {
1125 writel(CR0_FORSRST, &regs->CR0Set);
1126 /* FIXME: PCI POSTING */
1127 /* delay 2ms */
1128 mdelay(2);
1130 return 0;
1134 * velocity_set_multi - filter list change callback
1135 * @dev: network device
1137 * Called by the network layer when the filter lists need to change
1138 * for a velocity adapter. Reload the CAMs with the new address
1139 * filter ruleset.
1141 static void velocity_set_multi(struct net_device *dev)
1143 struct velocity_info *vptr = netdev_priv(dev);
1144 struct mac_regs __iomem *regs = vptr->mac_regs;
1145 u8 rx_mode;
1146 int i;
1147 struct netdev_hw_addr *ha;
1149 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1150 writel(0xffffffff, &regs->MARCAM[0]);
1151 writel(0xffffffff, &regs->MARCAM[4]);
1152 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1153 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1154 (dev->flags & IFF_ALLMULTI)) {
1155 writel(0xffffffff, &regs->MARCAM[0]);
1156 writel(0xffffffff, &regs->MARCAM[4]);
1157 rx_mode = (RCR_AM | RCR_AB);
1158 } else {
1159 int offset = MCAM_SIZE - vptr->multicast_limit;
1160 mac_get_cam_mask(regs, vptr->mCAMmask);
1162 i = 0;
1163 netdev_for_each_mc_addr(ha, dev) {
1164 mac_set_cam(regs, i + offset, ha->addr);
1165 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1166 i++;
1169 mac_set_cam_mask(regs, vptr->mCAMmask);
1170 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1172 if (dev->mtu > 1500)
1173 rx_mode |= RCR_AL;
1175 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1180 * MII access , media link mode setting functions
1184 * mii_init - set up MII
1185 * @vptr: velocity adapter
1186 * @mii_status: links tatus
1188 * Set up the PHY for the current link state.
1190 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1192 u16 BMCR;
1194 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1195 case PHYID_CICADA_CS8201:
1197 * Reset to hardware default
1199 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1201 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1202 * off it in NWay-forced half mode for NWay-forced v.s.
1203 * legacy-forced issue.
1205 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1206 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207 else
1208 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1210 * Turn on Link/Activity LED enable bit for CIS8201
1212 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1213 break;
1214 case PHYID_VT3216_32BIT:
1215 case PHYID_VT3216_64BIT:
1217 * Reset to hardware default
1219 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1221 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1222 * off it in NWay-forced half mode for NWay-forced v.s.
1223 * legacy-forced issue
1225 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1226 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227 else
1228 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1229 break;
1231 case PHYID_MARVELL_1000:
1232 case PHYID_MARVELL_1000S:
1234 * Assert CRS on Transmit
1236 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1238 * Reset to hardware default
1240 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1241 break;
1242 default:
1245 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1246 if (BMCR & BMCR_ISOLATE) {
1247 BMCR &= ~BMCR_ISOLATE;
1248 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1253 * setup_queue_timers - Setup interrupt timers
1255 * Setup interrupt frequency during suppression (timeout if the frame
1256 * count isn't filled).
1258 static void setup_queue_timers(struct velocity_info *vptr)
1260 /* Only for newer revisions */
1261 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1262 u8 txqueue_timer = 0;
1263 u8 rxqueue_timer = 0;
1265 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1266 VELOCITY_SPEED_100)) {
1267 txqueue_timer = vptr->options.txqueue_timer;
1268 rxqueue_timer = vptr->options.rxqueue_timer;
1271 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1272 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1276 * setup_adaptive_interrupts - Setup interrupt suppression
1278 * @vptr velocity adapter
1280 * The velocity is able to suppress interrupt during high interrupt load.
1281 * This function turns on that feature.
1283 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1285 struct mac_regs __iomem *regs = vptr->mac_regs;
1286 u16 tx_intsup = vptr->options.tx_intsup;
1287 u16 rx_intsup = vptr->options.rx_intsup;
1289 /* Setup default interrupt mask (will be changed below) */
1290 vptr->int_mask = INT_MASK_DEF;
1292 /* Set Tx Interrupt Suppression Threshold */
1293 writeb(CAMCR_PS0, &regs->CAMCR);
1294 if (tx_intsup != 0) {
1295 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1296 ISR_PTX2I | ISR_PTX3I);
1297 writew(tx_intsup, &regs->ISRCTL);
1298 } else
1299 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1301 /* Set Rx Interrupt Suppression Threshold */
1302 writeb(CAMCR_PS1, &regs->CAMCR);
1303 if (rx_intsup != 0) {
1304 vptr->int_mask &= ~ISR_PRXI;
1305 writew(rx_intsup, &regs->ISRCTL);
1306 } else
1307 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1309 /* Select page to interrupt hold timer */
1310 writeb(0, &regs->CAMCR);
1314 * velocity_init_registers - initialise MAC registers
1315 * @vptr: velocity to init
1316 * @type: type of initialisation (hot or cold)
1318 * Initialise the MAC on a reset or on first set up on the
1319 * hardware.
1321 static void velocity_init_registers(struct velocity_info *vptr,
1322 enum velocity_init_type type)
1324 struct mac_regs __iomem *regs = vptr->mac_regs;
1325 int i, mii_status;
1327 mac_wol_reset(regs);
1329 switch (type) {
1330 case VELOCITY_INIT_RESET:
1331 case VELOCITY_INIT_WOL:
1333 netif_stop_queue(vptr->dev);
1336 * Reset RX to prevent RX pointer not on the 4X location
1338 velocity_rx_reset(vptr);
1339 mac_rx_queue_run(regs);
1340 mac_rx_queue_wake(regs);
1342 mii_status = velocity_get_opt_media_mode(vptr);
1343 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344 velocity_print_link_status(vptr);
1345 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346 netif_wake_queue(vptr->dev);
1349 enable_flow_control_ability(vptr);
1351 mac_clear_isr(regs);
1352 writel(CR0_STOP, &regs->CR0Clr);
1353 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354 &regs->CR0Set);
1356 break;
1358 case VELOCITY_INIT_COLD:
1359 default:
1361 * Do reset
1363 velocity_soft_reset(vptr);
1364 mdelay(5);
1366 mac_eeprom_reload(regs);
1367 for (i = 0; i < 6; i++)
1368 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1371 * clear Pre_ACPI bit.
1373 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1374 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1375 mac_set_dma_length(regs, vptr->options.DMA_length);
1377 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1379 * Back off algorithm use original IEEE standard
1381 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1384 * Init CAM filter
1386 velocity_init_cam_filter(vptr);
1389 * Set packet filter: Receive directed and broadcast address
1391 velocity_set_multi(vptr->dev);
1394 * Enable MII auto-polling
1396 enable_mii_autopoll(regs);
1398 setup_adaptive_interrupts(vptr);
1400 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1401 writew(vptr->options.numrx - 1, &regs->RDCSize);
1402 mac_rx_queue_run(regs);
1403 mac_rx_queue_wake(regs);
1405 writew(vptr->options.numtx - 1, &regs->TDCSize);
1407 for (i = 0; i < vptr->tx.numq; i++) {
1408 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1409 mac_tx_queue_run(regs, i);
1412 init_flow_control_register(vptr);
1414 writel(CR0_STOP, &regs->CR0Clr);
1415 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1417 mii_status = velocity_get_opt_media_mode(vptr);
1418 netif_stop_queue(vptr->dev);
1420 mii_init(vptr, mii_status);
1422 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1423 velocity_print_link_status(vptr);
1424 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1425 netif_wake_queue(vptr->dev);
1428 enable_flow_control_ability(vptr);
1429 mac_hw_mibs_init(regs);
1430 mac_write_int_mask(vptr->int_mask, regs);
1431 mac_clear_isr(regs);
1436 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1438 struct mac_regs __iomem *regs = vptr->mac_regs;
1439 int avail, dirty, unusable;
1442 * RD number must be equal to 4X per hardware spec
1443 * (programming guide rev 1.20, p.13)
1445 if (vptr->rx.filled < 4)
1446 return;
1448 wmb();
1450 unusable = vptr->rx.filled & 0x0003;
1451 dirty = vptr->rx.dirty - unusable;
1452 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1453 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1454 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1457 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1458 vptr->rx.filled = unusable;
1462 * velocity_init_dma_rings - set up DMA rings
1463 * @vptr: Velocity to set up
1465 * Allocate PCI mapped DMA rings for the receive and transmit layer
1466 * to use.
1468 static int velocity_init_dma_rings(struct velocity_info *vptr)
1470 struct velocity_opt *opt = &vptr->options;
1471 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1472 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1473 struct pci_dev *pdev = vptr->pdev;
1474 dma_addr_t pool_dma;
1475 void *pool;
1476 unsigned int i;
1479 * Allocate all RD/TD rings a single pool.
1481 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1482 * alignment
1484 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1485 rx_ring_size, &pool_dma);
1486 if (!pool) {
1487 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1488 vptr->dev->name);
1489 return -ENOMEM;
1492 vptr->rx.ring = pool;
1493 vptr->rx.pool_dma = pool_dma;
1495 pool += rx_ring_size;
1496 pool_dma += rx_ring_size;
1498 for (i = 0; i < vptr->tx.numq; i++) {
1499 vptr->tx.rings[i] = pool;
1500 vptr->tx.pool_dma[i] = pool_dma;
1501 pool += tx_ring_size;
1502 pool_dma += tx_ring_size;
1505 return 0;
1508 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1510 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1514 * velocity_alloc_rx_buf - allocate aligned receive buffer
1515 * @vptr: velocity
1516 * @idx: ring index
1518 * Allocate a new full sized buffer for the reception of a frame and
1519 * map it into PCI space for the hardware to use. The hardware
1520 * requires *64* byte alignment of the buffer which makes life
1521 * less fun than would be ideal.
1523 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1525 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1526 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1528 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1529 if (rd_info->skb == NULL)
1530 return -ENOMEM;
1533 * Do the gymnastics to get the buffer head for data at
1534 * 64byte alignment.
1536 skb_reserve(rd_info->skb,
1537 64 - ((unsigned long) rd_info->skb->data & 63));
1538 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1539 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1542 * Fill in the descriptor to match
1545 *((u32 *) & (rd->rdesc0)) = 0;
1546 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1547 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1548 rd->pa_high = 0;
1549 return 0;
1553 static int velocity_rx_refill(struct velocity_info *vptr)
1555 int dirty = vptr->rx.dirty, done = 0;
1557 do {
1558 struct rx_desc *rd = vptr->rx.ring + dirty;
1560 /* Fine for an all zero Rx desc at init time as well */
1561 if (rd->rdesc0.len & OWNED_BY_NIC)
1562 break;
1564 if (!vptr->rx.info[dirty].skb) {
1565 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1566 break;
1568 done++;
1569 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1570 } while (dirty != vptr->rx.curr);
1572 if (done) {
1573 vptr->rx.dirty = dirty;
1574 vptr->rx.filled += done;
1577 return done;
1581 * velocity_free_rd_ring - free receive ring
1582 * @vptr: velocity to clean up
1584 * Free the receive buffers for each ring slot and any
1585 * attached socket buffers that need to go away.
1587 static void velocity_free_rd_ring(struct velocity_info *vptr)
1589 int i;
1591 if (vptr->rx.info == NULL)
1592 return;
1594 for (i = 0; i < vptr->options.numrx; i++) {
1595 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1596 struct rx_desc *rd = vptr->rx.ring + i;
1598 memset(rd, 0, sizeof(*rd));
1600 if (!rd_info->skb)
1601 continue;
1602 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1603 PCI_DMA_FROMDEVICE);
1604 rd_info->skb_dma = 0;
1606 dev_kfree_skb(rd_info->skb);
1607 rd_info->skb = NULL;
1610 kfree(vptr->rx.info);
1611 vptr->rx.info = NULL;
1617 * velocity_init_rd_ring - set up receive ring
1618 * @vptr: velocity to configure
1620 * Allocate and set up the receive buffers for each ring slot and
1621 * assign them to the network adapter.
1623 static int velocity_init_rd_ring(struct velocity_info *vptr)
1625 int ret = -ENOMEM;
1627 vptr->rx.info = kcalloc(vptr->options.numrx,
1628 sizeof(struct velocity_rd_info), GFP_KERNEL);
1629 if (!vptr->rx.info)
1630 goto out;
1632 velocity_init_rx_ring_indexes(vptr);
1634 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1635 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1636 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1637 velocity_free_rd_ring(vptr);
1638 goto out;
1641 ret = 0;
1642 out:
1643 return ret;
1647 * velocity_init_td_ring - set up transmit ring
1648 * @vptr: velocity
1650 * Set up the transmit ring and chain the ring pointers together.
1651 * Returns zero on success or a negative posix errno code for
1652 * failure.
1654 static int velocity_init_td_ring(struct velocity_info *vptr)
1656 int j;
1658 /* Init the TD ring entries */
1659 for (j = 0; j < vptr->tx.numq; j++) {
1661 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1662 sizeof(struct velocity_td_info),
1663 GFP_KERNEL);
1664 if (!vptr->tx.infos[j]) {
1665 while (--j >= 0)
1666 kfree(vptr->tx.infos[j]);
1667 return -ENOMEM;
1670 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1672 return 0;
1676 * velocity_free_dma_rings - free PCI ring pointers
1677 * @vptr: Velocity to free from
1679 * Clean up the PCI ring buffers allocated to this velocity.
1681 static void velocity_free_dma_rings(struct velocity_info *vptr)
1683 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1684 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1686 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1690 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1692 int ret;
1694 velocity_set_rxbufsize(vptr, mtu);
1696 ret = velocity_init_dma_rings(vptr);
1697 if (ret < 0)
1698 goto out;
1700 ret = velocity_init_rd_ring(vptr);
1701 if (ret < 0)
1702 goto err_free_dma_rings_0;
1704 ret = velocity_init_td_ring(vptr);
1705 if (ret < 0)
1706 goto err_free_rd_ring_1;
1707 out:
1708 return ret;
1710 err_free_rd_ring_1:
1711 velocity_free_rd_ring(vptr);
1712 err_free_dma_rings_0:
1713 velocity_free_dma_rings(vptr);
1714 goto out;
1718 * velocity_free_tx_buf - free transmit buffer
1719 * @vptr: velocity
1720 * @tdinfo: buffer
1722 * Release an transmit buffer. If the buffer was preallocated then
1723 * recycle it, if not then unmap the buffer.
1725 static void velocity_free_tx_buf(struct velocity_info *vptr,
1726 struct velocity_td_info *tdinfo, struct tx_desc *td)
1728 struct sk_buff *skb = tdinfo->skb;
1731 * Don't unmap the pre-allocated tx_bufs
1733 if (tdinfo->skb_dma) {
1734 int i;
1736 for (i = 0; i < tdinfo->nskb_dma; i++) {
1737 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1739 /* For scatter-gather */
1740 if (skb_shinfo(skb)->nr_frags > 0)
1741 pktlen = max_t(size_t, pktlen,
1742 td->td_buf[i].size & ~TD_QUEUE);
1744 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1745 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1748 dev_kfree_skb_irq(skb);
1749 tdinfo->skb = NULL;
1754 * FIXME: could we merge this with velocity_free_tx_buf ?
1756 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1757 int q, int n)
1759 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1760 int i;
1762 if (td_info == NULL)
1763 return;
1765 if (td_info->skb) {
1766 for (i = 0; i < td_info->nskb_dma; i++) {
1767 if (td_info->skb_dma[i]) {
1768 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1769 td_info->skb->len, PCI_DMA_TODEVICE);
1770 td_info->skb_dma[i] = 0;
1773 dev_kfree_skb(td_info->skb);
1774 td_info->skb = NULL;
1779 * velocity_free_td_ring - free td ring
1780 * @vptr: velocity
1782 * Free up the transmit ring for this particular velocity adapter.
1783 * We free the ring contents but not the ring itself.
1785 static void velocity_free_td_ring(struct velocity_info *vptr)
1787 int i, j;
1789 for (j = 0; j < vptr->tx.numq; j++) {
1790 if (vptr->tx.infos[j] == NULL)
1791 continue;
1792 for (i = 0; i < vptr->options.numtx; i++)
1793 velocity_free_td_ring_entry(vptr, j, i);
1795 kfree(vptr->tx.infos[j]);
1796 vptr->tx.infos[j] = NULL;
1801 static void velocity_free_rings(struct velocity_info *vptr)
1803 velocity_free_td_ring(vptr);
1804 velocity_free_rd_ring(vptr);
1805 velocity_free_dma_rings(vptr);
1809 * velocity_error - handle error from controller
1810 * @vptr: velocity
1811 * @status: card status
1813 * Process an error report from the hardware and attempt to recover
1814 * the card itself. At the moment we cannot recover from some
1815 * theoretically impossible errors but this could be fixed using
1816 * the pci_device_failed logic to bounce the hardware
1819 static void velocity_error(struct velocity_info *vptr, int status)
1822 if (status & ISR_TXSTLI) {
1823 struct mac_regs __iomem *regs = vptr->mac_regs;
1825 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1826 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1827 writew(TRDCSR_RUN, &regs->TDCSRClr);
1828 netif_stop_queue(vptr->dev);
1830 /* FIXME: port over the pci_device_failed code and use it
1831 here */
1834 if (status & ISR_SRCI) {
1835 struct mac_regs __iomem *regs = vptr->mac_regs;
1836 int linked;
1838 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1839 vptr->mii_status = check_connection_type(regs);
1842 * If it is a 3119, disable frame bursting in
1843 * halfduplex mode and enable it in fullduplex
1844 * mode
1846 if (vptr->rev_id < REV_ID_VT3216_A0) {
1847 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1848 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1849 else
1850 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1853 * Only enable CD heart beat counter in 10HD mode
1855 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1856 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1857 else
1858 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1860 setup_queue_timers(vptr);
1863 * Get link status from PHYSR0
1865 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1867 if (linked) {
1868 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1869 netif_carrier_on(vptr->dev);
1870 } else {
1871 vptr->mii_status |= VELOCITY_LINK_FAIL;
1872 netif_carrier_off(vptr->dev);
1875 velocity_print_link_status(vptr);
1876 enable_flow_control_ability(vptr);
1879 * Re-enable auto-polling because SRCI will disable
1880 * auto-polling
1883 enable_mii_autopoll(regs);
1885 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1886 netif_stop_queue(vptr->dev);
1887 else
1888 netif_wake_queue(vptr->dev);
1891 if (status & ISR_MIBFI)
1892 velocity_update_hw_mibs(vptr);
1893 if (status & ISR_LSTEI)
1894 mac_rx_queue_wake(vptr->mac_regs);
1898 * tx_srv - transmit interrupt service
1899 * @vptr; Velocity
1901 * Scan the queues looking for transmitted packets that
1902 * we can complete and clean up. Update any statistics as
1903 * necessary/
1905 static int velocity_tx_srv(struct velocity_info *vptr)
1907 struct tx_desc *td;
1908 int qnum;
1909 int full = 0;
1910 int idx;
1911 int works = 0;
1912 struct velocity_td_info *tdinfo;
1913 struct net_device_stats *stats = &vptr->dev->stats;
1915 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1916 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1917 idx = (idx + 1) % vptr->options.numtx) {
1920 * Get Tx Descriptor
1922 td = &(vptr->tx.rings[qnum][idx]);
1923 tdinfo = &(vptr->tx.infos[qnum][idx]);
1925 if (td->tdesc0.len & OWNED_BY_NIC)
1926 break;
1928 if ((works++ > 15))
1929 break;
1931 if (td->tdesc0.TSR & TSR0_TERR) {
1932 stats->tx_errors++;
1933 stats->tx_dropped++;
1934 if (td->tdesc0.TSR & TSR0_CDH)
1935 stats->tx_heartbeat_errors++;
1936 if (td->tdesc0.TSR & TSR0_CRS)
1937 stats->tx_carrier_errors++;
1938 if (td->tdesc0.TSR & TSR0_ABT)
1939 stats->tx_aborted_errors++;
1940 if (td->tdesc0.TSR & TSR0_OWC)
1941 stats->tx_window_errors++;
1942 } else {
1943 stats->tx_packets++;
1944 stats->tx_bytes += tdinfo->skb->len;
1946 velocity_free_tx_buf(vptr, tdinfo, td);
1947 vptr->tx.used[qnum]--;
1949 vptr->tx.tail[qnum] = idx;
1951 if (AVAIL_TD(vptr, qnum) < 1)
1952 full = 1;
1955 * Look to see if we should kick the transmit network
1956 * layer for more work.
1958 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1959 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1960 netif_wake_queue(vptr->dev);
1962 return works;
1966 * velocity_rx_csum - checksum process
1967 * @rd: receive packet descriptor
1968 * @skb: network layer packet buffer
1970 * Process the status bits for the received packet and determine
1971 * if the checksum was computed and verified by the hardware
1973 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1975 skb_checksum_none_assert(skb);
1977 if (rd->rdesc1.CSM & CSM_IPKT) {
1978 if (rd->rdesc1.CSM & CSM_IPOK) {
1979 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1980 (rd->rdesc1.CSM & CSM_UDPKT)) {
1981 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1982 return;
1984 skb->ip_summed = CHECKSUM_UNNECESSARY;
1990 * velocity_rx_copy - in place Rx copy for small packets
1991 * @rx_skb: network layer packet buffer candidate
1992 * @pkt_size: received data size
1993 * @rd: receive packet descriptor
1994 * @dev: network device
1996 * Replace the current skb that is scheduled for Rx processing by a
1997 * shorter, immediately allocated skb, if the received packet is small
1998 * enough. This function returns a negative value if the received
1999 * packet is too big or if memory is exhausted.
2001 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2002 struct velocity_info *vptr)
2004 int ret = -1;
2005 if (pkt_size < rx_copybreak) {
2006 struct sk_buff *new_skb;
2008 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
2009 if (new_skb) {
2010 new_skb->ip_summed = rx_skb[0]->ip_summed;
2011 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2012 *rx_skb = new_skb;
2013 ret = 0;
2017 return ret;
2021 * velocity_iph_realign - IP header alignment
2022 * @vptr: velocity we are handling
2023 * @skb: network layer packet buffer
2024 * @pkt_size: received data size
2026 * Align IP header on a 2 bytes boundary. This behavior can be
2027 * configured by the user.
2029 static inline void velocity_iph_realign(struct velocity_info *vptr,
2030 struct sk_buff *skb, int pkt_size)
2032 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2033 memmove(skb->data + 2, skb->data, pkt_size);
2034 skb_reserve(skb, 2);
2040 * velocity_receive_frame - received packet processor
2041 * @vptr: velocity we are handling
2042 * @idx: ring index
2044 * A packet has arrived. We process the packet and if appropriate
2045 * pass the frame up the network stack
2047 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2049 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2050 struct net_device_stats *stats = &vptr->dev->stats;
2051 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2052 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2053 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2054 struct sk_buff *skb;
2056 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2057 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2058 stats->rx_length_errors++;
2059 return -EINVAL;
2062 if (rd->rdesc0.RSR & RSR_MAR)
2063 stats->multicast++;
2065 skb = rd_info->skb;
2067 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2068 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2071 * Drop frame not meeting IEEE 802.3
2074 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2075 if (rd->rdesc0.RSR & RSR_RL) {
2076 stats->rx_length_errors++;
2077 return -EINVAL;
2081 pci_action = pci_dma_sync_single_for_device;
2083 velocity_rx_csum(rd, skb);
2085 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2086 velocity_iph_realign(vptr, skb, pkt_len);
2087 pci_action = pci_unmap_single;
2088 rd_info->skb = NULL;
2091 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2092 PCI_DMA_FROMDEVICE);
2094 skb_put(skb, pkt_len - 4);
2095 skb->protocol = eth_type_trans(skb, vptr->dev);
2097 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
2098 vlan_hwaccel_rx(skb, vptr->vlgrp,
2099 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
2100 } else
2101 netif_rx(skb);
2103 stats->rx_bytes += pkt_len;
2105 return 0;
2110 * velocity_rx_srv - service RX interrupt
2111 * @vptr: velocity
2113 * Walk the receive ring of the velocity adapter and remove
2114 * any received packets from the receive queue. Hand the ring
2115 * slots back to the adapter for reuse.
2117 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2119 struct net_device_stats *stats = &vptr->dev->stats;
2120 int rd_curr = vptr->rx.curr;
2121 int works = 0;
2123 while (works < budget_left) {
2124 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2126 if (!vptr->rx.info[rd_curr].skb)
2127 break;
2129 if (rd->rdesc0.len & OWNED_BY_NIC)
2130 break;
2132 rmb();
2135 * Don't drop CE or RL error frame although RXOK is off
2137 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2138 if (velocity_receive_frame(vptr, rd_curr) < 0)
2139 stats->rx_dropped++;
2140 } else {
2141 if (rd->rdesc0.RSR & RSR_CRC)
2142 stats->rx_crc_errors++;
2143 if (rd->rdesc0.RSR & RSR_FAE)
2144 stats->rx_frame_errors++;
2146 stats->rx_dropped++;
2149 rd->size |= RX_INTEN;
2151 rd_curr++;
2152 if (rd_curr >= vptr->options.numrx)
2153 rd_curr = 0;
2154 works++;
2157 vptr->rx.curr = rd_curr;
2159 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2160 velocity_give_many_rx_descs(vptr);
2162 VAR_USED(stats);
2163 return works;
2166 static int velocity_poll(struct napi_struct *napi, int budget)
2168 struct velocity_info *vptr = container_of(napi,
2169 struct velocity_info, napi);
2170 unsigned int rx_done;
2171 unsigned long flags;
2173 spin_lock_irqsave(&vptr->lock, flags);
2175 * Do rx and tx twice for performance (taken from the VIA
2176 * out-of-tree driver).
2178 rx_done = velocity_rx_srv(vptr, budget / 2);
2179 velocity_tx_srv(vptr);
2180 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2181 velocity_tx_srv(vptr);
2183 /* If budget not fully consumed, exit the polling mode */
2184 if (rx_done < budget) {
2185 napi_complete(napi);
2186 mac_enable_int(vptr->mac_regs);
2188 spin_unlock_irqrestore(&vptr->lock, flags);
2190 return rx_done;
2194 * velocity_intr - interrupt callback
2195 * @irq: interrupt number
2196 * @dev_instance: interrupting device
2198 * Called whenever an interrupt is generated by the velocity
2199 * adapter IRQ line. We may not be the source of the interrupt
2200 * and need to identify initially if we are, and if not exit as
2201 * efficiently as possible.
2203 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2205 struct net_device *dev = dev_instance;
2206 struct velocity_info *vptr = netdev_priv(dev);
2207 u32 isr_status;
2209 spin_lock(&vptr->lock);
2210 isr_status = mac_read_isr(vptr->mac_regs);
2212 /* Not us ? */
2213 if (isr_status == 0) {
2214 spin_unlock(&vptr->lock);
2215 return IRQ_NONE;
2218 /* Ack the interrupt */
2219 mac_write_isr(vptr->mac_regs, isr_status);
2221 if (likely(napi_schedule_prep(&vptr->napi))) {
2222 mac_disable_int(vptr->mac_regs);
2223 __napi_schedule(&vptr->napi);
2226 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2227 velocity_error(vptr, isr_status);
2229 spin_unlock(&vptr->lock);
2231 return IRQ_HANDLED;
2235 * velocity_open - interface activation callback
2236 * @dev: network layer device to open
2238 * Called when the network layer brings the interface up. Returns
2239 * a negative posix error code on failure, or zero on success.
2241 * All the ring allocation and set up is done on open for this
2242 * adapter to minimise memory usage when inactive
2244 static int velocity_open(struct net_device *dev)
2246 struct velocity_info *vptr = netdev_priv(dev);
2247 int ret;
2249 ret = velocity_init_rings(vptr, dev->mtu);
2250 if (ret < 0)
2251 goto out;
2253 /* Ensure chip is running */
2254 pci_set_power_state(vptr->pdev, PCI_D0);
2256 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2258 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2259 dev->name, dev);
2260 if (ret < 0) {
2261 /* Power down the chip */
2262 pci_set_power_state(vptr->pdev, PCI_D3hot);
2263 velocity_free_rings(vptr);
2264 goto out;
2267 velocity_give_many_rx_descs(vptr);
2269 mac_enable_int(vptr->mac_regs);
2270 netif_start_queue(dev);
2271 napi_enable(&vptr->napi);
2272 vptr->flags |= VELOCITY_FLAGS_OPENED;
2273 out:
2274 return ret;
2278 * velocity_shutdown - shut down the chip
2279 * @vptr: velocity to deactivate
2281 * Shuts down the internal operations of the velocity and
2282 * disables interrupts, autopolling, transmit and receive
2284 static void velocity_shutdown(struct velocity_info *vptr)
2286 struct mac_regs __iomem *regs = vptr->mac_regs;
2287 mac_disable_int(regs);
2288 writel(CR0_STOP, &regs->CR0Set);
2289 writew(0xFFFF, &regs->TDCSRClr);
2290 writeb(0xFF, &regs->RDCSRClr);
2291 safe_disable_mii_autopoll(regs);
2292 mac_clear_isr(regs);
2296 * velocity_change_mtu - MTU change callback
2297 * @dev: network device
2298 * @new_mtu: desired MTU
2300 * Handle requests from the networking layer for MTU change on
2301 * this interface. It gets called on a change by the network layer.
2302 * Return zero for success or negative posix error code.
2304 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2306 struct velocity_info *vptr = netdev_priv(dev);
2307 int ret = 0;
2309 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2310 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2311 vptr->dev->name);
2312 ret = -EINVAL;
2313 goto out_0;
2316 if (!netif_running(dev)) {
2317 dev->mtu = new_mtu;
2318 goto out_0;
2321 if (dev->mtu != new_mtu) {
2322 struct velocity_info *tmp_vptr;
2323 unsigned long flags;
2324 struct rx_info rx;
2325 struct tx_info tx;
2327 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2328 if (!tmp_vptr) {
2329 ret = -ENOMEM;
2330 goto out_0;
2333 tmp_vptr->dev = dev;
2334 tmp_vptr->pdev = vptr->pdev;
2335 tmp_vptr->options = vptr->options;
2336 tmp_vptr->tx.numq = vptr->tx.numq;
2338 ret = velocity_init_rings(tmp_vptr, new_mtu);
2339 if (ret < 0)
2340 goto out_free_tmp_vptr_1;
2342 spin_lock_irqsave(&vptr->lock, flags);
2344 netif_stop_queue(dev);
2345 velocity_shutdown(vptr);
2347 rx = vptr->rx;
2348 tx = vptr->tx;
2350 vptr->rx = tmp_vptr->rx;
2351 vptr->tx = tmp_vptr->tx;
2353 tmp_vptr->rx = rx;
2354 tmp_vptr->tx = tx;
2356 dev->mtu = new_mtu;
2358 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2360 velocity_give_many_rx_descs(vptr);
2362 mac_enable_int(vptr->mac_regs);
2363 netif_start_queue(dev);
2365 spin_unlock_irqrestore(&vptr->lock, flags);
2367 velocity_free_rings(tmp_vptr);
2369 out_free_tmp_vptr_1:
2370 kfree(tmp_vptr);
2372 out_0:
2373 return ret;
2377 * velocity_mii_ioctl - MII ioctl handler
2378 * @dev: network device
2379 * @ifr: the ifreq block for the ioctl
2380 * @cmd: the command
2382 * Process MII requests made via ioctl from the network layer. These
2383 * are used by tools like kudzu to interrogate the link state of the
2384 * hardware
2386 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2388 struct velocity_info *vptr = netdev_priv(dev);
2389 struct mac_regs __iomem *regs = vptr->mac_regs;
2390 unsigned long flags;
2391 struct mii_ioctl_data *miidata = if_mii(ifr);
2392 int err;
2394 switch (cmd) {
2395 case SIOCGMIIPHY:
2396 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2397 break;
2398 case SIOCGMIIREG:
2399 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2400 return -ETIMEDOUT;
2401 break;
2402 case SIOCSMIIREG:
2403 spin_lock_irqsave(&vptr->lock, flags);
2404 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2405 spin_unlock_irqrestore(&vptr->lock, flags);
2406 check_connection_type(vptr->mac_regs);
2407 if (err)
2408 return err;
2409 break;
2410 default:
2411 return -EOPNOTSUPP;
2413 return 0;
2418 * velocity_ioctl - ioctl entry point
2419 * @dev: network device
2420 * @rq: interface request ioctl
2421 * @cmd: command code
2423 * Called when the user issues an ioctl request to the network
2424 * device in question. The velocity interface supports MII.
2426 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2428 struct velocity_info *vptr = netdev_priv(dev);
2429 int ret;
2431 /* If we are asked for information and the device is power
2432 saving then we need to bring the device back up to talk to it */
2434 if (!netif_running(dev))
2435 pci_set_power_state(vptr->pdev, PCI_D0);
2437 switch (cmd) {
2438 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2439 case SIOCGMIIREG: /* Read MII PHY register. */
2440 case SIOCSMIIREG: /* Write to MII PHY register. */
2441 ret = velocity_mii_ioctl(dev, rq, cmd);
2442 break;
2444 default:
2445 ret = -EOPNOTSUPP;
2447 if (!netif_running(dev))
2448 pci_set_power_state(vptr->pdev, PCI_D3hot);
2451 return ret;
2455 * velocity_get_status - statistics callback
2456 * @dev: network device
2458 * Callback from the network layer to allow driver statistics
2459 * to be resynchronized with hardware collected state. In the
2460 * case of the velocity we need to pull the MIB counters from
2461 * the hardware into the counters before letting the network
2462 * layer display them.
2464 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2466 struct velocity_info *vptr = netdev_priv(dev);
2468 /* If the hardware is down, don't touch MII */
2469 if (!netif_running(dev))
2470 return &dev->stats;
2472 spin_lock_irq(&vptr->lock);
2473 velocity_update_hw_mibs(vptr);
2474 spin_unlock_irq(&vptr->lock);
2476 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2477 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2478 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2480 // unsigned long rx_dropped; /* no space in linux buffers */
2481 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2482 /* detailed rx_errors: */
2483 // unsigned long rx_length_errors;
2484 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2485 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2486 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2487 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2488 // unsigned long rx_missed_errors; /* receiver missed packet */
2490 /* detailed tx_errors */
2491 // unsigned long tx_fifo_errors;
2493 return &dev->stats;
2497 * velocity_close - close adapter callback
2498 * @dev: network device
2500 * Callback from the network layer when the velocity is being
2501 * deactivated by the network layer
2503 static int velocity_close(struct net_device *dev)
2505 struct velocity_info *vptr = netdev_priv(dev);
2507 napi_disable(&vptr->napi);
2508 netif_stop_queue(dev);
2509 velocity_shutdown(vptr);
2511 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2512 velocity_get_ip(vptr);
2513 if (dev->irq != 0)
2514 free_irq(dev->irq, dev);
2516 /* Power down the chip */
2517 pci_set_power_state(vptr->pdev, PCI_D3hot);
2519 velocity_free_rings(vptr);
2521 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2522 return 0;
2526 * velocity_xmit - transmit packet callback
2527 * @skb: buffer to transmit
2528 * @dev: network device
2530 * Called by the networ layer to request a packet is queued to
2531 * the velocity. Returns zero on success.
2533 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2534 struct net_device *dev)
2536 struct velocity_info *vptr = netdev_priv(dev);
2537 int qnum = 0;
2538 struct tx_desc *td_ptr;
2539 struct velocity_td_info *tdinfo;
2540 unsigned long flags;
2541 int pktlen;
2542 int index, prev;
2543 int i = 0;
2545 if (skb_padto(skb, ETH_ZLEN))
2546 goto out;
2548 /* The hardware can handle at most 7 memory segments, so merge
2549 * the skb if there are more */
2550 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2551 kfree_skb(skb);
2552 return NETDEV_TX_OK;
2555 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2556 max_t(unsigned int, skb->len, ETH_ZLEN) :
2557 skb_headlen(skb);
2559 spin_lock_irqsave(&vptr->lock, flags);
2561 index = vptr->tx.curr[qnum];
2562 td_ptr = &(vptr->tx.rings[qnum][index]);
2563 tdinfo = &(vptr->tx.infos[qnum][index]);
2565 td_ptr->tdesc1.TCR = TCR0_TIC;
2566 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2569 * Map the linear network buffer into PCI space and
2570 * add it to the transmit ring.
2572 tdinfo->skb = skb;
2573 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2574 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2575 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2576 td_ptr->td_buf[0].pa_high = 0;
2577 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2579 /* Handle fragments */
2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2583 tdinfo->skb_dma[i + 1] = pci_map_page(vptr->pdev, frag->page,
2584 frag->page_offset, frag->size,
2585 PCI_DMA_TODEVICE);
2587 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2588 td_ptr->td_buf[i + 1].pa_high = 0;
2589 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2591 tdinfo->nskb_dma = i + 1;
2593 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2595 if (vlan_tx_tag_present(skb)) {
2596 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2597 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2601 * Handle hardware checksum
2603 if ((dev->features & NETIF_F_IP_CSUM) &&
2604 (skb->ip_summed == CHECKSUM_PARTIAL)) {
2605 const struct iphdr *ip = ip_hdr(skb);
2606 if (ip->protocol == IPPROTO_TCP)
2607 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2608 else if (ip->protocol == IPPROTO_UDP)
2609 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2610 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2613 prev = index - 1;
2614 if (prev < 0)
2615 prev = vptr->options.numtx - 1;
2616 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2617 vptr->tx.used[qnum]++;
2618 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2620 if (AVAIL_TD(vptr, qnum) < 1)
2621 netif_stop_queue(dev);
2623 td_ptr = &(vptr->tx.rings[qnum][prev]);
2624 td_ptr->td_buf[0].size |= TD_QUEUE;
2625 mac_tx_queue_wake(vptr->mac_regs, qnum);
2627 spin_unlock_irqrestore(&vptr->lock, flags);
2628 out:
2629 return NETDEV_TX_OK;
2633 static const struct net_device_ops velocity_netdev_ops = {
2634 .ndo_open = velocity_open,
2635 .ndo_stop = velocity_close,
2636 .ndo_start_xmit = velocity_xmit,
2637 .ndo_get_stats = velocity_get_stats,
2638 .ndo_validate_addr = eth_validate_addr,
2639 .ndo_set_mac_address = eth_mac_addr,
2640 .ndo_set_multicast_list = velocity_set_multi,
2641 .ndo_change_mtu = velocity_change_mtu,
2642 .ndo_do_ioctl = velocity_ioctl,
2643 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2644 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2645 .ndo_vlan_rx_register = velocity_vlan_rx_register,
2649 * velocity_init_info - init private data
2650 * @pdev: PCI device
2651 * @vptr: Velocity info
2652 * @info: Board type
2654 * Set up the initial velocity_info struct for the device that has been
2655 * discovered.
2657 static void __devinit velocity_init_info(struct pci_dev *pdev,
2658 struct velocity_info *vptr,
2659 const struct velocity_info_tbl *info)
2661 memset(vptr, 0, sizeof(struct velocity_info));
2663 vptr->pdev = pdev;
2664 vptr->chip_id = info->chip_id;
2665 vptr->tx.numq = info->txqueue;
2666 vptr->multicast_limit = MCAM_SIZE;
2667 spin_lock_init(&vptr->lock);
2671 * velocity_get_pci_info - retrieve PCI info for device
2672 * @vptr: velocity device
2673 * @pdev: PCI device it matches
2675 * Retrieve the PCI configuration space data that interests us from
2676 * the kernel PCI layer
2678 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2680 vptr->rev_id = pdev->revision;
2682 pci_set_master(pdev);
2684 vptr->ioaddr = pci_resource_start(pdev, 0);
2685 vptr->memaddr = pci_resource_start(pdev, 1);
2687 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2688 dev_err(&pdev->dev,
2689 "region #0 is not an I/O resource, aborting.\n");
2690 return -EINVAL;
2693 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2694 dev_err(&pdev->dev,
2695 "region #1 is an I/O resource, aborting.\n");
2696 return -EINVAL;
2699 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2700 dev_err(&pdev->dev, "region #1 is too small.\n");
2701 return -EINVAL;
2703 vptr->pdev = pdev;
2705 return 0;
2709 * velocity_print_info - per driver data
2710 * @vptr: velocity
2712 * Print per driver data as the kernel driver finds Velocity
2713 * hardware
2715 static void __devinit velocity_print_info(struct velocity_info *vptr)
2717 struct net_device *dev = vptr->dev;
2719 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2720 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2721 dev->name, dev->dev_addr);
2724 static u32 velocity_get_link(struct net_device *dev)
2726 struct velocity_info *vptr = netdev_priv(dev);
2727 struct mac_regs __iomem *regs = vptr->mac_regs;
2728 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2733 * velocity_found1 - set up discovered velocity card
2734 * @pdev: PCI device
2735 * @ent: PCI device table entry that matched
2737 * Configure a discovered adapter from scratch. Return a negative
2738 * errno error code on failure paths.
2740 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2742 static int first = 1;
2743 struct net_device *dev;
2744 int i;
2745 const char *drv_string;
2746 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2747 struct velocity_info *vptr;
2748 struct mac_regs __iomem *regs;
2749 int ret = -ENOMEM;
2751 /* FIXME: this driver, like almost all other ethernet drivers,
2752 * can support more than MAX_UNITS.
2754 if (velocity_nics >= MAX_UNITS) {
2755 dev_notice(&pdev->dev, "already found %d NICs.\n",
2756 velocity_nics);
2757 return -ENODEV;
2760 dev = alloc_etherdev(sizeof(struct velocity_info));
2761 if (!dev) {
2762 dev_err(&pdev->dev, "allocate net device failed.\n");
2763 goto out;
2766 /* Chain it all together */
2768 SET_NETDEV_DEV(dev, &pdev->dev);
2769 vptr = netdev_priv(dev);
2772 if (first) {
2773 printk(KERN_INFO "%s Ver. %s\n",
2774 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2775 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2776 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2777 first = 0;
2780 velocity_init_info(pdev, vptr, info);
2782 vptr->dev = dev;
2784 ret = pci_enable_device(pdev);
2785 if (ret < 0)
2786 goto err_free_dev;
2788 dev->irq = pdev->irq;
2790 ret = velocity_get_pci_info(vptr, pdev);
2791 if (ret < 0) {
2792 /* error message already printed */
2793 goto err_disable;
2796 ret = pci_request_regions(pdev, VELOCITY_NAME);
2797 if (ret < 0) {
2798 dev_err(&pdev->dev, "No PCI resources.\n");
2799 goto err_disable;
2802 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2803 if (regs == NULL) {
2804 ret = -EIO;
2805 goto err_release_res;
2808 vptr->mac_regs = regs;
2810 mac_wol_reset(regs);
2812 dev->base_addr = vptr->ioaddr;
2814 for (i = 0; i < 6; i++)
2815 dev->dev_addr[i] = readb(&regs->PAR[i]);
2818 drv_string = dev_driver_string(&pdev->dev);
2820 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2823 * Mask out the options cannot be set to the chip
2826 vptr->options.flags &= info->flags;
2829 * Enable the chip specified capbilities
2832 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2834 vptr->wol_opts = vptr->options.wol_opts;
2835 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2837 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2839 dev->irq = pdev->irq;
2840 dev->netdev_ops = &velocity_netdev_ops;
2841 dev->ethtool_ops = &velocity_ethtool_ops;
2842 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2844 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2845 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2847 ret = register_netdev(dev);
2848 if (ret < 0)
2849 goto err_iounmap;
2851 if (!velocity_get_link(dev)) {
2852 netif_carrier_off(dev);
2853 vptr->mii_status |= VELOCITY_LINK_FAIL;
2856 velocity_print_info(vptr);
2857 pci_set_drvdata(pdev, dev);
2859 /* and leave the chip powered down */
2861 pci_set_power_state(pdev, PCI_D3hot);
2862 velocity_nics++;
2863 out:
2864 return ret;
2866 err_iounmap:
2867 iounmap(regs);
2868 err_release_res:
2869 pci_release_regions(pdev);
2870 err_disable:
2871 pci_disable_device(pdev);
2872 err_free_dev:
2873 free_netdev(dev);
2874 goto out;
2878 #ifdef CONFIG_PM
2880 * wol_calc_crc - WOL CRC
2881 * @pattern: data pattern
2882 * @mask_pattern: mask
2884 * Compute the wake on lan crc hashes for the packet header
2885 * we are interested in.
2887 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2889 u16 crc = 0xFFFF;
2890 u8 mask;
2891 int i, j;
2893 for (i = 0; i < size; i++) {
2894 mask = mask_pattern[i];
2896 /* Skip this loop if the mask equals to zero */
2897 if (mask == 0x00)
2898 continue;
2900 for (j = 0; j < 8; j++) {
2901 if ((mask & 0x01) == 0) {
2902 mask >>= 1;
2903 continue;
2905 mask >>= 1;
2906 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2909 /* Finally, invert the result once to get the correct data */
2910 crc = ~crc;
2911 return bitrev32(crc) >> 16;
2915 * velocity_set_wol - set up for wake on lan
2916 * @vptr: velocity to set WOL status on
2918 * Set a card up for wake on lan either by unicast or by
2919 * ARP packet.
2921 * FIXME: check static buffer is safe here
2923 static int velocity_set_wol(struct velocity_info *vptr)
2925 struct mac_regs __iomem *regs = vptr->mac_regs;
2926 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2927 static u8 buf[256];
2928 int i;
2930 static u32 mask_pattern[2][4] = {
2931 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2932 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2935 writew(0xFFFF, &regs->WOLCRClr);
2936 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2937 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2940 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2941 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2944 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2945 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2947 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2948 struct arp_packet *arp = (struct arp_packet *) buf;
2949 u16 crc;
2950 memset(buf, 0, sizeof(struct arp_packet) + 7);
2952 for (i = 0; i < 4; i++)
2953 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2955 arp->type = htons(ETH_P_ARP);
2956 arp->ar_op = htons(1);
2958 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2960 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2961 (u8 *) & mask_pattern[0][0]);
2963 writew(crc, &regs->PatternCRC[0]);
2964 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2967 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2968 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2970 writew(0x0FFF, &regs->WOLSRClr);
2972 if (spd_dpx == SPD_DPX_1000_FULL)
2973 goto mac_done;
2975 if (spd_dpx != SPD_DPX_AUTO)
2976 goto advertise_done;
2978 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2979 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2980 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2982 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2985 if (vptr->mii_status & VELOCITY_SPEED_1000)
2986 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2988 advertise_done:
2989 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2992 u8 GCR;
2993 GCR = readb(&regs->CHIPGCR);
2994 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2995 writeb(GCR, &regs->CHIPGCR);
2998 mac_done:
2999 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3000 /* Turn on SWPTAG just before entering power mode */
3001 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3002 /* Go to bed ..... */
3003 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3005 return 0;
3009 * velocity_save_context - save registers
3010 * @vptr: velocity
3011 * @context: buffer for stored context
3013 * Retrieve the current configuration from the velocity hardware
3014 * and stash it in the context structure, for use by the context
3015 * restore functions. This allows us to save things we need across
3016 * power down states
3018 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3020 struct mac_regs __iomem *regs = vptr->mac_regs;
3021 u16 i;
3022 u8 __iomem *ptr = (u8 __iomem *)regs;
3024 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3025 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3027 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3028 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3030 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3031 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3035 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3037 struct net_device *dev = pci_get_drvdata(pdev);
3038 struct velocity_info *vptr = netdev_priv(dev);
3039 unsigned long flags;
3041 if (!netif_running(vptr->dev))
3042 return 0;
3044 netif_device_detach(vptr->dev);
3046 spin_lock_irqsave(&vptr->lock, flags);
3047 pci_save_state(pdev);
3048 #ifdef ETHTOOL_GWOL
3049 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3050 velocity_get_ip(vptr);
3051 velocity_save_context(vptr, &vptr->context);
3052 velocity_shutdown(vptr);
3053 velocity_set_wol(vptr);
3054 pci_enable_wake(pdev, PCI_D3hot, 1);
3055 pci_set_power_state(pdev, PCI_D3hot);
3056 } else {
3057 velocity_save_context(vptr, &vptr->context);
3058 velocity_shutdown(vptr);
3059 pci_disable_device(pdev);
3060 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3062 #else
3063 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3064 #endif
3065 spin_unlock_irqrestore(&vptr->lock, flags);
3066 return 0;
3070 * velocity_restore_context - restore registers
3071 * @vptr: velocity
3072 * @context: buffer for stored context
3074 * Reload the register configuration from the velocity context
3075 * created by velocity_save_context.
3077 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3079 struct mac_regs __iomem *regs = vptr->mac_regs;
3080 int i;
3081 u8 __iomem *ptr = (u8 __iomem *)regs;
3083 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3084 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3086 /* Just skip cr0 */
3087 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3088 /* Clear */
3089 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3090 /* Set */
3091 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3094 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3095 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3097 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3098 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3100 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3101 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3104 static int velocity_resume(struct pci_dev *pdev)
3106 struct net_device *dev = pci_get_drvdata(pdev);
3107 struct velocity_info *vptr = netdev_priv(dev);
3108 unsigned long flags;
3109 int i;
3111 if (!netif_running(vptr->dev))
3112 return 0;
3114 pci_set_power_state(pdev, PCI_D0);
3115 pci_enable_wake(pdev, 0, 0);
3116 pci_restore_state(pdev);
3118 mac_wol_reset(vptr->mac_regs);
3120 spin_lock_irqsave(&vptr->lock, flags);
3121 velocity_restore_context(vptr, &vptr->context);
3122 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3123 mac_disable_int(vptr->mac_regs);
3125 velocity_tx_srv(vptr);
3127 for (i = 0; i < vptr->tx.numq; i++) {
3128 if (vptr->tx.used[i])
3129 mac_tx_queue_wake(vptr->mac_regs, i);
3132 mac_enable_int(vptr->mac_regs);
3133 spin_unlock_irqrestore(&vptr->lock, flags);
3134 netif_device_attach(vptr->dev);
3136 return 0;
3138 #endif
3141 * Definition for our device driver. The PCI layer interface
3142 * uses this to handle all our card discover and plugging
3144 static struct pci_driver velocity_driver = {
3145 .name = VELOCITY_NAME,
3146 .id_table = velocity_id_table,
3147 .probe = velocity_found1,
3148 .remove = __devexit_p(velocity_remove1),
3149 #ifdef CONFIG_PM
3150 .suspend = velocity_suspend,
3151 .resume = velocity_resume,
3152 #endif
3157 * velocity_ethtool_up - pre hook for ethtool
3158 * @dev: network device
3160 * Called before an ethtool operation. We need to make sure the
3161 * chip is out of D3 state before we poke at it.
3163 static int velocity_ethtool_up(struct net_device *dev)
3165 struct velocity_info *vptr = netdev_priv(dev);
3166 if (!netif_running(dev))
3167 pci_set_power_state(vptr->pdev, PCI_D0);
3168 return 0;
3172 * velocity_ethtool_down - post hook for ethtool
3173 * @dev: network device
3175 * Called after an ethtool operation. Restore the chip back to D3
3176 * state if it isn't running.
3178 static void velocity_ethtool_down(struct net_device *dev)
3180 struct velocity_info *vptr = netdev_priv(dev);
3181 if (!netif_running(dev))
3182 pci_set_power_state(vptr->pdev, PCI_D3hot);
3185 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3187 struct velocity_info *vptr = netdev_priv(dev);
3188 struct mac_regs __iomem *regs = vptr->mac_regs;
3189 u32 status;
3190 status = check_connection_type(vptr->mac_regs);
3192 cmd->supported = SUPPORTED_TP |
3193 SUPPORTED_Autoneg |
3194 SUPPORTED_10baseT_Half |
3195 SUPPORTED_10baseT_Full |
3196 SUPPORTED_100baseT_Half |
3197 SUPPORTED_100baseT_Full |
3198 SUPPORTED_1000baseT_Half |
3199 SUPPORTED_1000baseT_Full;
3201 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3202 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3203 cmd->advertising |=
3204 ADVERTISED_10baseT_Half |
3205 ADVERTISED_10baseT_Full |
3206 ADVERTISED_100baseT_Half |
3207 ADVERTISED_100baseT_Full |
3208 ADVERTISED_1000baseT_Half |
3209 ADVERTISED_1000baseT_Full;
3210 } else {
3211 switch (vptr->options.spd_dpx) {
3212 case SPD_DPX_1000_FULL:
3213 cmd->advertising |= ADVERTISED_1000baseT_Full;
3214 break;
3215 case SPD_DPX_100_HALF:
3216 cmd->advertising |= ADVERTISED_100baseT_Half;
3217 break;
3218 case SPD_DPX_100_FULL:
3219 cmd->advertising |= ADVERTISED_100baseT_Full;
3220 break;
3221 case SPD_DPX_10_HALF:
3222 cmd->advertising |= ADVERTISED_10baseT_Half;
3223 break;
3224 case SPD_DPX_10_FULL:
3225 cmd->advertising |= ADVERTISED_10baseT_Full;
3226 break;
3227 default:
3228 break;
3231 if (status & VELOCITY_SPEED_1000)
3232 cmd->speed = SPEED_1000;
3233 else if (status & VELOCITY_SPEED_100)
3234 cmd->speed = SPEED_100;
3235 else
3236 cmd->speed = SPEED_10;
3237 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3238 cmd->port = PORT_TP;
3239 cmd->transceiver = XCVR_INTERNAL;
3240 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3242 if (status & VELOCITY_DUPLEX_FULL)
3243 cmd->duplex = DUPLEX_FULL;
3244 else
3245 cmd->duplex = DUPLEX_HALF;
3247 return 0;
3250 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3252 struct velocity_info *vptr = netdev_priv(dev);
3253 u32 curr_status;
3254 u32 new_status = 0;
3255 int ret = 0;
3257 curr_status = check_connection_type(vptr->mac_regs);
3258 curr_status &= (~VELOCITY_LINK_FAIL);
3260 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3261 new_status |= ((cmd->speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3262 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3263 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3264 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3266 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3267 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3268 ret = -EINVAL;
3269 } else {
3270 enum speed_opt spd_dpx;
3272 if (new_status & VELOCITY_AUTONEG_ENABLE)
3273 spd_dpx = SPD_DPX_AUTO;
3274 else if ((new_status & VELOCITY_SPEED_1000) &&
3275 (new_status & VELOCITY_DUPLEX_FULL)) {
3276 spd_dpx = SPD_DPX_1000_FULL;
3277 } else if (new_status & VELOCITY_SPEED_100)
3278 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3279 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3280 else if (new_status & VELOCITY_SPEED_10)
3281 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3282 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3283 else
3284 return -EOPNOTSUPP;
3286 vptr->options.spd_dpx = spd_dpx;
3288 velocity_set_media_mode(vptr, new_status);
3291 return ret;
3294 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3296 struct velocity_info *vptr = netdev_priv(dev);
3297 strcpy(info->driver, VELOCITY_NAME);
3298 strcpy(info->version, VELOCITY_VERSION);
3299 strcpy(info->bus_info, pci_name(vptr->pdev));
3302 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3304 struct velocity_info *vptr = netdev_priv(dev);
3305 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3306 wol->wolopts |= WAKE_MAGIC;
3308 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3309 wol.wolopts|=WAKE_PHY;
3311 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3312 wol->wolopts |= WAKE_UCAST;
3313 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3314 wol->wolopts |= WAKE_ARP;
3315 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3318 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3320 struct velocity_info *vptr = netdev_priv(dev);
3322 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3323 return -EFAULT;
3324 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3327 if (wol.wolopts & WAKE_PHY) {
3328 vptr->wol_opts|=VELOCITY_WOL_PHY;
3329 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3333 if (wol->wolopts & WAKE_MAGIC) {
3334 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3335 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3337 if (wol->wolopts & WAKE_UCAST) {
3338 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3339 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3341 if (wol->wolopts & WAKE_ARP) {
3342 vptr->wol_opts |= VELOCITY_WOL_ARP;
3343 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3345 memcpy(vptr->wol_passwd, wol->sopass, 6);
3346 return 0;
3349 static u32 velocity_get_msglevel(struct net_device *dev)
3351 return msglevel;
3354 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3356 msglevel = value;
3359 static int get_pending_timer_val(int val)
3361 int mult_bits = val >> 6;
3362 int mult = 1;
3364 switch (mult_bits)
3366 case 1:
3367 mult = 4; break;
3368 case 2:
3369 mult = 16; break;
3370 case 3:
3371 mult = 64; break;
3372 case 0:
3373 default:
3374 break;
3377 return (val & 0x3f) * mult;
3380 static void set_pending_timer_val(int *val, u32 us)
3382 u8 mult = 0;
3383 u8 shift = 0;
3385 if (us >= 0x3f) {
3386 mult = 1; /* mult with 4 */
3387 shift = 2;
3389 if (us >= 0x3f * 4) {
3390 mult = 2; /* mult with 16 */
3391 shift = 4;
3393 if (us >= 0x3f * 16) {
3394 mult = 3; /* mult with 64 */
3395 shift = 6;
3398 *val = (mult << 6) | ((us >> shift) & 0x3f);
3402 static int velocity_get_coalesce(struct net_device *dev,
3403 struct ethtool_coalesce *ecmd)
3405 struct velocity_info *vptr = netdev_priv(dev);
3407 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3408 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3410 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3411 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3413 return 0;
3416 static int velocity_set_coalesce(struct net_device *dev,
3417 struct ethtool_coalesce *ecmd)
3419 struct velocity_info *vptr = netdev_priv(dev);
3420 int max_us = 0x3f * 64;
3421 unsigned long flags;
3423 /* 6 bits of */
3424 if (ecmd->tx_coalesce_usecs > max_us)
3425 return -EINVAL;
3426 if (ecmd->rx_coalesce_usecs > max_us)
3427 return -EINVAL;
3429 if (ecmd->tx_max_coalesced_frames > 0xff)
3430 return -EINVAL;
3431 if (ecmd->rx_max_coalesced_frames > 0xff)
3432 return -EINVAL;
3434 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3435 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3437 set_pending_timer_val(&vptr->options.rxqueue_timer,
3438 ecmd->rx_coalesce_usecs);
3439 set_pending_timer_val(&vptr->options.txqueue_timer,
3440 ecmd->tx_coalesce_usecs);
3442 /* Setup the interrupt suppression and queue timers */
3443 spin_lock_irqsave(&vptr->lock, flags);
3444 mac_disable_int(vptr->mac_regs);
3445 setup_adaptive_interrupts(vptr);
3446 setup_queue_timers(vptr);
3448 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3449 mac_clear_isr(vptr->mac_regs);
3450 mac_enable_int(vptr->mac_regs);
3451 spin_unlock_irqrestore(&vptr->lock, flags);
3453 return 0;
3456 static const struct ethtool_ops velocity_ethtool_ops = {
3457 .get_settings = velocity_get_settings,
3458 .set_settings = velocity_set_settings,
3459 .get_drvinfo = velocity_get_drvinfo,
3460 .set_tx_csum = ethtool_op_set_tx_csum,
3461 .get_tx_csum = ethtool_op_get_tx_csum,
3462 .get_wol = velocity_ethtool_get_wol,
3463 .set_wol = velocity_ethtool_set_wol,
3464 .get_msglevel = velocity_get_msglevel,
3465 .set_msglevel = velocity_set_msglevel,
3466 .set_sg = ethtool_op_set_sg,
3467 .get_link = velocity_get_link,
3468 .get_coalesce = velocity_get_coalesce,
3469 .set_coalesce = velocity_set_coalesce,
3470 .begin = velocity_ethtool_up,
3471 .complete = velocity_ethtool_down
3474 #ifdef CONFIG_PM
3475 #ifdef CONFIG_INET
3476 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3478 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3479 struct net_device *dev = ifa->ifa_dev->dev;
3481 if (dev_net(dev) == &init_net &&
3482 dev->netdev_ops == &velocity_netdev_ops)
3483 velocity_get_ip(netdev_priv(dev));
3485 return NOTIFY_DONE;
3487 #endif /* CONFIG_INET */
3488 #endif /* CONFIG_PM */
3490 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3491 static struct notifier_block velocity_inetaddr_notifier = {
3492 .notifier_call = velocity_netdev_event,
3495 static void velocity_register_notifier(void)
3497 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3500 static void velocity_unregister_notifier(void)
3502 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3505 #else
3507 #define velocity_register_notifier() do {} while (0)
3508 #define velocity_unregister_notifier() do {} while (0)
3510 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3513 * velocity_init_module - load time function
3515 * Called when the velocity module is loaded. The PCI driver
3516 * is registered with the PCI layer, and in turn will call
3517 * the probe functions for each velocity adapter installed
3518 * in the system.
3520 static int __init velocity_init_module(void)
3522 int ret;
3524 velocity_register_notifier();
3525 ret = pci_register_driver(&velocity_driver);
3526 if (ret < 0)
3527 velocity_unregister_notifier();
3528 return ret;
3532 * velocity_cleanup - module unload
3534 * When the velocity hardware is unloaded this function is called.
3535 * It will clean up the notifiers and the unregister the PCI
3536 * driver interface for this hardware. This in turn cleans up
3537 * all discovered interfaces before returning from the function
3539 static void __exit velocity_cleanup_module(void)
3541 velocity_unregister_notifier();
3542 pci_unregister_driver(&velocity_driver);
3545 module_init(velocity_init_module);
3546 module_exit(velocity_cleanup_module);