2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
38 #include "rt2x00pci.h"
42 * Allow hardware encryption to be disabled.
44 static int modparam_nohwcrypt
= 0;
45 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
46 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attempt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
59 #define WAIT_FOR_BBP(__dev, __reg) \
60 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 H2M_MAILBOX_CSR_OWNER, (__reg))
67 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
68 const unsigned int word
, const u8 value
)
72 mutex_lock(&rt2x00dev
->csr_mutex
);
75 * Wait until the BBP becomes available, afterwards we
76 * can safely write the new data into the register.
78 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
80 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
81 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
82 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
83 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
85 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
88 mutex_unlock(&rt2x00dev
->csr_mutex
);
91 static void rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
92 const unsigned int word
, u8
*value
)
96 mutex_lock(&rt2x00dev
->csr_mutex
);
99 * Wait until the BBP becomes available, afterwards we
100 * can safely write the read request into the register.
101 * After the data has been written, we wait until hardware
102 * returns the correct value, if at any time the register
103 * doesn't become available in time, reg will be 0xffffffff
104 * which means we return 0xff to the caller.
106 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
108 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
109 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
110 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
112 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
114 WAIT_FOR_BBP(rt2x00dev
, ®
);
117 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
119 mutex_unlock(&rt2x00dev
->csr_mutex
);
122 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
123 const unsigned int word
, const u32 value
)
127 mutex_lock(&rt2x00dev
->csr_mutex
);
130 * Wait until the RF becomes available, afterwards we
131 * can safely write the new data into the register.
133 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
135 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
136 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
137 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
138 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
140 rt2x00pci_register_write(rt2x00dev
, PHY_CSR4
, reg
);
141 rt2x00_rf_write(rt2x00dev
, word
, value
);
144 mutex_unlock(&rt2x00dev
->csr_mutex
);
147 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
148 const u8 command
, const u8 token
,
149 const u8 arg0
, const u8 arg1
)
153 mutex_lock(&rt2x00dev
->csr_mutex
);
156 * Wait until the MCU becomes available, afterwards we
157 * can safely write the new data into the register.
159 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
160 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
161 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
162 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
163 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
164 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
166 rt2x00pci_register_read(rt2x00dev
, HOST_CMD_CSR
, ®
);
167 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
168 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
169 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
172 mutex_unlock(&rt2x00dev
->csr_mutex
);
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
178 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
181 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
183 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
184 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
185 eeprom
->reg_data_clock
=
186 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
187 eeprom
->reg_chip_select
=
188 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
193 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
196 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
197 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
198 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
199 !!eeprom
->reg_data_clock
);
200 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
201 !!eeprom
->reg_chip_select
);
203 rt2x00pci_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug
= {
208 .owner
= THIS_MODULE
,
210 .read
= rt2x00pci_register_read
,
211 .write
= rt2x00pci_register_write
,
212 .flags
= RT2X00DEBUGFS_OFFSET
,
213 .word_base
= CSR_REG_BASE
,
214 .word_size
= sizeof(u32
),
215 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
218 .read
= rt2x00_eeprom_read
,
219 .write
= rt2x00_eeprom_write
,
220 .word_base
= EEPROM_BASE
,
221 .word_size
= sizeof(u16
),
222 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
225 .read
= rt61pci_bbp_read
,
226 .write
= rt61pci_bbp_write
,
227 .word_base
= BBP_BASE
,
228 .word_size
= sizeof(u8
),
229 .word_count
= BBP_SIZE
/ sizeof(u8
),
232 .read
= rt2x00_rf_read
,
233 .write
= rt61pci_rf_write
,
234 .word_base
= RF_BASE
,
235 .word_size
= sizeof(u32
),
236 .word_count
= RF_SIZE
/ sizeof(u32
),
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
241 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
245 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
246 return rt2x00_get_field32(reg
, MAC_CSR13_BIT5
);
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev
*led_cdev
,
251 enum led_brightness brightness
)
253 struct rt2x00_led
*led
=
254 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
255 unsigned int enabled
= brightness
!= LED_OFF
;
256 unsigned int a_mode
=
257 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
258 unsigned int bg_mode
=
259 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
261 if (led
->type
== LED_TYPE_RADIO
) {
262 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
263 MCU_LEDCS_RADIO_STATUS
, enabled
);
265 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
266 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
267 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
268 } else if (led
->type
== LED_TYPE_ASSOC
) {
269 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
270 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
271 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
272 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
274 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
275 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
276 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
277 } else if (led
->type
== LED_TYPE_QUALITY
) {
279 * The brightness is divided into 6 levels (0 - 5),
280 * this means we need to convert the brightness
281 * argument into the matching level within that range.
283 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
284 brightness
/ (LED_FULL
/ 6), 0);
288 static int rt61pci_blink_set(struct led_classdev
*led_cdev
,
289 unsigned long *delay_on
,
290 unsigned long *delay_off
)
292 struct rt2x00_led
*led
=
293 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
296 rt2x00pci_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
297 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
298 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
299 rt2x00pci_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
304 static void rt61pci_init_led(struct rt2x00_dev
*rt2x00dev
,
305 struct rt2x00_led
*led
,
308 led
->rt2x00dev
= rt2x00dev
;
310 led
->led_dev
.brightness_set
= rt61pci_brightness_set
;
311 led
->led_dev
.blink_set
= rt61pci_blink_set
;
312 led
->flags
= LED_INITIALIZED
;
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
317 * Configuration handlers.
319 static int rt61pci_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
320 struct rt2x00lib_crypto
*crypto
,
321 struct ieee80211_key_conf
*key
)
323 struct hw_key_entry key_entry
;
324 struct rt2x00_field32 field
;
328 if (crypto
->cmd
== SET_KEY
) {
330 * rt2x00lib can't determine the correct free
331 * key_idx for shared keys. We have 1 register
332 * with key valid bits. The goal is simple, read
333 * the register, if that is full we have no slots
335 * Note that each BSS is allowed to have up to 4
336 * shared keys, so put a mask over the allowed
339 mask
= (0xf << crypto
->bssidx
);
341 rt2x00pci_register_read(rt2x00dev
, SEC_CSR0
, ®
);
344 if (reg
&& reg
== mask
)
347 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
350 * Upload key to hardware
352 memcpy(key_entry
.key
, crypto
->key
,
353 sizeof(key_entry
.key
));
354 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
355 sizeof(key_entry
.tx_mic
));
356 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
357 sizeof(key_entry
.rx_mic
));
359 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
360 rt2x00pci_register_multiwrite(rt2x00dev
, reg
,
361 &key_entry
, sizeof(key_entry
));
364 * The cipher types are stored over 2 registers.
365 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 * Using the correct defines correctly will cause overhead,
368 * so just calculate the correct offset.
370 if (key
->hw_key_idx
< 8) {
371 field
.bit_offset
= (3 * key
->hw_key_idx
);
372 field
.bit_mask
= 0x7 << field
.bit_offset
;
374 rt2x00pci_register_read(rt2x00dev
, SEC_CSR1
, ®
);
375 rt2x00_set_field32(®
, field
, crypto
->cipher
);
376 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, reg
);
378 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
379 field
.bit_mask
= 0x7 << field
.bit_offset
;
381 rt2x00pci_register_read(rt2x00dev
, SEC_CSR5
, ®
);
382 rt2x00_set_field32(®
, field
, crypto
->cipher
);
383 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, reg
);
387 * The driver does not support the IV/EIV generation
388 * in hardware. However it doesn't support the IV/EIV
389 * inside the ieee80211 frame either, but requires it
390 * to be provided separately for the descriptor.
391 * rt2x00lib will cut the IV/EIV data out of all frames
392 * given to us by mac80211, but we must tell mac80211
393 * to generate the IV/EIV data.
395 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
399 * SEC_CSR0 contains only single-bit fields to indicate
400 * a particular key is valid. Because using the FIELD32()
401 * defines directly will cause a lot of overhead, we use
402 * a calculation to determine the correct bit directly.
404 mask
= 1 << key
->hw_key_idx
;
406 rt2x00pci_register_read(rt2x00dev
, SEC_CSR0
, ®
);
407 if (crypto
->cmd
== SET_KEY
)
409 else if (crypto
->cmd
== DISABLE_KEY
)
411 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, reg
);
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
417 struct rt2x00lib_crypto
*crypto
,
418 struct ieee80211_key_conf
*key
)
420 struct hw_pairwise_ta_entry addr_entry
;
421 struct hw_key_entry key_entry
;
425 if (crypto
->cmd
== SET_KEY
) {
427 * rt2x00lib can't determine the correct free
428 * key_idx for pairwise keys. We have 2 registers
429 * with key valid bits. The goal is simple: read
430 * the first register. If that is full, move to
432 * When both registers are full, we drop the key.
433 * Otherwise, we use the first invalid entry.
435 rt2x00pci_register_read(rt2x00dev
, SEC_CSR2
, ®
);
436 if (reg
&& reg
== ~0) {
437 key
->hw_key_idx
= 32;
438 rt2x00pci_register_read(rt2x00dev
, SEC_CSR3
, ®
);
439 if (reg
&& reg
== ~0)
443 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
446 * Upload key to hardware
448 memcpy(key_entry
.key
, crypto
->key
,
449 sizeof(key_entry
.key
));
450 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
451 sizeof(key_entry
.tx_mic
));
452 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
453 sizeof(key_entry
.rx_mic
));
455 memset(&addr_entry
, 0, sizeof(addr_entry
));
456 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
457 addr_entry
.cipher
= crypto
->cipher
;
459 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
460 rt2x00pci_register_multiwrite(rt2x00dev
, reg
,
461 &key_entry
, sizeof(key_entry
));
463 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
464 rt2x00pci_register_multiwrite(rt2x00dev
, reg
,
465 &addr_entry
, sizeof(addr_entry
));
468 * Enable pairwise lookup table for given BSS idx.
469 * Without this, received frames will not be decrypted
472 rt2x00pci_register_read(rt2x00dev
, SEC_CSR4
, ®
);
473 reg
|= (1 << crypto
->bssidx
);
474 rt2x00pci_register_write(rt2x00dev
, SEC_CSR4
, reg
);
477 * The driver does not support the IV/EIV generation
478 * in hardware. However it doesn't support the IV/EIV
479 * inside the ieee80211 frame either, but requires it
480 * to be provided separately for the descriptor.
481 * rt2x00lib will cut the IV/EIV data out of all frames
482 * given to us by mac80211, but we must tell mac80211
483 * to generate the IV/EIV data.
485 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
489 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 * a particular key is valid. Because using the FIELD32()
491 * defines directly will cause a lot of overhead, we use
492 * a calculation to determine the correct bit directly.
494 if (key
->hw_key_idx
< 32) {
495 mask
= 1 << key
->hw_key_idx
;
497 rt2x00pci_register_read(rt2x00dev
, SEC_CSR2
, ®
);
498 if (crypto
->cmd
== SET_KEY
)
500 else if (crypto
->cmd
== DISABLE_KEY
)
502 rt2x00pci_register_write(rt2x00dev
, SEC_CSR2
, reg
);
504 mask
= 1 << (key
->hw_key_idx
- 32);
506 rt2x00pci_register_read(rt2x00dev
, SEC_CSR3
, ®
);
507 if (crypto
->cmd
== SET_KEY
)
509 else if (crypto
->cmd
== DISABLE_KEY
)
511 rt2x00pci_register_write(rt2x00dev
, SEC_CSR3
, reg
);
517 static void rt61pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
518 const unsigned int filter_flags
)
523 * Start configuration steps.
524 * Note that the version error will always be dropped
525 * and broadcast frames will always be accepted since
526 * there is no filter for it at this time.
528 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
529 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
530 !(filter_flags
& FIF_FCSFAIL
));
531 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
532 !(filter_flags
& FIF_PLCPFAIL
));
533 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
534 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
535 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
536 !(filter_flags
& FIF_PROMISC_IN_BSS
));
537 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
538 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
539 !rt2x00dev
->intf_ap_count
);
540 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
541 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
542 !(filter_flags
& FIF_ALLMULTI
));
543 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
544 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
545 !(filter_flags
& FIF_CONTROL
));
546 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
549 static void rt61pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
550 struct rt2x00_intf
*intf
,
551 struct rt2x00intf_conf
*conf
,
552 const unsigned int flags
)
556 if (flags
& CONFIG_UPDATE_TYPE
) {
558 * Enable synchronisation.
560 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
561 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
562 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
565 if (flags
& CONFIG_UPDATE_MAC
) {
566 reg
= le32_to_cpu(conf
->mac
[1]);
567 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
568 conf
->mac
[1] = cpu_to_le32(reg
);
570 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR2
,
571 conf
->mac
, sizeof(conf
->mac
));
574 if (flags
& CONFIG_UPDATE_BSSID
) {
575 reg
= le32_to_cpu(conf
->bssid
[1]);
576 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
577 conf
->bssid
[1] = cpu_to_le32(reg
);
579 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR4
,
580 conf
->bssid
, sizeof(conf
->bssid
));
584 static void rt61pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
585 struct rt2x00lib_erp
*erp
,
590 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
591 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
592 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
593 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
595 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
596 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
597 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
598 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
599 !!erp
->short_preamble
);
600 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
603 if (changed
& BSS_CHANGED_BASIC_RATES
)
604 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR5
,
607 if (changed
& BSS_CHANGED_BEACON_INT
) {
608 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
609 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
610 erp
->beacon_int
* 16);
611 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
614 if (changed
& BSS_CHANGED_ERP_SLOT
) {
615 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
616 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
617 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
619 rt2x00pci_register_read(rt2x00dev
, MAC_CSR8
, ®
);
620 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
621 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
622 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
623 rt2x00pci_register_write(rt2x00dev
, MAC_CSR8
, reg
);
627 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
628 struct antenna_setup
*ant
)
634 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
635 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
636 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
638 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF5325
));
641 * Configure the RX antenna.
644 case ANTENNA_HW_DIVERSITY
:
645 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
646 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
647 (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
));
650 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
651 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
652 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
653 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
655 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
659 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
660 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
661 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
662 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
664 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
668 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
669 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
670 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
673 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
674 struct antenna_setup
*ant
)
680 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
681 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
682 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
684 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF2529
));
685 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
686 !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
));
689 * Configure the RX antenna.
692 case ANTENNA_HW_DIVERSITY
:
693 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
696 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
697 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
701 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
702 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
706 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
707 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
708 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
711 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
712 const int p1
, const int p2
)
716 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
718 rt2x00_set_field32(®
, MAC_CSR13_BIT4
, p1
);
719 rt2x00_set_field32(®
, MAC_CSR13_BIT12
, 0);
721 rt2x00_set_field32(®
, MAC_CSR13_BIT3
, !p2
);
722 rt2x00_set_field32(®
, MAC_CSR13_BIT11
, 0);
724 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, reg
);
727 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
728 struct antenna_setup
*ant
)
734 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
735 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
736 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
739 * Configure the RX antenna.
743 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
744 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
745 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
747 case ANTENNA_HW_DIVERSITY
:
749 * FIXME: Antenna selection for the rf 2529 is very confusing
750 * in the legacy driver. Just default to antenna B until the
751 * legacy code can be properly translated into rt2x00 code.
755 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
756 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
757 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
761 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
762 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
763 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
769 * value[0] -> non-LNA
775 static const struct antenna_sel antenna_sel_a
[] = {
776 { 96, { 0x58, 0x78 } },
777 { 104, { 0x38, 0x48 } },
778 { 75, { 0xfe, 0x80 } },
779 { 86, { 0xfe, 0x80 } },
780 { 88, { 0xfe, 0x80 } },
781 { 35, { 0x60, 0x60 } },
782 { 97, { 0x58, 0x58 } },
783 { 98, { 0x58, 0x58 } },
786 static const struct antenna_sel antenna_sel_bg
[] = {
787 { 96, { 0x48, 0x68 } },
788 { 104, { 0x2c, 0x3c } },
789 { 75, { 0xfe, 0x80 } },
790 { 86, { 0xfe, 0x80 } },
791 { 88, { 0xfe, 0x80 } },
792 { 35, { 0x50, 0x50 } },
793 { 97, { 0x48, 0x48 } },
794 { 98, { 0x48, 0x48 } },
797 static void rt61pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
798 struct antenna_setup
*ant
)
800 const struct antenna_sel
*sel
;
806 * We should never come here because rt2x00lib is supposed
807 * to catch this and send us the correct antenna explicitely.
809 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
810 ant
->tx
== ANTENNA_SW_DIVERSITY
);
812 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
814 lna
= test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
816 sel
= antenna_sel_bg
;
817 lna
= test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
820 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
821 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
823 rt2x00pci_register_read(rt2x00dev
, PHY_CSR0
, ®
);
825 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
826 rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
827 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
828 rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
830 rt2x00pci_register_write(rt2x00dev
, PHY_CSR0
, reg
);
832 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
))
833 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
834 else if (rt2x00_rf(rt2x00dev
, RF2527
))
835 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
836 else if (rt2x00_rf(rt2x00dev
, RF2529
)) {
837 if (test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
))
838 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
840 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
844 static void rt61pci_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
845 struct rt2x00lib_conf
*libconf
)
850 if (libconf
->conf
->channel
->band
== IEEE80211_BAND_2GHZ
) {
851 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
854 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
855 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
857 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
))
860 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
861 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
864 rt2x00dev
->lna_gain
= lna_gain
;
867 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
868 struct rf_channel
*rf
, const int txpower
)
874 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
875 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
877 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
879 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
880 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
881 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
884 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
885 r94
+= txpower
- MAX_TXPOWER
;
886 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
888 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
890 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
891 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
892 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
893 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
897 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
898 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
899 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
900 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
904 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
905 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
906 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
907 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
912 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
915 struct rf_channel rf
;
917 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
918 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
919 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
920 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
922 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
925 static void rt61pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
926 struct rt2x00lib_conf
*libconf
)
930 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
931 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
932 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
933 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
934 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
935 libconf
->conf
->long_frame_max_tx_count
);
936 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
937 libconf
->conf
->short_frame_max_tx_count
);
938 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
941 static void rt61pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
942 struct rt2x00lib_conf
*libconf
)
944 enum dev_state state
=
945 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
946 STATE_SLEEP
: STATE_AWAKE
;
949 if (state
== STATE_SLEEP
) {
950 rt2x00pci_register_read(rt2x00dev
, MAC_CSR11
, ®
);
951 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
952 rt2x00dev
->beacon_int
- 10);
953 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
954 libconf
->conf
->listen_interval
- 1);
955 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
957 /* We must first disable autowake before it can be enabled */
958 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
959 rt2x00pci_register_write(rt2x00dev
, MAC_CSR11
, reg
);
961 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
962 rt2x00pci_register_write(rt2x00dev
, MAC_CSR11
, reg
);
964 rt2x00pci_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000005);
965 rt2x00pci_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x0000001c);
966 rt2x00pci_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000060);
968 rt61pci_mcu_request(rt2x00dev
, MCU_SLEEP
, 0xff, 0, 0);
970 rt2x00pci_register_read(rt2x00dev
, MAC_CSR11
, ®
);
971 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
972 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
973 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
974 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
975 rt2x00pci_register_write(rt2x00dev
, MAC_CSR11
, reg
);
977 rt2x00pci_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000007);
978 rt2x00pci_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x00000018);
979 rt2x00pci_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000020);
981 rt61pci_mcu_request(rt2x00dev
, MCU_WAKEUP
, 0xff, 0, 0);
985 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
986 struct rt2x00lib_conf
*libconf
,
987 const unsigned int flags
)
989 /* Always recalculate LNA gain before changing configuration */
990 rt61pci_config_lna_gain(rt2x00dev
, libconf
);
992 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
993 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
994 libconf
->conf
->power_level
);
995 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
996 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
997 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
998 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
999 rt61pci_config_retry_limit(rt2x00dev
, libconf
);
1000 if (flags
& IEEE80211_CONF_CHANGE_PS
)
1001 rt61pci_config_ps(rt2x00dev
, libconf
);
1007 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
1008 struct link_qual
*qual
)
1013 * Update FCS error count from register.
1015 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1016 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
1019 * Update False CCA count from register.
1021 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1022 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
1025 static inline void rt61pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
1026 struct link_qual
*qual
, u8 vgc_level
)
1028 if (qual
->vgc_level
!= vgc_level
) {
1029 rt61pci_bbp_write(rt2x00dev
, 17, vgc_level
);
1030 qual
->vgc_level
= vgc_level
;
1031 qual
->vgc_level_reg
= vgc_level
;
1035 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
1036 struct link_qual
*qual
)
1038 rt61pci_set_vgc(rt2x00dev
, qual
, 0x20);
1041 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
1042 struct link_qual
*qual
, const u32 count
)
1048 * Determine r17 bounds.
1050 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
1053 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
1060 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
1067 * If we are not associated, we should go straight to the
1068 * dynamic CCA tuning.
1070 if (!rt2x00dev
->intf_associated
)
1071 goto dynamic_cca_tune
;
1074 * Special big-R17 for very short distance
1076 if (qual
->rssi
>= -35) {
1077 rt61pci_set_vgc(rt2x00dev
, qual
, 0x60);
1082 * Special big-R17 for short distance
1084 if (qual
->rssi
>= -58) {
1085 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1090 * Special big-R17 for middle-short distance
1092 if (qual
->rssi
>= -66) {
1093 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
1098 * Special mid-R17 for middle distance
1100 if (qual
->rssi
>= -74) {
1101 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
1106 * Special case: Change up_bound based on the rssi.
1107 * Lower up_bound when rssi is weaker then -74 dBm.
1109 up_bound
-= 2 * (-74 - qual
->rssi
);
1110 if (low_bound
> up_bound
)
1111 up_bound
= low_bound
;
1113 if (qual
->vgc_level
> up_bound
) {
1114 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1121 * r17 does not yet exceed upper limit, continue and base
1122 * the r17 tuning on the false CCA count.
1124 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1125 rt61pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
1126 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1127 rt61pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
1133 static void rt61pci_start_queue(struct data_queue
*queue
)
1135 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1138 switch (queue
->qid
) {
1140 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1141 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1142 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1146 * Allow the tbtt tasklet to be scheduled.
1148 tasklet_enable(&rt2x00dev
->tbtt_tasklet
);
1150 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1151 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1152 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1153 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1154 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1161 static void rt61pci_kick_queue(struct data_queue
*queue
)
1163 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1166 switch (queue
->qid
) {
1168 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1169 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
, 1);
1170 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1173 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1174 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
, 1);
1175 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1178 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1179 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
, 1);
1180 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1183 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1184 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
, 1);
1185 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1192 static void rt61pci_stop_queue(struct data_queue
*queue
)
1194 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1197 switch (queue
->qid
) {
1199 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1200 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1201 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1204 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1205 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1206 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1209 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1210 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1211 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1214 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1215 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1216 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1219 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1220 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1221 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1224 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1225 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1226 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1227 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1228 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1231 * Wait for possibly running tbtt tasklets.
1233 tasklet_disable(&rt2x00dev
->tbtt_tasklet
);
1241 * Firmware functions
1243 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1248 pci_read_config_word(to_pci_dev(rt2x00dev
->dev
), PCI_DEVICE_ID
, &chip
);
1251 fw_name
= FIRMWARE_RT2561
;
1253 case RT2561s_PCI_ID
:
1254 fw_name
= FIRMWARE_RT2561s
;
1257 fw_name
= FIRMWARE_RT2661
;
1267 static int rt61pci_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1268 const u8
*data
, const size_t len
)
1274 * Only support 8kb firmware files.
1277 return FW_BAD_LENGTH
;
1280 * The last 2 bytes in the firmware array are the crc checksum itself.
1281 * This means that we should never pass those 2 bytes to the crc
1284 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1287 * Use the crc itu-t algorithm.
1289 crc
= crc_itu_t(0, data
, len
- 2);
1290 crc
= crc_itu_t_byte(crc
, 0);
1291 crc
= crc_itu_t_byte(crc
, 0);
1293 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1296 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1297 const u8
*data
, const size_t len
)
1303 * Wait for stable hardware.
1305 for (i
= 0; i
< 100; i
++) {
1306 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1313 ERROR(rt2x00dev
, "Unstable hardware.\n");
1318 * Prepare MCU and mailbox for firmware loading.
1321 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1322 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1323 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1324 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
1325 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
1328 * Write firmware to device.
1331 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1332 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
1333 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1335 rt2x00pci_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
1338 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
1339 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1341 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
1342 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1344 for (i
= 0; i
< 100; i
++) {
1345 rt2x00pci_register_read(rt2x00dev
, MCU_CNTL_CSR
, ®
);
1346 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
1352 ERROR(rt2x00dev
, "MCU Control register not ready.\n");
1357 * Hardware needs another millisecond before it is ready.
1362 * Reset MAC and BBP registers.
1365 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1366 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1367 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1369 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1370 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1371 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1372 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1374 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1375 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1376 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1382 * Initialization functions.
1384 static bool rt61pci_get_entry_state(struct queue_entry
*entry
)
1386 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1389 if (entry
->queue
->qid
== QID_RX
) {
1390 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1392 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
1394 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1396 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1397 rt2x00_get_field32(word
, TXD_W0_VALID
));
1401 static void rt61pci_clear_entry(struct queue_entry
*entry
)
1403 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1404 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1407 if (entry
->queue
->qid
== QID_RX
) {
1408 rt2x00_desc_read(entry_priv
->desc
, 5, &word
);
1409 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1411 rt2x00_desc_write(entry_priv
->desc
, 5, word
);
1413 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1414 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1415 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1417 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1418 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1419 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1420 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1424 static int rt61pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
1426 struct queue_entry_priv_pci
*entry_priv
;
1430 * Initialize registers.
1432 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR0
, ®
);
1433 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1434 rt2x00dev
->tx
[0].limit
);
1435 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1436 rt2x00dev
->tx
[1].limit
);
1437 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1438 rt2x00dev
->tx
[2].limit
);
1439 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1440 rt2x00dev
->tx
[3].limit
);
1441 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1443 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR1
, ®
);
1444 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1445 rt2x00dev
->tx
[0].desc_size
/ 4);
1446 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1448 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
1449 rt2x00pci_register_read(rt2x00dev
, AC0_BASE_CSR
, ®
);
1450 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1451 entry_priv
->desc_dma
);
1452 rt2x00pci_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1454 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
1455 rt2x00pci_register_read(rt2x00dev
, AC1_BASE_CSR
, ®
);
1456 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1457 entry_priv
->desc_dma
);
1458 rt2x00pci_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1460 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
1461 rt2x00pci_register_read(rt2x00dev
, AC2_BASE_CSR
, ®
);
1462 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1463 entry_priv
->desc_dma
);
1464 rt2x00pci_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1466 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
1467 rt2x00pci_register_read(rt2x00dev
, AC3_BASE_CSR
, ®
);
1468 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1469 entry_priv
->desc_dma
);
1470 rt2x00pci_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1472 rt2x00pci_register_read(rt2x00dev
, RX_RING_CSR
, ®
);
1473 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
, rt2x00dev
->rx
->limit
);
1474 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1475 rt2x00dev
->rx
->desc_size
/ 4);
1476 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1477 rt2x00pci_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1479 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
1480 rt2x00pci_register_read(rt2x00dev
, RX_BASE_CSR
, ®
);
1481 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1482 entry_priv
->desc_dma
);
1483 rt2x00pci_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1485 rt2x00pci_register_read(rt2x00dev
, TX_DMA_DST_CSR
, ®
);
1486 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1487 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1488 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1489 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1490 rt2x00pci_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1492 rt2x00pci_register_read(rt2x00dev
, LOAD_TX_RING_CSR
, ®
);
1493 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1494 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1495 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1496 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1497 rt2x00pci_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1499 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1500 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1501 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1506 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1510 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1511 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1512 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1513 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1514 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1516 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1517 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1518 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1519 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1520 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1521 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1522 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1523 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1524 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1525 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1528 * CCK TXD BBP registers
1530 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1531 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1532 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1533 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1534 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1535 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1536 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1537 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1538 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1539 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1542 * OFDM TXD BBP registers
1544 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1545 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1546 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1547 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1548 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1549 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1550 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1551 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1553 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1554 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1555 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1556 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1557 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1558 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1560 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1561 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1562 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1563 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1564 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1565 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1567 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1568 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1569 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1570 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1571 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1572 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1573 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1574 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1576 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1578 rt2x00pci_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1580 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1581 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1582 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1584 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1586 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1589 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1592 * Invalidate all Shared Keys (SEC_CSR0),
1593 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1595 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1596 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1597 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1599 rt2x00pci_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1600 rt2x00pci_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1601 rt2x00pci_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1602 rt2x00pci_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1604 rt2x00pci_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1606 rt2x00pci_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1608 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1612 * For the Beacon base registers we only need to clear
1613 * the first byte since that byte contains the VALID and OWNER
1614 * bits which (when set to 0) will invalidate the entire beacon.
1616 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1617 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1618 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1619 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1622 * We must clear the error counters.
1623 * These registers are cleared on read,
1624 * so we may pass a useless variable to store the value.
1626 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1627 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1628 rt2x00pci_register_read(rt2x00dev
, STA_CSR2
, ®
);
1631 * Reset MAC and BBP registers.
1633 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1634 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1635 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1636 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1638 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1639 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1640 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1641 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1643 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1644 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1645 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1650 static int rt61pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1655 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1656 rt61pci_bbp_read(rt2x00dev
, 0, &value
);
1657 if ((value
!= 0xff) && (value
!= 0x00))
1659 udelay(REGISTER_BUSY_DELAY
);
1662 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1666 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1673 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev
)))
1676 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1677 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1678 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1679 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1680 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1681 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1682 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1683 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1684 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1685 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1686 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1687 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1688 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1689 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1690 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1691 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1692 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1693 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1694 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1695 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1696 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1697 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1698 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1699 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1701 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1702 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1704 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1705 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1706 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1707 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1715 * Device state switch handlers.
1717 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1718 enum dev_state state
)
1720 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1722 unsigned long flags
;
1725 * When interrupts are being enabled, the interrupt registers
1726 * should clear the register to assure a clean state.
1728 if (state
== STATE_RADIO_IRQ_ON
) {
1729 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1730 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1732 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®
);
1733 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1738 tasklet_enable(&rt2x00dev
->txstatus_tasklet
);
1739 tasklet_enable(&rt2x00dev
->rxdone_tasklet
);
1740 tasklet_enable(&rt2x00dev
->autowake_tasklet
);
1744 * Only toggle the interrupts bits we are going to use.
1745 * Non-checked interrupt bits are disabled by default.
1747 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1749 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1750 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1751 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1752 rt2x00_set_field32(®
, INT_MASK_CSR_BEACON_DONE
, mask
);
1753 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1754 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1755 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1757 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
1758 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1759 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1760 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1761 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1762 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1763 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1764 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1765 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1766 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_TWAKEUP
, mask
);
1767 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1769 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1771 if (state
== STATE_RADIO_IRQ_OFF
) {
1773 * Ensure that all tasklets are finished.
1775 tasklet_disable(&rt2x00dev
->txstatus_tasklet
);
1776 tasklet_disable(&rt2x00dev
->rxdone_tasklet
);
1777 tasklet_disable(&rt2x00dev
->autowake_tasklet
);
1781 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1786 * Initialize all registers.
1788 if (unlikely(rt61pci_init_queues(rt2x00dev
) ||
1789 rt61pci_init_registers(rt2x00dev
) ||
1790 rt61pci_init_bbp(rt2x00dev
)))
1796 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1797 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1798 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1803 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1808 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1811 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1817 put_to_sleep
= (state
!= STATE_AWAKE
);
1819 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1820 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1821 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1822 rt2x00pci_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1825 * Device is not guaranteed to be in the requested state yet.
1826 * We must wait until the register indicates that the
1827 * device has entered the correct state.
1829 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1830 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®2
);
1831 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1832 if (state
== !put_to_sleep
)
1834 rt2x00pci_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1841 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1842 enum dev_state state
)
1847 case STATE_RADIO_ON
:
1848 retval
= rt61pci_enable_radio(rt2x00dev
);
1850 case STATE_RADIO_OFF
:
1851 rt61pci_disable_radio(rt2x00dev
);
1853 case STATE_RADIO_IRQ_ON
:
1854 case STATE_RADIO_IRQ_OFF
:
1855 rt61pci_toggle_irq(rt2x00dev
, state
);
1857 case STATE_DEEP_SLEEP
:
1861 retval
= rt61pci_set_state(rt2x00dev
, state
);
1868 if (unlikely(retval
))
1869 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1876 * TX descriptor initialization
1878 static void rt61pci_write_tx_desc(struct queue_entry
*entry
,
1879 struct txentry_desc
*txdesc
)
1881 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1882 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1883 __le32
*txd
= entry_priv
->desc
;
1887 * Start writing the descriptor words.
1889 rt2x00_desc_read(txd
, 1, &word
);
1890 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1891 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1892 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1893 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1894 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1895 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1896 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1897 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1898 rt2x00_desc_write(txd
, 1, word
);
1900 rt2x00_desc_read(txd
, 2, &word
);
1901 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1902 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1903 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1904 txdesc
->u
.plcp
.length_low
);
1905 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1906 txdesc
->u
.plcp
.length_high
);
1907 rt2x00_desc_write(txd
, 2, word
);
1909 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1910 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1911 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1914 rt2x00_desc_read(txd
, 5, &word
);
1915 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, entry
->queue
->qid
);
1916 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
,
1917 skbdesc
->entry
->entry_idx
);
1918 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1919 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1920 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1921 rt2x00_desc_write(txd
, 5, word
);
1923 if (entry
->queue
->qid
!= QID_BEACON
) {
1924 rt2x00_desc_read(txd
, 6, &word
);
1925 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1927 rt2x00_desc_write(txd
, 6, word
);
1929 rt2x00_desc_read(txd
, 11, &word
);
1930 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
,
1932 rt2x00_desc_write(txd
, 11, word
);
1936 * Writing TXD word 0 must the last to prevent a race condition with
1937 * the device, whereby the device may take hold of the TXD before we
1938 * finished updating it.
1940 rt2x00_desc_read(txd
, 0, &word
);
1941 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1942 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1943 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1944 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1945 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1946 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1947 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1948 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1949 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1950 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1951 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1952 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1953 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1954 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1955 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1956 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1957 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1958 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1959 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1960 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1961 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1962 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1963 rt2x00_desc_write(txd
, 0, word
);
1966 * Register descriptor details in skb frame descriptor.
1968 skbdesc
->desc
= txd
;
1969 skbdesc
->desc_len
= (entry
->queue
->qid
== QID_BEACON
) ? TXINFO_SIZE
:
1974 * TX data initialization
1976 static void rt61pci_write_beacon(struct queue_entry
*entry
,
1977 struct txentry_desc
*txdesc
)
1979 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1980 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1981 unsigned int beacon_base
;
1982 unsigned int padding_len
;
1986 * Disable beaconing while we are reloading the beacon data,
1987 * otherwise we might be sending out invalid data.
1989 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1991 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1992 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1995 * Write the TX descriptor for the beacon.
1997 rt61pci_write_tx_desc(entry
, txdesc
);
2000 * Dump beacon to userspace through debugfs.
2002 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
2005 * Write entire beacon with descriptor and padding to register.
2007 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
2008 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
2009 ERROR(rt2x00dev
, "Failure padding beacon, aborting\n");
2010 /* skb freed by skb_pad() on failure */
2012 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
2016 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
2017 rt2x00pci_register_multiwrite(rt2x00dev
, beacon_base
,
2018 entry_priv
->desc
, TXINFO_SIZE
);
2019 rt2x00pci_register_multiwrite(rt2x00dev
, beacon_base
+ TXINFO_SIZE
,
2021 entry
->skb
->len
+ padding_len
);
2024 * Enable beaconing again.
2026 * For Wi-Fi faily generated beacons between participating
2027 * stations. Set TBTT phase adaptive adjustment step to 8us.
2029 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
2031 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
2032 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2035 * Clean up beacon skb.
2037 dev_kfree_skb_any(entry
->skb
);
2041 static void rt61pci_clear_beacon(struct queue_entry
*entry
)
2043 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2047 * Disable beaconing while we are reloading the beacon data,
2048 * otherwise we might be sending out invalid data.
2050 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
2051 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
2052 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2057 rt2x00pci_register_write(rt2x00dev
,
2058 HW_BEACON_OFFSET(entry
->entry_idx
), 0);
2061 * Enable beaconing again.
2063 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
2064 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2068 * RX control handlers
2070 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
2072 u8 offset
= rt2x00dev
->lna_gain
;
2075 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
2090 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
2091 if (lna
== 3 || lna
== 2)
2095 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
2098 static void rt61pci_fill_rxdone(struct queue_entry
*entry
,
2099 struct rxdone_entry_desc
*rxdesc
)
2101 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2102 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
2106 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
2107 rt2x00_desc_read(entry_priv
->desc
, 1, &word1
);
2109 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
2110 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
2112 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
2113 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
2115 if (rxdesc
->cipher
!= CIPHER_NONE
) {
2116 _rt2x00_desc_read(entry_priv
->desc
, 2, &rxdesc
->iv
[0]);
2117 _rt2x00_desc_read(entry_priv
->desc
, 3, &rxdesc
->iv
[1]);
2118 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
2120 _rt2x00_desc_read(entry_priv
->desc
, 4, &rxdesc
->icv
);
2121 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
2124 * Hardware has stripped IV/EIV data from 802.11 frame during
2125 * decryption. It has provided the data separately but rt2x00lib
2126 * should decide if it should be reinserted.
2128 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
2131 * The hardware has already checked the Michael Mic and has
2132 * stripped it from the frame. Signal this to mac80211.
2134 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
2136 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
2137 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
2138 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
2139 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
2143 * Obtain the status about this packet.
2144 * When frame was received with an OFDM bitrate,
2145 * the signal is the PLCP value. If it was received with
2146 * a CCK bitrate the signal is the rate in 100kbit/s.
2148 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
2149 rxdesc
->rssi
= rt61pci_agc_to_rssi(rt2x00dev
, word1
);
2150 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
2152 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
2153 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
2155 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
2156 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
2157 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
2161 * Interrupt functions.
2163 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
2165 struct data_queue
*queue
;
2166 struct queue_entry
*entry
;
2167 struct queue_entry
*entry_done
;
2168 struct queue_entry_priv_pci
*entry_priv
;
2169 struct txdone_entry_desc txdesc
;
2177 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2178 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2179 * flag is not set anymore.
2181 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2182 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2183 * tx ring size for now.
2185 for (i
= 0; i
< rt2x00dev
->ops
->tx
->entry_num
; i
++) {
2186 rt2x00pci_register_read(rt2x00dev
, STA_CSR4
, ®
);
2187 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
2191 * Skip this entry when it contains an invalid
2192 * queue identication number.
2194 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
2195 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, type
);
2196 if (unlikely(!queue
))
2200 * Skip this entry when it contains an invalid
2203 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
2204 if (unlikely(index
>= queue
->limit
))
2207 entry
= &queue
->entries
[index
];
2208 entry_priv
= entry
->priv_data
;
2209 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
2211 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
2212 !rt2x00_get_field32(word
, TXD_W0_VALID
))
2215 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2216 while (entry
!= entry_done
) {
2218 * Just report any entries we missed as failed.
2221 "TX status report missed for entry %d\n",
2222 entry_done
->entry_idx
);
2224 rt2x00lib_txdone_noinfo(entry_done
, TXDONE_UNKNOWN
);
2225 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2229 * Obtain the status about this packet.
2232 switch (rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
)) {
2233 case 0: /* Success, maybe with retry */
2234 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
2236 case 6: /* Failure, excessive retries */
2237 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
2238 /* Don't break, this is a failed frame! */
2239 default: /* Failure */
2240 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
2242 txdesc
.retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
2245 * the frame was retried at least once
2246 * -> hw used fallback rates
2249 __set_bit(TXDONE_FALLBACK
, &txdesc
.flags
);
2251 rt2x00lib_txdone(entry
, &txdesc
);
2255 static void rt61pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
2257 struct ieee80211_conf conf
= { .flags
= 0 };
2258 struct rt2x00lib_conf libconf
= { .conf
= &conf
};
2260 rt61pci_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
2263 static void rt61pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
2264 struct rt2x00_field32 irq_field
)
2269 * Enable a single interrupt. The interrupt mask register
2270 * access needs locking.
2272 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2274 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
2275 rt2x00_set_field32(®
, irq_field
, 0);
2276 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2278 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2281 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev
*rt2x00dev
,
2282 struct rt2x00_field32 irq_field
)
2287 * Enable a single MCU interrupt. The interrupt mask register
2288 * access needs locking.
2290 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2292 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
2293 rt2x00_set_field32(®
, irq_field
, 0);
2294 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2296 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2299 static void rt61pci_txstatus_tasklet(unsigned long data
)
2301 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2302 rt61pci_txdone(rt2x00dev
);
2303 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TXDONE
);
2306 static void rt61pci_tbtt_tasklet(unsigned long data
)
2308 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2309 rt2x00lib_beacondone(rt2x00dev
);
2310 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_BEACON_DONE
);
2313 static void rt61pci_rxdone_tasklet(unsigned long data
)
2315 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2316 rt2x00pci_rxdone(rt2x00dev
);
2317 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RXDONE
);
2320 static void rt61pci_autowake_tasklet(unsigned long data
)
2322 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2323 rt61pci_wakeup(rt2x00dev
);
2324 rt2x00pci_register_write(rt2x00dev
,
2325 M2H_CMD_DONE_CSR
, 0xffffffff);
2326 rt61pci_enable_mcu_interrupt(rt2x00dev
, MCU_INT_MASK_CSR_TWAKEUP
);
2329 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
2331 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
2332 u32 reg_mcu
, mask_mcu
;
2336 * Get the interrupt sources & saved to local variable.
2337 * Write register value back to clear pending interrupts.
2339 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®_mcu
);
2340 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
2342 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
2343 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
2345 if (!reg
&& !reg_mcu
)
2348 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2352 * Schedule tasklets for interrupt handling.
2354 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
2355 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2357 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
2358 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
2360 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_BEACON_DONE
))
2361 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
2363 if (rt2x00_get_field32(reg_mcu
, MCU_INT_SOURCE_CSR_TWAKEUP
))
2364 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
2367 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2368 * for interrupts and interrupt masks we can just use the value of
2369 * INT_SOURCE_CSR to create the interrupt mask.
2375 * Disable all interrupts for which a tasklet was scheduled right now,
2376 * the tasklet will reenable the appropriate interrupts.
2378 spin_lock(&rt2x00dev
->irqmask_lock
);
2380 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
2382 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2384 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
2386 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2388 spin_unlock(&rt2x00dev
->irqmask_lock
);
2394 * Device probe functions.
2396 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
2398 struct eeprom_93cx6 eeprom
;
2404 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
2406 eeprom
.data
= rt2x00dev
;
2407 eeprom
.register_read
= rt61pci_eepromregister_read
;
2408 eeprom
.register_write
= rt61pci_eepromregister_write
;
2409 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
2410 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
2411 eeprom
.reg_data_in
= 0;
2412 eeprom
.reg_data_out
= 0;
2413 eeprom
.reg_data_clock
= 0;
2414 eeprom
.reg_chip_select
= 0;
2416 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
2417 EEPROM_SIZE
/ sizeof(u16
));
2420 * Start validation of the data that has been read.
2422 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
2423 if (!is_valid_ether_addr(mac
)) {
2424 random_ether_addr(mac
);
2425 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
2428 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
2429 if (word
== 0xffff) {
2430 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
2431 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
2433 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
2435 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
2436 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
2437 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
2438 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
2439 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
2440 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
2443 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
2444 if (word
== 0xffff) {
2445 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
2446 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
2447 rt2x00_set_field16(&word
, EEPROM_NIC_RX_FIXED
, 0);
2448 rt2x00_set_field16(&word
, EEPROM_NIC_TX_FIXED
, 0);
2449 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
2450 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
2451 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
2452 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
2453 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
2456 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
2457 if (word
== 0xffff) {
2458 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
2460 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
2461 EEPROM(rt2x00dev
, "Led: 0x%04x\n", word
);
2464 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
2465 if (word
== 0xffff) {
2466 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
2467 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
2468 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2469 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
2472 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
2473 if (word
== 0xffff) {
2474 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2475 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2476 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2477 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
2479 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
2480 if (value
< -10 || value
> 10)
2481 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2482 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
2483 if (value
< -10 || value
> 10)
2484 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2485 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2488 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
2489 if (word
== 0xffff) {
2490 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2491 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2492 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2493 EEPROM(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
2495 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
2496 if (value
< -10 || value
> 10)
2497 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2498 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
2499 if (value
< -10 || value
> 10)
2500 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2501 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2507 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
2514 * Read EEPROM word for configuration.
2516 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
2519 * Identify RF chipset.
2521 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
2522 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
2523 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
2524 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
2526 if (!rt2x00_rf(rt2x00dev
, RF5225
) &&
2527 !rt2x00_rf(rt2x00dev
, RF5325
) &&
2528 !rt2x00_rf(rt2x00dev
, RF2527
) &&
2529 !rt2x00_rf(rt2x00dev
, RF2529
)) {
2530 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
2535 * Determine number of antennas.
2537 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
2538 __set_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
);
2541 * Identify default antenna configuration.
2543 rt2x00dev
->default_ant
.tx
=
2544 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
2545 rt2x00dev
->default_ant
.rx
=
2546 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
2549 * Read the Frame type.
2551 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2552 __set_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
);
2555 * Detect if this device has a hardware controlled radio.
2557 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2558 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
2561 * Read frequency offset and RF programming sequence.
2563 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
2564 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2565 __set_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
);
2567 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2570 * Read external LNA informations.
2572 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
2574 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2575 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
2576 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2577 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
2580 * When working with a RF2529 chip without double antenna,
2581 * the antenna settings should be gathered from the NIC
2584 if (rt2x00_rf(rt2x00dev
, RF2529
) &&
2585 !test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
)) {
2586 rt2x00dev
->default_ant
.rx
=
2587 ANTENNA_A
+ rt2x00_get_field16(eeprom
, EEPROM_NIC_RX_FIXED
);
2588 rt2x00dev
->default_ant
.tx
=
2589 ANTENNA_B
- rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_FIXED
);
2591 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2592 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2593 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2594 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2598 * Store led settings, for correct led behaviour.
2599 * If the eeprom value is invalid,
2600 * switch to default led mode.
2602 #ifdef CONFIG_RT2X00_LIB_LEDS
2603 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
2604 value
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2606 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
2607 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
2608 if (value
== LED_MODE_SIGNAL_STRENGTH
)
2609 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
2612 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
2613 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2614 rt2x00_get_field16(eeprom
,
2615 EEPROM_LED_POLARITY_GPIO_0
));
2616 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2617 rt2x00_get_field16(eeprom
,
2618 EEPROM_LED_POLARITY_GPIO_1
));
2619 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2620 rt2x00_get_field16(eeprom
,
2621 EEPROM_LED_POLARITY_GPIO_2
));
2622 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2623 rt2x00_get_field16(eeprom
,
2624 EEPROM_LED_POLARITY_GPIO_3
));
2625 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2626 rt2x00_get_field16(eeprom
,
2627 EEPROM_LED_POLARITY_GPIO_4
));
2628 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
2629 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2630 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2631 rt2x00_get_field16(eeprom
,
2632 EEPROM_LED_POLARITY_RDY_G
));
2633 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
2634 rt2x00_get_field16(eeprom
,
2635 EEPROM_LED_POLARITY_RDY_A
));
2636 #endif /* CONFIG_RT2X00_LIB_LEDS */
2642 * RF value list for RF5225 & RF5325
2643 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2645 static const struct rf_channel rf_vals_noseq
[] = {
2646 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2647 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2648 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2649 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2650 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2651 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2652 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2653 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2654 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2655 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2656 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2657 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2658 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2659 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2661 /* 802.11 UNI / HyperLan 2 */
2662 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2663 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2664 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2665 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2666 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2667 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2668 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2669 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2671 /* 802.11 HyperLan 2 */
2672 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2673 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2674 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2675 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2676 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2677 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2678 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2679 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2680 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2681 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2684 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2685 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2686 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2687 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2688 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2689 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2691 /* MMAC(Japan)J52 ch 34,38,42,46 */
2692 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2693 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2694 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2695 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2699 * RF value list for RF5225 & RF5325
2700 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2702 static const struct rf_channel rf_vals_seq
[] = {
2703 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2704 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2705 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2706 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2707 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2708 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2709 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2710 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2711 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2712 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2713 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2714 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2715 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2716 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2718 /* 802.11 UNI / HyperLan 2 */
2719 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2720 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2721 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2722 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2723 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2724 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2725 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2726 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2728 /* 802.11 HyperLan 2 */
2729 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2730 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2731 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2732 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2733 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2734 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2735 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2736 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2737 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2738 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2741 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2742 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2743 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2744 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2745 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2746 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2748 /* MMAC(Japan)J52 ch 34,38,42,46 */
2749 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2750 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2751 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2752 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2755 static int rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2757 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2758 struct channel_info
*info
;
2763 * Disable powersaving as default.
2765 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
2768 * Initialize all hw fields.
2770 rt2x00dev
->hw
->flags
=
2771 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2772 IEEE80211_HW_SIGNAL_DBM
|
2773 IEEE80211_HW_SUPPORTS_PS
|
2774 IEEE80211_HW_PS_NULLFUNC_STACK
;
2776 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2777 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2778 rt2x00_eeprom_addr(rt2x00dev
,
2779 EEPROM_MAC_ADDR_0
));
2782 * As rt61 has a global fallback table we cannot specify
2783 * more then one tx rate per frame but since the hw will
2784 * try several rates (based on the fallback table) we should
2785 * initialize max_report_rates to the maximum number of rates
2786 * we are going to try. Otherwise mac80211 will truncate our
2787 * reported tx rates and the rc algortihm will end up with
2790 rt2x00dev
->hw
->max_rates
= 1;
2791 rt2x00dev
->hw
->max_report_rates
= 7;
2792 rt2x00dev
->hw
->max_rate_tries
= 1;
2795 * Initialize hw_mode information.
2797 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2798 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2800 if (!test_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
)) {
2801 spec
->num_channels
= 14;
2802 spec
->channels
= rf_vals_noseq
;
2804 spec
->num_channels
= 14;
2805 spec
->channels
= rf_vals_seq
;
2808 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
)) {
2809 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2810 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2814 * Create channel information array
2816 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2820 spec
->channels_info
= info
;
2822 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2823 for (i
= 0; i
< 14; i
++) {
2824 info
[i
].max_power
= MAX_TXPOWER
;
2825 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2828 if (spec
->num_channels
> 14) {
2829 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2830 for (i
= 14; i
< spec
->num_channels
; i
++) {
2831 info
[i
].max_power
= MAX_TXPOWER
;
2832 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2839 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2844 * Disable power saving.
2846 rt2x00pci_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000007);
2849 * Allocate eeprom data.
2851 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2855 retval
= rt61pci_init_eeprom(rt2x00dev
);
2860 * Initialize hw specifications.
2862 retval
= rt61pci_probe_hw_mode(rt2x00dev
);
2867 * This device has multiple filters for control frames,
2868 * but has no a separate filter for PS Poll frames.
2870 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS
, &rt2x00dev
->flags
);
2873 * This device requires firmware and DMA mapped skbs.
2875 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
2876 __set_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
);
2877 if (!modparam_nohwcrypt
)
2878 __set_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
);
2879 __set_bit(DRIVER_SUPPORT_LINK_TUNING
, &rt2x00dev
->flags
);
2882 * Set the rssi offset.
2884 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2890 * IEEE80211 stack callback functions.
2892 static int rt61pci_conf_tx(struct ieee80211_hw
*hw
, u16 queue_idx
,
2893 const struct ieee80211_tx_queue_params
*params
)
2895 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2896 struct data_queue
*queue
;
2897 struct rt2x00_field32 field
;
2903 * First pass the configuration through rt2x00lib, that will
2904 * update the queue settings and validate the input. After that
2905 * we are free to update the registers based on the value
2906 * in the queue parameter.
2908 retval
= rt2x00mac_conf_tx(hw
, queue_idx
, params
);
2913 * We only need to perform additional register initialization
2919 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2921 /* Update WMM TXOP register */
2922 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2923 field
.bit_offset
= (queue_idx
& 1) * 16;
2924 field
.bit_mask
= 0xffff << field
.bit_offset
;
2926 rt2x00pci_register_read(rt2x00dev
, offset
, ®
);
2927 rt2x00_set_field32(®
, field
, queue
->txop
);
2928 rt2x00pci_register_write(rt2x00dev
, offset
, reg
);
2930 /* Update WMM registers */
2931 field
.bit_offset
= queue_idx
* 4;
2932 field
.bit_mask
= 0xf << field
.bit_offset
;
2934 rt2x00pci_register_read(rt2x00dev
, AIFSN_CSR
, ®
);
2935 rt2x00_set_field32(®
, field
, queue
->aifs
);
2936 rt2x00pci_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2938 rt2x00pci_register_read(rt2x00dev
, CWMIN_CSR
, ®
);
2939 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2940 rt2x00pci_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2942 rt2x00pci_register_read(rt2x00dev
, CWMAX_CSR
, ®
);
2943 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2944 rt2x00pci_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2949 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
)
2951 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2955 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2956 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2957 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2958 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2963 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2965 .start
= rt2x00mac_start
,
2966 .stop
= rt2x00mac_stop
,
2967 .add_interface
= rt2x00mac_add_interface
,
2968 .remove_interface
= rt2x00mac_remove_interface
,
2969 .config
= rt2x00mac_config
,
2970 .configure_filter
= rt2x00mac_configure_filter
,
2971 .set_key
= rt2x00mac_set_key
,
2972 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2973 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2974 .get_stats
= rt2x00mac_get_stats
,
2975 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2976 .conf_tx
= rt61pci_conf_tx
,
2977 .get_tsf
= rt61pci_get_tsf
,
2978 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2979 .flush
= rt2x00mac_flush
,
2982 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2983 .irq_handler
= rt61pci_interrupt
,
2984 .txstatus_tasklet
= rt61pci_txstatus_tasklet
,
2985 .tbtt_tasklet
= rt61pci_tbtt_tasklet
,
2986 .rxdone_tasklet
= rt61pci_rxdone_tasklet
,
2987 .autowake_tasklet
= rt61pci_autowake_tasklet
,
2988 .probe_hw
= rt61pci_probe_hw
,
2989 .get_firmware_name
= rt61pci_get_firmware_name
,
2990 .check_firmware
= rt61pci_check_firmware
,
2991 .load_firmware
= rt61pci_load_firmware
,
2992 .initialize
= rt2x00pci_initialize
,
2993 .uninitialize
= rt2x00pci_uninitialize
,
2994 .get_entry_state
= rt61pci_get_entry_state
,
2995 .clear_entry
= rt61pci_clear_entry
,
2996 .set_device_state
= rt61pci_set_device_state
,
2997 .rfkill_poll
= rt61pci_rfkill_poll
,
2998 .link_stats
= rt61pci_link_stats
,
2999 .reset_tuner
= rt61pci_reset_tuner
,
3000 .link_tuner
= rt61pci_link_tuner
,
3001 .start_queue
= rt61pci_start_queue
,
3002 .kick_queue
= rt61pci_kick_queue
,
3003 .stop_queue
= rt61pci_stop_queue
,
3004 .write_tx_desc
= rt61pci_write_tx_desc
,
3005 .write_beacon
= rt61pci_write_beacon
,
3006 .clear_beacon
= rt61pci_clear_beacon
,
3007 .fill_rxdone
= rt61pci_fill_rxdone
,
3008 .config_shared_key
= rt61pci_config_shared_key
,
3009 .config_pairwise_key
= rt61pci_config_pairwise_key
,
3010 .config_filter
= rt61pci_config_filter
,
3011 .config_intf
= rt61pci_config_intf
,
3012 .config_erp
= rt61pci_config_erp
,
3013 .config_ant
= rt61pci_config_ant
,
3014 .config
= rt61pci_config
,
3017 static const struct data_queue_desc rt61pci_queue_rx
= {
3019 .data_size
= DATA_FRAME_SIZE
,
3020 .desc_size
= RXD_DESC_SIZE
,
3021 .priv_size
= sizeof(struct queue_entry_priv_pci
),
3024 static const struct data_queue_desc rt61pci_queue_tx
= {
3026 .data_size
= DATA_FRAME_SIZE
,
3027 .desc_size
= TXD_DESC_SIZE
,
3028 .priv_size
= sizeof(struct queue_entry_priv_pci
),
3031 static const struct data_queue_desc rt61pci_queue_bcn
= {
3033 .data_size
= 0, /* No DMA required for beacons */
3034 .desc_size
= TXINFO_SIZE
,
3035 .priv_size
= sizeof(struct queue_entry_priv_pci
),
3038 static const struct rt2x00_ops rt61pci_ops
= {
3039 .name
= KBUILD_MODNAME
,
3042 .eeprom_size
= EEPROM_SIZE
,
3044 .tx_queues
= NUM_TX_QUEUES
,
3045 .extra_tx_headroom
= 0,
3046 .rx
= &rt61pci_queue_rx
,
3047 .tx
= &rt61pci_queue_tx
,
3048 .bcn
= &rt61pci_queue_bcn
,
3049 .lib
= &rt61pci_rt2x00_ops
,
3050 .hw
= &rt61pci_mac80211_ops
,
3051 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3052 .debugfs
= &rt61pci_rt2x00debug
,
3053 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3057 * RT61pci module information.
3059 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table
) = {
3061 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops
) },
3063 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops
) },
3065 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops
) },
3069 MODULE_AUTHOR(DRV_PROJECT
);
3070 MODULE_VERSION(DRV_VERSION
);
3071 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3072 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3073 "PCI & PCMCIA chipset based cards");
3074 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
3075 MODULE_FIRMWARE(FIRMWARE_RT2561
);
3076 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
3077 MODULE_FIRMWARE(FIRMWARE_RT2661
);
3078 MODULE_LICENSE("GPL");
3080 static struct pci_driver rt61pci_driver
= {
3081 .name
= KBUILD_MODNAME
,
3082 .id_table
= rt61pci_device_table
,
3083 .probe
= rt2x00pci_probe
,
3084 .remove
= __devexit_p(rt2x00pci_remove
),
3085 .suspend
= rt2x00pci_suspend
,
3086 .resume
= rt2x00pci_resume
,
3089 static int __init
rt61pci_init(void)
3091 return pci_register_driver(&rt61pci_driver
);
3094 static void __exit
rt61pci_exit(void)
3096 pci_unregister_driver(&rt61pci_driver
);
3099 module_init(rt61pci_init
);
3100 module_exit(rt61pci_exit
);