1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
29 if (status != VXGE_HW_OK) \
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem
*vp_reg
)
38 val64
= readq(&vp_reg
->rxmac_vcfg0
);
39 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
41 val64
= readq(&vp_reg
->rxmac_vcfg0
);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device
*hldev
, u32 vp_id
)
49 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
50 struct __vxge_hw_virtualpath
*vpath
;
51 u64 val64
, rxd_count
, rxd_spat
;
52 int count
= 0, total_count
= 0;
54 vpath
= &hldev
->virtual_paths
[vp_id
];
55 vp_reg
= vpath
->vp_reg
;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg
);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64
= readq(&vp_reg
->prc_cfg6
);
65 rxd_spat
= VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64
) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
74 rxd_count
= readq(&vp_reg
->prc_rxd_doorbell
);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64
= readq(&vp_reg
->frm_in_progress_cnt
);
80 if ((rxd_count
<= rxd_spat
) || (val64
> 0))
85 } while ((count
< VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT
) &&
86 (total_count
< VXGE_HW_MAX_POLLING_COUNT
));
88 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
89 printk(KERN_ALERT
"%s: Still Receiving traffic. Abort wait\n",
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device
*hldev
)
101 int i
, total_count
= 0;
103 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
104 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
107 total_count
+= vxge_hw_vpath_wait_receive_idle(hldev
, i
);
108 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem
*reg
, u64 mask
, u32 max_millis
)
123 enum vxge_hw_status ret
= VXGE_HW_FAIL
;
140 } while (++i
<= max_millis
);
145 static inline enum vxge_hw_status
146 __vxge_hw_pio_mem_write64(u64 val64
, void __iomem
*addr
,
147 u64 mask
, u32 max_millis
)
149 __vxge_hw_pio_mem_write32_lower((u32
)vxge_bVALn(val64
, 32, 32), addr
);
151 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32), addr
);
154 return __vxge_hw_device_register_poll(addr
, mask
, max_millis
);
157 static enum vxge_hw_status
158 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath
*vpath
, u32 action
,
159 u32 fw_memo
, u32 offset
, u64
*data0
, u64
*data1
,
162 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
163 enum vxge_hw_status status
;
165 u32 retry
= 0, max_retry
= 100;
167 vp_reg
= vpath
->vp_reg
;
169 if (vpath
->vp_open
) {
171 spin_lock(&vpath
->lock
);
174 writeq(*data0
, &vp_reg
->rts_access_steer_data0
);
175 writeq(*data1
, &vp_reg
->rts_access_steer_data1
);
178 val64
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action
) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo
) |
180 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset
) |
181 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
|
184 status
= __vxge_hw_pio_mem_write64(val64
,
185 &vp_reg
->rts_access_steer_ctrl
,
186 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
187 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
189 /* The __vxge_hw_device_register_poll can udelay for a significant
190 * amount of time, blocking other process from the CPU. If it delays
191 * for ~5secs, a NMI error can occur. A way around this is to give up
192 * the processor via msleep, but this is not allowed is under lock.
193 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
194 * 1sec and sleep for 10ms until the firmware operation has completed
197 while ((status
!= VXGE_HW_OK
) && retry
++ < max_retry
) {
200 status
= __vxge_hw_device_register_poll(
201 &vp_reg
->rts_access_steer_ctrl
,
202 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
203 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
206 if (status
!= VXGE_HW_OK
)
209 val64
= readq(&vp_reg
->rts_access_steer_ctrl
);
210 if (val64
& VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS
) {
211 *data0
= readq(&vp_reg
->rts_access_steer_data0
);
212 *data1
= readq(&vp_reg
->rts_access_steer_data1
);
215 status
= VXGE_HW_FAIL
;
219 spin_unlock(&vpath
->lock
);
224 vxge_hw_upgrade_read_version(struct __vxge_hw_device
*hldev
, u32
*major
,
225 u32
*minor
, u32
*build
)
227 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
228 struct __vxge_hw_virtualpath
*vpath
;
229 enum vxge_hw_status status
;
231 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
233 status
= vxge_hw_vpath_fw_api(vpath
,
234 VXGE_HW_FW_UPGRADE_ACTION
,
235 VXGE_HW_FW_UPGRADE_MEMO
,
236 VXGE_HW_FW_UPGRADE_OFFSET_READ
,
237 &data0
, &data1
, &steer_ctrl
);
238 if (status
!= VXGE_HW_OK
)
241 *major
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
242 *minor
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
243 *build
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
248 enum vxge_hw_status
vxge_hw_flash_fw(struct __vxge_hw_device
*hldev
)
250 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
251 struct __vxge_hw_virtualpath
*vpath
;
252 enum vxge_hw_status status
;
255 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
257 status
= vxge_hw_vpath_fw_api(vpath
,
258 VXGE_HW_FW_UPGRADE_ACTION
,
259 VXGE_HW_FW_UPGRADE_MEMO
,
260 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT
,
261 &data0
, &data1
, &steer_ctrl
);
262 if (status
!= VXGE_HW_OK
) {
263 vxge_debug_init(VXGE_ERR
, "%s: FW upgrade failed", __func__
);
267 ret
= VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl
) & 0x7F;
269 vxge_debug_init(VXGE_ERR
, "%s: FW commit failed with error %d",
271 status
= VXGE_HW_FAIL
;
279 vxge_update_fw_image(struct __vxge_hw_device
*hldev
, const u8
*fwdata
, int size
)
281 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
282 struct __vxge_hw_virtualpath
*vpath
;
283 enum vxge_hw_status status
;
284 int ret_code
, sec_code
;
286 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
288 /* send upgrade start command */
289 status
= vxge_hw_vpath_fw_api(vpath
,
290 VXGE_HW_FW_UPGRADE_ACTION
,
291 VXGE_HW_FW_UPGRADE_MEMO
,
292 VXGE_HW_FW_UPGRADE_OFFSET_START
,
293 &data0
, &data1
, &steer_ctrl
);
294 if (status
!= VXGE_HW_OK
) {
295 vxge_debug_init(VXGE_ERR
, " %s: Upgrade start cmd failed",
300 /* Transfer fw image to adapter 16 bytes at a time */
301 for (; size
> 0; size
-= VXGE_HW_FW_UPGRADE_BLK_SIZE
) {
304 /* The next 128bits of fwdata to be loaded onto the adapter */
305 data0
= *((u64
*)fwdata
);
306 data1
= *((u64
*)fwdata
+ 1);
308 status
= vxge_hw_vpath_fw_api(vpath
,
309 VXGE_HW_FW_UPGRADE_ACTION
,
310 VXGE_HW_FW_UPGRADE_MEMO
,
311 VXGE_HW_FW_UPGRADE_OFFSET_SEND
,
312 &data0
, &data1
, &steer_ctrl
);
313 if (status
!= VXGE_HW_OK
) {
314 vxge_debug_init(VXGE_ERR
, "%s: Upgrade send failed",
319 ret_code
= VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0
);
321 case VXGE_HW_FW_UPGRADE_OK
:
322 /* All OK, send next 16 bytes. */
324 case VXGE_FW_UPGRADE_BYTES2SKIP
:
325 /* skip bytes in the stream */
326 fwdata
+= (data0
>> 8) & 0xFFFFFFFF;
328 case VXGE_HW_FW_UPGRADE_DONE
:
330 case VXGE_HW_FW_UPGRADE_ERR
:
331 sec_code
= VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0
);
333 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1
:
334 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7
:
336 "corrupted data from .ncf file\n");
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3
:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4
:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5
:
341 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6
:
342 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8
:
343 printk(KERN_ERR
"invalid .ncf file\n");
345 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW
:
346 printk(KERN_ERR
"buffer overflow\n");
348 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH
:
349 printk(KERN_ERR
"failed to flash the image\n");
351 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN
:
353 "generic error. Unknown error type\n");
356 printk(KERN_ERR
"Unknown error of type %d\n",
360 status
= VXGE_HW_FAIL
;
363 printk(KERN_ERR
"Unknown FW error: %d\n", ret_code
);
364 status
= VXGE_HW_FAIL
;
367 /* point to next 16 bytes */
368 fwdata
+= VXGE_HW_FW_UPGRADE_BLK_SIZE
;
375 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device
*hldev
,
376 struct eprom_image
*img
)
378 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
379 struct __vxge_hw_virtualpath
*vpath
;
380 enum vxge_hw_status status
;
383 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
385 for (i
= 0; i
< VXGE_HW_MAX_ROM_IMAGES
; i
++) {
386 data0
= VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i
);
387 data1
= steer_ctrl
= 0;
389 status
= vxge_hw_vpath_fw_api(vpath
,
390 VXGE_HW_FW_API_GET_EPROM_REV
,
391 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
392 0, &data0
, &data1
, &steer_ctrl
);
393 if (status
!= VXGE_HW_OK
)
396 img
[i
].is_valid
= VXGE_HW_GET_EPROM_IMAGE_VALID(data0
);
397 img
[i
].index
= VXGE_HW_GET_EPROM_IMAGE_INDEX(data0
);
398 img
[i
].type
= VXGE_HW_GET_EPROM_IMAGE_TYPE(data0
);
399 img
[i
].version
= VXGE_HW_GET_EPROM_IMAGE_REV(data0
);
406 * __vxge_hw_channel_free - Free memory allocated for channel
407 * This function deallocates memory from the channel and various arrays
410 static void __vxge_hw_channel_free(struct __vxge_hw_channel
*channel
)
412 kfree(channel
->work_arr
);
413 kfree(channel
->free_arr
);
414 kfree(channel
->reserve_arr
);
415 kfree(channel
->orig_arr
);
420 * __vxge_hw_channel_initialize - Initialize a channel
421 * This function initializes a channel by properly setting the
424 static enum vxge_hw_status
425 __vxge_hw_channel_initialize(struct __vxge_hw_channel
*channel
)
428 struct __vxge_hw_virtualpath
*vpath
;
430 vpath
= channel
->vph
->vpath
;
432 if ((channel
->reserve_arr
!= NULL
) && (channel
->orig_arr
!= NULL
)) {
433 for (i
= 0; i
< channel
->length
; i
++)
434 channel
->orig_arr
[i
] = channel
->reserve_arr
[i
];
437 switch (channel
->type
) {
438 case VXGE_HW_CHANNEL_TYPE_FIFO
:
439 vpath
->fifoh
= (struct __vxge_hw_fifo
*)channel
;
440 channel
->stats
= &((struct __vxge_hw_fifo
*)
441 channel
)->stats
->common_stats
;
443 case VXGE_HW_CHANNEL_TYPE_RING
:
444 vpath
->ringh
= (struct __vxge_hw_ring
*)channel
;
445 channel
->stats
= &((struct __vxge_hw_ring
*)
446 channel
)->stats
->common_stats
;
456 * __vxge_hw_channel_reset - Resets a channel
457 * This function resets a channel by properly setting the various references
459 static enum vxge_hw_status
460 __vxge_hw_channel_reset(struct __vxge_hw_channel
*channel
)
464 for (i
= 0; i
< channel
->length
; i
++) {
465 if (channel
->reserve_arr
!= NULL
)
466 channel
->reserve_arr
[i
] = channel
->orig_arr
[i
];
467 if (channel
->free_arr
!= NULL
)
468 channel
->free_arr
[i
] = NULL
;
469 if (channel
->work_arr
!= NULL
)
470 channel
->work_arr
[i
] = NULL
;
472 channel
->free_ptr
= channel
->length
;
473 channel
->reserve_ptr
= channel
->length
;
474 channel
->reserve_top
= 0;
475 channel
->post_index
= 0;
476 channel
->compl_index
= 0;
482 * __vxge_hw_device_pci_e_init
483 * Initialize certain PCI/PCI-X configuration registers
484 * with recommended values. Save config space for future hw resets.
486 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device
*hldev
)
490 /* Set the PErr Repconse bit and SERR in PCI command register. */
491 pci_read_config_word(hldev
->pdev
, PCI_COMMAND
, &cmd
);
493 pci_write_config_word(hldev
->pdev
, PCI_COMMAND
, cmd
);
495 pci_save_state(hldev
->pdev
);
498 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
500 * This routine checks the vpath reset in progress register is turned zero
502 static enum vxge_hw_status
503 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem
*vpath_rst_in_prog
)
505 enum vxge_hw_status status
;
506 status
= __vxge_hw_device_register_poll(vpath_rst_in_prog
,
507 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
508 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
513 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
514 * Set the swapper bits appropriately for the lagacy section.
516 static enum vxge_hw_status
517 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
)
520 enum vxge_hw_status status
= VXGE_HW_OK
;
522 val64
= readq(&legacy_reg
->toc_swapper_fb
);
527 case VXGE_HW_SWAPPER_INITIAL_VALUE
:
530 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED
:
531 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
532 &legacy_reg
->pifm_rd_swap_en
);
533 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
534 &legacy_reg
->pifm_rd_flip_en
);
535 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
536 &legacy_reg
->pifm_wr_swap_en
);
537 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
538 &legacy_reg
->pifm_wr_flip_en
);
541 case VXGE_HW_SWAPPER_BYTE_SWAPPED
:
542 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
543 &legacy_reg
->pifm_rd_swap_en
);
544 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
545 &legacy_reg
->pifm_wr_swap_en
);
548 case VXGE_HW_SWAPPER_BIT_FLIPPED
:
549 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
550 &legacy_reg
->pifm_rd_flip_en
);
551 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
552 &legacy_reg
->pifm_wr_flip_en
);
558 val64
= readq(&legacy_reg
->toc_swapper_fb
);
560 if (val64
!= VXGE_HW_SWAPPER_INITIAL_VALUE
)
561 status
= VXGE_HW_ERR_SWAPPER_CTRL
;
567 * __vxge_hw_device_toc_get
568 * This routine sets the swapper and reads the toc pointer and returns the
569 * memory mapped address of the toc
571 static struct vxge_hw_toc_reg __iomem
*
572 __vxge_hw_device_toc_get(void __iomem
*bar0
)
575 struct vxge_hw_toc_reg __iomem
*toc
= NULL
;
576 enum vxge_hw_status status
;
578 struct vxge_hw_legacy_reg __iomem
*legacy_reg
=
579 (struct vxge_hw_legacy_reg __iomem
*)bar0
;
581 status
= __vxge_hw_legacy_swapper_set(legacy_reg
);
582 if (status
!= VXGE_HW_OK
)
585 val64
= readq(&legacy_reg
->toc_first_pointer
);
586 toc
= (struct vxge_hw_toc_reg __iomem
*)(bar0
+val64
);
592 * __vxge_hw_device_reg_addr_get
593 * This routine sets the swapper and reads the toc pointer and initializes the
594 * register location pointers in the device object. It waits until the ric is
595 * completed initializing registers.
597 static enum vxge_hw_status
598 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device
*hldev
)
602 enum vxge_hw_status status
= VXGE_HW_OK
;
604 hldev
->legacy_reg
= (struct vxge_hw_legacy_reg __iomem
*)hldev
->bar0
;
606 hldev
->toc_reg
= __vxge_hw_device_toc_get(hldev
->bar0
);
607 if (hldev
->toc_reg
== NULL
) {
608 status
= VXGE_HW_FAIL
;
612 val64
= readq(&hldev
->toc_reg
->toc_common_pointer
);
614 (struct vxge_hw_common_reg __iomem
*)(hldev
->bar0
+ val64
);
616 val64
= readq(&hldev
->toc_reg
->toc_mrpcim_pointer
);
618 (struct vxge_hw_mrpcim_reg __iomem
*)(hldev
->bar0
+ val64
);
620 for (i
= 0; i
< VXGE_HW_TITAN_SRPCIM_REG_SPACES
; i
++) {
621 val64
= readq(&hldev
->toc_reg
->toc_srpcim_pointer
[i
]);
622 hldev
->srpcim_reg
[i
] =
623 (struct vxge_hw_srpcim_reg __iomem
*)
624 (hldev
->bar0
+ val64
);
627 for (i
= 0; i
< VXGE_HW_TITAN_VPMGMT_REG_SPACES
; i
++) {
628 val64
= readq(&hldev
->toc_reg
->toc_vpmgmt_pointer
[i
]);
629 hldev
->vpmgmt_reg
[i
] =
630 (struct vxge_hw_vpmgmt_reg __iomem
*)(hldev
->bar0
+ val64
);
633 for (i
= 0; i
< VXGE_HW_TITAN_VPATH_REG_SPACES
; i
++) {
634 val64
= readq(&hldev
->toc_reg
->toc_vpath_pointer
[i
]);
635 hldev
->vpath_reg
[i
] =
636 (struct vxge_hw_vpath_reg __iomem
*)
637 (hldev
->bar0
+ val64
);
640 val64
= readq(&hldev
->toc_reg
->toc_kdfc
);
642 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64
)) {
644 hldev
->kdfc
= (u8 __iomem
*)(hldev
->bar0
+
645 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64
));
651 status
= __vxge_hw_device_vpath_reset_in_prog_check(
652 (u64 __iomem
*)&hldev
->common_reg
->vpath_rst_in_prog
);
658 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
659 * This routine returns the Access Rights of the driver
662 __vxge_hw_device_access_rights_get(u32 host_type
, u32 func_id
)
664 u32 access_rights
= VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH
;
667 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION
:
669 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
670 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
673 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION
:
674 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
675 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
677 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0
:
678 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
679 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
681 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION
:
682 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION
:
683 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG
:
685 case VXGE_HW_SR_VH_FUNCTION0
:
686 case VXGE_HW_VH_NORMAL_FUNCTION
:
687 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
691 return access_rights
;
694 * __vxge_hw_device_is_privilaged
695 * This routine checks if the device function is privilaged or not
699 __vxge_hw_device_is_privilaged(u32 host_type
, u32 func_id
)
701 if (__vxge_hw_device_access_rights_get(host_type
,
703 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)
706 return VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
710 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
711 * Returns the function number of the vpath.
714 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
)
718 val64
= readq(&vpmgmt_reg
->vpath_to_func_map_cfg1
);
721 (u32
)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64
);
725 * __vxge_hw_device_host_info_get
726 * This routine returns the host type assignments
728 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device
*hldev
)
733 val64
= readq(&hldev
->common_reg
->host_type_assignments
);
736 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
738 hldev
->vpath_assignments
= readq(&hldev
->common_reg
->vpath_assignments
);
740 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
741 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
745 __vxge_hw_vpath_func_id_get(hldev
->vpmgmt_reg
[i
]);
747 hldev
->access_rights
= __vxge_hw_device_access_rights_get(
748 hldev
->host_type
, hldev
->func_id
);
750 hldev
->virtual_paths
[i
].vp_open
= VXGE_HW_VP_NOT_OPEN
;
751 hldev
->virtual_paths
[i
].vp_reg
= hldev
->vpath_reg
[i
];
753 hldev
->first_vp_id
= i
;
759 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
760 * link width and signalling rate.
762 static enum vxge_hw_status
763 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device
*hldev
)
768 /* Get the negotiated link width and speed from PCI config space */
769 exp_cap
= pci_find_capability(hldev
->pdev
, PCI_CAP_ID_EXP
);
770 pci_read_config_word(hldev
->pdev
, exp_cap
+ PCI_EXP_LNKSTA
, &lnk
);
772 if ((lnk
& PCI_EXP_LNKSTA_CLS
) != 1)
773 return VXGE_HW_ERR_INVALID_PCI_INFO
;
775 switch ((lnk
& PCI_EXP_LNKSTA_NLW
) >> 4) {
776 case PCIE_LNK_WIDTH_RESRV
:
783 return VXGE_HW_ERR_INVALID_PCI_INFO
;
790 * __vxge_hw_device_initialize
791 * Initialize Titan-V hardware.
793 static enum vxge_hw_status
794 __vxge_hw_device_initialize(struct __vxge_hw_device
*hldev
)
796 enum vxge_hw_status status
= VXGE_HW_OK
;
798 if (VXGE_HW_OK
== __vxge_hw_device_is_privilaged(hldev
->host_type
,
800 /* Validate the pci-e link width and speed */
801 status
= __vxge_hw_verify_pci_e_info(hldev
);
802 if (status
!= VXGE_HW_OK
)
811 * __vxge_hw_vpath_fw_ver_get - Get the fw version
814 static enum vxge_hw_status
815 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath
*vpath
,
816 struct vxge_hw_device_hw_info
*hw_info
)
818 struct vxge_hw_device_version
*fw_version
= &hw_info
->fw_version
;
819 struct vxge_hw_device_date
*fw_date
= &hw_info
->fw_date
;
820 struct vxge_hw_device_version
*flash_version
= &hw_info
->flash_version
;
821 struct vxge_hw_device_date
*flash_date
= &hw_info
->flash_date
;
822 u64 data0
, data1
= 0, steer_ctrl
= 0;
823 enum vxge_hw_status status
;
825 status
= vxge_hw_vpath_fw_api(vpath
,
826 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
827 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
828 0, &data0
, &data1
, &steer_ctrl
);
829 if (status
!= VXGE_HW_OK
)
833 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0
);
835 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0
);
837 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0
);
839 snprintf(fw_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
840 fw_date
->month
, fw_date
->day
, fw_date
->year
);
843 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
845 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
847 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
849 snprintf(fw_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
850 fw_version
->major
, fw_version
->minor
, fw_version
->build
);
853 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1
);
855 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1
);
857 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1
);
859 snprintf(flash_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
860 flash_date
->month
, flash_date
->day
, flash_date
->year
);
862 flash_version
->major
=
863 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1
);
864 flash_version
->minor
=
865 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1
);
866 flash_version
->build
=
867 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1
);
869 snprintf(flash_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
870 flash_version
->major
, flash_version
->minor
,
871 flash_version
->build
);
878 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
879 * part number and product description.
881 static enum vxge_hw_status
882 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath
*vpath
,
883 struct vxge_hw_device_hw_info
*hw_info
)
885 enum vxge_hw_status status
;
886 u64 data0
, data1
= 0, steer_ctrl
= 0;
887 u8
*serial_number
= hw_info
->serial_number
;
888 u8
*part_number
= hw_info
->part_number
;
889 u8
*product_desc
= hw_info
->product_desc
;
892 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER
;
894 status
= vxge_hw_vpath_fw_api(vpath
,
895 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
896 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
897 0, &data0
, &data1
, &steer_ctrl
);
898 if (status
!= VXGE_HW_OK
)
901 ((u64
*)serial_number
)[0] = be64_to_cpu(data0
);
902 ((u64
*)serial_number
)[1] = be64_to_cpu(data1
);
904 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER
;
905 data1
= steer_ctrl
= 0;
907 status
= vxge_hw_vpath_fw_api(vpath
,
908 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
909 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
910 0, &data0
, &data1
, &steer_ctrl
);
911 if (status
!= VXGE_HW_OK
)
914 ((u64
*)part_number
)[0] = be64_to_cpu(data0
);
915 ((u64
*)part_number
)[1] = be64_to_cpu(data1
);
917 for (i
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0
;
918 i
<= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3
; i
++) {
920 data1
= steer_ctrl
= 0;
922 status
= vxge_hw_vpath_fw_api(vpath
,
923 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
924 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
925 0, &data0
, &data1
, &steer_ctrl
);
926 if (status
!= VXGE_HW_OK
)
929 ((u64
*)product_desc
)[j
++] = be64_to_cpu(data0
);
930 ((u64
*)product_desc
)[j
++] = be64_to_cpu(data1
);
937 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
938 * Returns pci function mode
940 static enum vxge_hw_status
941 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath
*vpath
,
942 struct vxge_hw_device_hw_info
*hw_info
)
944 u64 data0
, data1
= 0, steer_ctrl
= 0;
945 enum vxge_hw_status status
;
949 status
= vxge_hw_vpath_fw_api(vpath
,
950 VXGE_HW_FW_API_GET_FUNC_MODE
,
951 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
952 0, &data0
, &data1
, &steer_ctrl
);
953 if (status
!= VXGE_HW_OK
)
956 hw_info
->function_mode
= VXGE_HW_GET_FUNC_MODE_VAL(data0
);
961 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
962 * from MAC address table.
964 static enum vxge_hw_status
965 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath
*vpath
,
966 u8
*macaddr
, u8
*macaddr_mask
)
968 u64 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
969 data0
= 0, data1
= 0, steer_ctrl
= 0;
970 enum vxge_hw_status status
;
974 status
= vxge_hw_vpath_fw_api(vpath
, action
,
975 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
976 0, &data0
, &data1
, &steer_ctrl
);
977 if (status
!= VXGE_HW_OK
)
980 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0
);
981 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
984 for (i
= ETH_ALEN
; i
> 0; i
--) {
985 macaddr
[i
- 1] = (u8
) (data0
& 0xFF);
988 macaddr_mask
[i
- 1] = (u8
) (data1
& 0xFF);
992 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
;
993 data0
= 0, data1
= 0, steer_ctrl
= 0;
995 } while (!is_valid_ether_addr(macaddr
));
1001 * vxge_hw_device_hw_info_get - Get the hw information
1002 * Returns the vpath mask that has the bits set for each vpath allocated
1003 * for the driver, FW version information and the first mac addresse for
1006 enum vxge_hw_status __devinit
1007 vxge_hw_device_hw_info_get(void __iomem
*bar0
,
1008 struct vxge_hw_device_hw_info
*hw_info
)
1012 struct vxge_hw_toc_reg __iomem
*toc
;
1013 struct vxge_hw_mrpcim_reg __iomem
*mrpcim_reg
;
1014 struct vxge_hw_common_reg __iomem
*common_reg
;
1015 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
1016 enum vxge_hw_status status
;
1017 struct __vxge_hw_virtualpath vpath
;
1019 memset(hw_info
, 0, sizeof(struct vxge_hw_device_hw_info
));
1021 toc
= __vxge_hw_device_toc_get(bar0
);
1023 status
= VXGE_HW_ERR_CRITICAL
;
1027 val64
= readq(&toc
->toc_common_pointer
);
1028 common_reg
= (struct vxge_hw_common_reg __iomem
*)(bar0
+ val64
);
1030 status
= __vxge_hw_device_vpath_reset_in_prog_check(
1031 (u64 __iomem
*)&common_reg
->vpath_rst_in_prog
);
1032 if (status
!= VXGE_HW_OK
)
1035 hw_info
->vpath_mask
= readq(&common_reg
->vpath_assignments
);
1037 val64
= readq(&common_reg
->host_type_assignments
);
1039 hw_info
->host_type
=
1040 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
1042 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1043 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1046 val64
= readq(&toc
->toc_vpmgmt_pointer
[i
]);
1048 vpmgmt_reg
= (struct vxge_hw_vpmgmt_reg __iomem
*)
1051 hw_info
->func_id
= __vxge_hw_vpath_func_id_get(vpmgmt_reg
);
1052 if (__vxge_hw_device_access_rights_get(hw_info
->host_type
,
1054 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
) {
1056 val64
= readq(&toc
->toc_mrpcim_pointer
);
1058 mrpcim_reg
= (struct vxge_hw_mrpcim_reg __iomem
*)
1061 writeq(0, &mrpcim_reg
->xgmac_gen_fw_memo_mask
);
1065 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1067 vpath
.vp_reg
= (struct vxge_hw_vpath_reg __iomem
*)
1071 status
= __vxge_hw_vpath_pci_func_mode_get(&vpath
, hw_info
);
1072 if (status
!= VXGE_HW_OK
)
1075 status
= __vxge_hw_vpath_fw_ver_get(&vpath
, hw_info
);
1076 if (status
!= VXGE_HW_OK
)
1079 status
= __vxge_hw_vpath_card_info_get(&vpath
, hw_info
);
1080 if (status
!= VXGE_HW_OK
)
1086 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1087 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1090 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1091 vpath
.vp_reg
= (struct vxge_hw_vpath_reg __iomem
*)
1095 status
= __vxge_hw_vpath_addr_get(&vpath
,
1096 hw_info
->mac_addrs
[i
],
1097 hw_info
->mac_addr_masks
[i
]);
1098 if (status
!= VXGE_HW_OK
)
1106 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1108 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool
*blockpool
)
1110 struct __vxge_hw_device
*hldev
;
1111 struct list_head
*p
, *n
;
1114 if (blockpool
== NULL
) {
1119 hldev
= blockpool
->hldev
;
1121 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
1122 pci_unmap_single(hldev
->pdev
,
1123 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
1124 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
1125 PCI_DMA_BIDIRECTIONAL
);
1127 vxge_os_dma_free(hldev
->pdev
,
1128 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
1129 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
1131 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1133 blockpool
->pool_size
--;
1136 list_for_each_safe(p
, n
, &blockpool
->free_entry_list
) {
1137 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1146 * __vxge_hw_blockpool_create - Create block pool
1148 static enum vxge_hw_status
1149 __vxge_hw_blockpool_create(struct __vxge_hw_device
*hldev
,
1150 struct __vxge_hw_blockpool
*blockpool
,
1155 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
1157 dma_addr_t dma_addr
;
1158 struct pci_dev
*dma_handle
;
1159 struct pci_dev
*acc_handle
;
1160 enum vxge_hw_status status
= VXGE_HW_OK
;
1162 if (blockpool
== NULL
) {
1163 status
= VXGE_HW_FAIL
;
1164 goto blockpool_create_exit
;
1167 blockpool
->hldev
= hldev
;
1168 blockpool
->block_size
= VXGE_HW_BLOCK_SIZE
;
1169 blockpool
->pool_size
= 0;
1170 blockpool
->pool_max
= pool_max
;
1171 blockpool
->req_out
= 0;
1173 INIT_LIST_HEAD(&blockpool
->free_block_list
);
1174 INIT_LIST_HEAD(&blockpool
->free_entry_list
);
1176 for (i
= 0; i
< pool_size
+ pool_max
; i
++) {
1177 entry
= kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1179 if (entry
== NULL
) {
1180 __vxge_hw_blockpool_destroy(blockpool
);
1181 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1182 goto blockpool_create_exit
;
1184 list_add(&entry
->item
, &blockpool
->free_entry_list
);
1187 for (i
= 0; i
< pool_size
; i
++) {
1188 memblock
= vxge_os_dma_malloc(
1193 if (memblock
== NULL
) {
1194 __vxge_hw_blockpool_destroy(blockpool
);
1195 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1196 goto blockpool_create_exit
;
1199 dma_addr
= pci_map_single(hldev
->pdev
, memblock
,
1200 VXGE_HW_BLOCK_SIZE
, PCI_DMA_BIDIRECTIONAL
);
1201 if (unlikely(pci_dma_mapping_error(hldev
->pdev
,
1203 vxge_os_dma_free(hldev
->pdev
, memblock
, &acc_handle
);
1204 __vxge_hw_blockpool_destroy(blockpool
);
1205 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1206 goto blockpool_create_exit
;
1209 if (!list_empty(&blockpool
->free_entry_list
))
1210 entry
= (struct __vxge_hw_blockpool_entry
*)
1211 list_first_entry(&blockpool
->free_entry_list
,
1212 struct __vxge_hw_blockpool_entry
,
1217 kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1219 if (entry
!= NULL
) {
1220 list_del(&entry
->item
);
1221 entry
->length
= VXGE_HW_BLOCK_SIZE
;
1222 entry
->memblock
= memblock
;
1223 entry
->dma_addr
= dma_addr
;
1224 entry
->acc_handle
= acc_handle
;
1225 entry
->dma_handle
= dma_handle
;
1226 list_add(&entry
->item
,
1227 &blockpool
->free_block_list
);
1228 blockpool
->pool_size
++;
1230 __vxge_hw_blockpool_destroy(blockpool
);
1231 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1232 goto blockpool_create_exit
;
1236 blockpool_create_exit
:
1241 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1242 * Check the fifo configuration
1244 static enum vxge_hw_status
1245 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config
*fifo_config
)
1247 if ((fifo_config
->fifo_blocks
< VXGE_HW_MIN_FIFO_BLOCKS
) ||
1248 (fifo_config
->fifo_blocks
> VXGE_HW_MAX_FIFO_BLOCKS
))
1249 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
1255 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1256 * Check the vpath configuration
1258 static enum vxge_hw_status
1259 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config
*vp_config
)
1261 enum vxge_hw_status status
;
1263 if ((vp_config
->min_bandwidth
< VXGE_HW_VPATH_BANDWIDTH_MIN
) ||
1264 (vp_config
->min_bandwidth
> VXGE_HW_VPATH_BANDWIDTH_MAX
))
1265 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH
;
1267 status
= __vxge_hw_device_fifo_config_check(&vp_config
->fifo
);
1268 if (status
!= VXGE_HW_OK
)
1271 if ((vp_config
->mtu
!= VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) &&
1272 ((vp_config
->mtu
< VXGE_HW_VPATH_MIN_INITIAL_MTU
) ||
1273 (vp_config
->mtu
> VXGE_HW_VPATH_MAX_INITIAL_MTU
)))
1274 return VXGE_HW_BADCFG_VPATH_MTU
;
1276 if ((vp_config
->rpa_strip_vlan_tag
!=
1277 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) &&
1278 (vp_config
->rpa_strip_vlan_tag
!=
1279 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE
) &&
1280 (vp_config
->rpa_strip_vlan_tag
!=
1281 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE
))
1282 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG
;
1288 * __vxge_hw_device_config_check - Check device configuration.
1289 * Check the device configuration
1291 static enum vxge_hw_status
1292 __vxge_hw_device_config_check(struct vxge_hw_device_config
*new_config
)
1295 enum vxge_hw_status status
;
1297 if ((new_config
->intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
1298 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
1299 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
1300 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
1301 return VXGE_HW_BADCFG_INTR_MODE
;
1303 if ((new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_DISABLE
) &&
1304 (new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_ENABLE
))
1305 return VXGE_HW_BADCFG_RTS_MAC_EN
;
1307 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1308 status
= __vxge_hw_device_vpath_config_check(
1309 &new_config
->vp_config
[i
]);
1310 if (status
!= VXGE_HW_OK
)
1318 * vxge_hw_device_initialize - Initialize Titan device.
1319 * Initialize Titan device. Note that all the arguments of this public API
1320 * are 'IN', including @hldev. Driver cooperates with
1321 * OS to find new Titan device, locate its PCI and memory spaces.
1323 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1324 * to enable the latter to perform Titan hardware initialization.
1326 enum vxge_hw_status __devinit
1327 vxge_hw_device_initialize(
1328 struct __vxge_hw_device
**devh
,
1329 struct vxge_hw_device_attr
*attr
,
1330 struct vxge_hw_device_config
*device_config
)
1334 struct __vxge_hw_device
*hldev
= NULL
;
1335 enum vxge_hw_status status
= VXGE_HW_OK
;
1337 status
= __vxge_hw_device_config_check(device_config
);
1338 if (status
!= VXGE_HW_OK
)
1341 hldev
= vzalloc(sizeof(struct __vxge_hw_device
));
1342 if (hldev
== NULL
) {
1343 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1347 hldev
->magic
= VXGE_HW_DEVICE_MAGIC
;
1349 vxge_hw_device_debug_set(hldev
, VXGE_ERR
, VXGE_COMPONENT_ALL
);
1352 memcpy(&hldev
->config
, device_config
,
1353 sizeof(struct vxge_hw_device_config
));
1355 hldev
->bar0
= attr
->bar0
;
1356 hldev
->pdev
= attr
->pdev
;
1358 hldev
->uld_callbacks
.link_up
= attr
->uld_callbacks
.link_up
;
1359 hldev
->uld_callbacks
.link_down
= attr
->uld_callbacks
.link_down
;
1360 hldev
->uld_callbacks
.crit_err
= attr
->uld_callbacks
.crit_err
;
1362 __vxge_hw_device_pci_e_init(hldev
);
1364 status
= __vxge_hw_device_reg_addr_get(hldev
);
1365 if (status
!= VXGE_HW_OK
) {
1370 __vxge_hw_device_host_info_get(hldev
);
1372 /* Incrementing for stats blocks */
1375 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1376 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
1379 if (device_config
->vp_config
[i
].ring
.enable
==
1380 VXGE_HW_RING_ENABLE
)
1381 nblocks
+= device_config
->vp_config
[i
].ring
.ring_blocks
;
1383 if (device_config
->vp_config
[i
].fifo
.enable
==
1384 VXGE_HW_FIFO_ENABLE
)
1385 nblocks
+= device_config
->vp_config
[i
].fifo
.fifo_blocks
;
1389 if (__vxge_hw_blockpool_create(hldev
,
1391 device_config
->dma_blockpool_initial
+ nblocks
,
1392 device_config
->dma_blockpool_max
+ nblocks
) != VXGE_HW_OK
) {
1394 vxge_hw_device_terminate(hldev
);
1395 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1399 status
= __vxge_hw_device_initialize(hldev
);
1400 if (status
!= VXGE_HW_OK
) {
1401 vxge_hw_device_terminate(hldev
);
1411 * vxge_hw_device_terminate - Terminate Titan device.
1412 * Terminate HW device.
1415 vxge_hw_device_terminate(struct __vxge_hw_device
*hldev
)
1417 vxge_assert(hldev
->magic
== VXGE_HW_DEVICE_MAGIC
);
1419 hldev
->magic
= VXGE_HW_DEVICE_DEAD
;
1420 __vxge_hw_blockpool_destroy(&hldev
->block_pool
);
1425 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1426 * and offset and perform an operation
1428 static enum vxge_hw_status
1429 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath
*vpath
,
1430 u32 operation
, u32 offset
, u64
*stat
)
1433 enum vxge_hw_status status
= VXGE_HW_OK
;
1434 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1436 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1437 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1438 goto vpath_stats_access_exit
;
1441 vp_reg
= vpath
->vp_reg
;
1443 val64
= VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation
) |
1444 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
|
1445 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset
);
1447 status
= __vxge_hw_pio_mem_write64(val64
,
1448 &vp_reg
->xmac_stats_access_cmd
,
1449 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
,
1450 vpath
->hldev
->config
.device_poll_millis
);
1451 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1452 *stat
= readq(&vp_reg
->xmac_stats_access_data
);
1456 vpath_stats_access_exit
:
1461 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1463 static enum vxge_hw_status
1464 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1465 struct vxge_hw_xmac_vpath_tx_stats
*vpath_tx_stats
)
1469 u32 offset
= VXGE_HW_STATS_VPATH_TX_OFFSET
;
1470 enum vxge_hw_status status
= VXGE_HW_OK
;
1472 val64
= (u64
*)vpath_tx_stats
;
1474 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1475 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1479 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_tx_stats
) / 8; i
++) {
1480 status
= __vxge_hw_vpath_stats_access(vpath
,
1481 VXGE_HW_STATS_OP_READ
,
1483 if (status
!= VXGE_HW_OK
)
1493 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1495 static enum vxge_hw_status
1496 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1497 struct vxge_hw_xmac_vpath_rx_stats
*vpath_rx_stats
)
1500 enum vxge_hw_status status
= VXGE_HW_OK
;
1502 u32 offset
= VXGE_HW_STATS_VPATH_RX_OFFSET
;
1503 val64
= (u64
*) vpath_rx_stats
;
1505 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1506 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1509 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_rx_stats
) / 8; i
++) {
1510 status
= __vxge_hw_vpath_stats_access(vpath
,
1511 VXGE_HW_STATS_OP_READ
,
1512 offset
>> 3, val64
);
1513 if (status
!= VXGE_HW_OK
)
1524 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1526 static enum vxge_hw_status
1527 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1528 struct vxge_hw_vpath_stats_hw_info
*hw_stats
)
1531 enum vxge_hw_status status
= VXGE_HW_OK
;
1532 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1534 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1535 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1538 vp_reg
= vpath
->vp_reg
;
1540 val64
= readq(&vp_reg
->vpath_debug_stats0
);
1541 hw_stats
->ini_num_mwr_sent
=
1542 (u32
)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64
);
1544 val64
= readq(&vp_reg
->vpath_debug_stats1
);
1545 hw_stats
->ini_num_mrd_sent
=
1546 (u32
)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64
);
1548 val64
= readq(&vp_reg
->vpath_debug_stats2
);
1549 hw_stats
->ini_num_cpl_rcvd
=
1550 (u32
)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64
);
1552 val64
= readq(&vp_reg
->vpath_debug_stats3
);
1553 hw_stats
->ini_num_mwr_byte_sent
=
1554 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64
);
1556 val64
= readq(&vp_reg
->vpath_debug_stats4
);
1557 hw_stats
->ini_num_cpl_byte_rcvd
=
1558 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64
);
1560 val64
= readq(&vp_reg
->vpath_debug_stats5
);
1561 hw_stats
->wrcrdtarb_xoff
=
1562 (u32
)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64
);
1564 val64
= readq(&vp_reg
->vpath_debug_stats6
);
1565 hw_stats
->rdcrdtarb_xoff
=
1566 (u32
)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64
);
1568 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1569 hw_stats
->vpath_genstats_count0
=
1570 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1573 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1574 hw_stats
->vpath_genstats_count1
=
1575 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1578 val64
= readq(&vp_reg
->vpath_genstats_count23
);
1579 hw_stats
->vpath_genstats_count2
=
1580 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1583 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1584 hw_stats
->vpath_genstats_count3
=
1585 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1588 val64
= readq(&vp_reg
->vpath_genstats_count4
);
1589 hw_stats
->vpath_genstats_count4
=
1590 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1593 val64
= readq(&vp_reg
->vpath_genstats_count5
);
1594 hw_stats
->vpath_genstats_count5
=
1595 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1598 status
= __vxge_hw_vpath_xmac_tx_stats_get(vpath
, &hw_stats
->tx_stats
);
1599 if (status
!= VXGE_HW_OK
)
1602 status
= __vxge_hw_vpath_xmac_rx_stats_get(vpath
, &hw_stats
->rx_stats
);
1603 if (status
!= VXGE_HW_OK
)
1606 VXGE_HW_VPATH_STATS_PIO_READ(
1607 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET
);
1609 hw_stats
->prog_event_vnum0
=
1610 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64
);
1612 hw_stats
->prog_event_vnum1
=
1613 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64
);
1615 VXGE_HW_VPATH_STATS_PIO_READ(
1616 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET
);
1618 hw_stats
->prog_event_vnum2
=
1619 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64
);
1621 hw_stats
->prog_event_vnum3
=
1622 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64
);
1624 val64
= readq(&vp_reg
->rx_multi_cast_stats
);
1625 hw_stats
->rx_multi_cast_frame_discard
=
1626 (u16
)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64
);
1628 val64
= readq(&vp_reg
->rx_frm_transferred
);
1629 hw_stats
->rx_frm_transferred
=
1630 (u32
)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64
);
1632 val64
= readq(&vp_reg
->rxd_returned
);
1633 hw_stats
->rxd_returned
=
1634 (u16
)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64
);
1636 val64
= readq(&vp_reg
->dbg_stats_rx_mpa
);
1637 hw_stats
->rx_mpa_len_fail_frms
=
1638 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64
);
1639 hw_stats
->rx_mpa_mrk_fail_frms
=
1640 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64
);
1641 hw_stats
->rx_mpa_crc_fail_frms
=
1642 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64
);
1644 val64
= readq(&vp_reg
->dbg_stats_rx_fau
);
1645 hw_stats
->rx_permitted_frms
=
1646 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64
);
1647 hw_stats
->rx_vp_reset_discarded_frms
=
1648 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64
);
1649 hw_stats
->rx_wol_frms
=
1650 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64
);
1652 val64
= readq(&vp_reg
->tx_vp_reset_discarded_frms
);
1653 hw_stats
->tx_vp_reset_discarded_frms
=
1654 (u16
)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1661 * vxge_hw_device_stats_get - Get the device hw statistics.
1662 * Returns the vpath h/w stats for the device.
1665 vxge_hw_device_stats_get(struct __vxge_hw_device
*hldev
,
1666 struct vxge_hw_device_stats_hw_info
*hw_stats
)
1669 enum vxge_hw_status status
= VXGE_HW_OK
;
1671 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1672 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)) ||
1673 (hldev
->virtual_paths
[i
].vp_open
==
1674 VXGE_HW_VP_NOT_OPEN
))
1677 memcpy(hldev
->virtual_paths
[i
].hw_stats_sav
,
1678 hldev
->virtual_paths
[i
].hw_stats
,
1679 sizeof(struct vxge_hw_vpath_stats_hw_info
));
1681 status
= __vxge_hw_vpath_stats_get(
1682 &hldev
->virtual_paths
[i
],
1683 hldev
->virtual_paths
[i
].hw_stats
);
1686 memcpy(hw_stats
, &hldev
->stats
.hw_dev_info_stats
,
1687 sizeof(struct vxge_hw_device_stats_hw_info
));
1693 * vxge_hw_driver_stats_get - Get the device sw statistics.
1694 * Returns the vpath s/w stats for the device.
1696 enum vxge_hw_status
vxge_hw_driver_stats_get(
1697 struct __vxge_hw_device
*hldev
,
1698 struct vxge_hw_device_stats_sw_info
*sw_stats
)
1700 enum vxge_hw_status status
= VXGE_HW_OK
;
1702 memcpy(sw_stats
, &hldev
->stats
.sw_dev_info_stats
,
1703 sizeof(struct vxge_hw_device_stats_sw_info
));
1709 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1710 * and offset and perform an operation
1711 * Get the statistics from the given location and offset.
1714 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device
*hldev
,
1715 u32 operation
, u32 location
, u32 offset
, u64
*stat
)
1718 enum vxge_hw_status status
= VXGE_HW_OK
;
1720 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1722 if (status
!= VXGE_HW_OK
)
1725 val64
= VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation
) |
1726 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
|
1727 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location
) |
1728 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset
);
1730 status
= __vxge_hw_pio_mem_write64(val64
,
1731 &hldev
->mrpcim_reg
->xmac_stats_sys_cmd
,
1732 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
,
1733 hldev
->config
.device_poll_millis
);
1735 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1736 *stat
= readq(&hldev
->mrpcim_reg
->xmac_stats_sys_data
);
1744 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1745 * Get the Statistics on aggregate port
1747 static enum vxge_hw_status
1748 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1749 struct vxge_hw_xmac_aggr_stats
*aggr_stats
)
1753 u32 offset
= VXGE_HW_STATS_AGGRn_OFFSET
;
1754 enum vxge_hw_status status
= VXGE_HW_OK
;
1756 val64
= (u64
*)aggr_stats
;
1758 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1760 if (status
!= VXGE_HW_OK
)
1763 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_aggr_stats
) / 8; i
++) {
1764 status
= vxge_hw_mrpcim_stats_access(hldev
,
1765 VXGE_HW_STATS_OP_READ
,
1766 VXGE_HW_STATS_LOC_AGGR
,
1767 ((offset
+ (104 * port
)) >> 3), val64
);
1768 if (status
!= VXGE_HW_OK
)
1779 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1780 * Get the Statistics on port
1782 static enum vxge_hw_status
1783 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1784 struct vxge_hw_xmac_port_stats
*port_stats
)
1787 enum vxge_hw_status status
= VXGE_HW_OK
;
1790 val64
= (u64
*) port_stats
;
1792 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1794 if (status
!= VXGE_HW_OK
)
1797 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_port_stats
) / 8; i
++) {
1798 status
= vxge_hw_mrpcim_stats_access(hldev
,
1799 VXGE_HW_STATS_OP_READ
,
1800 VXGE_HW_STATS_LOC_AGGR
,
1801 ((offset
+ (608 * port
)) >> 3), val64
);
1802 if (status
!= VXGE_HW_OK
)
1814 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1815 * Get the XMAC Statistics
1818 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device
*hldev
,
1819 struct vxge_hw_xmac_stats
*xmac_stats
)
1821 enum vxge_hw_status status
= VXGE_HW_OK
;
1824 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1825 0, &xmac_stats
->aggr_stats
[0]);
1826 if (status
!= VXGE_HW_OK
)
1829 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1830 1, &xmac_stats
->aggr_stats
[1]);
1831 if (status
!= VXGE_HW_OK
)
1834 for (i
= 0; i
<= VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
1836 status
= vxge_hw_device_xmac_port_stats_get(hldev
,
1837 i
, &xmac_stats
->port_stats
[i
]);
1838 if (status
!= VXGE_HW_OK
)
1842 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1844 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
1847 status
= __vxge_hw_vpath_xmac_tx_stats_get(
1848 &hldev
->virtual_paths
[i
],
1849 &xmac_stats
->vpath_tx_stats
[i
]);
1850 if (status
!= VXGE_HW_OK
)
1853 status
= __vxge_hw_vpath_xmac_rx_stats_get(
1854 &hldev
->virtual_paths
[i
],
1855 &xmac_stats
->vpath_rx_stats
[i
]);
1856 if (status
!= VXGE_HW_OK
)
1864 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1865 * This routine is used to dynamically change the debug output
1867 void vxge_hw_device_debug_set(struct __vxge_hw_device
*hldev
,
1868 enum vxge_debug_level level
, u32 mask
)
1873 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1874 defined(VXGE_DEBUG_ERR_MASK)
1875 hldev
->debug_module_mask
= mask
;
1876 hldev
->debug_level
= level
;
1879 #if defined(VXGE_DEBUG_ERR_MASK)
1880 hldev
->level_err
= level
& VXGE_ERR
;
1883 #if defined(VXGE_DEBUG_TRACE_MASK)
1884 hldev
->level_trace
= level
& VXGE_TRACE
;
1889 * vxge_hw_device_error_level_get - Get the error level
1890 * This routine returns the current error level set
1892 u32
vxge_hw_device_error_level_get(struct __vxge_hw_device
*hldev
)
1894 #if defined(VXGE_DEBUG_ERR_MASK)
1898 return hldev
->level_err
;
1905 * vxge_hw_device_trace_level_get - Get the trace level
1906 * This routine returns the current trace level set
1908 u32
vxge_hw_device_trace_level_get(struct __vxge_hw_device
*hldev
)
1910 #if defined(VXGE_DEBUG_TRACE_MASK)
1914 return hldev
->level_trace
;
1921 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1922 * Returns the Pause frame generation and reception capability of the NIC.
1924 enum vxge_hw_status
vxge_hw_device_getpause_data(struct __vxge_hw_device
*hldev
,
1925 u32 port
, u32
*tx
, u32
*rx
)
1928 enum vxge_hw_status status
= VXGE_HW_OK
;
1930 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1931 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1935 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1936 status
= VXGE_HW_ERR_INVALID_PORT
;
1940 if (!(hldev
->access_rights
& VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
1941 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
1945 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1946 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
)
1948 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
)
1955 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1956 * It can be used to set or reset Pause frame generation or reception
1957 * support of the NIC.
1959 enum vxge_hw_status
vxge_hw_device_setpause_data(struct __vxge_hw_device
*hldev
,
1960 u32 port
, u32 tx
, u32 rx
)
1963 enum vxge_hw_status status
= VXGE_HW_OK
;
1965 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1966 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1970 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1971 status
= VXGE_HW_ERR_INVALID_PORT
;
1975 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1977 if (status
!= VXGE_HW_OK
)
1980 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1982 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1984 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1986 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1988 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1990 writeq(val64
, &hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1995 u16
vxge_hw_device_link_width_get(struct __vxge_hw_device
*hldev
)
1997 int link_width
, exp_cap
;
2000 exp_cap
= pci_find_capability(hldev
->pdev
, PCI_CAP_ID_EXP
);
2001 pci_read_config_word(hldev
->pdev
, exp_cap
+ PCI_EXP_LNKSTA
, &lnk
);
2002 link_width
= (lnk
& VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH
) >> 4;
2007 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
2008 * This function returns the index of memory block
2011 __vxge_hw_ring_block_memblock_idx(u8
*block
)
2013 return (u32
)*((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
));
2017 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
2018 * This function sets index to a memory block
2021 __vxge_hw_ring_block_memblock_idx_set(u8
*block
, u32 memblock_idx
)
2023 *((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
)) = memblock_idx
;
2027 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2029 * Sets the next block pointer in RxD block
2032 __vxge_hw_ring_block_next_pointer_set(u8
*block
, dma_addr_t dma_next
)
2034 *((u64
*)(block
+ VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET
)) = dma_next
;
2038 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2040 * Returns the dma address of the first RxD block
2042 static u64
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring
*ring
)
2044 struct vxge_hw_mempool_dma
*dma_object
;
2046 dma_object
= ring
->mempool
->memblocks_dma_arr
;
2047 vxge_assert(dma_object
!= NULL
);
2049 return dma_object
->addr
;
2053 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2054 * This function returns the dma address of a given item
2056 static dma_addr_t
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool
*mempoolh
,
2061 struct vxge_hw_mempool_dma
*memblock_dma_object
;
2062 ptrdiff_t dma_item_offset
;
2064 /* get owner memblock index */
2065 memblock_idx
= __vxge_hw_ring_block_memblock_idx(item
);
2067 /* get owner memblock by memblock index */
2068 memblock
= mempoolh
->memblocks_arr
[memblock_idx
];
2070 /* get memblock DMA object by memblock index */
2071 memblock_dma_object
= mempoolh
->memblocks_dma_arr
+ memblock_idx
;
2073 /* calculate offset in the memblock of this item */
2074 dma_item_offset
= (u8
*)item
- (u8
*)memblock
;
2076 return memblock_dma_object
->addr
+ dma_item_offset
;
2080 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2081 * This function returns the dma address of a given item
2083 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool
*mempoolh
,
2084 struct __vxge_hw_ring
*ring
, u32 from
,
2087 u8
*to_item
, *from_item
;
2090 /* get "from" RxD block */
2091 from_item
= mempoolh
->items_arr
[from
];
2092 vxge_assert(from_item
);
2094 /* get "to" RxD block */
2095 to_item
= mempoolh
->items_arr
[to
];
2096 vxge_assert(to_item
);
2098 /* return address of the beginning of previous RxD block */
2099 to_dma
= __vxge_hw_ring_item_dma_addr(mempoolh
, to_item
);
2101 /* set next pointer for this RxD block to point on
2102 * previous item's DMA start address */
2103 __vxge_hw_ring_block_next_pointer_set(from_item
, to_dma
);
2107 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2109 * This function is callback passed to __vxge_hw_mempool_create to create memory
2110 * pool for RxD block
2113 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool
*mempoolh
,
2115 struct vxge_hw_mempool_dma
*dma_object
,
2116 u32 index
, u32 is_last
)
2119 void *item
= mempoolh
->items_arr
[index
];
2120 struct __vxge_hw_ring
*ring
=
2121 (struct __vxge_hw_ring
*)mempoolh
->userdata
;
2123 /* format rxds array */
2124 for (i
= 0; i
< ring
->rxds_per_block
; i
++) {
2125 void *rxdblock_priv
;
2127 struct vxge_hw_ring_rxd_1
*rxdp
;
2129 u32 reserve_index
= ring
->channel
.reserve_ptr
-
2130 (index
* ring
->rxds_per_block
+ i
+ 1);
2131 u32 memblock_item_idx
;
2133 ring
->channel
.reserve_arr
[reserve_index
] = ((u8
*)item
) +
2136 /* Note: memblock_item_idx is index of the item within
2137 * the memblock. For instance, in case of three RxD-blocks
2138 * per memblock this value can be 0, 1 or 2. */
2139 rxdblock_priv
= __vxge_hw_mempool_item_priv(mempoolh
,
2140 memblock_index
, item
,
2141 &memblock_item_idx
);
2143 rxdp
= (struct vxge_hw_ring_rxd_1
*)
2144 ring
->channel
.reserve_arr
[reserve_index
];
2146 uld_priv
= ((u8
*)rxdblock_priv
+ ring
->rxd_priv_size
* i
);
2148 /* pre-format Host_Control */
2149 rxdp
->host_control
= (u64
)(size_t)uld_priv
;
2152 __vxge_hw_ring_block_memblock_idx_set(item
, memblock_index
);
2155 /* link last one with first one */
2156 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
, 0);
2160 /* link this RxD block with previous one */
2161 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
- 1, index
);
2166 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2167 * This function replenishes the RxDs from reserve array to work array
2170 vxge_hw_ring_replenish(struct __vxge_hw_ring
*ring
)
2173 struct __vxge_hw_channel
*channel
;
2174 enum vxge_hw_status status
= VXGE_HW_OK
;
2176 channel
= &ring
->channel
;
2178 while (vxge_hw_channel_dtr_count(channel
) > 0) {
2180 status
= vxge_hw_ring_rxd_reserve(ring
, &rxd
);
2182 vxge_assert(status
== VXGE_HW_OK
);
2184 if (ring
->rxd_init
) {
2185 status
= ring
->rxd_init(rxd
, channel
->userdata
);
2186 if (status
!= VXGE_HW_OK
) {
2187 vxge_hw_ring_rxd_free(ring
, rxd
);
2192 vxge_hw_ring_rxd_post(ring
, rxd
);
2194 status
= VXGE_HW_OK
;
2200 * __vxge_hw_channel_allocate - Allocate memory for channel
2201 * This function allocates required memory for the channel and various arrays
2204 static struct __vxge_hw_channel
*
2205 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle
*vph
,
2206 enum __vxge_hw_channel_type type
,
2207 u32 length
, u32 per_dtr_space
,
2210 struct __vxge_hw_channel
*channel
;
2211 struct __vxge_hw_device
*hldev
;
2215 hldev
= vph
->vpath
->hldev
;
2216 vp_id
= vph
->vpath
->vp_id
;
2219 case VXGE_HW_CHANNEL_TYPE_FIFO
:
2220 size
= sizeof(struct __vxge_hw_fifo
);
2222 case VXGE_HW_CHANNEL_TYPE_RING
:
2223 size
= sizeof(struct __vxge_hw_ring
);
2229 channel
= kzalloc(size
, GFP_KERNEL
);
2230 if (channel
== NULL
)
2232 INIT_LIST_HEAD(&channel
->item
);
2234 channel
->common_reg
= hldev
->common_reg
;
2235 channel
->first_vp_id
= hldev
->first_vp_id
;
2236 channel
->type
= type
;
2237 channel
->devh
= hldev
;
2239 channel
->userdata
= userdata
;
2240 channel
->per_dtr_space
= per_dtr_space
;
2241 channel
->length
= length
;
2242 channel
->vp_id
= vp_id
;
2244 channel
->work_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2245 if (channel
->work_arr
== NULL
)
2248 channel
->free_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2249 if (channel
->free_arr
== NULL
)
2251 channel
->free_ptr
= length
;
2253 channel
->reserve_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2254 if (channel
->reserve_arr
== NULL
)
2256 channel
->reserve_ptr
= length
;
2257 channel
->reserve_top
= 0;
2259 channel
->orig_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2260 if (channel
->orig_arr
== NULL
)
2265 __vxge_hw_channel_free(channel
);
2272 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2273 * Adds a block to block pool
2275 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device
*devh
,
2278 struct pci_dev
*dma_h
,
2279 struct pci_dev
*acc_handle
)
2281 struct __vxge_hw_blockpool
*blockpool
;
2282 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2283 dma_addr_t dma_addr
;
2284 enum vxge_hw_status status
= VXGE_HW_OK
;
2287 blockpool
= &devh
->block_pool
;
2289 if (block_addr
== NULL
) {
2290 blockpool
->req_out
--;
2291 status
= VXGE_HW_FAIL
;
2295 dma_addr
= pci_map_single(devh
->pdev
, block_addr
, length
,
2296 PCI_DMA_BIDIRECTIONAL
);
2298 if (unlikely(pci_dma_mapping_error(devh
->pdev
, dma_addr
))) {
2299 vxge_os_dma_free(devh
->pdev
, block_addr
, &acc_handle
);
2300 blockpool
->req_out
--;
2301 status
= VXGE_HW_FAIL
;
2305 if (!list_empty(&blockpool
->free_entry_list
))
2306 entry
= (struct __vxge_hw_blockpool_entry
*)
2307 list_first_entry(&blockpool
->free_entry_list
,
2308 struct __vxge_hw_blockpool_entry
,
2312 entry
= vmalloc(sizeof(struct __vxge_hw_blockpool_entry
));
2314 list_del(&entry
->item
);
2316 if (entry
!= NULL
) {
2317 entry
->length
= length
;
2318 entry
->memblock
= block_addr
;
2319 entry
->dma_addr
= dma_addr
;
2320 entry
->acc_handle
= acc_handle
;
2321 entry
->dma_handle
= dma_h
;
2322 list_add(&entry
->item
, &blockpool
->free_block_list
);
2323 blockpool
->pool_size
++;
2324 status
= VXGE_HW_OK
;
2326 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2328 blockpool
->req_out
--;
2330 req_out
= blockpool
->req_out
;
2336 vxge_os_dma_malloc_async(struct pci_dev
*pdev
, void *devh
, unsigned long size
)
2342 flags
= GFP_ATOMIC
| GFP_DMA
;
2344 flags
= GFP_KERNEL
| GFP_DMA
;
2346 vaddr
= kmalloc((size
), flags
);
2348 vxge_hw_blockpool_block_add(devh
, vaddr
, size
, pdev
, pdev
);
2352 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2355 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool
*blockpool
)
2359 if ((blockpool
->pool_size
+ blockpool
->req_out
) <
2360 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE
) {
2361 nreq
= VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE
;
2362 blockpool
->req_out
+= nreq
;
2365 for (i
= 0; i
< nreq
; i
++)
2366 vxge_os_dma_malloc_async(
2367 ((struct __vxge_hw_device
*)blockpool
->hldev
)->pdev
,
2368 blockpool
->hldev
, VXGE_HW_BLOCK_SIZE
);
2372 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2373 * Allocates a block of memory of given size, either from block pool
2374 * or by calling vxge_os_dma_malloc()
2376 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device
*devh
, u32 size
,
2377 struct vxge_hw_mempool_dma
*dma_object
)
2379 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2380 struct __vxge_hw_blockpool
*blockpool
;
2381 void *memblock
= NULL
;
2382 enum vxge_hw_status status
= VXGE_HW_OK
;
2384 blockpool
= &devh
->block_pool
;
2386 if (size
!= blockpool
->block_size
) {
2388 memblock
= vxge_os_dma_malloc(devh
->pdev
, size
,
2389 &dma_object
->handle
,
2390 &dma_object
->acc_handle
);
2392 if (memblock
== NULL
) {
2393 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2397 dma_object
->addr
= pci_map_single(devh
->pdev
, memblock
, size
,
2398 PCI_DMA_BIDIRECTIONAL
);
2400 if (unlikely(pci_dma_mapping_error(devh
->pdev
,
2401 dma_object
->addr
))) {
2402 vxge_os_dma_free(devh
->pdev
, memblock
,
2403 &dma_object
->acc_handle
);
2404 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2410 if (!list_empty(&blockpool
->free_block_list
))
2411 entry
= (struct __vxge_hw_blockpool_entry
*)
2412 list_first_entry(&blockpool
->free_block_list
,
2413 struct __vxge_hw_blockpool_entry
,
2416 if (entry
!= NULL
) {
2417 list_del(&entry
->item
);
2418 dma_object
->addr
= entry
->dma_addr
;
2419 dma_object
->handle
= entry
->dma_handle
;
2420 dma_object
->acc_handle
= entry
->acc_handle
;
2421 memblock
= entry
->memblock
;
2423 list_add(&entry
->item
,
2424 &blockpool
->free_entry_list
);
2425 blockpool
->pool_size
--;
2428 if (memblock
!= NULL
)
2429 __vxge_hw_blockpool_blocks_add(blockpool
);
2436 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2439 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool
*blockpool
)
2441 struct list_head
*p
, *n
;
2443 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
2445 if (blockpool
->pool_size
< blockpool
->pool_max
)
2449 ((struct __vxge_hw_device
*)blockpool
->hldev
)->pdev
,
2450 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
2451 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
2452 PCI_DMA_BIDIRECTIONAL
);
2455 ((struct __vxge_hw_device
*)blockpool
->hldev
)->pdev
,
2456 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
2457 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
2459 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
2461 list_add(p
, &blockpool
->free_entry_list
);
2463 blockpool
->pool_size
--;
2469 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2470 * __vxge_hw_blockpool_malloc
2472 static void __vxge_hw_blockpool_free(struct __vxge_hw_device
*devh
,
2473 void *memblock
, u32 size
,
2474 struct vxge_hw_mempool_dma
*dma_object
)
2476 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2477 struct __vxge_hw_blockpool
*blockpool
;
2478 enum vxge_hw_status status
= VXGE_HW_OK
;
2480 blockpool
= &devh
->block_pool
;
2482 if (size
!= blockpool
->block_size
) {
2483 pci_unmap_single(devh
->pdev
, dma_object
->addr
, size
,
2484 PCI_DMA_BIDIRECTIONAL
);
2485 vxge_os_dma_free(devh
->pdev
, memblock
, &dma_object
->acc_handle
);
2488 if (!list_empty(&blockpool
->free_entry_list
))
2489 entry
= (struct __vxge_hw_blockpool_entry
*)
2490 list_first_entry(&blockpool
->free_entry_list
,
2491 struct __vxge_hw_blockpool_entry
,
2495 entry
= vmalloc(sizeof(
2496 struct __vxge_hw_blockpool_entry
));
2498 list_del(&entry
->item
);
2500 if (entry
!= NULL
) {
2501 entry
->length
= size
;
2502 entry
->memblock
= memblock
;
2503 entry
->dma_addr
= dma_object
->addr
;
2504 entry
->acc_handle
= dma_object
->acc_handle
;
2505 entry
->dma_handle
= dma_object
->handle
;
2506 list_add(&entry
->item
,
2507 &blockpool
->free_block_list
);
2508 blockpool
->pool_size
++;
2509 status
= VXGE_HW_OK
;
2511 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2513 if (status
== VXGE_HW_OK
)
2514 __vxge_hw_blockpool_blocks_remove(blockpool
);
2519 * vxge_hw_mempool_destroy
2521 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool
*mempool
)
2524 struct __vxge_hw_device
*devh
= mempool
->devh
;
2526 for (i
= 0; i
< mempool
->memblocks_allocated
; i
++) {
2527 struct vxge_hw_mempool_dma
*dma_object
;
2529 vxge_assert(mempool
->memblocks_arr
[i
]);
2530 vxge_assert(mempool
->memblocks_dma_arr
+ i
);
2532 dma_object
= mempool
->memblocks_dma_arr
+ i
;
2534 for (j
= 0; j
< mempool
->items_per_memblock
; j
++) {
2535 u32 index
= i
* mempool
->items_per_memblock
+ j
;
2537 /* to skip last partially filled(if any) memblock */
2538 if (index
>= mempool
->items_current
)
2542 vfree(mempool
->memblocks_priv_arr
[i
]);
2544 __vxge_hw_blockpool_free(devh
, mempool
->memblocks_arr
[i
],
2545 mempool
->memblock_size
, dma_object
);
2548 vfree(mempool
->items_arr
);
2549 vfree(mempool
->memblocks_dma_arr
);
2550 vfree(mempool
->memblocks_priv_arr
);
2551 vfree(mempool
->memblocks_arr
);
2556 * __vxge_hw_mempool_grow
2557 * Will resize mempool up to %num_allocate value.
2559 static enum vxge_hw_status
2560 __vxge_hw_mempool_grow(struct vxge_hw_mempool
*mempool
, u32 num_allocate
,
2563 u32 i
, first_time
= mempool
->memblocks_allocated
== 0 ? 1 : 0;
2564 u32 n_items
= mempool
->items_per_memblock
;
2565 u32 start_block_idx
= mempool
->memblocks_allocated
;
2566 u32 end_block_idx
= mempool
->memblocks_allocated
+ num_allocate
;
2567 enum vxge_hw_status status
= VXGE_HW_OK
;
2571 if (end_block_idx
> mempool
->memblocks_max
) {
2572 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2576 for (i
= start_block_idx
; i
< end_block_idx
; i
++) {
2578 u32 is_last
= ((end_block_idx
- 1) == i
);
2579 struct vxge_hw_mempool_dma
*dma_object
=
2580 mempool
->memblocks_dma_arr
+ i
;
2583 /* allocate memblock's private part. Each DMA memblock
2584 * has a space allocated for item's private usage upon
2585 * mempool's user request. Each time mempool grows, it will
2586 * allocate new memblock and its private part at once.
2587 * This helps to minimize memory usage a lot. */
2588 mempool
->memblocks_priv_arr
[i
] =
2589 vzalloc(mempool
->items_priv_size
* n_items
);
2590 if (mempool
->memblocks_priv_arr
[i
] == NULL
) {
2591 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2595 /* allocate DMA-capable memblock */
2596 mempool
->memblocks_arr
[i
] =
2597 __vxge_hw_blockpool_malloc(mempool
->devh
,
2598 mempool
->memblock_size
, dma_object
);
2599 if (mempool
->memblocks_arr
[i
] == NULL
) {
2600 vfree(mempool
->memblocks_priv_arr
[i
]);
2601 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2606 mempool
->memblocks_allocated
++;
2608 memset(mempool
->memblocks_arr
[i
], 0, mempool
->memblock_size
);
2610 the_memblock
= mempool
->memblocks_arr
[i
];
2612 /* fill the items hash array */
2613 for (j
= 0; j
< n_items
; j
++) {
2614 u32 index
= i
* n_items
+ j
;
2616 if (first_time
&& index
>= mempool
->items_initial
)
2619 mempool
->items_arr
[index
] =
2620 ((char *)the_memblock
+ j
*mempool
->item_size
);
2622 /* let caller to do more job on each item */
2623 if (mempool
->item_func_alloc
!= NULL
)
2624 mempool
->item_func_alloc(mempool
, i
,
2625 dma_object
, index
, is_last
);
2627 mempool
->items_current
= index
+ 1;
2630 if (first_time
&& mempool
->items_current
==
2631 mempool
->items_initial
)
2639 * vxge_hw_mempool_create
2640 * This function will create memory pool object. Pool may grow but will
2641 * never shrink. Pool consists of number of dynamically allocated blocks
2642 * with size enough to hold %items_initial number of items. Memory is
2643 * DMA-able but client must map/unmap before interoperating with the device.
2645 static struct vxge_hw_mempool
*
2646 __vxge_hw_mempool_create(struct __vxge_hw_device
*devh
,
2649 u32 items_priv_size
,
2652 struct vxge_hw_mempool_cbs
*mp_callback
,
2655 enum vxge_hw_status status
= VXGE_HW_OK
;
2656 u32 memblocks_to_allocate
;
2657 struct vxge_hw_mempool
*mempool
= NULL
;
2660 if (memblock_size
< item_size
) {
2661 status
= VXGE_HW_FAIL
;
2665 mempool
= vzalloc(sizeof(struct vxge_hw_mempool
));
2666 if (mempool
== NULL
) {
2667 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2671 mempool
->devh
= devh
;
2672 mempool
->memblock_size
= memblock_size
;
2673 mempool
->items_max
= items_max
;
2674 mempool
->items_initial
= items_initial
;
2675 mempool
->item_size
= item_size
;
2676 mempool
->items_priv_size
= items_priv_size
;
2677 mempool
->item_func_alloc
= mp_callback
->item_func_alloc
;
2678 mempool
->userdata
= userdata
;
2680 mempool
->memblocks_allocated
= 0;
2682 mempool
->items_per_memblock
= memblock_size
/ item_size
;
2684 mempool
->memblocks_max
= (items_max
+ mempool
->items_per_memblock
- 1) /
2685 mempool
->items_per_memblock
;
2687 /* allocate array of memblocks */
2688 mempool
->memblocks_arr
=
2689 vzalloc(sizeof(void *) * mempool
->memblocks_max
);
2690 if (mempool
->memblocks_arr
== NULL
) {
2691 __vxge_hw_mempool_destroy(mempool
);
2692 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2697 /* allocate array of private parts of items per memblocks */
2698 mempool
->memblocks_priv_arr
=
2699 vzalloc(sizeof(void *) * mempool
->memblocks_max
);
2700 if (mempool
->memblocks_priv_arr
== NULL
) {
2701 __vxge_hw_mempool_destroy(mempool
);
2702 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2707 /* allocate array of memblocks DMA objects */
2708 mempool
->memblocks_dma_arr
=
2709 vzalloc(sizeof(struct vxge_hw_mempool_dma
) *
2710 mempool
->memblocks_max
);
2711 if (mempool
->memblocks_dma_arr
== NULL
) {
2712 __vxge_hw_mempool_destroy(mempool
);
2713 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2718 /* allocate hash array of items */
2719 mempool
->items_arr
= vzalloc(sizeof(void *) * mempool
->items_max
);
2720 if (mempool
->items_arr
== NULL
) {
2721 __vxge_hw_mempool_destroy(mempool
);
2722 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2727 /* calculate initial number of memblocks */
2728 memblocks_to_allocate
= (mempool
->items_initial
+
2729 mempool
->items_per_memblock
- 1) /
2730 mempool
->items_per_memblock
;
2732 /* pre-allocate the mempool */
2733 status
= __vxge_hw_mempool_grow(mempool
, memblocks_to_allocate
,
2735 if (status
!= VXGE_HW_OK
) {
2736 __vxge_hw_mempool_destroy(mempool
);
2737 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2747 * __vxge_hw_ring_abort - Returns the RxD
2748 * This function terminates the RxDs of ring
2750 static enum vxge_hw_status
__vxge_hw_ring_abort(struct __vxge_hw_ring
*ring
)
2753 struct __vxge_hw_channel
*channel
;
2755 channel
= &ring
->channel
;
2758 vxge_hw_channel_dtr_try_complete(channel
, &rxdh
);
2763 vxge_hw_channel_dtr_complete(channel
);
2766 ring
->rxd_term(rxdh
, VXGE_HW_RXD_STATE_POSTED
,
2769 vxge_hw_channel_dtr_free(channel
, rxdh
);
2776 * __vxge_hw_ring_reset - Resets the ring
2777 * This function resets the ring during vpath reset operation
2779 static enum vxge_hw_status
__vxge_hw_ring_reset(struct __vxge_hw_ring
*ring
)
2781 enum vxge_hw_status status
= VXGE_HW_OK
;
2782 struct __vxge_hw_channel
*channel
;
2784 channel
= &ring
->channel
;
2786 __vxge_hw_ring_abort(ring
);
2788 status
= __vxge_hw_channel_reset(channel
);
2790 if (status
!= VXGE_HW_OK
)
2793 if (ring
->rxd_init
) {
2794 status
= vxge_hw_ring_replenish(ring
);
2795 if (status
!= VXGE_HW_OK
)
2803 * __vxge_hw_ring_delete - Removes the ring
2804 * This function freeup the memory pool and removes the ring
2806 static enum vxge_hw_status
2807 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle
*vp
)
2809 struct __vxge_hw_ring
*ring
= vp
->vpath
->ringh
;
2811 __vxge_hw_ring_abort(ring
);
2814 __vxge_hw_mempool_destroy(ring
->mempool
);
2816 vp
->vpath
->ringh
= NULL
;
2817 __vxge_hw_channel_free(&ring
->channel
);
2823 * __vxge_hw_ring_create - Create a Ring
2824 * This function creates Ring and initializes it.
2826 static enum vxge_hw_status
2827 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle
*vp
,
2828 struct vxge_hw_ring_attr
*attr
)
2830 enum vxge_hw_status status
= VXGE_HW_OK
;
2831 struct __vxge_hw_ring
*ring
;
2833 struct vxge_hw_ring_config
*config
;
2834 struct __vxge_hw_device
*hldev
;
2836 struct vxge_hw_mempool_cbs ring_mp_callback
;
2838 if ((vp
== NULL
) || (attr
== NULL
)) {
2839 status
= VXGE_HW_FAIL
;
2843 hldev
= vp
->vpath
->hldev
;
2844 vp_id
= vp
->vpath
->vp_id
;
2846 config
= &hldev
->config
.vp_config
[vp_id
].ring
;
2848 ring_length
= config
->ring_blocks
*
2849 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2851 ring
= (struct __vxge_hw_ring
*)__vxge_hw_channel_allocate(vp
,
2852 VXGE_HW_CHANNEL_TYPE_RING
,
2854 attr
->per_rxd_space
,
2857 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2861 vp
->vpath
->ringh
= ring
;
2862 ring
->vp_id
= vp_id
;
2863 ring
->vp_reg
= vp
->vpath
->vp_reg
;
2864 ring
->common_reg
= hldev
->common_reg
;
2865 ring
->stats
= &vp
->vpath
->sw_stats
->ring_stats
;
2866 ring
->config
= config
;
2867 ring
->callback
= attr
->callback
;
2868 ring
->rxd_init
= attr
->rxd_init
;
2869 ring
->rxd_term
= attr
->rxd_term
;
2870 ring
->buffer_mode
= config
->buffer_mode
;
2871 ring
->tim_rti_cfg1_saved
= vp
->vpath
->tim_rti_cfg1_saved
;
2872 ring
->tim_rti_cfg3_saved
= vp
->vpath
->tim_rti_cfg3_saved
;
2873 ring
->rxds_limit
= config
->rxds_limit
;
2875 ring
->rxd_size
= vxge_hw_ring_rxd_size_get(config
->buffer_mode
);
2876 ring
->rxd_priv_size
=
2877 sizeof(struct __vxge_hw_ring_rxd_priv
) + attr
->per_rxd_space
;
2878 ring
->per_rxd_space
= attr
->per_rxd_space
;
2880 ring
->rxd_priv_size
=
2881 ((ring
->rxd_priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
2882 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
2884 /* how many RxDs can fit into one block. Depends on configured
2886 ring
->rxds_per_block
=
2887 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2889 /* calculate actual RxD block private size */
2890 ring
->rxdblock_priv_size
= ring
->rxd_priv_size
* ring
->rxds_per_block
;
2891 ring_mp_callback
.item_func_alloc
= __vxge_hw_ring_mempool_item_alloc
;
2892 ring
->mempool
= __vxge_hw_mempool_create(hldev
,
2895 ring
->rxdblock_priv_size
,
2896 ring
->config
->ring_blocks
,
2897 ring
->config
->ring_blocks
,
2900 if (ring
->mempool
== NULL
) {
2901 __vxge_hw_ring_delete(vp
);
2902 return VXGE_HW_ERR_OUT_OF_MEMORY
;
2905 status
= __vxge_hw_channel_initialize(&ring
->channel
);
2906 if (status
!= VXGE_HW_OK
) {
2907 __vxge_hw_ring_delete(vp
);
2912 * Specifying rxd_init callback means two things:
2913 * 1) rxds need to be initialized by driver at channel-open time;
2914 * 2) rxds need to be posted at channel-open time
2915 * (that's what the initial_replenish() below does)
2916 * Currently we don't have a case when the 1) is done without the 2).
2918 if (ring
->rxd_init
) {
2919 status
= vxge_hw_ring_replenish(ring
);
2920 if (status
!= VXGE_HW_OK
) {
2921 __vxge_hw_ring_delete(vp
);
2926 /* initial replenish will increment the counter in its post() routine,
2927 * we have to reset it */
2928 ring
->stats
->common_stats
.usage_cnt
= 0;
2934 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2935 * Initialize Titan device config with default values.
2937 enum vxge_hw_status __devinit
2938 vxge_hw_device_config_default_get(struct vxge_hw_device_config
*device_config
)
2942 device_config
->dma_blockpool_initial
=
2943 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE
;
2944 device_config
->dma_blockpool_max
= VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE
;
2945 device_config
->intr_mode
= VXGE_HW_INTR_MODE_DEF
;
2946 device_config
->rth_en
= VXGE_HW_RTH_DEFAULT
;
2947 device_config
->rth_it_type
= VXGE_HW_RTH_IT_TYPE_DEFAULT
;
2948 device_config
->device_poll_millis
= VXGE_HW_DEF_DEVICE_POLL_MILLIS
;
2949 device_config
->rts_mac_en
= VXGE_HW_RTS_MAC_DEFAULT
;
2951 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
2952 device_config
->vp_config
[i
].vp_id
= i
;
2954 device_config
->vp_config
[i
].min_bandwidth
=
2955 VXGE_HW_VPATH_BANDWIDTH_DEFAULT
;
2957 device_config
->vp_config
[i
].ring
.enable
= VXGE_HW_RING_DEFAULT
;
2959 device_config
->vp_config
[i
].ring
.ring_blocks
=
2960 VXGE_HW_DEF_RING_BLOCKS
;
2962 device_config
->vp_config
[i
].ring
.buffer_mode
=
2963 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT
;
2965 device_config
->vp_config
[i
].ring
.scatter_mode
=
2966 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
;
2968 device_config
->vp_config
[i
].ring
.rxds_limit
=
2969 VXGE_HW_DEF_RING_RXDS_LIMIT
;
2971 device_config
->vp_config
[i
].fifo
.enable
= VXGE_HW_FIFO_ENABLE
;
2973 device_config
->vp_config
[i
].fifo
.fifo_blocks
=
2974 VXGE_HW_MIN_FIFO_BLOCKS
;
2976 device_config
->vp_config
[i
].fifo
.max_frags
=
2977 VXGE_HW_MAX_FIFO_FRAGS
;
2979 device_config
->vp_config
[i
].fifo
.memblock_size
=
2980 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE
;
2982 device_config
->vp_config
[i
].fifo
.alignment_size
=
2983 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE
;
2985 device_config
->vp_config
[i
].fifo
.intr
=
2986 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT
;
2988 device_config
->vp_config
[i
].fifo
.no_snoop_bits
=
2989 VXGE_HW_FIFO_NO_SNOOP_DEFAULT
;
2990 device_config
->vp_config
[i
].tti
.intr_enable
=
2991 VXGE_HW_TIM_INTR_DEFAULT
;
2993 device_config
->vp_config
[i
].tti
.btimer_val
=
2994 VXGE_HW_USE_FLASH_DEFAULT
;
2996 device_config
->vp_config
[i
].tti
.timer_ac_en
=
2997 VXGE_HW_USE_FLASH_DEFAULT
;
2999 device_config
->vp_config
[i
].tti
.timer_ci_en
=
3000 VXGE_HW_USE_FLASH_DEFAULT
;
3002 device_config
->vp_config
[i
].tti
.timer_ri_en
=
3003 VXGE_HW_USE_FLASH_DEFAULT
;
3005 device_config
->vp_config
[i
].tti
.rtimer_val
=
3006 VXGE_HW_USE_FLASH_DEFAULT
;
3008 device_config
->vp_config
[i
].tti
.util_sel
=
3009 VXGE_HW_USE_FLASH_DEFAULT
;
3011 device_config
->vp_config
[i
].tti
.ltimer_val
=
3012 VXGE_HW_USE_FLASH_DEFAULT
;
3014 device_config
->vp_config
[i
].tti
.urange_a
=
3015 VXGE_HW_USE_FLASH_DEFAULT
;
3017 device_config
->vp_config
[i
].tti
.uec_a
=
3018 VXGE_HW_USE_FLASH_DEFAULT
;
3020 device_config
->vp_config
[i
].tti
.urange_b
=
3021 VXGE_HW_USE_FLASH_DEFAULT
;
3023 device_config
->vp_config
[i
].tti
.uec_b
=
3024 VXGE_HW_USE_FLASH_DEFAULT
;
3026 device_config
->vp_config
[i
].tti
.urange_c
=
3027 VXGE_HW_USE_FLASH_DEFAULT
;
3029 device_config
->vp_config
[i
].tti
.uec_c
=
3030 VXGE_HW_USE_FLASH_DEFAULT
;
3032 device_config
->vp_config
[i
].tti
.uec_d
=
3033 VXGE_HW_USE_FLASH_DEFAULT
;
3035 device_config
->vp_config
[i
].rti
.intr_enable
=
3036 VXGE_HW_TIM_INTR_DEFAULT
;
3038 device_config
->vp_config
[i
].rti
.btimer_val
=
3039 VXGE_HW_USE_FLASH_DEFAULT
;
3041 device_config
->vp_config
[i
].rti
.timer_ac_en
=
3042 VXGE_HW_USE_FLASH_DEFAULT
;
3044 device_config
->vp_config
[i
].rti
.timer_ci_en
=
3045 VXGE_HW_USE_FLASH_DEFAULT
;
3047 device_config
->vp_config
[i
].rti
.timer_ri_en
=
3048 VXGE_HW_USE_FLASH_DEFAULT
;
3050 device_config
->vp_config
[i
].rti
.rtimer_val
=
3051 VXGE_HW_USE_FLASH_DEFAULT
;
3053 device_config
->vp_config
[i
].rti
.util_sel
=
3054 VXGE_HW_USE_FLASH_DEFAULT
;
3056 device_config
->vp_config
[i
].rti
.ltimer_val
=
3057 VXGE_HW_USE_FLASH_DEFAULT
;
3059 device_config
->vp_config
[i
].rti
.urange_a
=
3060 VXGE_HW_USE_FLASH_DEFAULT
;
3062 device_config
->vp_config
[i
].rti
.uec_a
=
3063 VXGE_HW_USE_FLASH_DEFAULT
;
3065 device_config
->vp_config
[i
].rti
.urange_b
=
3066 VXGE_HW_USE_FLASH_DEFAULT
;
3068 device_config
->vp_config
[i
].rti
.uec_b
=
3069 VXGE_HW_USE_FLASH_DEFAULT
;
3071 device_config
->vp_config
[i
].rti
.urange_c
=
3072 VXGE_HW_USE_FLASH_DEFAULT
;
3074 device_config
->vp_config
[i
].rti
.uec_c
=
3075 VXGE_HW_USE_FLASH_DEFAULT
;
3077 device_config
->vp_config
[i
].rti
.uec_d
=
3078 VXGE_HW_USE_FLASH_DEFAULT
;
3080 device_config
->vp_config
[i
].mtu
=
3081 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
;
3083 device_config
->vp_config
[i
].rpa_strip_vlan_tag
=
3084 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
;
3091 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3092 * Set the swapper bits appropriately for the vpath.
3094 static enum vxge_hw_status
3095 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3097 #ifndef __BIG_ENDIAN
3100 val64
= readq(&vpath_reg
->vpath_general_cfg1
);
3102 val64
|= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN
;
3103 writeq(val64
, &vpath_reg
->vpath_general_cfg1
);
3110 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3111 * Set the swapper bits appropriately for the vpath.
3113 static enum vxge_hw_status
3114 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
,
3115 struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3119 val64
= readq(&legacy_reg
->pifm_wr_swap_en
);
3121 if (val64
== VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
) {
3122 val64
= readq(&vpath_reg
->kdfcctl_cfg0
);
3125 val64
|= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0
|
3126 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1
|
3127 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2
;
3129 writeq(val64
, &vpath_reg
->kdfcctl_cfg0
);
3137 * vxge_hw_mgmt_reg_read - Read Titan register.
3140 vxge_hw_mgmt_reg_read(struct __vxge_hw_device
*hldev
,
3141 enum vxge_hw_mgmt_reg_type type
,
3142 u32 index
, u32 offset
, u64
*value
)
3144 enum vxge_hw_status status
= VXGE_HW_OK
;
3146 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3147 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3152 case vxge_hw_mgmt_reg_type_legacy
:
3153 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3154 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3157 *value
= readq((void __iomem
*)hldev
->legacy_reg
+ offset
);
3159 case vxge_hw_mgmt_reg_type_toc
:
3160 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3161 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3164 *value
= readq((void __iomem
*)hldev
->toc_reg
+ offset
);
3166 case vxge_hw_mgmt_reg_type_common
:
3167 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3168 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3171 *value
= readq((void __iomem
*)hldev
->common_reg
+ offset
);
3173 case vxge_hw_mgmt_reg_type_mrpcim
:
3174 if (!(hldev
->access_rights
&
3175 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3176 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3179 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3180 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3183 *value
= readq((void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3185 case vxge_hw_mgmt_reg_type_srpcim
:
3186 if (!(hldev
->access_rights
&
3187 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3188 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3191 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3192 status
= VXGE_HW_ERR_INVALID_INDEX
;
3195 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3196 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3199 *value
= readq((void __iomem
*)hldev
->srpcim_reg
[index
] +
3202 case vxge_hw_mgmt_reg_type_vpmgmt
:
3203 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3204 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3205 status
= VXGE_HW_ERR_INVALID_INDEX
;
3208 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3209 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3212 *value
= readq((void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3215 case vxge_hw_mgmt_reg_type_vpath
:
3216 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) ||
3217 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3218 status
= VXGE_HW_ERR_INVALID_INDEX
;
3221 if (index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) {
3222 status
= VXGE_HW_ERR_INVALID_INDEX
;
3225 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3226 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3229 *value
= readq((void __iomem
*)hldev
->vpath_reg
[index
] +
3233 status
= VXGE_HW_ERR_INVALID_TYPE
;
3242 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3245 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device
*hldev
, u64 vpath_mask
)
3247 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
3248 enum vxge_hw_status status
= VXGE_HW_OK
;
3251 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
3252 if (!((vpath_mask
) & vxge_mBIT(i
)))
3254 vpmgmt_reg
= hldev
->vpmgmt_reg
[i
];
3255 for (j
= 0; j
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; j
++) {
3256 if (readq(&vpmgmt_reg
->rxmac_cfg0_port_vpmgmt_clone
[j
])
3257 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS
)
3258 return VXGE_HW_FAIL
;
3264 * vxge_hw_mgmt_reg_Write - Write Titan register.
3267 vxge_hw_mgmt_reg_write(struct __vxge_hw_device
*hldev
,
3268 enum vxge_hw_mgmt_reg_type type
,
3269 u32 index
, u32 offset
, u64 value
)
3271 enum vxge_hw_status status
= VXGE_HW_OK
;
3273 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3274 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3279 case vxge_hw_mgmt_reg_type_legacy
:
3280 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3281 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3284 writeq(value
, (void __iomem
*)hldev
->legacy_reg
+ offset
);
3286 case vxge_hw_mgmt_reg_type_toc
:
3287 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3288 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3291 writeq(value
, (void __iomem
*)hldev
->toc_reg
+ offset
);
3293 case vxge_hw_mgmt_reg_type_common
:
3294 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3295 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3298 writeq(value
, (void __iomem
*)hldev
->common_reg
+ offset
);
3300 case vxge_hw_mgmt_reg_type_mrpcim
:
3301 if (!(hldev
->access_rights
&
3302 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3303 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3306 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3307 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3310 writeq(value
, (void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3312 case vxge_hw_mgmt_reg_type_srpcim
:
3313 if (!(hldev
->access_rights
&
3314 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3315 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3318 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3319 status
= VXGE_HW_ERR_INVALID_INDEX
;
3322 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3323 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3326 writeq(value
, (void __iomem
*)hldev
->srpcim_reg
[index
] +
3330 case vxge_hw_mgmt_reg_type_vpmgmt
:
3331 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3332 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3333 status
= VXGE_HW_ERR_INVALID_INDEX
;
3336 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3337 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3340 writeq(value
, (void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3343 case vxge_hw_mgmt_reg_type_vpath
:
3344 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
-1) ||
3345 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3346 status
= VXGE_HW_ERR_INVALID_INDEX
;
3349 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3350 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3353 writeq(value
, (void __iomem
*)hldev
->vpath_reg
[index
] +
3357 status
= VXGE_HW_ERR_INVALID_TYPE
;
3365 * __vxge_hw_fifo_abort - Returns the TxD
3366 * This function terminates the TxDs of fifo
3368 static enum vxge_hw_status
__vxge_hw_fifo_abort(struct __vxge_hw_fifo
*fifo
)
3373 vxge_hw_channel_dtr_try_complete(&fifo
->channel
, &txdlh
);
3378 vxge_hw_channel_dtr_complete(&fifo
->channel
);
3380 if (fifo
->txdl_term
) {
3381 fifo
->txdl_term(txdlh
,
3382 VXGE_HW_TXDL_STATE_POSTED
,
3383 fifo
->channel
.userdata
);
3386 vxge_hw_channel_dtr_free(&fifo
->channel
, txdlh
);
3393 * __vxge_hw_fifo_reset - Resets the fifo
3394 * This function resets the fifo during vpath reset operation
3396 static enum vxge_hw_status
__vxge_hw_fifo_reset(struct __vxge_hw_fifo
*fifo
)
3398 enum vxge_hw_status status
= VXGE_HW_OK
;
3400 __vxge_hw_fifo_abort(fifo
);
3401 status
= __vxge_hw_channel_reset(&fifo
->channel
);
3407 * __vxge_hw_fifo_delete - Removes the FIFO
3408 * This function freeup the memory pool and removes the FIFO
3410 static enum vxge_hw_status
3411 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle
*vp
)
3413 struct __vxge_hw_fifo
*fifo
= vp
->vpath
->fifoh
;
3415 __vxge_hw_fifo_abort(fifo
);
3418 __vxge_hw_mempool_destroy(fifo
->mempool
);
3420 vp
->vpath
->fifoh
= NULL
;
3422 __vxge_hw_channel_free(&fifo
->channel
);
3428 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3430 * This function is callback passed to __vxge_hw_mempool_create to create memory
3434 __vxge_hw_fifo_mempool_item_alloc(
3435 struct vxge_hw_mempool
*mempoolh
,
3436 u32 memblock_index
, struct vxge_hw_mempool_dma
*dma_object
,
3437 u32 index
, u32 is_last
)
3439 u32 memblock_item_idx
;
3440 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
3441 struct vxge_hw_fifo_txd
*txdp
=
3442 (struct vxge_hw_fifo_txd
*)mempoolh
->items_arr
[index
];
3443 struct __vxge_hw_fifo
*fifo
=
3444 (struct __vxge_hw_fifo
*)mempoolh
->userdata
;
3445 void *memblock
= mempoolh
->memblocks_arr
[memblock_index
];
3449 txdp
->host_control
= (u64
) (size_t)
3450 __vxge_hw_mempool_item_priv(mempoolh
, memblock_index
, txdp
,
3451 &memblock_item_idx
);
3453 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
3455 vxge_assert(txdl_priv
);
3457 fifo
->channel
.reserve_arr
[fifo
->channel
.reserve_ptr
- 1 - index
] = txdp
;
3459 /* pre-format HW's TxDL's private */
3460 txdl_priv
->dma_offset
= (char *)txdp
- (char *)memblock
;
3461 txdl_priv
->dma_addr
= dma_object
->addr
+ txdl_priv
->dma_offset
;
3462 txdl_priv
->dma_handle
= dma_object
->handle
;
3463 txdl_priv
->memblock
= memblock
;
3464 txdl_priv
->first_txdp
= txdp
;
3465 txdl_priv
->next_txdl_priv
= NULL
;
3466 txdl_priv
->alloc_frags
= 0;
3470 * __vxge_hw_fifo_create - Create a FIFO
3471 * This function creates FIFO and initializes it.
3473 static enum vxge_hw_status
3474 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle
*vp
,
3475 struct vxge_hw_fifo_attr
*attr
)
3477 enum vxge_hw_status status
= VXGE_HW_OK
;
3478 struct __vxge_hw_fifo
*fifo
;
3479 struct vxge_hw_fifo_config
*config
;
3480 u32 txdl_size
, txdl_per_memblock
;
3481 struct vxge_hw_mempool_cbs fifo_mp_callback
;
3482 struct __vxge_hw_virtualpath
*vpath
;
3484 if ((vp
== NULL
) || (attr
== NULL
)) {
3485 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3489 config
= &vpath
->hldev
->config
.vp_config
[vpath
->vp_id
].fifo
;
3491 txdl_size
= config
->max_frags
* sizeof(struct vxge_hw_fifo_txd
);
3493 txdl_per_memblock
= config
->memblock_size
/ txdl_size
;
3495 fifo
= (struct __vxge_hw_fifo
*)__vxge_hw_channel_allocate(vp
,
3496 VXGE_HW_CHANNEL_TYPE_FIFO
,
3497 config
->fifo_blocks
* txdl_per_memblock
,
3498 attr
->per_txdl_space
, attr
->userdata
);
3501 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3505 vpath
->fifoh
= fifo
;
3506 fifo
->nofl_db
= vpath
->nofl_db
;
3508 fifo
->vp_id
= vpath
->vp_id
;
3509 fifo
->vp_reg
= vpath
->vp_reg
;
3510 fifo
->stats
= &vpath
->sw_stats
->fifo_stats
;
3512 fifo
->config
= config
;
3514 /* apply "interrupts per txdl" attribute */
3515 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ
;
3516 fifo
->tim_tti_cfg1_saved
= vpath
->tim_tti_cfg1_saved
;
3517 fifo
->tim_tti_cfg3_saved
= vpath
->tim_tti_cfg3_saved
;
3519 if (fifo
->config
->intr
)
3520 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST
;
3522 fifo
->no_snoop_bits
= config
->no_snoop_bits
;
3525 * FIFO memory management strategy:
3527 * TxDL split into three independent parts:
3529 * - TxD HW private part
3530 * - driver private part
3532 * Adaptative memory allocation used. i.e. Memory allocated on
3533 * demand with the size which will fit into one memory block.
3534 * One memory block may contain more than one TxDL.
3536 * During "reserve" operations more memory can be allocated on demand
3537 * for example due to FIFO full condition.
3539 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3540 * routine which will essentially stop the channel and free resources.
3543 /* TxDL common private size == TxDL private + driver private */
3545 sizeof(struct __vxge_hw_fifo_txdl_priv
) + attr
->per_txdl_space
;
3546 fifo
->priv_size
= ((fifo
->priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
3547 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
3549 fifo
->per_txdl_space
= attr
->per_txdl_space
;
3551 /* recompute txdl size to be cacheline aligned */
3552 fifo
->txdl_size
= txdl_size
;
3553 fifo
->txdl_per_memblock
= txdl_per_memblock
;
3555 fifo
->txdl_term
= attr
->txdl_term
;
3556 fifo
->callback
= attr
->callback
;
3558 if (fifo
->txdl_per_memblock
== 0) {
3559 __vxge_hw_fifo_delete(vp
);
3560 status
= VXGE_HW_ERR_INVALID_BLOCK_SIZE
;
3564 fifo_mp_callback
.item_func_alloc
= __vxge_hw_fifo_mempool_item_alloc
;
3567 __vxge_hw_mempool_create(vpath
->hldev
,
3568 fifo
->config
->memblock_size
,
3571 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3572 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3576 if (fifo
->mempool
== NULL
) {
3577 __vxge_hw_fifo_delete(vp
);
3578 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3582 status
= __vxge_hw_channel_initialize(&fifo
->channel
);
3583 if (status
!= VXGE_HW_OK
) {
3584 __vxge_hw_fifo_delete(vp
);
3588 vxge_assert(fifo
->channel
.reserve_ptr
);
3594 * __vxge_hw_vpath_pci_read - Read the content of given address
3595 * in pci config space.
3596 * Read from the vpath pci config space.
3598 static enum vxge_hw_status
3599 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath
*vpath
,
3600 u32 phy_func_0
, u32 offset
, u32
*val
)
3603 enum vxge_hw_status status
= VXGE_HW_OK
;
3604 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
3606 val64
= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset
);
3609 val64
|= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0
;
3611 writeq(val64
, &vp_reg
->pci_config_access_cfg1
);
3613 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ
,
3614 &vp_reg
->pci_config_access_cfg2
);
3617 status
= __vxge_hw_device_register_poll(
3618 &vp_reg
->pci_config_access_cfg2
,
3619 VXGE_HW_INTR_MASK_ALL
, VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
3621 if (status
!= VXGE_HW_OK
)
3624 val64
= readq(&vp_reg
->pci_config_access_status
);
3626 if (val64
& VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR
) {
3627 status
= VXGE_HW_FAIL
;
3630 *val
= (u32
)vxge_bVALn(val64
, 32, 32);
3636 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3637 * @hldev: HW device.
3638 * @on_off: TRUE if flickering to be on, FALSE to be off
3640 * Flicker the link LED.
3643 vxge_hw_device_flick_link_led(struct __vxge_hw_device
*hldev
, u64 on_off
)
3645 struct __vxge_hw_virtualpath
*vpath
;
3646 u64 data0
, data1
= 0, steer_ctrl
= 0;
3647 enum vxge_hw_status status
;
3649 if (hldev
== NULL
) {
3650 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3654 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
3657 status
= vxge_hw_vpath_fw_api(vpath
,
3658 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL
,
3659 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
3660 0, &data0
, &data1
, &steer_ctrl
);
3666 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3669 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle
*vp
,
3670 u32 action
, u32 rts_table
, u32 offset
,
3671 u64
*data0
, u64
*data1
)
3673 enum vxge_hw_status status
;
3677 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3682 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
) ||
3684 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
) ||
3686 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK
) ||
3688 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY
)) {
3689 steer_ctrl
= VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL
;
3692 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3693 data0
, data1
, &steer_ctrl
);
3694 if (status
!= VXGE_HW_OK
)
3697 if ((rts_table
!= VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) &&
3699 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3706 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3709 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle
*vp
, u32 action
,
3710 u32 rts_table
, u32 offset
, u64 steer_data0
,
3713 u64 data0
, data1
= 0, steer_ctrl
= 0;
3714 enum vxge_hw_status status
;
3717 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3721 data0
= steer_data0
;
3723 if ((rts_table
== VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) ||
3725 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3726 data1
= steer_data1
;
3728 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3729 &data0
, &data1
, &steer_ctrl
);
3735 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3737 enum vxge_hw_status
vxge_hw_vpath_rts_rth_set(
3738 struct __vxge_hw_vpath_handle
*vp
,
3739 enum vxge_hw_rth_algoritms algorithm
,
3740 struct vxge_hw_rth_hash_types
*hash_type
,
3744 enum vxge_hw_status status
= VXGE_HW_OK
;
3747 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3751 status
= __vxge_hw_vpath_rts_table_get(vp
,
3752 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
3753 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3755 if (status
!= VXGE_HW_OK
)
3758 data0
&= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3759 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3761 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN
|
3762 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size
) |
3763 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm
);
3765 if (hash_type
->hash_type_tcpipv4_en
)
3766 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN
;
3768 if (hash_type
->hash_type_ipv4_en
)
3769 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN
;
3771 if (hash_type
->hash_type_tcpipv6_en
)
3772 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN
;
3774 if (hash_type
->hash_type_ipv6_en
)
3775 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN
;
3777 if (hash_type
->hash_type_tcpipv6ex_en
)
3779 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN
;
3781 if (hash_type
->hash_type_ipv6ex_en
)
3782 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN
;
3784 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0
))
3785 data0
&= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3787 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3789 status
= __vxge_hw_vpath_rts_table_set(vp
,
3790 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
,
3791 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3798 vxge_hw_rts_rth_data0_data1_get(u32 j
, u64
*data0
, u64
*data1
,
3799 u16 flag
, u8
*itable
)
3803 *data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j
)|
3804 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN
|
3805 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3809 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j
)|
3810 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN
|
3811 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3814 *data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j
)|
3815 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN
|
3816 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3820 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j
)|
3821 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN
|
3822 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3829 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3831 enum vxge_hw_status
vxge_hw_vpath_rts_rth_itable_set(
3832 struct __vxge_hw_vpath_handle
**vpath_handles
,
3838 u32 i
, j
, action
, rts_table
;
3842 enum vxge_hw_status status
= VXGE_HW_OK
;
3843 struct __vxge_hw_vpath_handle
*vp
= vpath_handles
[0];
3846 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3850 max_entries
= (((u32
)1) << itable_size
);
3852 if (vp
->vpath
->hldev
->config
.rth_it_type
3853 == VXGE_HW_RTH_IT_TYPE_SOLO_IT
) {
3854 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3856 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
;
3858 for (j
= 0; j
< max_entries
; j
++) {
3863 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3866 status
= __vxge_hw_vpath_rts_table_set(vpath_handles
[0],
3867 action
, rts_table
, j
, data0
, data1
);
3869 if (status
!= VXGE_HW_OK
)
3873 for (j
= 0; j
< max_entries
; j
++) {
3878 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN
|
3879 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3882 status
= __vxge_hw_vpath_rts_table_set(
3883 vpath_handles
[mtable
[itable
[j
]]], action
,
3884 rts_table
, j
, data0
, data1
);
3886 if (status
!= VXGE_HW_OK
)
3890 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3892 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
;
3893 for (i
= 0; i
< vpath_count
; i
++) {
3895 for (j
= 0; j
< max_entries
;) {
3900 while (j
< max_entries
) {
3901 if (mtable
[itable
[j
]] != i
) {
3905 vxge_hw_rts_rth_data0_data1_get(j
,
3906 &data0
, &data1
, 1, itable
);
3911 while (j
< max_entries
) {
3912 if (mtable
[itable
[j
]] != i
) {
3916 vxge_hw_rts_rth_data0_data1_get(j
,
3917 &data0
, &data1
, 2, itable
);
3922 while (j
< max_entries
) {
3923 if (mtable
[itable
[j
]] != i
) {
3927 vxge_hw_rts_rth_data0_data1_get(j
,
3928 &data0
, &data1
, 3, itable
);
3933 while (j
< max_entries
) {
3934 if (mtable
[itable
[j
]] != i
) {
3938 vxge_hw_rts_rth_data0_data1_get(j
,
3939 &data0
, &data1
, 4, itable
);
3945 status
= __vxge_hw_vpath_rts_table_set(
3950 if (status
!= VXGE_HW_OK
)
3961 * vxge_hw_vpath_check_leak - Check for memory leak
3962 * @ringh: Handle to the ring object used for receive
3964 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3965 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3966 * Returns: VXGE_HW_FAIL, if leak has occurred.
3970 vxge_hw_vpath_check_leak(struct __vxge_hw_ring
*ring
)
3972 enum vxge_hw_status status
= VXGE_HW_OK
;
3973 u64 rxd_new_count
, rxd_spat
;
3978 rxd_new_count
= readl(&ring
->vp_reg
->prc_rxd_doorbell
);
3979 rxd_spat
= readq(&ring
->vp_reg
->prc_cfg6
);
3980 rxd_spat
= VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat
);
3982 if (rxd_new_count
>= rxd_spat
)
3983 status
= VXGE_HW_FAIL
;
3989 * __vxge_hw_vpath_mgmt_read
3990 * This routine reads the vpath_mgmt registers
3992 static enum vxge_hw_status
3993 __vxge_hw_vpath_mgmt_read(
3994 struct __vxge_hw_device
*hldev
,
3995 struct __vxge_hw_virtualpath
*vpath
)
3997 u32 i
, mtu
= 0, max_pyld
= 0;
3999 enum vxge_hw_status status
= VXGE_HW_OK
;
4001 for (i
= 0; i
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
4003 val64
= readq(&vpath
->vpmgmt_reg
->
4004 rxmac_cfg0_port_vpmgmt_clone
[i
]);
4007 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
4013 vpath
->max_mtu
= mtu
+ VXGE_HW_MAC_HEADER_MAX_SIZE
;
4015 val64
= readq(&vpath
->vpmgmt_reg
->xmac_vsport_choices_vp
);
4017 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
4018 if (val64
& vxge_mBIT(i
))
4019 vpath
->vsport_number
= i
;
4022 val64
= readq(&vpath
->vpmgmt_reg
->xgmac_gen_status_vpmgmt_clone
);
4024 if (val64
& VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK
)
4025 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_UP
);
4027 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_DOWN
);
4033 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4034 * This routine checks the vpath_rst_in_prog register to see if
4035 * adapter completed the reset process for the vpath
4037 static enum vxge_hw_status
4038 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath
*vpath
)
4040 enum vxge_hw_status status
;
4042 status
= __vxge_hw_device_register_poll(
4043 &vpath
->hldev
->common_reg
->vpath_rst_in_prog
,
4044 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4045 1 << (16 - vpath
->vp_id
)),
4046 vpath
->hldev
->config
.device_poll_millis
);
4052 * __vxge_hw_vpath_reset
4053 * This routine resets the vpath on the device
4055 static enum vxge_hw_status
4056 __vxge_hw_vpath_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4059 enum vxge_hw_status status
= VXGE_HW_OK
;
4061 val64
= VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id
));
4063 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
4064 &hldev
->common_reg
->cmn_rsthdlr_cfg0
);
4070 * __vxge_hw_vpath_sw_reset
4071 * This routine resets the vpath structures
4073 static enum vxge_hw_status
4074 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4076 enum vxge_hw_status status
= VXGE_HW_OK
;
4077 struct __vxge_hw_virtualpath
*vpath
;
4079 vpath
= (struct __vxge_hw_virtualpath
*)&hldev
->virtual_paths
[vp_id
];
4082 status
= __vxge_hw_ring_reset(vpath
->ringh
);
4083 if (status
!= VXGE_HW_OK
)
4088 status
= __vxge_hw_fifo_reset(vpath
->fifoh
);
4094 * __vxge_hw_vpath_prc_configure
4095 * This routine configures the prc registers of virtual path using the config
4099 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4102 struct __vxge_hw_virtualpath
*vpath
;
4103 struct vxge_hw_vp_config
*vp_config
;
4104 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4106 vpath
= &hldev
->virtual_paths
[vp_id
];
4107 vp_reg
= vpath
->vp_reg
;
4108 vp_config
= vpath
->vp_config
;
4110 if (vp_config
->ring
.enable
== VXGE_HW_RING_DISABLE
)
4113 val64
= readq(&vp_reg
->prc_cfg1
);
4114 val64
|= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE
;
4115 writeq(val64
, &vp_reg
->prc_cfg1
);
4117 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4118 val64
|= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN
;
4119 writeq(val64
, &vpath
->vp_reg
->prc_cfg6
);
4121 val64
= readq(&vp_reg
->prc_cfg7
);
4123 if (vpath
->vp_config
->ring
.scatter_mode
!=
4124 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
) {
4126 val64
&= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4128 switch (vpath
->vp_config
->ring
.scatter_mode
) {
4129 case VXGE_HW_RING_SCATTER_MODE_A
:
4130 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4131 VXGE_HW_PRC_CFG7_SCATTER_MODE_A
);
4133 case VXGE_HW_RING_SCATTER_MODE_B
:
4134 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4135 VXGE_HW_PRC_CFG7_SCATTER_MODE_B
);
4137 case VXGE_HW_RING_SCATTER_MODE_C
:
4138 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4139 VXGE_HW_PRC_CFG7_SCATTER_MODE_C
);
4144 writeq(val64
, &vp_reg
->prc_cfg7
);
4146 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4147 __vxge_hw_ring_first_block_address_get(
4148 vpath
->ringh
) >> 3), &vp_reg
->prc_cfg5
);
4150 val64
= readq(&vp_reg
->prc_cfg4
);
4151 val64
|= VXGE_HW_PRC_CFG4_IN_SVC
;
4152 val64
&= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4154 val64
|= VXGE_HW_PRC_CFG4_RING_MODE(
4155 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER
);
4157 if (hldev
->config
.rth_en
== VXGE_HW_RTH_DISABLE
)
4158 val64
|= VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4160 val64
&= ~VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4162 writeq(val64
, &vp_reg
->prc_cfg4
);
4166 * __vxge_hw_vpath_kdfc_configure
4167 * This routine configures the kdfc registers of virtual path using the
4170 static enum vxge_hw_status
4171 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4175 enum vxge_hw_status status
= VXGE_HW_OK
;
4176 struct __vxge_hw_virtualpath
*vpath
;
4177 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4179 vpath
= &hldev
->virtual_paths
[vp_id
];
4180 vp_reg
= vpath
->vp_reg
;
4181 status
= __vxge_hw_kdfc_swapper_set(hldev
->legacy_reg
, vp_reg
);
4183 if (status
!= VXGE_HW_OK
)
4186 val64
= readq(&vp_reg
->kdfc_drbl_triplet_total
);
4188 vpath
->max_kdfc_db
=
4189 (u32
)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4192 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4194 vpath
->max_nofl_db
= vpath
->max_kdfc_db
;
4196 if (vpath
->max_nofl_db
<
4197 ((vpath
->vp_config
->fifo
.memblock_size
/
4198 (vpath
->vp_config
->fifo
.max_frags
*
4199 sizeof(struct vxge_hw_fifo_txd
))) *
4200 vpath
->vp_config
->fifo
.fifo_blocks
)) {
4202 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
4204 val64
= VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4205 (vpath
->max_nofl_db
*2)-1);
4208 writeq(val64
, &vp_reg
->kdfc_fifo_trpl_partition
);
4210 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE
,
4211 &vp_reg
->kdfc_fifo_trpl_ctrl
);
4213 val64
= readq(&vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4215 val64
&= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4216 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4218 val64
|= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4219 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY
) |
4220 #ifndef __BIG_ENDIAN
4221 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN
|
4223 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4225 writeq(val64
, &vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4226 writeq((u64
)0, &vp_reg
->kdfc_trpl_fifo_0_wb_address
);
4228 vpath_stride
= readq(&hldev
->toc_reg
->toc_kdfc_vpath_stride
);
4231 (struct __vxge_hw_non_offload_db_wrapper __iomem
*)
4232 (hldev
->kdfc
+ (vp_id
*
4233 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4240 * __vxge_hw_vpath_mac_configure
4241 * This routine configures the mac of virtual path using the config passed
4243 static enum vxge_hw_status
4244 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4247 enum vxge_hw_status status
= VXGE_HW_OK
;
4248 struct __vxge_hw_virtualpath
*vpath
;
4249 struct vxge_hw_vp_config
*vp_config
;
4250 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4252 vpath
= &hldev
->virtual_paths
[vp_id
];
4253 vp_reg
= vpath
->vp_reg
;
4254 vp_config
= vpath
->vp_config
;
4256 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4257 vpath
->vsport_number
), &vp_reg
->xmac_vsport_choice
);
4259 if (vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4261 val64
= readq(&vp_reg
->xmac_rpa_vcfg
);
4263 if (vp_config
->rpa_strip_vlan_tag
!=
4264 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) {
4265 if (vp_config
->rpa_strip_vlan_tag
)
4266 val64
|= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4268 val64
&= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4271 writeq(val64
, &vp_reg
->xmac_rpa_vcfg
);
4272 val64
= readq(&vp_reg
->rxmac_vcfg0
);
4274 if (vp_config
->mtu
!=
4275 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) {
4276 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4277 if ((vp_config
->mtu
+
4278 VXGE_HW_MAC_HEADER_MAX_SIZE
) < vpath
->max_mtu
)
4279 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4281 VXGE_HW_MAC_HEADER_MAX_SIZE
);
4283 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4287 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
4289 val64
= readq(&vp_reg
->rxmac_vcfg1
);
4291 val64
&= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4292 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
);
4294 if (hldev
->config
.rth_it_type
==
4295 VXGE_HW_RTH_IT_TYPE_MULTI_IT
) {
4296 val64
|= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4298 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
;
4301 writeq(val64
, &vp_reg
->rxmac_vcfg1
);
4307 * __vxge_hw_vpath_tim_configure
4308 * This routine configures the tim registers of virtual path using the config
4311 static enum vxge_hw_status
4312 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4315 enum vxge_hw_status status
= VXGE_HW_OK
;
4316 struct __vxge_hw_virtualpath
*vpath
;
4317 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4318 struct vxge_hw_vp_config
*config
;
4320 vpath
= &hldev
->virtual_paths
[vp_id
];
4321 vp_reg
= vpath
->vp_reg
;
4322 config
= vpath
->vp_config
;
4324 writeq(0, &vp_reg
->tim_dest_addr
);
4325 writeq(0, &vp_reg
->tim_vpath_map
);
4326 writeq(0, &vp_reg
->tim_bitmap
);
4327 writeq(0, &vp_reg
->tim_remap
);
4329 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
)
4330 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4331 (vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4332 VXGE_HW_VPATH_INTR_RX
), &vp_reg
->tim_ring_assn
);
4334 val64
= readq(&vp_reg
->tim_pci_cfg
);
4335 val64
|= VXGE_HW_TIM_PCI_CFG_ADD_PAD
;
4336 writeq(val64
, &vp_reg
->tim_pci_cfg
);
4338 if (config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4340 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4342 if (config
->tti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4343 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4345 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4346 config
->tti
.btimer_val
);
4349 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4351 if (config
->tti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4352 if (config
->tti
.timer_ac_en
)
4353 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4355 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4358 if (config
->tti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4359 if (config
->tti
.timer_ci_en
)
4360 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4362 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4365 if (config
->tti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4366 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4367 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4368 config
->tti
.urange_a
);
4371 if (config
->tti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4372 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4373 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4374 config
->tti
.urange_b
);
4377 if (config
->tti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4378 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4379 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4380 config
->tti
.urange_c
);
4383 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4384 vpath
->tim_tti_cfg1_saved
= val64
;
4386 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4388 if (config
->tti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4389 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4390 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4394 if (config
->tti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4395 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4396 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4400 if (config
->tti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4401 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4402 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4406 if (config
->tti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4407 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4408 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4412 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4413 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4415 if (config
->tti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4416 if (config
->tti
.timer_ri_en
)
4417 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4419 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4422 if (config
->tti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4423 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4425 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4426 config
->tti
.rtimer_val
);
4429 if (config
->tti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4430 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4431 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4434 if (config
->tti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4435 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4437 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4438 config
->tti
.ltimer_val
);
4441 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4442 vpath
->tim_tti_cfg3_saved
= val64
;
4445 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4447 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4449 if (config
->rti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4450 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4452 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4453 config
->rti
.btimer_val
);
4456 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4458 if (config
->rti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4459 if (config
->rti
.timer_ac_en
)
4460 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4462 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4465 if (config
->rti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4466 if (config
->rti
.timer_ci_en
)
4467 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4469 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4472 if (config
->rti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4473 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4474 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4475 config
->rti
.urange_a
);
4478 if (config
->rti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4479 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4480 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4481 config
->rti
.urange_b
);
4484 if (config
->rti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4485 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4486 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4487 config
->rti
.urange_c
);
4490 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4491 vpath
->tim_rti_cfg1_saved
= val64
;
4493 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4495 if (config
->rti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4496 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4497 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4501 if (config
->rti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4502 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4503 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4507 if (config
->rti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4508 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4509 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4513 if (config
->rti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4514 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4515 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4519 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4520 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4522 if (config
->rti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4523 if (config
->rti
.timer_ri_en
)
4524 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4526 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4529 if (config
->rti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4530 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4532 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4533 config
->rti
.rtimer_val
);
4536 if (config
->rti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4537 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4538 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4541 if (config
->rti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4542 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4544 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4545 config
->rti
.ltimer_val
);
4548 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4549 vpath
->tim_rti_cfg3_saved
= val64
;
4553 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4554 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4555 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4556 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4557 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4558 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4560 val64
= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4561 val64
|= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4562 val64
|= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4563 writeq(val64
, &vp_reg
->tim_wrkld_clc
);
4569 * __vxge_hw_vpath_initialize
4570 * This routine is the final phase of init which initializes the
4571 * registers of the vpath using the configuration passed.
4573 static enum vxge_hw_status
4574 __vxge_hw_vpath_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4578 enum vxge_hw_status status
= VXGE_HW_OK
;
4579 struct __vxge_hw_virtualpath
*vpath
;
4580 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4582 vpath
= &hldev
->virtual_paths
[vp_id
];
4584 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4585 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4588 vp_reg
= vpath
->vp_reg
;
4590 status
= __vxge_hw_vpath_swapper_set(vpath
->vp_reg
);
4591 if (status
!= VXGE_HW_OK
)
4594 status
= __vxge_hw_vpath_mac_configure(hldev
, vp_id
);
4595 if (status
!= VXGE_HW_OK
)
4598 status
= __vxge_hw_vpath_kdfc_configure(hldev
, vp_id
);
4599 if (status
!= VXGE_HW_OK
)
4602 status
= __vxge_hw_vpath_tim_configure(hldev
, vp_id
);
4603 if (status
!= VXGE_HW_OK
)
4606 val64
= readq(&vp_reg
->rtdma_rd_optimization_ctrl
);
4608 /* Get MRRS value from device control */
4609 status
= __vxge_hw_vpath_pci_read(vpath
, 1, 0x78, &val32
);
4610 if (status
== VXGE_HW_OK
) {
4611 val32
= (val32
& VXGE_HW_PCI_EXP_DEVCTL_READRQ
) >> 12;
4613 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4615 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32
);
4617 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE
;
4620 val64
&= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4622 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4623 VXGE_HW_MAX_PAYLOAD_SIZE_512
);
4625 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN
;
4626 writeq(val64
, &vp_reg
->rtdma_rd_optimization_ctrl
);
4633 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4634 * This routine closes all channels it opened and freeup memory
4636 static void __vxge_hw_vp_terminate(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4638 struct __vxge_hw_virtualpath
*vpath
;
4640 vpath
= &hldev
->virtual_paths
[vp_id
];
4642 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
)
4645 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath
->hldev
->tim_int_mask0
,
4646 vpath
->hldev
->tim_int_mask1
, vpath
->vp_id
);
4647 hldev
->stats
.hw_dev_info_stats
.vpath_info
[vpath
->vp_id
] = NULL
;
4649 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4655 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4656 * This routine is the initial phase of init which resets the vpath and
4657 * initializes the software support structures.
4659 static enum vxge_hw_status
4660 __vxge_hw_vp_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
,
4661 struct vxge_hw_vp_config
*config
)
4663 struct __vxge_hw_virtualpath
*vpath
;
4664 enum vxge_hw_status status
= VXGE_HW_OK
;
4666 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4667 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4671 vpath
= &hldev
->virtual_paths
[vp_id
];
4673 spin_lock_init(&hldev
->virtual_paths
[vp_id
].lock
);
4674 vpath
->vp_id
= vp_id
;
4675 vpath
->vp_open
= VXGE_HW_VP_OPEN
;
4676 vpath
->hldev
= hldev
;
4677 vpath
->vp_config
= config
;
4678 vpath
->vp_reg
= hldev
->vpath_reg
[vp_id
];
4679 vpath
->vpmgmt_reg
= hldev
->vpmgmt_reg
[vp_id
];
4681 __vxge_hw_vpath_reset(hldev
, vp_id
);
4683 status
= __vxge_hw_vpath_reset_check(vpath
);
4684 if (status
!= VXGE_HW_OK
) {
4685 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4689 status
= __vxge_hw_vpath_mgmt_read(hldev
, vpath
);
4690 if (status
!= VXGE_HW_OK
) {
4691 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4695 INIT_LIST_HEAD(&vpath
->vpath_handles
);
4697 vpath
->sw_stats
= &hldev
->stats
.sw_dev_info_stats
.vpath_info
[vp_id
];
4699 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev
->tim_int_mask0
,
4700 hldev
->tim_int_mask1
, vp_id
);
4702 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
4703 if (status
!= VXGE_HW_OK
)
4704 __vxge_hw_vp_terminate(hldev
, vp_id
);
4710 * vxge_hw_vpath_mtu_set - Set MTU.
4711 * Set new MTU value. Example, to use jumbo frames:
4712 * vxge_hw_vpath_mtu_set(my_device, 9600);
4715 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle
*vp
, u32 new_mtu
)
4718 enum vxge_hw_status status
= VXGE_HW_OK
;
4719 struct __vxge_hw_virtualpath
*vpath
;
4722 status
= VXGE_HW_ERR_INVALID_HANDLE
;
4727 new_mtu
+= VXGE_HW_MAC_HEADER_MAX_SIZE
;
4729 if ((new_mtu
< VXGE_HW_MIN_MTU
) || (new_mtu
> vpath
->max_mtu
))
4730 status
= VXGE_HW_ERR_INVALID_MTU_SIZE
;
4732 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
4734 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4735 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu
);
4737 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
4739 vpath
->vp_config
->mtu
= new_mtu
- VXGE_HW_MAC_HEADER_MAX_SIZE
;
4746 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4747 * Enable the DMA vpath statistics. The function is to be called to re-enable
4748 * the adapter to update stats into the host memory
4750 static enum vxge_hw_status
4751 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle
*vp
)
4753 enum vxge_hw_status status
= VXGE_HW_OK
;
4754 struct __vxge_hw_virtualpath
*vpath
;
4758 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4759 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4763 memcpy(vpath
->hw_stats_sav
, vpath
->hw_stats
,
4764 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4766 status
= __vxge_hw_vpath_stats_get(vpath
, vpath
->hw_stats
);
4772 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4773 * This function allocates a block from block pool or from the system
4775 static struct __vxge_hw_blockpool_entry
*
4776 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device
*devh
, u32 size
)
4778 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
4779 struct __vxge_hw_blockpool
*blockpool
;
4781 blockpool
= &devh
->block_pool
;
4783 if (size
== blockpool
->block_size
) {
4785 if (!list_empty(&blockpool
->free_block_list
))
4786 entry
= (struct __vxge_hw_blockpool_entry
*)
4787 list_first_entry(&blockpool
->free_block_list
,
4788 struct __vxge_hw_blockpool_entry
,
4791 if (entry
!= NULL
) {
4792 list_del(&entry
->item
);
4793 blockpool
->pool_size
--;
4798 __vxge_hw_blockpool_blocks_add(blockpool
);
4804 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4805 * This function is used to open access to virtual path of an
4806 * adapter for offload, GRO operations. This function returns
4810 vxge_hw_vpath_open(struct __vxge_hw_device
*hldev
,
4811 struct vxge_hw_vpath_attr
*attr
,
4812 struct __vxge_hw_vpath_handle
**vpath_handle
)
4814 struct __vxge_hw_virtualpath
*vpath
;
4815 struct __vxge_hw_vpath_handle
*vp
;
4816 enum vxge_hw_status status
;
4818 vpath
= &hldev
->virtual_paths
[attr
->vp_id
];
4820 if (vpath
->vp_open
== VXGE_HW_VP_OPEN
) {
4821 status
= VXGE_HW_ERR_INVALID_STATE
;
4822 goto vpath_open_exit1
;
4825 status
= __vxge_hw_vp_initialize(hldev
, attr
->vp_id
,
4826 &hldev
->config
.vp_config
[attr
->vp_id
]);
4827 if (status
!= VXGE_HW_OK
)
4828 goto vpath_open_exit1
;
4830 vp
= vzalloc(sizeof(struct __vxge_hw_vpath_handle
));
4832 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4833 goto vpath_open_exit2
;
4838 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4839 status
= __vxge_hw_fifo_create(vp
, &attr
->fifo_attr
);
4840 if (status
!= VXGE_HW_OK
)
4841 goto vpath_open_exit6
;
4844 if (vpath
->vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4845 status
= __vxge_hw_ring_create(vp
, &attr
->ring_attr
);
4846 if (status
!= VXGE_HW_OK
)
4847 goto vpath_open_exit7
;
4849 __vxge_hw_vpath_prc_configure(hldev
, attr
->vp_id
);
4852 vpath
->fifoh
->tx_intr_num
=
4853 (attr
->vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4854 VXGE_HW_VPATH_INTR_TX
;
4856 vpath
->stats_block
= __vxge_hw_blockpool_block_allocate(hldev
,
4857 VXGE_HW_BLOCK_SIZE
);
4858 if (vpath
->stats_block
== NULL
) {
4859 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4860 goto vpath_open_exit8
;
4863 vpath
->hw_stats
= (struct vxge_hw_vpath_stats_hw_info
*)vpath
->
4864 stats_block
->memblock
;
4865 memset(vpath
->hw_stats
, 0,
4866 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4868 hldev
->stats
.hw_dev_info_stats
.vpath_info
[attr
->vp_id
] =
4871 vpath
->hw_stats_sav
=
4872 &hldev
->stats
.hw_dev_info_stats
.vpath_info_sav
[attr
->vp_id
];
4873 memset(vpath
->hw_stats_sav
, 0,
4874 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4876 writeq(vpath
->stats_block
->dma_addr
, &vpath
->vp_reg
->stats_cfg
);
4878 status
= vxge_hw_vpath_stats_enable(vp
);
4879 if (status
!= VXGE_HW_OK
)
4880 goto vpath_open_exit8
;
4882 list_add(&vp
->item
, &vpath
->vpath_handles
);
4884 hldev
->vpaths_deployed
|= vxge_mBIT(vpath
->vp_id
);
4888 attr
->fifo_attr
.userdata
= vpath
->fifoh
;
4889 attr
->ring_attr
.userdata
= vpath
->ringh
;
4894 if (vpath
->ringh
!= NULL
)
4895 __vxge_hw_ring_delete(vp
);
4897 if (vpath
->fifoh
!= NULL
)
4898 __vxge_hw_fifo_delete(vp
);
4902 __vxge_hw_vp_terminate(hldev
, attr
->vp_id
);
4909 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4911 * @vp: Handle got from previous vpath open
4913 * This function is used to close access to virtual path opened
4916 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle
*vp
)
4918 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
4919 struct __vxge_hw_ring
*ring
= vpath
->ringh
;
4920 struct vxgedev
*vdev
= netdev_priv(vpath
->hldev
->ndev
);
4921 u64 new_count
, val64
, val164
;
4924 new_count
= readq(&vpath
->vp_reg
->rxdmem_size
);
4925 new_count
&= 0x1fff;
4927 new_count
= ring
->config
->ring_blocks
* VXGE_HW_BLOCK_SIZE
/ 8;
4929 val164
= VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count
);
4931 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164
),
4932 &vpath
->vp_reg
->prc_rxd_doorbell
);
4933 readl(&vpath
->vp_reg
->prc_rxd_doorbell
);
4936 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4937 val64
= VXGE_HW_PRC_CFG6_RXD_SPAT(val64
);
4941 * Each RxD is of 4 qwords
4943 new_count
-= (val64
+ 1);
4944 val64
= min(val164
, new_count
) / 4;
4946 ring
->rxds_limit
= min(ring
->rxds_limit
, val64
);
4947 if (ring
->rxds_limit
< 4)
4948 ring
->rxds_limit
= 4;
4952 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4954 * @entry: Entry of block to be freed
4956 * This function frees a block from block pool
4959 __vxge_hw_blockpool_block_free(struct __vxge_hw_device
*devh
,
4960 struct __vxge_hw_blockpool_entry
*entry
)
4962 struct __vxge_hw_blockpool
*blockpool
;
4964 blockpool
= &devh
->block_pool
;
4966 if (entry
->length
== blockpool
->block_size
) {
4967 list_add(&entry
->item
, &blockpool
->free_block_list
);
4968 blockpool
->pool_size
++;
4971 __vxge_hw_blockpool_blocks_remove(blockpool
);
4975 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4976 * This function is used to close access to virtual path opened
4979 enum vxge_hw_status
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle
*vp
)
4981 struct __vxge_hw_virtualpath
*vpath
= NULL
;
4982 struct __vxge_hw_device
*devh
= NULL
;
4983 u32 vp_id
= vp
->vpath
->vp_id
;
4984 u32 is_empty
= TRUE
;
4985 enum vxge_hw_status status
= VXGE_HW_OK
;
4988 devh
= vpath
->hldev
;
4990 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4991 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4992 goto vpath_close_exit
;
4995 list_del(&vp
->item
);
4997 if (!list_empty(&vpath
->vpath_handles
)) {
4998 list_add(&vp
->item
, &vpath
->vpath_handles
);
5003 status
= VXGE_HW_FAIL
;
5004 goto vpath_close_exit
;
5007 devh
->vpaths_deployed
&= ~vxge_mBIT(vp_id
);
5009 if (vpath
->ringh
!= NULL
)
5010 __vxge_hw_ring_delete(vp
);
5012 if (vpath
->fifoh
!= NULL
)
5013 __vxge_hw_fifo_delete(vp
);
5015 if (vpath
->stats_block
!= NULL
)
5016 __vxge_hw_blockpool_block_free(devh
, vpath
->stats_block
);
5020 __vxge_hw_vp_terminate(devh
, vp_id
);
5022 spin_lock(&vpath
->lock
);
5023 vpath
->vp_open
= VXGE_HW_VP_NOT_OPEN
;
5024 spin_unlock(&vpath
->lock
);
5031 * vxge_hw_vpath_reset - Resets vpath
5032 * This function is used to request a reset of vpath
5034 enum vxge_hw_status
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle
*vp
)
5036 enum vxge_hw_status status
;
5038 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
5040 vp_id
= vpath
->vp_id
;
5042 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5043 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5047 status
= __vxge_hw_vpath_reset(vpath
->hldev
, vp_id
);
5048 if (status
== VXGE_HW_OK
)
5049 vpath
->sw_stats
->soft_reset_cnt
++;
5055 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5056 * This function poll's for the vpath reset completion and re initializes
5060 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle
*vp
)
5062 struct __vxge_hw_virtualpath
*vpath
= NULL
;
5063 enum vxge_hw_status status
;
5064 struct __vxge_hw_device
*hldev
;
5067 vp_id
= vp
->vpath
->vp_id
;
5069 hldev
= vpath
->hldev
;
5071 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5072 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5076 status
= __vxge_hw_vpath_reset_check(vpath
);
5077 if (status
!= VXGE_HW_OK
)
5080 status
= __vxge_hw_vpath_sw_reset(hldev
, vp_id
);
5081 if (status
!= VXGE_HW_OK
)
5084 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
5085 if (status
!= VXGE_HW_OK
)
5088 if (vpath
->ringh
!= NULL
)
5089 __vxge_hw_vpath_prc_configure(hldev
, vp_id
);
5091 memset(vpath
->hw_stats
, 0,
5092 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5094 memset(vpath
->hw_stats_sav
, 0,
5095 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5097 writeq(vpath
->stats_block
->dma_addr
,
5098 &vpath
->vp_reg
->stats_cfg
);
5100 status
= vxge_hw_vpath_stats_enable(vp
);
5107 * vxge_hw_vpath_enable - Enable vpath.
5108 * This routine clears the vpath reset thereby enabling a vpath
5109 * to start forwarding frames and generating interrupts.
5112 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle
*vp
)
5114 struct __vxge_hw_device
*hldev
;
5117 hldev
= vp
->vpath
->hldev
;
5119 val64
= VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5120 1 << (16 - vp
->vpath
->vp_id
));
5122 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
5123 &hldev
->common_reg
->cmn_rsthdlr_cfg1
);