IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / net / vxge / vxge-traffic.c
blob2638b8d97b8f016c0005d8d123d3ce225a182ffd
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
21 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22 * @vp: Virtual Path handle.
24 * Enable vpath interrupts. The function is to be executed the last in
25 * vpath initialization sequence.
27 * See also: vxge_hw_vpath_intr_disable()
29 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31 u64 val64;
33 struct __vxge_hw_virtualpath *vpath;
34 struct vxge_hw_vpath_reg __iomem *vp_reg;
35 enum vxge_hw_status status = VXGE_HW_OK;
36 if (vp == NULL) {
37 status = VXGE_HW_ERR_INVALID_HANDLE;
38 goto exit;
41 vpath = vp->vpath;
43 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45 goto exit;
48 vp_reg = vpath->vp_reg;
50 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
52 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53 &vp_reg->general_errors_reg);
55 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56 &vp_reg->pci_config_errors_reg);
58 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59 &vp_reg->mrpcim_to_vpath_alarm_reg);
61 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62 &vp_reg->srpcim_to_vpath_alarm_reg);
64 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65 &vp_reg->vpath_ppif_int_status);
67 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68 &vp_reg->srpcim_msg_to_vpath_reg);
70 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71 &vp_reg->vpath_pcipif_int_status);
73 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74 &vp_reg->prc_alarm_reg);
76 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77 &vp_reg->wrdma_alarm_status);
79 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80 &vp_reg->asic_ntwk_vp_err_reg);
82 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83 &vp_reg->xgmac_vp_int_status);
85 val64 = readq(&vp_reg->vpath_general_int_status);
87 /* Mask unwanted interrupts */
89 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90 &vp_reg->vpath_pcipif_int_mask);
92 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93 &vp_reg->srpcim_msg_to_vpath_mask);
95 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96 &vp_reg->srpcim_to_vpath_alarm_mask);
98 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99 &vp_reg->mrpcim_to_vpath_alarm_mask);
101 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102 &vp_reg->pci_config_errors_mask);
104 /* Unmask the individual interrupts */
106 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110 &vp_reg->general_errors_mask);
112 __vxge_hw_pio_mem_write32_upper(
113 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119 &vp_reg->kdfcctl_errors_mask);
121 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
123 __vxge_hw_pio_mem_write32_upper(
124 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125 &vp_reg->prc_alarm_mask);
127 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
130 if (vpath->hldev->first_vp_id != vpath->vp_id)
131 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132 &vp_reg->asic_ntwk_vp_err_mask);
133 else
134 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137 &vp_reg->asic_ntwk_vp_err_mask);
139 __vxge_hw_pio_mem_write32_upper(0,
140 &vp_reg->vpath_general_int_mask);
141 exit:
142 return status;
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
153 * See also: vxge_hw_vpath_intr_enable()
155 enum vxge_hw_status vxge_hw_vpath_intr_disable(
156 struct __vxge_hw_vpath_handle *vp)
158 u64 val64;
160 struct __vxge_hw_virtualpath *vpath;
161 enum vxge_hw_status status = VXGE_HW_OK;
162 struct vxge_hw_vpath_reg __iomem *vp_reg;
163 if (vp == NULL) {
164 status = VXGE_HW_ERR_INVALID_HANDLE;
165 goto exit;
168 vpath = vp->vpath;
170 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172 goto exit;
174 vp_reg = vpath->vp_reg;
176 __vxge_hw_pio_mem_write32_upper(
177 (u32)VXGE_HW_INTR_MASK_ALL,
178 &vp_reg->vpath_general_int_mask);
180 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
182 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
184 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185 &vp_reg->general_errors_mask);
187 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188 &vp_reg->pci_config_errors_mask);
190 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191 &vp_reg->mrpcim_to_vpath_alarm_mask);
193 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194 &vp_reg->srpcim_to_vpath_alarm_mask);
196 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197 &vp_reg->vpath_ppif_int_mask);
199 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200 &vp_reg->srpcim_msg_to_vpath_mask);
202 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203 &vp_reg->vpath_pcipif_int_mask);
205 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206 &vp_reg->wrdma_alarm_mask);
208 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209 &vp_reg->prc_alarm_mask);
211 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212 &vp_reg->xgmac_vp_int_mask);
214 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215 &vp_reg->asic_ntwk_vp_err_mask);
217 exit:
218 return status;
221 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
223 struct vxge_hw_vpath_reg __iomem *vp_reg;
224 struct vxge_hw_vp_config *config;
225 u64 val64;
227 if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
228 return;
230 vp_reg = fifo->vp_reg;
231 config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
233 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
234 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
235 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
236 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
237 fifo->tim_tti_cfg1_saved = val64;
238 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
242 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
244 u64 val64 = ring->tim_rti_cfg1_saved;
246 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
247 ring->tim_rti_cfg1_saved = val64;
248 writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
251 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
253 u64 val64 = fifo->tim_tti_cfg3_saved;
254 u64 timer = (fifo->rtimer * 1000) / 272;
256 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
257 if (timer)
258 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
259 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
261 writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
262 /* tti_cfg3_saved is not updated again because it is
263 * initialized at one place only - init time.
267 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
269 u64 val64 = ring->tim_rti_cfg3_saved;
270 u64 timer = (ring->rtimer * 1000) / 272;
272 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
273 if (timer)
274 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
275 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
277 writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
278 /* rti_cfg3_saved is not updated again because it is
279 * initialized at one place only - init time.
284 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
285 * @channeh: Channel for rx or tx handle
286 * @msix_id: MSIX ID
288 * The function masks the msix interrupt for the given msix_id
290 * Returns: 0
292 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
295 __vxge_hw_pio_mem_write32_upper(
296 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
297 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
301 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
302 * @channeh: Channel for rx or tx handle
303 * @msix_id: MSI ID
305 * The function unmasks the msix interrupt for the given msix_id
307 * Returns: 0
309 void
310 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
313 __vxge_hw_pio_mem_write32_upper(
314 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
315 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
319 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
320 * @channel: Channel for rx or tx handle
321 * @msix_id: MSI ID
323 * The function unmasks the msix interrupt for the given msix_id
324 * if configured in MSIX oneshot mode
326 * Returns: 0
328 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
330 __vxge_hw_pio_mem_write32_upper(
331 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
332 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
336 * vxge_hw_device_set_intr_type - Updates the configuration
337 * with new interrupt type.
338 * @hldev: HW device handle.
339 * @intr_mode: New interrupt type
341 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
344 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
345 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
346 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
347 (intr_mode != VXGE_HW_INTR_MODE_DEF))
348 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
350 hldev->config.intr_mode = intr_mode;
351 return intr_mode;
355 * vxge_hw_device_intr_enable - Enable interrupts.
356 * @hldev: HW device handle.
357 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
358 * the type(s) of interrupts to enable.
360 * Enable Titan interrupts. The function is to be executed the last in
361 * Titan initialization sequence.
363 * See also: vxge_hw_device_intr_disable()
365 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
367 u32 i;
368 u64 val64;
369 u32 val32;
371 vxge_hw_device_mask_all(hldev);
373 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
375 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
376 continue;
378 vxge_hw_vpath_intr_enable(
379 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
382 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
383 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
384 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
386 if (val64 != 0) {
387 writeq(val64, &hldev->common_reg->tim_int_status0);
389 writeq(~val64, &hldev->common_reg->tim_int_mask0);
392 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
393 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
395 if (val32 != 0) {
396 __vxge_hw_pio_mem_write32_upper(val32,
397 &hldev->common_reg->tim_int_status1);
399 __vxge_hw_pio_mem_write32_upper(~val32,
400 &hldev->common_reg->tim_int_mask1);
404 val64 = readq(&hldev->common_reg->titan_general_int_status);
406 vxge_hw_device_unmask_all(hldev);
410 * vxge_hw_device_intr_disable - Disable Titan interrupts.
411 * @hldev: HW device handle.
412 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
413 * the type(s) of interrupts to disable.
415 * Disable Titan interrupts.
417 * See also: vxge_hw_device_intr_enable()
419 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
421 u32 i;
423 vxge_hw_device_mask_all(hldev);
425 /* mask all the tim interrupts */
426 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
427 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
428 &hldev->common_reg->tim_int_mask1);
430 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
432 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
433 continue;
435 vxge_hw_vpath_intr_disable(
436 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
441 * vxge_hw_device_mask_all - Mask all device interrupts.
442 * @hldev: HW device handle.
444 * Mask all device interrupts.
446 * See also: vxge_hw_device_unmask_all()
448 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
450 u64 val64;
452 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
453 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
455 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
456 &hldev->common_reg->titan_mask_all_int);
460 * vxge_hw_device_unmask_all - Unmask all device interrupts.
461 * @hldev: HW device handle.
463 * Unmask all device interrupts.
465 * See also: vxge_hw_device_mask_all()
467 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
469 u64 val64 = 0;
471 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
472 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
474 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
475 &hldev->common_reg->titan_mask_all_int);
479 * vxge_hw_device_flush_io - Flush io writes.
480 * @hldev: HW device handle.
482 * The function performs a read operation to flush io writes.
484 * Returns: void
486 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
488 u32 val32;
490 val32 = readl(&hldev->common_reg->titan_general_int_status);
494 * __vxge_hw_device_handle_error - Handle error
495 * @hldev: HW device
496 * @vp_id: Vpath Id
497 * @type: Error type. Please see enum vxge_hw_event{}
499 * Handle error.
501 static enum vxge_hw_status
502 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
503 enum vxge_hw_event type)
505 switch (type) {
506 case VXGE_HW_EVENT_UNKNOWN:
507 break;
508 case VXGE_HW_EVENT_RESET_START:
509 case VXGE_HW_EVENT_RESET_COMPLETE:
510 case VXGE_HW_EVENT_LINK_DOWN:
511 case VXGE_HW_EVENT_LINK_UP:
512 goto out;
513 case VXGE_HW_EVENT_ALARM_CLEARED:
514 goto out;
515 case VXGE_HW_EVENT_ECCERR:
516 case VXGE_HW_EVENT_MRPCIM_ECCERR:
517 goto out;
518 case VXGE_HW_EVENT_FIFO_ERR:
519 case VXGE_HW_EVENT_VPATH_ERR:
520 case VXGE_HW_EVENT_CRITICAL_ERR:
521 case VXGE_HW_EVENT_SERR:
522 break;
523 case VXGE_HW_EVENT_SRPCIM_SERR:
524 case VXGE_HW_EVENT_MRPCIM_SERR:
525 goto out;
526 case VXGE_HW_EVENT_SLOT_FREEZE:
527 break;
528 default:
529 vxge_assert(0);
530 goto out;
533 /* notify driver */
534 if (hldev->uld_callbacks.crit_err)
535 hldev->uld_callbacks.crit_err(
536 (struct __vxge_hw_device *)hldev,
537 type, vp_id);
538 out:
540 return VXGE_HW_OK;
544 * __vxge_hw_device_handle_link_down_ind
545 * @hldev: HW device handle.
547 * Link down indication handler. The function is invoked by HW when
548 * Titan indicates that the link is down.
550 static enum vxge_hw_status
551 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
554 * If the previous link state is not down, return.
556 if (hldev->link_state == VXGE_HW_LINK_DOWN)
557 goto exit;
559 hldev->link_state = VXGE_HW_LINK_DOWN;
561 /* notify driver */
562 if (hldev->uld_callbacks.link_down)
563 hldev->uld_callbacks.link_down(hldev);
564 exit:
565 return VXGE_HW_OK;
569 * __vxge_hw_device_handle_link_up_ind
570 * @hldev: HW device handle.
572 * Link up indication handler. The function is invoked by HW when
573 * Titan indicates that the link is up for programmable amount of time.
575 static enum vxge_hw_status
576 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
579 * If the previous link state is not down, return.
581 if (hldev->link_state == VXGE_HW_LINK_UP)
582 goto exit;
584 hldev->link_state = VXGE_HW_LINK_UP;
586 /* notify driver */
587 if (hldev->uld_callbacks.link_up)
588 hldev->uld_callbacks.link_up(hldev);
589 exit:
590 return VXGE_HW_OK;
594 * __vxge_hw_vpath_alarm_process - Process Alarms.
595 * @vpath: Virtual Path.
596 * @skip_alarms: Do not clear the alarms
598 * Process vpath alarms.
601 static enum vxge_hw_status
602 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
603 u32 skip_alarms)
605 u64 val64;
606 u64 alarm_status;
607 u64 pic_status;
608 struct __vxge_hw_device *hldev = NULL;
609 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
610 u64 mask64;
611 struct vxge_hw_vpath_stats_sw_info *sw_stats;
612 struct vxge_hw_vpath_reg __iomem *vp_reg;
614 if (vpath == NULL) {
615 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
616 alarm_event);
617 goto out2;
620 hldev = vpath->hldev;
621 vp_reg = vpath->vp_reg;
622 alarm_status = readq(&vp_reg->vpath_general_int_status);
624 if (alarm_status == VXGE_HW_ALL_FOXES) {
625 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
626 alarm_event);
627 goto out;
630 sw_stats = vpath->sw_stats;
632 if (alarm_status & ~(
633 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
634 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
635 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
636 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
637 sw_stats->error_stats.unknown_alarms++;
639 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
640 alarm_event);
641 goto out;
644 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
646 val64 = readq(&vp_reg->xgmac_vp_int_status);
648 if (val64 &
649 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
651 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
653 if (((val64 &
654 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
655 (!(val64 &
656 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
657 ((val64 &
658 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
659 (!(val64 &
660 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
661 ))) {
662 sw_stats->error_stats.network_sustained_fault++;
664 writeq(
665 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
666 &vp_reg->asic_ntwk_vp_err_mask);
668 __vxge_hw_device_handle_link_down_ind(hldev);
669 alarm_event = VXGE_HW_SET_LEVEL(
670 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
673 if (((val64 &
674 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
675 (!(val64 &
676 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
677 ((val64 &
678 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
679 (!(val64 &
680 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
681 ))) {
683 sw_stats->error_stats.network_sustained_ok++;
685 writeq(
686 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
687 &vp_reg->asic_ntwk_vp_err_mask);
689 __vxge_hw_device_handle_link_up_ind(hldev);
690 alarm_event = VXGE_HW_SET_LEVEL(
691 VXGE_HW_EVENT_LINK_UP, alarm_event);
694 writeq(VXGE_HW_INTR_MASK_ALL,
695 &vp_reg->asic_ntwk_vp_err_reg);
697 alarm_event = VXGE_HW_SET_LEVEL(
698 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
700 if (skip_alarms)
701 return VXGE_HW_OK;
705 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
707 pic_status = readq(&vp_reg->vpath_ppif_int_status);
709 if (pic_status &
710 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
712 val64 = readq(&vp_reg->general_errors_reg);
713 mask64 = readq(&vp_reg->general_errors_mask);
715 if ((val64 &
716 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
717 ~mask64) {
718 sw_stats->error_stats.ini_serr_det++;
720 alarm_event = VXGE_HW_SET_LEVEL(
721 VXGE_HW_EVENT_SERR, alarm_event);
724 if ((val64 &
725 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
726 ~mask64) {
727 sw_stats->error_stats.dblgen_fifo0_overflow++;
729 alarm_event = VXGE_HW_SET_LEVEL(
730 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
733 if ((val64 &
734 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
735 ~mask64)
736 sw_stats->error_stats.statsb_pif_chain_error++;
738 if ((val64 &
739 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
740 ~mask64)
741 sw_stats->error_stats.statsb_drop_timeout++;
743 if ((val64 &
744 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
745 ~mask64)
746 sw_stats->error_stats.target_illegal_access++;
748 if (!skip_alarms) {
749 writeq(VXGE_HW_INTR_MASK_ALL,
750 &vp_reg->general_errors_reg);
751 alarm_event = VXGE_HW_SET_LEVEL(
752 VXGE_HW_EVENT_ALARM_CLEARED,
753 alarm_event);
757 if (pic_status &
758 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
760 val64 = readq(&vp_reg->kdfcctl_errors_reg);
761 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
763 if ((val64 &
764 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
765 ~mask64) {
766 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
768 alarm_event = VXGE_HW_SET_LEVEL(
769 VXGE_HW_EVENT_FIFO_ERR,
770 alarm_event);
773 if ((val64 &
774 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
775 ~mask64) {
776 sw_stats->error_stats.kdfcctl_fifo0_poison++;
778 alarm_event = VXGE_HW_SET_LEVEL(
779 VXGE_HW_EVENT_FIFO_ERR,
780 alarm_event);
783 if ((val64 &
784 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
785 ~mask64) {
786 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
788 alarm_event = VXGE_HW_SET_LEVEL(
789 VXGE_HW_EVENT_FIFO_ERR,
790 alarm_event);
793 if (!skip_alarms) {
794 writeq(VXGE_HW_INTR_MASK_ALL,
795 &vp_reg->kdfcctl_errors_reg);
796 alarm_event = VXGE_HW_SET_LEVEL(
797 VXGE_HW_EVENT_ALARM_CLEARED,
798 alarm_event);
804 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
806 val64 = readq(&vp_reg->wrdma_alarm_status);
808 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
810 val64 = readq(&vp_reg->prc_alarm_reg);
811 mask64 = readq(&vp_reg->prc_alarm_mask);
813 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
814 ~mask64)
815 sw_stats->error_stats.prc_ring_bumps++;
817 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
818 ~mask64) {
819 sw_stats->error_stats.prc_rxdcm_sc_err++;
821 alarm_event = VXGE_HW_SET_LEVEL(
822 VXGE_HW_EVENT_VPATH_ERR,
823 alarm_event);
826 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
827 & ~mask64) {
828 sw_stats->error_stats.prc_rxdcm_sc_abort++;
830 alarm_event = VXGE_HW_SET_LEVEL(
831 VXGE_HW_EVENT_VPATH_ERR,
832 alarm_event);
835 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
836 & ~mask64) {
837 sw_stats->error_stats.prc_quanta_size_err++;
839 alarm_event = VXGE_HW_SET_LEVEL(
840 VXGE_HW_EVENT_VPATH_ERR,
841 alarm_event);
844 if (!skip_alarms) {
845 writeq(VXGE_HW_INTR_MASK_ALL,
846 &vp_reg->prc_alarm_reg);
847 alarm_event = VXGE_HW_SET_LEVEL(
848 VXGE_HW_EVENT_ALARM_CLEARED,
849 alarm_event);
853 out:
854 hldev->stats.sw_dev_err_stats.vpath_alarms++;
855 out2:
856 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
857 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
858 return VXGE_HW_OK;
860 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
862 if (alarm_event == VXGE_HW_EVENT_SERR)
863 return VXGE_HW_ERR_CRITICAL;
865 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
866 VXGE_HW_ERR_SLOT_FREEZE :
867 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
868 VXGE_HW_ERR_VPATH;
872 * vxge_hw_device_begin_irq - Begin IRQ processing.
873 * @hldev: HW device handle.
874 * @skip_alarms: Do not clear the alarms
875 * @reason: "Reason" for the interrupt, the value of Titan's
876 * general_int_status register.
878 * The function performs two actions, It first checks whether (shared IRQ) the
879 * interrupt was raised by the device. Next, it masks the device interrupts.
881 * Note:
882 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
883 * bridge. Therefore, two back-to-back interrupts are potentially possible.
885 * Returns: 0, if the interrupt is not "ours" (note that in this case the
886 * device remain enabled).
887 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
888 * status.
890 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
891 u32 skip_alarms, u64 *reason)
893 u32 i;
894 u64 val64;
895 u64 adapter_status;
896 u64 vpath_mask;
897 enum vxge_hw_status ret = VXGE_HW_OK;
899 val64 = readq(&hldev->common_reg->titan_general_int_status);
901 if (unlikely(!val64)) {
902 /* not Titan interrupt */
903 *reason = 0;
904 ret = VXGE_HW_ERR_WRONG_IRQ;
905 goto exit;
908 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
910 adapter_status = readq(&hldev->common_reg->adapter_status);
912 if (adapter_status == VXGE_HW_ALL_FOXES) {
914 __vxge_hw_device_handle_error(hldev,
915 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
916 *reason = 0;
917 ret = VXGE_HW_ERR_SLOT_FREEZE;
918 goto exit;
922 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
924 *reason = val64;
926 vpath_mask = hldev->vpaths_deployed >>
927 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
929 if (val64 &
930 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
931 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
933 return VXGE_HW_OK;
936 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
938 if (unlikely(val64 &
939 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
941 enum vxge_hw_status error_level = VXGE_HW_OK;
943 hldev->stats.sw_dev_err_stats.vpath_alarms++;
945 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
947 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
948 continue;
950 ret = __vxge_hw_vpath_alarm_process(
951 &hldev->virtual_paths[i], skip_alarms);
953 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
955 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
956 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
957 break;
960 ret = error_level;
962 exit:
963 return ret;
967 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
968 * condition that has caused the Tx and RX interrupt.
969 * @hldev: HW device.
971 * Acknowledge (that is, clear) the condition that has caused
972 * the Tx and Rx interrupt.
973 * See also: vxge_hw_device_begin_irq(),
974 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
976 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
979 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
980 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
981 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
982 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
983 &hldev->common_reg->tim_int_status0);
986 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
987 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
988 __vxge_hw_pio_mem_write32_upper(
989 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
990 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
991 &hldev->common_reg->tim_int_status1);
996 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
997 * @channel: Channel
998 * @dtrh: Buffer to return the DTR pointer
1000 * Allocates a dtr from the reserve array. If the reserve array is empty,
1001 * it swaps the reserve and free arrays.
1004 static enum vxge_hw_status
1005 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1007 void **tmp_arr;
1009 if (channel->reserve_ptr - channel->reserve_top > 0) {
1010 _alloc_after_swap:
1011 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1013 return VXGE_HW_OK;
1016 /* switch between empty and full arrays */
1018 /* the idea behind such a design is that by having free and reserved
1019 * arrays separated we basically separated irq and non-irq parts.
1020 * i.e. no additional lock need to be done when we free a resource */
1022 if (channel->length - channel->free_ptr > 0) {
1024 tmp_arr = channel->reserve_arr;
1025 channel->reserve_arr = channel->free_arr;
1026 channel->free_arr = tmp_arr;
1027 channel->reserve_ptr = channel->length;
1028 channel->reserve_top = channel->free_ptr;
1029 channel->free_ptr = channel->length;
1031 channel->stats->reserve_free_swaps_cnt++;
1033 goto _alloc_after_swap;
1036 channel->stats->full_cnt++;
1038 *dtrh = NULL;
1039 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1043 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1044 * @channelh: Channel
1045 * @dtrh: DTR pointer
1047 * Posts a dtr to work array.
1050 static void
1051 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1053 vxge_assert(channel->work_arr[channel->post_index] == NULL);
1055 channel->work_arr[channel->post_index++] = dtrh;
1057 /* wrap-around */
1058 if (channel->post_index == channel->length)
1059 channel->post_index = 0;
1063 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1064 * @channel: Channel
1065 * @dtr: Buffer to return the next completed DTR pointer
1067 * Returns the next completed dtr with out removing it from work array
1070 void
1071 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1073 vxge_assert(channel->compl_index < channel->length);
1075 *dtrh = channel->work_arr[channel->compl_index];
1076 prefetch(*dtrh);
1080 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1081 * @channel: Channel handle
1083 * Removes the next completed dtr from work array
1086 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1088 channel->work_arr[channel->compl_index] = NULL;
1090 /* wrap-around */
1091 if (++channel->compl_index == channel->length)
1092 channel->compl_index = 0;
1094 channel->stats->total_compl_cnt++;
1098 * vxge_hw_channel_dtr_free - Frees a dtr
1099 * @channel: Channel handle
1100 * @dtr: DTR pointer
1102 * Returns the dtr to free array
1105 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1107 channel->free_arr[--channel->free_ptr] = dtrh;
1111 * vxge_hw_channel_dtr_count
1112 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1114 * Retrieve number of DTRs available. This function can not be called
1115 * from data path. ring_initial_replenishi() is the only user.
1117 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1119 return (channel->reserve_ptr - channel->reserve_top) +
1120 (channel->length - channel->free_ptr);
1124 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
1125 * @ring: Handle to the ring object used for receive
1126 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1127 * with a valid handle.
1129 * Reserve Rx descriptor for the subsequent filling-in driver
1130 * and posting on the corresponding channel (@channelh)
1131 * via vxge_hw_ring_rxd_post().
1133 * Returns: VXGE_HW_OK - success.
1134 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1137 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1138 void **rxdh)
1140 enum vxge_hw_status status;
1141 struct __vxge_hw_channel *channel;
1143 channel = &ring->channel;
1145 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1147 if (status == VXGE_HW_OK) {
1148 struct vxge_hw_ring_rxd_1 *rxdp =
1149 (struct vxge_hw_ring_rxd_1 *)*rxdh;
1151 rxdp->control_0 = rxdp->control_1 = 0;
1154 return status;
1158 * vxge_hw_ring_rxd_free - Free descriptor.
1159 * @ring: Handle to the ring object used for receive
1160 * @rxdh: Descriptor handle.
1162 * Free the reserved descriptor. This operation is "symmetrical" to
1163 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1164 * lifecycle.
1166 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1167 * be:
1169 * - reserved (vxge_hw_ring_rxd_reserve);
1171 * - posted (vxge_hw_ring_rxd_post);
1173 * - completed (vxge_hw_ring_rxd_next_completed);
1175 * - and recycled again (vxge_hw_ring_rxd_free).
1177 * For alternative state transitions and more details please refer to
1178 * the design doc.
1181 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1183 struct __vxge_hw_channel *channel;
1185 channel = &ring->channel;
1187 vxge_hw_channel_dtr_free(channel, rxdh);
1192 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1193 * @ring: Handle to the ring object used for receive
1194 * @rxdh: Descriptor handle.
1196 * This routine prepares a rxd and posts
1198 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1200 struct __vxge_hw_channel *channel;
1202 channel = &ring->channel;
1204 vxge_hw_channel_dtr_post(channel, rxdh);
1208 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1209 * @ring: Handle to the ring object used for receive
1210 * @rxdh: Descriptor handle.
1212 * Processes rxd after post
1214 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1216 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1217 struct __vxge_hw_channel *channel;
1219 channel = &ring->channel;
1221 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1223 if (ring->stats->common_stats.usage_cnt > 0)
1224 ring->stats->common_stats.usage_cnt--;
1228 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1229 * @ring: Handle to the ring object used for receive
1230 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1232 * Post descriptor on the ring.
1233 * Prior to posting the descriptor should be filled in accordance with
1234 * Host/Titan interface specification for a given service (LL, etc.).
1237 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1239 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1240 struct __vxge_hw_channel *channel;
1242 channel = &ring->channel;
1244 wmb();
1245 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1247 vxge_hw_channel_dtr_post(channel, rxdh);
1249 if (ring->stats->common_stats.usage_cnt > 0)
1250 ring->stats->common_stats.usage_cnt--;
1254 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1255 * @ring: Handle to the ring object used for receive
1256 * @rxdh: Descriptor handle.
1258 * Processes rxd after post with memory barrier.
1260 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1262 wmb();
1263 vxge_hw_ring_rxd_post_post(ring, rxdh);
1267 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1268 * @ring: Handle to the ring object used for receive
1269 * @rxdh: Descriptor handle. Returned by HW.
1270 * @t_code: Transfer code, as per Titan User Guide,
1271 * Receive Descriptor Format. Returned by HW.
1273 * Retrieve the _next_ completed descriptor.
1274 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1275 * driver of new completed descriptors. After that
1276 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1277 * completions (the very first completion is passed by HW via
1278 * vxge_hw_ring_callback_f).
1280 * Implementation-wise, the driver is free to call
1281 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1282 * ring callback, or in a deferred fashion and separate (from HW)
1283 * context.
1285 * Non-zero @t_code means failure to fill-in receive buffer(s)
1286 * of the descriptor.
1287 * For instance, parity error detected during the data transfer.
1288 * In this case Titan will complete the descriptor and indicate
1289 * for the host that the received data is not to be used.
1290 * For details please refer to Titan User Guide.
1292 * Returns: VXGE_HW_OK - success.
1293 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1294 * are currently available for processing.
1296 * See also: vxge_hw_ring_callback_f{},
1297 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1299 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1300 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1302 struct __vxge_hw_channel *channel;
1303 struct vxge_hw_ring_rxd_1 *rxdp;
1304 enum vxge_hw_status status = VXGE_HW_OK;
1305 u64 control_0, own;
1307 channel = &ring->channel;
1309 vxge_hw_channel_dtr_try_complete(channel, rxdh);
1311 rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
1312 if (rxdp == NULL) {
1313 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1314 goto exit;
1317 control_0 = rxdp->control_0;
1318 own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1319 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1321 /* check whether it is not the end */
1322 if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1324 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
1327 ++ring->cmpl_cnt;
1328 vxge_hw_channel_dtr_complete(channel);
1330 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1332 ring->stats->common_stats.usage_cnt++;
1333 if (ring->stats->common_stats.usage_max <
1334 ring->stats->common_stats.usage_cnt)
1335 ring->stats->common_stats.usage_max =
1336 ring->stats->common_stats.usage_cnt;
1338 status = VXGE_HW_OK;
1339 goto exit;
1342 /* reset it. since we don't want to return
1343 * garbage to the driver */
1344 *rxdh = NULL;
1345 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1346 exit:
1347 return status;
1351 * vxge_hw_ring_handle_tcode - Handle transfer code.
1352 * @ring: Handle to the ring object used for receive
1353 * @rxdh: Descriptor handle.
1354 * @t_code: One of the enumerated (and documented in the Titan user guide)
1355 * "transfer codes".
1357 * Handle descriptor's transfer code. The latter comes with each completed
1358 * descriptor.
1360 * Returns: one of the enum vxge_hw_status{} enumerated types.
1361 * VXGE_HW_OK - for success.
1362 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1364 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1365 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1367 struct __vxge_hw_channel *channel;
1368 enum vxge_hw_status status = VXGE_HW_OK;
1370 channel = &ring->channel;
1372 /* If the t_code is not supported and if the
1373 * t_code is other than 0x5 (unparseable packet
1374 * such as unknown UPV6 header), Drop it !!!
1377 if (t_code == VXGE_HW_RING_T_CODE_OK ||
1378 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1379 status = VXGE_HW_OK;
1380 goto exit;
1383 if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1384 status = VXGE_HW_ERR_INVALID_TCODE;
1385 goto exit;
1388 ring->stats->rxd_t_code_err_cnt[t_code]++;
1389 exit:
1390 return status;
1394 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1396 * @fifo: fifohandle
1397 * @txdl_ptr: The starting location of the TxDL in host memory
1398 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1399 * @no_snoop: No snoop flags
1401 * This function posts a non-offload doorbell to doorbell FIFO
1404 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1405 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1407 struct __vxge_hw_channel *channel;
1409 channel = &fifo->channel;
1411 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1412 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1413 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1414 &fifo->nofl_db->control_0);
1416 mmiowb();
1418 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1420 mmiowb();
1424 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1425 * the fifo
1426 * @fifoh: Handle to the fifo object used for non offload send
1428 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1430 return vxge_hw_channel_dtr_count(&fifoh->channel);
1434 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1435 * @fifoh: Handle to the fifo object used for non offload send
1436 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1437 * with a valid handle.
1438 * @txdl_priv: Buffer to return the pointer to per txdl space
1440 * Reserve a single TxDL (that is, fifo descriptor)
1441 * for the subsequent filling-in by driver)
1442 * and posting on the corresponding channel (@channelh)
1443 * via vxge_hw_fifo_txdl_post().
1445 * Note: it is the responsibility of driver to reserve multiple descriptors
1446 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1447 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1449 * Returns: VXGE_HW_OK - success;
1450 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1453 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1454 struct __vxge_hw_fifo *fifo,
1455 void **txdlh, void **txdl_priv)
1457 struct __vxge_hw_channel *channel;
1458 enum vxge_hw_status status;
1459 int i;
1461 channel = &fifo->channel;
1463 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1465 if (status == VXGE_HW_OK) {
1466 struct vxge_hw_fifo_txd *txdp =
1467 (struct vxge_hw_fifo_txd *)*txdlh;
1468 struct __vxge_hw_fifo_txdl_priv *priv;
1470 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1472 /* reset the TxDL's private */
1473 priv->align_dma_offset = 0;
1474 priv->align_vaddr_start = priv->align_vaddr;
1475 priv->align_used_frags = 0;
1476 priv->frags = 0;
1477 priv->alloc_frags = fifo->config->max_frags;
1478 priv->next_txdl_priv = NULL;
1480 *txdl_priv = (void *)(size_t)txdp->host_control;
1482 for (i = 0; i < fifo->config->max_frags; i++) {
1483 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1484 txdp->control_0 = txdp->control_1 = 0;
1488 return status;
1492 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1493 * descriptor.
1494 * @fifo: Handle to the fifo object used for non offload send
1495 * @txdlh: Descriptor handle.
1496 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1497 * (of buffers).
1498 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1499 * @size: Size of the data buffer (in bytes).
1501 * This API is part of the preparation of the transmit descriptor for posting
1502 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1503 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1504 * All three APIs fill in the fields of the fifo descriptor,
1505 * in accordance with the Titan specification.
1508 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1509 void *txdlh, u32 frag_idx,
1510 dma_addr_t dma_pointer, u32 size)
1512 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1513 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1514 struct __vxge_hw_channel *channel;
1516 channel = &fifo->channel;
1518 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1519 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1521 if (frag_idx != 0)
1522 txdp->control_0 = txdp->control_1 = 0;
1523 else {
1524 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1525 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1526 txdp->control_1 |= fifo->interrupt_type;
1527 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1528 fifo->tx_intr_num);
1529 if (txdl_priv->frags) {
1530 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1531 (txdl_priv->frags - 1);
1532 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1533 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1537 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1539 txdp->buffer_pointer = (u64)dma_pointer;
1540 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1541 fifo->stats->total_buffers++;
1542 txdl_priv->frags++;
1546 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1547 * @fifo: Handle to the fifo object used for non offload send
1548 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1549 * @frags: Number of contiguous buffers that are part of a single
1550 * transmit operation.
1552 * Post descriptor on the 'fifo' type channel for transmission.
1553 * Prior to posting the descriptor should be filled in accordance with
1554 * Host/Titan interface specification for a given service (LL, etc.).
1557 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1559 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1560 struct vxge_hw_fifo_txd *txdp_last;
1561 struct vxge_hw_fifo_txd *txdp_first;
1562 struct __vxge_hw_channel *channel;
1564 channel = &fifo->channel;
1566 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1567 txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1569 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1570 txdp_last->control_0 |=
1571 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1572 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1574 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1576 __vxge_hw_non_offload_db_post(fifo,
1577 (u64)txdl_priv->dma_addr,
1578 txdl_priv->frags - 1,
1579 fifo->no_snoop_bits);
1581 fifo->stats->total_posts++;
1582 fifo->stats->common_stats.usage_cnt++;
1583 if (fifo->stats->common_stats.usage_max <
1584 fifo->stats->common_stats.usage_cnt)
1585 fifo->stats->common_stats.usage_max =
1586 fifo->stats->common_stats.usage_cnt;
1590 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1591 * @fifo: Handle to the fifo object used for non offload send
1592 * @txdlh: Descriptor handle. Returned by HW.
1593 * @t_code: Transfer code, as per Titan User Guide,
1594 * Transmit Descriptor Format.
1595 * Returned by HW.
1597 * Retrieve the _next_ completed descriptor.
1598 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1599 * driver of new completed descriptors. After that
1600 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1601 * completions (the very first completion is passed by HW via
1602 * vxge_hw_channel_callback_f).
1604 * Implementation-wise, the driver is free to call
1605 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1606 * channel callback, or in a deferred fashion and separate (from HW)
1607 * context.
1609 * Non-zero @t_code means failure to process the descriptor.
1610 * The failure could happen, for instance, when the link is
1611 * down, in which case Titan completes the descriptor because it
1612 * is not able to send the data out.
1614 * For details please refer to Titan User Guide.
1616 * Returns: VXGE_HW_OK - success.
1617 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1618 * are currently available for processing.
1621 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1622 struct __vxge_hw_fifo *fifo, void **txdlh,
1623 enum vxge_hw_fifo_tcode *t_code)
1625 struct __vxge_hw_channel *channel;
1626 struct vxge_hw_fifo_txd *txdp;
1627 enum vxge_hw_status status = VXGE_HW_OK;
1629 channel = &fifo->channel;
1631 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1633 txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1634 if (txdp == NULL) {
1635 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1636 goto exit;
1639 /* check whether host owns it */
1640 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1642 vxge_assert(txdp->host_control != 0);
1644 vxge_hw_channel_dtr_complete(channel);
1646 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1648 if (fifo->stats->common_stats.usage_cnt > 0)
1649 fifo->stats->common_stats.usage_cnt--;
1651 status = VXGE_HW_OK;
1652 goto exit;
1655 /* no more completions */
1656 *txdlh = NULL;
1657 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1658 exit:
1659 return status;
1663 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1664 * @fifo: Handle to the fifo object used for non offload send
1665 * @txdlh: Descriptor handle.
1666 * @t_code: One of the enumerated (and documented in the Titan user guide)
1667 * "transfer codes".
1669 * Handle descriptor's transfer code. The latter comes with each completed
1670 * descriptor.
1672 * Returns: one of the enum vxge_hw_status{} enumerated types.
1673 * VXGE_HW_OK - for success.
1674 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1676 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1677 void *txdlh,
1678 enum vxge_hw_fifo_tcode t_code)
1680 struct __vxge_hw_channel *channel;
1682 enum vxge_hw_status status = VXGE_HW_OK;
1683 channel = &fifo->channel;
1685 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1686 status = VXGE_HW_ERR_INVALID_TCODE;
1687 goto exit;
1690 fifo->stats->txd_t_code_err_cnt[t_code]++;
1691 exit:
1692 return status;
1696 * vxge_hw_fifo_txdl_free - Free descriptor.
1697 * @fifo: Handle to the fifo object used for non offload send
1698 * @txdlh: Descriptor handle.
1700 * Free the reserved descriptor. This operation is "symmetrical" to
1701 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1702 * lifecycle.
1704 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1705 * be:
1707 * - reserved (vxge_hw_fifo_txdl_reserve);
1709 * - posted (vxge_hw_fifo_txdl_post);
1711 * - completed (vxge_hw_fifo_txdl_next_completed);
1713 * - and recycled again (vxge_hw_fifo_txdl_free).
1715 * For alternative state transitions and more details please refer to
1716 * the design doc.
1719 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1721 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1722 u32 max_frags;
1723 struct __vxge_hw_channel *channel;
1725 channel = &fifo->channel;
1727 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1728 (struct vxge_hw_fifo_txd *)txdlh);
1730 max_frags = fifo->config->max_frags;
1732 vxge_hw_channel_dtr_free(channel, txdlh);
1736 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1737 * to MAC address table.
1738 * @vp: Vpath handle.
1739 * @macaddr: MAC address to be added for this vpath into the list
1740 * @macaddr_mask: MAC address mask for macaddr
1741 * @duplicate_mode: Duplicate MAC address add mode. Please see
1742 * enum vxge_hw_vpath_mac_addr_add_mode{}
1744 * Adds the given mac address and mac address mask into the list for this
1745 * vpath.
1746 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1747 * vxge_hw_vpath_mac_addr_get_next
1750 enum vxge_hw_status
1751 vxge_hw_vpath_mac_addr_add(
1752 struct __vxge_hw_vpath_handle *vp,
1753 u8 (macaddr)[ETH_ALEN],
1754 u8 (macaddr_mask)[ETH_ALEN],
1755 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1757 u32 i;
1758 u64 data1 = 0ULL;
1759 u64 data2 = 0ULL;
1760 enum vxge_hw_status status = VXGE_HW_OK;
1762 if (vp == NULL) {
1763 status = VXGE_HW_ERR_INVALID_HANDLE;
1764 goto exit;
1767 for (i = 0; i < ETH_ALEN; i++) {
1768 data1 <<= 8;
1769 data1 |= (u8)macaddr[i];
1771 data2 <<= 8;
1772 data2 |= (u8)macaddr_mask[i];
1775 switch (duplicate_mode) {
1776 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1777 i = 0;
1778 break;
1779 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1780 i = 1;
1781 break;
1782 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1783 i = 2;
1784 break;
1785 default:
1786 i = 0;
1787 break;
1790 status = __vxge_hw_vpath_rts_table_set(vp,
1791 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1792 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1794 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1795 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1796 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1797 exit:
1798 return status;
1802 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1803 * from MAC address table.
1804 * @vp: Vpath handle.
1805 * @macaddr: First MAC address entry for this vpath in the list
1806 * @macaddr_mask: MAC address mask for macaddr
1808 * Returns the first mac address and mac address mask in the list for this
1809 * vpath.
1810 * see also: vxge_hw_vpath_mac_addr_get_next
1813 enum vxge_hw_status
1814 vxge_hw_vpath_mac_addr_get(
1815 struct __vxge_hw_vpath_handle *vp,
1816 u8 (macaddr)[ETH_ALEN],
1817 u8 (macaddr_mask)[ETH_ALEN])
1819 u32 i;
1820 u64 data1 = 0ULL;
1821 u64 data2 = 0ULL;
1822 enum vxge_hw_status status = VXGE_HW_OK;
1824 if (vp == NULL) {
1825 status = VXGE_HW_ERR_INVALID_HANDLE;
1826 goto exit;
1829 status = __vxge_hw_vpath_rts_table_get(vp,
1830 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1831 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1832 0, &data1, &data2);
1834 if (status != VXGE_HW_OK)
1835 goto exit;
1837 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1839 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1841 for (i = ETH_ALEN; i > 0; i--) {
1842 macaddr[i-1] = (u8)(data1 & 0xFF);
1843 data1 >>= 8;
1845 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1846 data2 >>= 8;
1848 exit:
1849 return status;
1853 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1854 * vpath
1855 * from MAC address table.
1856 * @vp: Vpath handle.
1857 * @macaddr: Next MAC address entry for this vpath in the list
1858 * @macaddr_mask: MAC address mask for macaddr
1860 * Returns the next mac address and mac address mask in the list for this
1861 * vpath.
1862 * see also: vxge_hw_vpath_mac_addr_get
1865 enum vxge_hw_status
1866 vxge_hw_vpath_mac_addr_get_next(
1867 struct __vxge_hw_vpath_handle *vp,
1868 u8 (macaddr)[ETH_ALEN],
1869 u8 (macaddr_mask)[ETH_ALEN])
1871 u32 i;
1872 u64 data1 = 0ULL;
1873 u64 data2 = 0ULL;
1874 enum vxge_hw_status status = VXGE_HW_OK;
1876 if (vp == NULL) {
1877 status = VXGE_HW_ERR_INVALID_HANDLE;
1878 goto exit;
1881 status = __vxge_hw_vpath_rts_table_get(vp,
1882 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1883 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1884 0, &data1, &data2);
1886 if (status != VXGE_HW_OK)
1887 goto exit;
1889 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1891 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1893 for (i = ETH_ALEN; i > 0; i--) {
1894 macaddr[i-1] = (u8)(data1 & 0xFF);
1895 data1 >>= 8;
1897 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1898 data2 >>= 8;
1901 exit:
1902 return status;
1906 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1907 * to MAC address table.
1908 * @vp: Vpath handle.
1909 * @macaddr: MAC address to be added for this vpath into the list
1910 * @macaddr_mask: MAC address mask for macaddr
1912 * Delete the given mac address and mac address mask into the list for this
1913 * vpath.
1914 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1915 * vxge_hw_vpath_mac_addr_get_next
1918 enum vxge_hw_status
1919 vxge_hw_vpath_mac_addr_delete(
1920 struct __vxge_hw_vpath_handle *vp,
1921 u8 (macaddr)[ETH_ALEN],
1922 u8 (macaddr_mask)[ETH_ALEN])
1924 u32 i;
1925 u64 data1 = 0ULL;
1926 u64 data2 = 0ULL;
1927 enum vxge_hw_status status = VXGE_HW_OK;
1929 if (vp == NULL) {
1930 status = VXGE_HW_ERR_INVALID_HANDLE;
1931 goto exit;
1934 for (i = 0; i < ETH_ALEN; i++) {
1935 data1 <<= 8;
1936 data1 |= (u8)macaddr[i];
1938 data2 <<= 8;
1939 data2 |= (u8)macaddr_mask[i];
1942 status = __vxge_hw_vpath_rts_table_set(vp,
1943 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1944 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1946 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1947 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1948 exit:
1949 return status;
1953 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1954 * to vlan id table.
1955 * @vp: Vpath handle.
1956 * @vid: vlan id to be added for this vpath into the list
1958 * Adds the given vlan id into the list for this vpath.
1959 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1960 * vxge_hw_vpath_vid_get_next
1963 enum vxge_hw_status
1964 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1966 enum vxge_hw_status status = VXGE_HW_OK;
1968 if (vp == NULL) {
1969 status = VXGE_HW_ERR_INVALID_HANDLE;
1970 goto exit;
1973 status = __vxge_hw_vpath_rts_table_set(vp,
1974 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1975 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1976 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1977 exit:
1978 return status;
1982 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1983 * from vlan id table.
1984 * @vp: Vpath handle.
1985 * @vid: Buffer to return vlan id
1987 * Returns the first vlan id in the list for this vpath.
1988 * see also: vxge_hw_vpath_vid_get_next
1991 enum vxge_hw_status
1992 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1994 u64 data;
1995 enum vxge_hw_status status = VXGE_HW_OK;
1997 if (vp == NULL) {
1998 status = VXGE_HW_ERR_INVALID_HANDLE;
1999 goto exit;
2002 status = __vxge_hw_vpath_rts_table_get(vp,
2003 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
2004 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2005 0, vid, &data);
2007 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
2008 exit:
2009 return status;
2013 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
2014 * to vlan id table.
2015 * @vp: Vpath handle.
2016 * @vid: vlan id to be added for this vpath into the list
2018 * Adds the given vlan id into the list for this vpath.
2019 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
2020 * vxge_hw_vpath_vid_get_next
2023 enum vxge_hw_status
2024 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
2026 enum vxge_hw_status status = VXGE_HW_OK;
2028 if (vp == NULL) {
2029 status = VXGE_HW_ERR_INVALID_HANDLE;
2030 goto exit;
2033 status = __vxge_hw_vpath_rts_table_set(vp,
2034 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
2035 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2036 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
2037 exit:
2038 return status;
2042 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2043 * @vp: Vpath handle.
2045 * Enable promiscuous mode of Titan-e operation.
2047 * See also: vxge_hw_vpath_promisc_disable().
2049 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2050 struct __vxge_hw_vpath_handle *vp)
2052 u64 val64;
2053 struct __vxge_hw_virtualpath *vpath;
2054 enum vxge_hw_status status = VXGE_HW_OK;
2056 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2057 status = VXGE_HW_ERR_INVALID_HANDLE;
2058 goto exit;
2061 vpath = vp->vpath;
2063 /* Enable promiscuous mode for function 0 only */
2064 if (!(vpath->hldev->access_rights &
2065 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2066 return VXGE_HW_OK;
2068 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2070 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2072 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2073 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2074 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2075 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2077 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2079 exit:
2080 return status;
2084 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2085 * @vp: Vpath handle.
2087 * Disable promiscuous mode of Titan-e operation.
2089 * See also: vxge_hw_vpath_promisc_enable().
2091 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2092 struct __vxge_hw_vpath_handle *vp)
2094 u64 val64;
2095 struct __vxge_hw_virtualpath *vpath;
2096 enum vxge_hw_status status = VXGE_HW_OK;
2098 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2099 status = VXGE_HW_ERR_INVALID_HANDLE;
2100 goto exit;
2103 vpath = vp->vpath;
2105 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2107 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2109 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2110 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2111 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2113 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2115 exit:
2116 return status;
2120 * vxge_hw_vpath_bcast_enable - Enable broadcast
2121 * @vp: Vpath handle.
2123 * Enable receiving broadcasts.
2125 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2126 struct __vxge_hw_vpath_handle *vp)
2128 u64 val64;
2129 struct __vxge_hw_virtualpath *vpath;
2130 enum vxge_hw_status status = VXGE_HW_OK;
2132 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2133 status = VXGE_HW_ERR_INVALID_HANDLE;
2134 goto exit;
2137 vpath = vp->vpath;
2139 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2141 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2142 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2143 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2145 exit:
2146 return status;
2150 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2151 * @vp: Vpath handle.
2153 * Enable Titan-e multicast addresses.
2154 * Returns: VXGE_HW_OK on success.
2157 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2158 struct __vxge_hw_vpath_handle *vp)
2160 u64 val64;
2161 struct __vxge_hw_virtualpath *vpath;
2162 enum vxge_hw_status status = VXGE_HW_OK;
2164 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2165 status = VXGE_HW_ERR_INVALID_HANDLE;
2166 goto exit;
2169 vpath = vp->vpath;
2171 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2173 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2174 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2175 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2177 exit:
2178 return status;
2182 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
2183 * @vp: Vpath handle.
2185 * Disable Titan-e multicast addresses.
2186 * Returns: VXGE_HW_OK - success.
2187 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2190 enum vxge_hw_status
2191 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2193 u64 val64;
2194 struct __vxge_hw_virtualpath *vpath;
2195 enum vxge_hw_status status = VXGE_HW_OK;
2197 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2198 status = VXGE_HW_ERR_INVALID_HANDLE;
2199 goto exit;
2202 vpath = vp->vpath;
2204 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2206 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2207 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2208 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2210 exit:
2211 return status;
2215 * vxge_hw_vpath_alarm_process - Process Alarms.
2216 * @vpath: Virtual Path.
2217 * @skip_alarms: Do not clear the alarms
2219 * Process vpath alarms.
2222 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2223 struct __vxge_hw_vpath_handle *vp,
2224 u32 skip_alarms)
2226 enum vxge_hw_status status = VXGE_HW_OK;
2228 if (vp == NULL) {
2229 status = VXGE_HW_ERR_INVALID_HANDLE;
2230 goto exit;
2233 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2234 exit:
2235 return status;
2239 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2240 * alrms
2241 * @vp: Virtual Path handle.
2242 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2243 * interrupts(Can be repeated). If fifo or ring are not enabled
2244 * the MSIX vector for that should be set to 0
2245 * @alarm_msix_id: MSIX vector for alarm.
2247 * This API will associate a given MSIX vector numbers with the four TIM
2248 * interrupts and alarm interrupt.
2250 void
2251 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2252 int alarm_msix_id)
2254 u64 val64;
2255 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2256 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2257 u32 vp_id = vp->vpath->vp_id;
2259 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2260 (vp_id * 4) + tim_msix_id[0]) |
2261 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2262 (vp_id * 4) + tim_msix_id[1]);
2264 writeq(val64, &vp_reg->interrupt_cfg0);
2266 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2267 (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2268 &vp_reg->interrupt_cfg2);
2270 if (vpath->hldev->config.intr_mode ==
2271 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2272 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2273 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2274 0, 32), &vp_reg->one_shot_vect0_en);
2275 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2276 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2277 0, 32), &vp_reg->one_shot_vect1_en);
2278 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2279 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2280 0, 32), &vp_reg->one_shot_vect2_en);
2285 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2286 * @vp: Virtual Path handle.
2287 * @msix_id: MSIX ID
2289 * The function masks the msix interrupt for the given msix_id
2291 * Returns: 0,
2292 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2293 * status.
2294 * See also:
2296 void
2297 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2299 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2300 __vxge_hw_pio_mem_write32_upper(
2301 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2302 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2306 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2307 * @vp: Virtual Path handle.
2308 * @msix_id: MSI ID
2310 * The function clears the msix interrupt for the given msix_id
2312 * Returns: 0,
2313 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2314 * status.
2315 * See also:
2317 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2319 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2321 if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2322 __vxge_hw_pio_mem_write32_upper(
2323 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2324 &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2325 else
2326 __vxge_hw_pio_mem_write32_upper(
2327 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2328 &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2332 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2333 * @vp: Virtual Path handle.
2334 * @msix_id: MSI ID
2336 * The function unmasks the msix interrupt for the given msix_id
2338 * Returns: 0,
2339 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2340 * status.
2341 * See also:
2343 void
2344 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2346 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2347 __vxge_hw_pio_mem_write32_upper(
2348 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2349 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2353 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2354 * @vp: Virtual Path handle.
2356 * Mask Tx and Rx vpath interrupts.
2358 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2360 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2362 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2363 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2364 u64 val64;
2365 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2367 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2368 tim_int_mask1, vp->vpath->vp_id);
2370 val64 = readq(&hldev->common_reg->tim_int_mask0);
2372 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2373 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2374 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2375 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2376 &hldev->common_reg->tim_int_mask0);
2379 val64 = readl(&hldev->common_reg->tim_int_mask1);
2381 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2382 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2383 __vxge_hw_pio_mem_write32_upper(
2384 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2385 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2386 &hldev->common_reg->tim_int_mask1);
2391 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2392 * @vp: Virtual Path handle.
2394 * Unmask Tx and Rx vpath interrupts.
2396 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2398 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2400 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2401 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2402 u64 val64;
2403 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2405 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2406 tim_int_mask1, vp->vpath->vp_id);
2408 val64 = readq(&hldev->common_reg->tim_int_mask0);
2410 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2411 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2412 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2413 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2414 &hldev->common_reg->tim_int_mask0);
2417 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2418 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2419 __vxge_hw_pio_mem_write32_upper(
2420 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2421 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2422 &hldev->common_reg->tim_int_mask1);
2427 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2428 * descriptors and process the same.
2429 * @ring: Handle to the ring object used for receive
2431 * The function polls the Rx for the completed descriptors and calls
2432 * the driver via supplied completion callback.
2434 * Returns: VXGE_HW_OK, if the polling is completed successful.
2435 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2436 * descriptors available which are yet to be processed.
2438 * See also: vxge_hw_vpath_poll_rx()
2440 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2442 u8 t_code;
2443 enum vxge_hw_status status = VXGE_HW_OK;
2444 void *first_rxdh;
2445 u64 val64 = 0;
2446 int new_count = 0;
2448 ring->cmpl_cnt = 0;
2450 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2451 if (status == VXGE_HW_OK)
2452 ring->callback(ring, first_rxdh,
2453 t_code, ring->channel.userdata);
2455 if (ring->cmpl_cnt != 0) {
2456 ring->doorbell_cnt += ring->cmpl_cnt;
2457 if (ring->doorbell_cnt >= ring->rxds_limit) {
2459 * Each RxD is of 4 qwords, update the number of
2460 * qwords replenished
2462 new_count = (ring->doorbell_cnt * 4);
2464 /* For each block add 4 more qwords */
2465 ring->total_db_cnt += ring->doorbell_cnt;
2466 if (ring->total_db_cnt >= ring->rxds_per_block) {
2467 new_count += 4;
2468 /* Reset total count */
2469 ring->total_db_cnt %= ring->rxds_per_block;
2471 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2472 &ring->vp_reg->prc_rxd_doorbell);
2473 val64 =
2474 readl(&ring->common_reg->titan_general_int_status);
2475 ring->doorbell_cnt = 0;
2479 return status;
2483 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2484 * the same.
2485 * @fifo: Handle to the fifo object used for non offload send
2487 * The function polls the Tx for the completed descriptors and calls
2488 * the driver via supplied completion callback.
2490 * Returns: VXGE_HW_OK, if the polling is completed successful.
2491 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2492 * descriptors available which are yet to be processed.
2494 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2495 struct sk_buff ***skb_ptr, int nr_skb,
2496 int *more)
2498 enum vxge_hw_fifo_tcode t_code;
2499 void *first_txdlh;
2500 enum vxge_hw_status status = VXGE_HW_OK;
2501 struct __vxge_hw_channel *channel;
2503 channel = &fifo->channel;
2505 status = vxge_hw_fifo_txdl_next_completed(fifo,
2506 &first_txdlh, &t_code);
2507 if (status == VXGE_HW_OK)
2508 if (fifo->callback(fifo, first_txdlh, t_code,
2509 channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2510 status = VXGE_HW_COMPLETIONS_REMAIN;
2512 return status;