2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
34 #include "rt2x00lib.h"
36 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
)
38 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
40 struct skb_frame_desc
*skbdesc
;
41 unsigned int frame_size
;
42 unsigned int head_size
= 0;
43 unsigned int tail_size
= 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size
= entry
->queue
->data_size
+ entry
->queue
->desc_size
;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
)) {
71 skb
= dev_alloc_skb(frame_size
+ head_size
+ tail_size
);
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb
, head_size
);
80 skb_put(skb
, frame_size
);
85 skbdesc
= get_skb_frame_desc(skb
);
86 memset(skbdesc
, 0, sizeof(*skbdesc
));
87 skbdesc
->entry
= entry
;
89 if (test_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
)) {
90 skbdesc
->skb_dma
= dma_map_single(rt2x00dev
->dev
,
94 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
100 void rt2x00queue_map_txskb(struct queue_entry
*entry
)
102 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
103 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
106 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
107 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
111 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
113 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
114 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
116 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
117 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
119 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
120 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
121 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
123 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
128 void rt2x00queue_free_skb(struct queue_entry
*entry
)
133 rt2x00queue_unmap_skb(entry
);
134 dev_kfree_skb_any(entry
->skb
);
138 void rt2x00queue_align_frame(struct sk_buff
*skb
)
140 unsigned int frame_length
= skb
->len
;
141 unsigned int align
= ALIGN_SIZE(skb
, 0);
146 skb_push(skb
, align
);
147 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
148 skb_trim(skb
, frame_length
);
151 void rt2x00queue_align_payload(struct sk_buff
*skb
, unsigned int header_length
)
153 unsigned int frame_length
= skb
->len
;
154 unsigned int align
= ALIGN_SIZE(skb
, header_length
);
159 skb_push(skb
, align
);
160 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
161 skb_trim(skb
, frame_length
);
164 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
166 unsigned int payload_length
= skb
->len
- header_length
;
167 unsigned int header_align
= ALIGN_SIZE(skb
, 0);
168 unsigned int payload_align
= ALIGN_SIZE(skb
, header_length
);
169 unsigned int l2pad
= payload_length
? L2PAD_SIZE(header_length
) : 0;
172 * Adjust the header alignment if the payload needs to be moved more
175 if (payload_align
> header_align
)
178 /* There is nothing to do if no alignment is needed */
182 /* Reserve the amount of space needed in front of the frame */
183 skb_push(skb
, header_align
);
188 memmove(skb
->data
, skb
->data
+ header_align
, header_length
);
190 /* Move the payload, if present and if required */
191 if (payload_length
&& payload_align
)
192 memmove(skb
->data
+ header_length
+ l2pad
,
193 skb
->data
+ header_length
+ l2pad
+ payload_align
,
196 /* Trim the skb to the correct size */
197 skb_trim(skb
, header_length
+ l2pad
+ payload_length
);
200 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
203 * L2 padding is only present if the skb contains more than just the
204 * IEEE 802.11 header.
206 unsigned int l2pad
= (skb
->len
> header_length
) ?
207 L2PAD_SIZE(header_length
) : 0;
212 memmove(skb
->data
+ l2pad
, skb
->data
, header_length
);
213 skb_pull(skb
, l2pad
);
216 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry
*entry
,
217 struct txentry_desc
*txdesc
)
219 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
220 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)entry
->skb
->data
;
221 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
222 unsigned long irqflags
;
224 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
227 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
229 if (!test_bit(DRIVER_REQUIRE_SW_SEQNO
, &entry
->queue
->rt2x00dev
->flags
))
233 * The hardware is not able to insert a sequence number. Assign a
234 * software generated one here.
236 * This is wrong because beacons are not getting sequence
237 * numbers assigned properly.
239 * A secondary problem exists for drivers that cannot toggle
240 * sequence counting per-frame, since those will override the
241 * sequence counter given by mac80211.
243 spin_lock_irqsave(&intf
->seqlock
, irqflags
);
245 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
247 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
248 hdr
->seq_ctrl
|= cpu_to_le16(intf
->seqno
);
250 spin_unlock_irqrestore(&intf
->seqlock
, irqflags
);
254 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry
*entry
,
255 struct txentry_desc
*txdesc
,
256 const struct rt2x00_rate
*hwrate
)
258 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
259 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
260 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
261 unsigned int data_length
;
262 unsigned int duration
;
263 unsigned int residual
;
266 * Determine with what IFS priority this frame should be send.
267 * Set ifs to IFS_SIFS when the this is not the first fragment,
268 * or this fragment came after RTS/CTS.
270 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
271 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
273 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
275 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
276 data_length
= entry
->skb
->len
+ 4;
277 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, entry
->skb
);
281 * Length calculation depends on OFDM/CCK rate.
283 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
284 txdesc
->u
.plcp
.service
= 0x04;
286 if (hwrate
->flags
& DEV_RATE_OFDM
) {
287 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
288 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
291 * Convert length to microseconds.
293 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
294 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
300 * Check if we need to set the Length Extension
302 if (hwrate
->bitrate
== 110 && residual
<= 30)
303 txdesc
->u
.plcp
.service
|= 0x80;
306 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
307 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
310 * When preamble is enabled we should set the
311 * preamble bit for the signal.
313 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
314 txdesc
->u
.plcp
.signal
|= 0x08;
318 static void rt2x00queue_create_tx_descriptor(struct queue_entry
*entry
,
319 struct txentry_desc
*txdesc
)
321 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
322 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
323 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)entry
->skb
->data
;
324 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
325 struct ieee80211_rate
*rate
;
326 const struct rt2x00_rate
*hwrate
= NULL
;
328 memset(txdesc
, 0, sizeof(*txdesc
));
331 * Header and frame information.
333 txdesc
->length
= entry
->skb
->len
;
334 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
337 * Check whether this frame is to be acked.
339 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
340 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
343 * Check if this is a RTS/CTS frame
345 if (ieee80211_is_rts(hdr
->frame_control
) ||
346 ieee80211_is_cts(hdr
->frame_control
)) {
347 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
348 if (ieee80211_is_rts(hdr
->frame_control
))
349 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
351 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
352 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
354 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
358 * Determine retry information.
360 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
361 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
362 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
365 * Check if more fragments are pending
367 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
368 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
369 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
373 * Check if more frames (!= fragments) are pending
375 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
376 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
379 * Beacons and probe responses require the tsf timestamp
380 * to be inserted into the frame.
382 if (ieee80211_is_beacon(hdr
->frame_control
) ||
383 ieee80211_is_probe_resp(hdr
->frame_control
))
384 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
386 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
387 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
388 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
391 * Determine rate modulation.
393 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
394 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
395 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
396 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
398 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
399 hwrate
= rt2x00_get_rate(rate
->hw_value
);
400 if (hwrate
->flags
& DEV_RATE_OFDM
)
401 txdesc
->rate_mode
= RATE_MODE_OFDM
;
403 txdesc
->rate_mode
= RATE_MODE_CCK
;
407 * Apply TX descriptor handling by components
409 rt2x00crypto_create_tx_descriptor(entry
, txdesc
);
410 rt2x00queue_create_tx_descriptor_seq(entry
, txdesc
);
412 if (test_bit(DRIVER_REQUIRE_HT_TX_DESC
, &rt2x00dev
->flags
))
413 rt2x00ht_create_tx_descriptor(entry
, txdesc
, hwrate
);
415 rt2x00queue_create_tx_descriptor_plcp(entry
, txdesc
, hwrate
);
418 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
419 struct txentry_desc
*txdesc
)
421 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
424 * This should not happen, we already checked the entry
425 * was ours. When the hardware disagrees there has been
426 * a queue corruption!
428 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
429 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
431 "Corrupt queue %d, accessing entry which is not ours.\n"
432 "Please file bug report to %s.\n",
433 entry
->queue
->qid
, DRV_PROJECT
);
438 * Add the requested extra tx headroom in front of the skb.
440 skb_push(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
441 memset(entry
->skb
->data
, 0, rt2x00dev
->ops
->extra_tx_headroom
);
444 * Call the driver's write_tx_data function, if it exists.
446 if (rt2x00dev
->ops
->lib
->write_tx_data
)
447 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
450 * Map the skb to DMA.
452 if (test_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
))
453 rt2x00queue_map_txskb(entry
);
458 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
459 struct txentry_desc
*txdesc
)
461 struct data_queue
*queue
= entry
->queue
;
463 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
466 * All processing on the frame has been completed, this means
467 * it is now ready to be dumped to userspace through debugfs.
469 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
->skb
);
472 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
473 struct txentry_desc
*txdesc
)
476 * Check if we need to kick the queue, there are however a few rules
477 * 1) Don't kick unless this is the last in frame in a burst.
478 * When the burst flag is set, this frame is always followed
479 * by another frame which in some way are related to eachother.
480 * This is true for fragments, RTS or CTS-to-self frames.
481 * 2) Rule 1 can be broken when the available entries
482 * in the queue are less then a certain threshold.
484 if (rt2x00queue_threshold(queue
) ||
485 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
486 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
489 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
492 struct ieee80211_tx_info
*tx_info
;
493 struct queue_entry
*entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
494 struct txentry_desc txdesc
;
495 struct skb_frame_desc
*skbdesc
;
496 u8 rate_idx
, rate_flags
;
498 if (unlikely(rt2x00queue_full(queue
)))
501 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
503 ERROR(queue
->rt2x00dev
,
504 "Arrived at non-free entry in the non-full queue %d.\n"
505 "Please file bug report to %s.\n",
506 queue
->qid
, DRV_PROJECT
);
511 * Copy all TX descriptor information into txdesc,
512 * after that we are free to use the skb->cb array
513 * for our information.
516 rt2x00queue_create_tx_descriptor(entry
, &txdesc
);
519 * All information is retrieved from the skb->cb array,
520 * now we should claim ownership of the driver part of that
521 * array, preserving the bitrate index and flags.
523 tx_info
= IEEE80211_SKB_CB(skb
);
524 rate_idx
= tx_info
->control
.rates
[0].idx
;
525 rate_flags
= tx_info
->control
.rates
[0].flags
;
526 skbdesc
= get_skb_frame_desc(skb
);
527 memset(skbdesc
, 0, sizeof(*skbdesc
));
528 skbdesc
->entry
= entry
;
529 skbdesc
->tx_rate_idx
= rate_idx
;
530 skbdesc
->tx_rate_flags
= rate_flags
;
533 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
536 * When hardware encryption is supported, and this frame
537 * is to be encrypted, we should strip the IV/EIV data from
538 * the frame so we can provide it to the driver separately.
540 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
541 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
542 if (test_bit(DRIVER_REQUIRE_COPY_IV
, &queue
->rt2x00dev
->flags
))
543 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
545 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
549 * When DMA allocation is required we should guarantee to the
550 * driver that the DMA is aligned to a 4-byte boundary.
551 * However some drivers require L2 padding to pad the payload
552 * rather then the header. This could be a requirement for
553 * PCI and USB devices, while header alignment only is valid
556 if (test_bit(DRIVER_REQUIRE_L2PAD
, &queue
->rt2x00dev
->flags
))
557 rt2x00queue_insert_l2pad(entry
->skb
, txdesc
.header_length
);
558 else if (test_bit(DRIVER_REQUIRE_DMA
, &queue
->rt2x00dev
->flags
))
559 rt2x00queue_align_frame(entry
->skb
);
562 * It could be possible that the queue was corrupted and this
563 * call failed. Since we always return NETDEV_TX_OK to mac80211,
564 * this frame will simply be dropped.
566 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
567 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
572 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
574 rt2x00queue_index_inc(queue
, Q_INDEX
);
575 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
576 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
581 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
582 struct ieee80211_vif
*vif
)
584 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
586 if (unlikely(!intf
->beacon
))
589 mutex_lock(&intf
->beacon_skb_mutex
);
592 * Clean up the beacon skb.
594 rt2x00queue_free_skb(intf
->beacon
);
597 * Clear beacon (single bssid devices don't need to clear the beacon
598 * since the beacon queue will get stopped anyway).
600 if (rt2x00dev
->ops
->lib
->clear_beacon
)
601 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
603 mutex_unlock(&intf
->beacon_skb_mutex
);
608 int rt2x00queue_update_beacon_locked(struct rt2x00_dev
*rt2x00dev
,
609 struct ieee80211_vif
*vif
)
611 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
612 struct skb_frame_desc
*skbdesc
;
613 struct txentry_desc txdesc
;
615 if (unlikely(!intf
->beacon
))
619 * Clean up the beacon skb.
621 rt2x00queue_free_skb(intf
->beacon
);
623 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
624 if (!intf
->beacon
->skb
)
628 * Copy all TX descriptor information into txdesc,
629 * after that we are free to use the skb->cb array
630 * for our information.
632 rt2x00queue_create_tx_descriptor(intf
->beacon
, &txdesc
);
635 * Fill in skb descriptor
637 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
638 memset(skbdesc
, 0, sizeof(*skbdesc
));
639 skbdesc
->entry
= intf
->beacon
;
642 * Send beacon to hardware.
644 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
650 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
651 struct ieee80211_vif
*vif
)
653 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
656 mutex_lock(&intf
->beacon_skb_mutex
);
657 ret
= rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
658 mutex_unlock(&intf
->beacon_skb_mutex
);
663 void rt2x00queue_for_each_entry(struct data_queue
*queue
,
664 enum queue_index start
,
665 enum queue_index end
,
666 void (*fn
)(struct queue_entry
*entry
))
668 unsigned long irqflags
;
669 unsigned int index_start
;
670 unsigned int index_end
;
673 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
674 ERROR(queue
->rt2x00dev
,
675 "Entry requested from invalid index range (%d - %d)\n",
681 * Only protect the range we are going to loop over,
682 * if during our loop a extra entry is set to pending
683 * it should not be kicked during this run, since it
684 * is part of another TX operation.
686 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
687 index_start
= queue
->index
[start
];
688 index_end
= queue
->index
[end
];
689 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
692 * Start from the TX done pointer, this guarantees that we will
693 * send out all frames in the correct order.
695 if (index_start
< index_end
) {
696 for (i
= index_start
; i
< index_end
; i
++)
697 fn(&queue
->entries
[i
]);
699 for (i
= index_start
; i
< queue
->limit
; i
++)
700 fn(&queue
->entries
[i
]);
702 for (i
= 0; i
< index_end
; i
++)
703 fn(&queue
->entries
[i
]);
706 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
708 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
709 enum queue_index index
)
711 struct queue_entry
*entry
;
712 unsigned long irqflags
;
714 if (unlikely(index
>= Q_INDEX_MAX
)) {
715 ERROR(queue
->rt2x00dev
,
716 "Entry requested from invalid index type (%d)\n", index
);
720 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
722 entry
= &queue
->entries
[queue
->index
[index
]];
724 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
728 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
730 void rt2x00queue_index_inc(struct data_queue
*queue
, enum queue_index index
)
732 unsigned long irqflags
;
734 if (unlikely(index
>= Q_INDEX_MAX
)) {
735 ERROR(queue
->rt2x00dev
,
736 "Index change on invalid index type (%d)\n", index
);
740 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
742 queue
->index
[index
]++;
743 if (queue
->index
[index
] >= queue
->limit
)
744 queue
->index
[index
] = 0;
746 queue
->last_action
[index
] = jiffies
;
748 if (index
== Q_INDEX
) {
750 } else if (index
== Q_INDEX_DONE
) {
755 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
758 void rt2x00queue_pause_queue(struct data_queue
*queue
)
760 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
761 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
762 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
765 switch (queue
->qid
) {
771 * For TX queues, we have to disable the queue
774 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
780 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
782 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
784 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
785 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
786 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
789 switch (queue
->qid
) {
795 * For TX queues, we have to enable the queue
798 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
802 * For RX we need to kick the queue now in order to
805 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
810 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
812 void rt2x00queue_start_queue(struct data_queue
*queue
)
814 mutex_lock(&queue
->status_lock
);
816 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
817 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
818 mutex_unlock(&queue
->status_lock
);
822 set_bit(QUEUE_PAUSED
, &queue
->flags
);
824 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
826 rt2x00queue_unpause_queue(queue
);
828 mutex_unlock(&queue
->status_lock
);
830 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
832 void rt2x00queue_stop_queue(struct data_queue
*queue
)
834 mutex_lock(&queue
->status_lock
);
836 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
837 mutex_unlock(&queue
->status_lock
);
841 rt2x00queue_pause_queue(queue
);
843 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
845 mutex_unlock(&queue
->status_lock
);
847 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
849 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
854 (queue
->qid
== QID_AC_VO
) ||
855 (queue
->qid
== QID_AC_VI
) ||
856 (queue
->qid
== QID_AC_BE
) ||
857 (queue
->qid
== QID_AC_BK
);
859 mutex_lock(&queue
->status_lock
);
862 * If the queue has been started, we must stop it temporarily
863 * to prevent any new frames to be queued on the device. If
864 * we are not dropping the pending frames, the queue must
865 * only be stopped in the software and not the hardware,
866 * otherwise the queue will never become empty on its own.
868 started
= test_bit(QUEUE_STARTED
, &queue
->flags
);
873 rt2x00queue_pause_queue(queue
);
876 * If we are not supposed to drop any pending
877 * frames, this means we must force a start (=kick)
878 * to the queue to make sure the hardware will
879 * start transmitting.
881 if (!drop
&& tx_queue
)
882 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
886 * Check if driver supports flushing, we can only guarantee
887 * full support for flushing if the driver is able
888 * to cancel all pending frames (drop = true).
890 if (drop
&& queue
->rt2x00dev
->ops
->lib
->flush_queue
)
891 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
);
894 * When we don't want to drop any frames, or when
895 * the driver doesn't fully flush the queue correcly,
896 * we must wait for the queue to become empty.
898 for (i
= 0; !rt2x00queue_empty(queue
) && i
< 100; i
++)
902 * The queue flush has failed...
904 if (unlikely(!rt2x00queue_empty(queue
)))
905 WARNING(queue
->rt2x00dev
, "Queue %d failed to flush\n", queue
->qid
);
908 * Restore the queue to the previous status
911 rt2x00queue_unpause_queue(queue
);
913 mutex_unlock(&queue
->status_lock
);
915 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
917 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
919 struct data_queue
*queue
;
922 * rt2x00queue_start_queue will call ieee80211_wake_queue
923 * for each queue after is has been properly initialized.
925 tx_queue_for_each(rt2x00dev
, queue
)
926 rt2x00queue_start_queue(queue
);
928 rt2x00queue_start_queue(rt2x00dev
->rx
);
930 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
932 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
934 struct data_queue
*queue
;
937 * rt2x00queue_stop_queue will call ieee80211_stop_queue
938 * as well, but we are completely shutting doing everything
939 * now, so it is much safer to stop all TX queues at once,
940 * and use rt2x00queue_stop_queue for cleaning up.
942 ieee80211_stop_queues(rt2x00dev
->hw
);
944 tx_queue_for_each(rt2x00dev
, queue
)
945 rt2x00queue_stop_queue(queue
);
947 rt2x00queue_stop_queue(rt2x00dev
->rx
);
949 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
951 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
953 struct data_queue
*queue
;
955 tx_queue_for_each(rt2x00dev
, queue
)
956 rt2x00queue_flush_queue(queue
, drop
);
958 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
960 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
962 static void rt2x00queue_reset(struct data_queue
*queue
)
964 unsigned long irqflags
;
967 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
972 for (i
= 0; i
< Q_INDEX_MAX
; i
++) {
974 queue
->last_action
[i
] = jiffies
;
977 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
980 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
982 struct data_queue
*queue
;
985 queue_for_each(rt2x00dev
, queue
) {
986 rt2x00queue_reset(queue
);
988 for (i
= 0; i
< queue
->limit
; i
++)
989 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
993 static int rt2x00queue_alloc_entries(struct data_queue
*queue
,
994 const struct data_queue_desc
*qdesc
)
996 struct queue_entry
*entries
;
997 unsigned int entry_size
;
1000 rt2x00queue_reset(queue
);
1002 queue
->limit
= qdesc
->entry_num
;
1003 queue
->threshold
= DIV_ROUND_UP(qdesc
->entry_num
, 10);
1004 queue
->data_size
= qdesc
->data_size
;
1005 queue
->desc_size
= qdesc
->desc_size
;
1008 * Allocate all queue entries.
1010 entry_size
= sizeof(*entries
) + qdesc
->priv_size
;
1011 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1015 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1016 (((char *)(__base)) + ((__limit) * (__esize)) + \
1017 ((__index) * (__psize)))
1019 for (i
= 0; i
< queue
->limit
; i
++) {
1020 entries
[i
].flags
= 0;
1021 entries
[i
].queue
= queue
;
1022 entries
[i
].skb
= NULL
;
1023 entries
[i
].entry_idx
= i
;
1024 entries
[i
].priv_data
=
1025 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1026 sizeof(*entries
), qdesc
->priv_size
);
1029 #undef QUEUE_ENTRY_PRIV_OFFSET
1031 queue
->entries
= entries
;
1036 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1040 if (!queue
->entries
)
1043 for (i
= 0; i
< queue
->limit
; i
++) {
1044 rt2x00queue_free_skb(&queue
->entries
[i
]);
1048 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1051 struct sk_buff
*skb
;
1053 for (i
= 0; i
< queue
->limit
; i
++) {
1054 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
]);
1057 queue
->entries
[i
].skb
= skb
;
1063 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1065 struct data_queue
*queue
;
1068 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
, rt2x00dev
->ops
->rx
);
1072 tx_queue_for_each(rt2x00dev
, queue
) {
1073 status
= rt2x00queue_alloc_entries(queue
, rt2x00dev
->ops
->tx
);
1078 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
, rt2x00dev
->ops
->bcn
);
1082 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
)) {
1083 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
,
1084 rt2x00dev
->ops
->atim
);
1089 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1096 ERROR(rt2x00dev
, "Queue entries allocation failed.\n");
1098 rt2x00queue_uninitialize(rt2x00dev
);
1103 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1105 struct data_queue
*queue
;
1107 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1109 queue_for_each(rt2x00dev
, queue
) {
1110 kfree(queue
->entries
);
1111 queue
->entries
= NULL
;
1115 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1116 struct data_queue
*queue
, enum data_queue_qid qid
)
1118 mutex_init(&queue
->status_lock
);
1119 spin_lock_init(&queue
->index_lock
);
1121 queue
->rt2x00dev
= rt2x00dev
;
1129 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1131 struct data_queue
*queue
;
1132 enum data_queue_qid qid
;
1133 unsigned int req_atim
=
1134 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1137 * We need the following queues:
1139 * TX: ops->tx_queues
1141 * Atim: 1 (if required)
1143 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1145 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1147 ERROR(rt2x00dev
, "Queue allocation failed.\n");
1152 * Initialize pointers
1154 rt2x00dev
->rx
= queue
;
1155 rt2x00dev
->tx
= &queue
[1];
1156 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1157 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1160 * Initialize queue parameters.
1162 * TX: qid = QID_AC_VO + index
1163 * TX: cw_min: 2^5 = 32.
1164 * TX: cw_max: 2^10 = 1024.
1165 * BCN: qid = QID_BEACON
1166 * ATIM: qid = QID_ATIM
1168 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1171 tx_queue_for_each(rt2x00dev
, queue
)
1172 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1174 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1176 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1181 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1183 kfree(rt2x00dev
->rx
);
1184 rt2x00dev
->rx
= NULL
;
1185 rt2x00dev
->tx
= NULL
;
1186 rt2x00dev
->bcn
= NULL
;