IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / scsi / hpsa.c
blob415ad4fb50d43dcdb9f050c684db693d40818a20
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 "Use 'simple mode' rather than 'performant mode'");
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
110 static struct board_type products[] = {
111 {0x3241103C, "Smart Array P212", &SA5_access},
112 {0x3243103C, "Smart Array P410", &SA5_access},
113 {0x3245103C, "Smart Array P410i", &SA5_access},
114 {0x3247103C, "Smart Array P411", &SA5_access},
115 {0x3249103C, "Smart Array P812", &SA5_access},
116 {0x324a103C, "Smart Array P712m", &SA5_access},
117 {0x324b103C, "Smart Array P711m", &SA5_access},
118 {0x3350103C, "Smart Array", &SA5_access},
119 {0x3351103C, "Smart Array", &SA5_access},
120 {0x3352103C, "Smart Array", &SA5_access},
121 {0x3353103C, "Smart Array", &SA5_access},
122 {0x3354103C, "Smart Array", &SA5_access},
123 {0x3355103C, "Smart Array", &SA5_access},
124 {0x3356103C, "Smart Array", &SA5_access},
125 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 static int number_of_controllers;
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 int cmd_type);
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 int qdepth, int reason);
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
181 unsigned long *priv = shost_priv(sdev->host);
182 return (struct ctlr_info *) *priv;
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
187 unsigned long *priv = shost_priv(sh);
188 return (struct ctlr_info *) *priv;
191 static int check_for_unit_attention(struct ctlr_info *h,
192 struct CommandList *c)
194 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 return 0;
197 switch (c->err_info->SenseInfo[12]) {
198 case STATE_CHANGED:
199 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 "detected, command retried\n", h->ctlr);
201 break;
202 case LUN_FAILED:
203 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 "detected, action required\n", h->ctlr);
205 break;
206 case REPORT_LUNS_CHANGED:
207 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 "changed, action required\n", h->ctlr);
210 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
212 break;
213 case POWER_OR_RESET:
214 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 "or device reset detected\n", h->ctlr);
216 break;
217 case UNIT_ATTENTION_CLEARED:
218 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 "cleared by another initiator\n", h->ctlr);
220 break;
221 default:
222 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 "unit attention detected\n", h->ctlr);
224 break;
226 return 1;
229 static ssize_t host_store_rescan(struct device *dev,
230 struct device_attribute *attr,
231 const char *buf, size_t count)
233 struct ctlr_info *h;
234 struct Scsi_Host *shost = class_to_shost(dev);
235 h = shost_to_hba(shost);
236 hpsa_scan_start(h->scsi_host);
237 return count;
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 struct device_attribute *attr, char *buf)
243 struct ctlr_info *h;
244 struct Scsi_Host *shost = class_to_shost(dev);
245 unsigned char *fwrev;
247 h = shost_to_hba(shost);
248 if (!h->hba_inquiry_data)
249 return 0;
250 fwrev = &h->hba_inquiry_data[32];
251 return snprintf(buf, 20, "%c%c%c%c\n",
252 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 struct device_attribute *attr, char *buf)
258 struct Scsi_Host *shost = class_to_shost(dev);
259 struct ctlr_info *h = shost_to_hba(shost);
261 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
264 static ssize_t host_show_transport_mode(struct device *dev,
265 struct device_attribute *attr, char *buf)
267 struct ctlr_info *h;
268 struct Scsi_Host *shost = class_to_shost(dev);
270 h = shost_to_hba(shost);
271 return snprintf(buf, 20, "%s\n",
272 h->transMethod & CFGTBL_Trans_Performant ?
273 "performant" : "simple");
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 0x324a103C, /* Smart Array P712m */
279 0x324b103C, /* SmartArray P711m */
280 0x3223103C, /* Smart Array P800 */
281 0x3234103C, /* Smart Array P400 */
282 0x3235103C, /* Smart Array P400i */
283 0x3211103C, /* Smart Array E200i */
284 0x3212103C, /* Smart Array E200 */
285 0x3213103C, /* Smart Array E200i */
286 0x3214103C, /* Smart Array E200i */
287 0x3215103C, /* Smart Array E200i */
288 0x3237103C, /* Smart Array E500 */
289 0x323D103C, /* Smart Array P700m */
290 0x409C0E11, /* Smart Array 6400 */
291 0x409D0E11, /* Smart Array 6400 EM */
294 static int ctlr_is_resettable(struct ctlr_info *h)
296 int i;
298 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299 if (unresettable_controller[i] == h->board_id)
300 return 0;
301 return 1;
304 static ssize_t host_show_resettable(struct device *dev,
305 struct device_attribute *attr, char *buf)
307 struct ctlr_info *h;
308 struct Scsi_Host *shost = class_to_shost(dev);
310 h = shost_to_hba(shost);
311 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
316 return (scsi3addr[3] & 0xC0) == 0x40;
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320 "UNKNOWN"
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
324 static ssize_t raid_level_show(struct device *dev,
325 struct device_attribute *attr, char *buf)
327 ssize_t l = 0;
328 unsigned char rlevel;
329 struct ctlr_info *h;
330 struct scsi_device *sdev;
331 struct hpsa_scsi_dev_t *hdev;
332 unsigned long flags;
334 sdev = to_scsi_device(dev);
335 h = sdev_to_hba(sdev);
336 spin_lock_irqsave(&h->lock, flags);
337 hdev = sdev->hostdata;
338 if (!hdev) {
339 spin_unlock_irqrestore(&h->lock, flags);
340 return -ENODEV;
343 /* Is this even a logical drive? */
344 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345 spin_unlock_irqrestore(&h->lock, flags);
346 l = snprintf(buf, PAGE_SIZE, "N/A\n");
347 return l;
350 rlevel = hdev->raid_level;
351 spin_unlock_irqrestore(&h->lock, flags);
352 if (rlevel > RAID_UNKNOWN)
353 rlevel = RAID_UNKNOWN;
354 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355 return l;
358 static ssize_t lunid_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
361 struct ctlr_info *h;
362 struct scsi_device *sdev;
363 struct hpsa_scsi_dev_t *hdev;
364 unsigned long flags;
365 unsigned char lunid[8];
367 sdev = to_scsi_device(dev);
368 h = sdev_to_hba(sdev);
369 spin_lock_irqsave(&h->lock, flags);
370 hdev = sdev->hostdata;
371 if (!hdev) {
372 spin_unlock_irqrestore(&h->lock, flags);
373 return -ENODEV;
375 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376 spin_unlock_irqrestore(&h->lock, flags);
377 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378 lunid[0], lunid[1], lunid[2], lunid[3],
379 lunid[4], lunid[5], lunid[6], lunid[7]);
382 static ssize_t unique_id_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
385 struct ctlr_info *h;
386 struct scsi_device *sdev;
387 struct hpsa_scsi_dev_t *hdev;
388 unsigned long flags;
389 unsigned char sn[16];
391 sdev = to_scsi_device(dev);
392 h = sdev_to_hba(sdev);
393 spin_lock_irqsave(&h->lock, flags);
394 hdev = sdev->hostdata;
395 if (!hdev) {
396 spin_unlock_irqrestore(&h->lock, flags);
397 return -ENODEV;
399 memcpy(sn, hdev->device_id, sizeof(sn));
400 spin_unlock_irqrestore(&h->lock, flags);
401 return snprintf(buf, 16 * 2 + 2,
402 "%02X%02X%02X%02X%02X%02X%02X%02X"
403 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
404 sn[0], sn[1], sn[2], sn[3],
405 sn[4], sn[5], sn[6], sn[7],
406 sn[8], sn[9], sn[10], sn[11],
407 sn[12], sn[13], sn[14], sn[15]);
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415 host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417 host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419 host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421 host_show_resettable, NULL);
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424 &dev_attr_raid_level,
425 &dev_attr_lunid,
426 &dev_attr_unique_id,
427 NULL,
430 static struct device_attribute *hpsa_shost_attrs[] = {
431 &dev_attr_rescan,
432 &dev_attr_firmware_revision,
433 &dev_attr_commands_outstanding,
434 &dev_attr_transport_mode,
435 &dev_attr_resettable,
436 NULL,
439 static struct scsi_host_template hpsa_driver_template = {
440 .module = THIS_MODULE,
441 .name = "hpsa",
442 .proc_name = "hpsa",
443 .queuecommand = hpsa_scsi_queue_command,
444 .scan_start = hpsa_scan_start,
445 .scan_finished = hpsa_scan_finished,
446 .change_queue_depth = hpsa_change_queue_depth,
447 .this_id = -1,
448 .use_clustering = ENABLE_CLUSTERING,
449 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
450 .ioctl = hpsa_ioctl,
451 .slave_alloc = hpsa_slave_alloc,
452 .slave_destroy = hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454 .compat_ioctl = hpsa_compat_ioctl,
455 #endif
456 .sdev_attrs = hpsa_sdev_attrs,
457 .shost_attrs = hpsa_shost_attrs,
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
464 list_add_tail(&c->list, list);
467 static inline u32 next_command(struct ctlr_info *h)
469 u32 a;
471 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472 return h->access.command_completed(h);
474 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476 (h->reply_pool_head)++;
477 h->commands_outstanding--;
478 } else {
479 a = FIFO_EMPTY;
481 /* Check for wraparound */
482 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483 h->reply_pool_head = h->reply_pool;
484 h->reply_pool_wraparound ^= 1;
486 return a;
489 /* set_performant_mode: Modify the tag for cciss performant
490 * set bit 0 for pull model, bits 3-1 for block fetch
491 * register number
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
495 if (likely(h->transMethod & CFGTBL_Trans_Performant))
496 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500 struct CommandList *c)
502 unsigned long flags;
504 set_performant_mode(h, c);
505 spin_lock_irqsave(&h->lock, flags);
506 addQ(&h->reqQ, c);
507 h->Qdepth++;
508 start_io(h);
509 spin_unlock_irqrestore(&h->lock, flags);
512 static inline void removeQ(struct CommandList *c)
514 if (WARN_ON(list_empty(&c->list)))
515 return;
516 list_del_init(&c->list);
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
521 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
526 if (!h->hba_inquiry_data)
527 return 0;
528 if ((h->hba_inquiry_data[2] & 0x07) == 5)
529 return 1;
530 return 0;
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534 unsigned char scsi3addr[], int bus, int *target, int *lun)
536 /* finds an unused bus, target, lun for a new physical device
537 * assumes h->devlock is held
539 int i, found = 0;
540 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
542 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
544 for (i = 0; i < h->ndevices; i++) {
545 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546 set_bit(h->dev[i]->target, lun_taken);
549 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550 if (!test_bit(i, lun_taken)) {
551 /* *bus = 1; */
552 *target = i;
553 *lun = 0;
554 found = 1;
555 break;
558 return !found;
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563 struct hpsa_scsi_dev_t *device,
564 struct hpsa_scsi_dev_t *added[], int *nadded)
566 /* assumes h->devlock is held */
567 int n = h->ndevices;
568 int i;
569 unsigned char addr1[8], addr2[8];
570 struct hpsa_scsi_dev_t *sd;
572 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573 dev_err(&h->pdev->dev, "too many devices, some will be "
574 "inaccessible.\n");
575 return -1;
578 /* physical devices do not have lun or target assigned until now. */
579 if (device->lun != -1)
580 /* Logical device, lun is already assigned. */
581 goto lun_assigned;
583 /* If this device a non-zero lun of a multi-lun device
584 * byte 4 of the 8-byte LUN addr will contain the logical
585 * unit no, zero otherise.
587 if (device->scsi3addr[4] == 0) {
588 /* This is not a non-zero lun of a multi-lun device */
589 if (hpsa_find_target_lun(h, device->scsi3addr,
590 device->bus, &device->target, &device->lun) != 0)
591 return -1;
592 goto lun_assigned;
595 /* This is a non-zero lun of a multi-lun device.
596 * Search through our list and find the device which
597 * has the same 8 byte LUN address, excepting byte 4.
598 * Assign the same bus and target for this new LUN.
599 * Use the logical unit number from the firmware.
601 memcpy(addr1, device->scsi3addr, 8);
602 addr1[4] = 0;
603 for (i = 0; i < n; i++) {
604 sd = h->dev[i];
605 memcpy(addr2, sd->scsi3addr, 8);
606 addr2[4] = 0;
607 /* differ only in byte 4? */
608 if (memcmp(addr1, addr2, 8) == 0) {
609 device->bus = sd->bus;
610 device->target = sd->target;
611 device->lun = device->scsi3addr[4];
612 break;
615 if (device->lun == -1) {
616 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617 " suspect firmware bug or unsupported hardware "
618 "configuration.\n");
619 return -1;
622 lun_assigned:
624 h->dev[n] = device;
625 h->ndevices++;
626 added[*nadded] = device;
627 (*nadded)++;
629 /* initially, (before registering with scsi layer) we don't
630 * know our hostno and we don't want to print anything first
631 * time anyway (the scsi layer's inquiries will show that info)
633 /* if (hostno != -1) */
634 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635 scsi_device_type(device->devtype), hostno,
636 device->bus, device->target, device->lun);
637 return 0;
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642 int entry, struct hpsa_scsi_dev_t *new_entry,
643 struct hpsa_scsi_dev_t *added[], int *nadded,
644 struct hpsa_scsi_dev_t *removed[], int *nremoved)
646 /* assumes h->devlock is held */
647 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648 removed[*nremoved] = h->dev[entry];
649 (*nremoved)++;
650 h->dev[entry] = new_entry;
651 added[*nadded] = new_entry;
652 (*nadded)++;
653 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655 new_entry->target, new_entry->lun);
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660 struct hpsa_scsi_dev_t *removed[], int *nremoved)
662 /* assumes h->devlock is held */
663 int i;
664 struct hpsa_scsi_dev_t *sd;
666 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
668 sd = h->dev[entry];
669 removed[*nremoved] = h->dev[entry];
670 (*nremoved)++;
672 for (i = entry; i < h->ndevices-1; i++)
673 h->dev[i] = h->dev[i+1];
674 h->ndevices--;
675 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677 sd->lun);
680 #define SCSI3ADDR_EQ(a, b) ( \
681 (a)[7] == (b)[7] && \
682 (a)[6] == (b)[6] && \
683 (a)[5] == (b)[5] && \
684 (a)[4] == (b)[4] && \
685 (a)[3] == (b)[3] && \
686 (a)[2] == (b)[2] && \
687 (a)[1] == (b)[1] && \
688 (a)[0] == (b)[0])
690 static void fixup_botched_add(struct ctlr_info *h,
691 struct hpsa_scsi_dev_t *added)
693 /* called when scsi_add_device fails in order to re-adjust
694 * h->dev[] to match the mid layer's view.
696 unsigned long flags;
697 int i, j;
699 spin_lock_irqsave(&h->lock, flags);
700 for (i = 0; i < h->ndevices; i++) {
701 if (h->dev[i] == added) {
702 for (j = i; j < h->ndevices-1; j++)
703 h->dev[j] = h->dev[j+1];
704 h->ndevices--;
705 break;
708 spin_unlock_irqrestore(&h->lock, flags);
709 kfree(added);
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713 struct hpsa_scsi_dev_t *dev2)
715 /* we compare everything except lun and target as these
716 * are not yet assigned. Compare parts likely
717 * to differ first
719 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720 sizeof(dev1->scsi3addr)) != 0)
721 return 0;
722 if (memcmp(dev1->device_id, dev2->device_id,
723 sizeof(dev1->device_id)) != 0)
724 return 0;
725 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726 return 0;
727 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728 return 0;
729 if (dev1->devtype != dev2->devtype)
730 return 0;
731 if (dev1->bus != dev2->bus)
732 return 0;
733 return 1;
736 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
737 * and return needle location in *index. If scsi3addr matches, but not
738 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743 int *index)
745 int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749 for (i = 0; i < haystack_size; i++) {
750 if (haystack[i] == NULL) /* previously removed. */
751 continue;
752 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753 *index = i;
754 if (device_is_the_same(needle, haystack[i]))
755 return DEVICE_SAME;
756 else
757 return DEVICE_CHANGED;
760 *index = -1;
761 return DEVICE_NOT_FOUND;
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765 struct hpsa_scsi_dev_t *sd[], int nsds)
767 /* sd contains scsi3 addresses and devtypes, and inquiry
768 * data. This function takes what's in sd to be the current
769 * reality and updates h->dev[] to reflect that reality.
771 int i, entry, device_change, changes = 0;
772 struct hpsa_scsi_dev_t *csd;
773 unsigned long flags;
774 struct hpsa_scsi_dev_t **added, **removed;
775 int nadded, nremoved;
776 struct Scsi_Host *sh = NULL;
778 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779 GFP_KERNEL);
780 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781 GFP_KERNEL);
783 if (!added || !removed) {
784 dev_warn(&h->pdev->dev, "out of memory in "
785 "adjust_hpsa_scsi_table\n");
786 goto free_and_out;
789 spin_lock_irqsave(&h->devlock, flags);
791 /* find any devices in h->dev[] that are not in
792 * sd[] and remove them from h->dev[], and for any
793 * devices which have changed, remove the old device
794 * info and add the new device info.
796 i = 0;
797 nremoved = 0;
798 nadded = 0;
799 while (i < h->ndevices) {
800 csd = h->dev[i];
801 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802 if (device_change == DEVICE_NOT_FOUND) {
803 changes++;
804 hpsa_scsi_remove_entry(h, hostno, i,
805 removed, &nremoved);
806 continue; /* remove ^^^, hence i not incremented */
807 } else if (device_change == DEVICE_CHANGED) {
808 changes++;
809 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810 added, &nadded, removed, &nremoved);
811 /* Set it to NULL to prevent it from being freed
812 * at the bottom of hpsa_update_scsi_devices()
814 sd[entry] = NULL;
816 i++;
819 /* Now, make sure every device listed in sd[] is also
820 * listed in h->dev[], adding them if they aren't found
823 for (i = 0; i < nsds; i++) {
824 if (!sd[i]) /* if already added above. */
825 continue;
826 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827 h->ndevices, &entry);
828 if (device_change == DEVICE_NOT_FOUND) {
829 changes++;
830 if (hpsa_scsi_add_entry(h, hostno, sd[i],
831 added, &nadded) != 0)
832 break;
833 sd[i] = NULL; /* prevent from being freed later. */
834 } else if (device_change == DEVICE_CHANGED) {
835 /* should never happen... */
836 changes++;
837 dev_warn(&h->pdev->dev,
838 "device unexpectedly changed.\n");
839 /* but if it does happen, we just ignore that device */
842 spin_unlock_irqrestore(&h->devlock, flags);
844 /* Don't notify scsi mid layer of any changes the first time through
845 * (or if there are no changes) scsi_scan_host will do it later the
846 * first time through.
848 if (hostno == -1 || !changes)
849 goto free_and_out;
851 sh = h->scsi_host;
852 /* Notify scsi mid layer of any removed devices */
853 for (i = 0; i < nremoved; i++) {
854 struct scsi_device *sdev =
855 scsi_device_lookup(sh, removed[i]->bus,
856 removed[i]->target, removed[i]->lun);
857 if (sdev != NULL) {
858 scsi_remove_device(sdev);
859 scsi_device_put(sdev);
860 } else {
861 /* We don't expect to get here.
862 * future cmds to this device will get selection
863 * timeout as if the device was gone.
865 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866 " for removal.", hostno, removed[i]->bus,
867 removed[i]->target, removed[i]->lun);
869 kfree(removed[i]);
870 removed[i] = NULL;
873 /* Notify scsi mid layer of any added devices */
874 for (i = 0; i < nadded; i++) {
875 if (scsi_add_device(sh, added[i]->bus,
876 added[i]->target, added[i]->lun) == 0)
877 continue;
878 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879 "device not added.\n", hostno, added[i]->bus,
880 added[i]->target, added[i]->lun);
881 /* now we have to remove it from h->dev,
882 * since it didn't get added to scsi mid layer
884 fixup_botched_add(h, added[i]);
887 free_and_out:
888 kfree(added);
889 kfree(removed);
893 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894 * Assume's h->devlock is held.
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897 int bus, int target, int lun)
899 int i;
900 struct hpsa_scsi_dev_t *sd;
902 for (i = 0; i < h->ndevices; i++) {
903 sd = h->dev[i];
904 if (sd->bus == bus && sd->target == target && sd->lun == lun)
905 return sd;
907 return NULL;
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
913 struct hpsa_scsi_dev_t *sd;
914 unsigned long flags;
915 struct ctlr_info *h;
917 h = sdev_to_hba(sdev);
918 spin_lock_irqsave(&h->devlock, flags);
919 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920 sdev_id(sdev), sdev->lun);
921 if (sd != NULL)
922 sdev->hostdata = sd;
923 spin_unlock_irqrestore(&h->devlock, flags);
924 return 0;
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
929 /* nothing to do. */
932 static void hpsa_scsi_setup(struct ctlr_info *h)
934 h->ndevices = 0;
935 h->scsi_host = NULL;
936 spin_lock_init(&h->devlock);
939 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
941 int i;
943 if (!h->cmd_sg_list)
944 return;
945 for (i = 0; i < h->nr_cmds; i++) {
946 kfree(h->cmd_sg_list[i]);
947 h->cmd_sg_list[i] = NULL;
949 kfree(h->cmd_sg_list);
950 h->cmd_sg_list = NULL;
953 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
955 int i;
957 if (h->chainsize <= 0)
958 return 0;
960 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
961 GFP_KERNEL);
962 if (!h->cmd_sg_list)
963 return -ENOMEM;
964 for (i = 0; i < h->nr_cmds; i++) {
965 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
966 h->chainsize, GFP_KERNEL);
967 if (!h->cmd_sg_list[i])
968 goto clean;
970 return 0;
972 clean:
973 hpsa_free_sg_chain_blocks(h);
974 return -ENOMEM;
977 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
978 struct CommandList *c)
980 struct SGDescriptor *chain_sg, *chain_block;
981 u64 temp64;
983 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
984 chain_block = h->cmd_sg_list[c->cmdindex];
985 chain_sg->Ext = HPSA_SG_CHAIN;
986 chain_sg->Len = sizeof(*chain_sg) *
987 (c->Header.SGTotal - h->max_cmd_sg_entries);
988 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
989 PCI_DMA_TODEVICE);
990 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
991 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
994 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
995 struct CommandList *c)
997 struct SGDescriptor *chain_sg;
998 union u64bit temp64;
1000 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1001 return;
1003 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1004 temp64.val32.lower = chain_sg->Addr.lower;
1005 temp64.val32.upper = chain_sg->Addr.upper;
1006 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1009 static void complete_scsi_command(struct CommandList *cp,
1010 int timeout, u32 tag)
1012 struct scsi_cmnd *cmd;
1013 struct ctlr_info *h;
1014 struct ErrorInfo *ei;
1016 unsigned char sense_key;
1017 unsigned char asc; /* additional sense code */
1018 unsigned char ascq; /* additional sense code qualifier */
1020 ei = cp->err_info;
1021 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1022 h = cp->h;
1024 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1025 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1026 hpsa_unmap_sg_chain_block(h, cp);
1028 cmd->result = (DID_OK << 16); /* host byte */
1029 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1030 cmd->result |= ei->ScsiStatus;
1032 /* copy the sense data whether we need to or not. */
1033 memcpy(cmd->sense_buffer, ei->SenseInfo,
1034 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1035 SCSI_SENSE_BUFFERSIZE :
1036 ei->SenseLen);
1037 scsi_set_resid(cmd, ei->ResidualCnt);
1039 if (ei->CommandStatus == 0) {
1040 cmd->scsi_done(cmd);
1041 cmd_free(h, cp);
1042 return;
1045 /* an error has occurred */
1046 switch (ei->CommandStatus) {
1048 case CMD_TARGET_STATUS:
1049 if (ei->ScsiStatus) {
1050 /* Get sense key */
1051 sense_key = 0xf & ei->SenseInfo[2];
1052 /* Get additional sense code */
1053 asc = ei->SenseInfo[12];
1054 /* Get addition sense code qualifier */
1055 ascq = ei->SenseInfo[13];
1058 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1059 if (check_for_unit_attention(h, cp)) {
1060 cmd->result = DID_SOFT_ERROR << 16;
1061 break;
1063 if (sense_key == ILLEGAL_REQUEST) {
1065 * SCSI REPORT_LUNS is commonly unsupported on
1066 * Smart Array. Suppress noisy complaint.
1068 if (cp->Request.CDB[0] == REPORT_LUNS)
1069 break;
1071 /* If ASC/ASCQ indicate Logical Unit
1072 * Not Supported condition,
1074 if ((asc == 0x25) && (ascq == 0x0)) {
1075 dev_warn(&h->pdev->dev, "cp %p "
1076 "has check condition\n", cp);
1077 break;
1081 if (sense_key == NOT_READY) {
1082 /* If Sense is Not Ready, Logical Unit
1083 * Not ready, Manual Intervention
1084 * required
1086 if ((asc == 0x04) && (ascq == 0x03)) {
1087 dev_warn(&h->pdev->dev, "cp %p "
1088 "has check condition: unit "
1089 "not ready, manual "
1090 "intervention required\n", cp);
1091 break;
1094 if (sense_key == ABORTED_COMMAND) {
1095 /* Aborted command is retryable */
1096 dev_warn(&h->pdev->dev, "cp %p "
1097 "has check condition: aborted command: "
1098 "ASC: 0x%x, ASCQ: 0x%x\n",
1099 cp, asc, ascq);
1100 cmd->result = DID_SOFT_ERROR << 16;
1101 break;
1103 /* Must be some other type of check condition */
1104 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1105 "unknown type: "
1106 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1107 "Returning result: 0x%x, "
1108 "cmd=[%02x %02x %02x %02x %02x "
1109 "%02x %02x %02x %02x %02x %02x "
1110 "%02x %02x %02x %02x %02x]\n",
1111 cp, sense_key, asc, ascq,
1112 cmd->result,
1113 cmd->cmnd[0], cmd->cmnd[1],
1114 cmd->cmnd[2], cmd->cmnd[3],
1115 cmd->cmnd[4], cmd->cmnd[5],
1116 cmd->cmnd[6], cmd->cmnd[7],
1117 cmd->cmnd[8], cmd->cmnd[9],
1118 cmd->cmnd[10], cmd->cmnd[11],
1119 cmd->cmnd[12], cmd->cmnd[13],
1120 cmd->cmnd[14], cmd->cmnd[15]);
1121 break;
1125 /* Problem was not a check condition
1126 * Pass it up to the upper layers...
1128 if (ei->ScsiStatus) {
1129 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1130 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1131 "Returning result: 0x%x\n",
1132 cp, ei->ScsiStatus,
1133 sense_key, asc, ascq,
1134 cmd->result);
1135 } else { /* scsi status is zero??? How??? */
1136 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1137 "Returning no connection.\n", cp),
1139 /* Ordinarily, this case should never happen,
1140 * but there is a bug in some released firmware
1141 * revisions that allows it to happen if, for
1142 * example, a 4100 backplane loses power and
1143 * the tape drive is in it. We assume that
1144 * it's a fatal error of some kind because we
1145 * can't show that it wasn't. We will make it
1146 * look like selection timeout since that is
1147 * the most common reason for this to occur,
1148 * and it's severe enough.
1151 cmd->result = DID_NO_CONNECT << 16;
1153 break;
1155 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1156 break;
1157 case CMD_DATA_OVERRUN:
1158 dev_warn(&h->pdev->dev, "cp %p has"
1159 " completed with data overrun "
1160 "reported\n", cp);
1161 break;
1162 case CMD_INVALID: {
1163 /* print_bytes(cp, sizeof(*cp), 1, 0);
1164 print_cmd(cp); */
1165 /* We get CMD_INVALID if you address a non-existent device
1166 * instead of a selection timeout (no response). You will
1167 * see this if you yank out a drive, then try to access it.
1168 * This is kind of a shame because it means that any other
1169 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1170 * missing target. */
1171 cmd->result = DID_NO_CONNECT << 16;
1173 break;
1174 case CMD_PROTOCOL_ERR:
1175 dev_warn(&h->pdev->dev, "cp %p has "
1176 "protocol error \n", cp);
1177 break;
1178 case CMD_HARDWARE_ERR:
1179 cmd->result = DID_ERROR << 16;
1180 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1181 break;
1182 case CMD_CONNECTION_LOST:
1183 cmd->result = DID_ERROR << 16;
1184 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1185 break;
1186 case CMD_ABORTED:
1187 cmd->result = DID_ABORT << 16;
1188 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1189 cp, ei->ScsiStatus);
1190 break;
1191 case CMD_ABORT_FAILED:
1192 cmd->result = DID_ERROR << 16;
1193 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1194 break;
1195 case CMD_UNSOLICITED_ABORT:
1196 cmd->result = DID_RESET << 16;
1197 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1198 "abort\n", cp);
1199 break;
1200 case CMD_TIMEOUT:
1201 cmd->result = DID_TIME_OUT << 16;
1202 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1203 break;
1204 case CMD_UNABORTABLE:
1205 cmd->result = DID_ERROR << 16;
1206 dev_warn(&h->pdev->dev, "Command unabortable\n");
1207 break;
1208 default:
1209 cmd->result = DID_ERROR << 16;
1210 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1211 cp, ei->CommandStatus);
1213 cmd->scsi_done(cmd);
1214 cmd_free(h, cp);
1217 static int hpsa_scsi_detect(struct ctlr_info *h)
1219 struct Scsi_Host *sh;
1220 int error;
1222 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1223 if (sh == NULL)
1224 goto fail;
1226 sh->io_port = 0;
1227 sh->n_io_port = 0;
1228 sh->this_id = -1;
1229 sh->max_channel = 3;
1230 sh->max_cmd_len = MAX_COMMAND_SIZE;
1231 sh->max_lun = HPSA_MAX_LUN;
1232 sh->max_id = HPSA_MAX_LUN;
1233 sh->can_queue = h->nr_cmds;
1234 sh->cmd_per_lun = h->nr_cmds;
1235 sh->sg_tablesize = h->maxsgentries;
1236 h->scsi_host = sh;
1237 sh->hostdata[0] = (unsigned long) h;
1238 sh->irq = h->intr[h->intr_mode];
1239 sh->unique_id = sh->irq;
1240 error = scsi_add_host(sh, &h->pdev->dev);
1241 if (error)
1242 goto fail_host_put;
1243 scsi_scan_host(sh);
1244 return 0;
1246 fail_host_put:
1247 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1248 " failed for controller %d\n", h->ctlr);
1249 scsi_host_put(sh);
1250 return error;
1251 fail:
1252 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1253 " failed for controller %d\n", h->ctlr);
1254 return -ENOMEM;
1257 static void hpsa_pci_unmap(struct pci_dev *pdev,
1258 struct CommandList *c, int sg_used, int data_direction)
1260 int i;
1261 union u64bit addr64;
1263 for (i = 0; i < sg_used; i++) {
1264 addr64.val32.lower = c->SG[i].Addr.lower;
1265 addr64.val32.upper = c->SG[i].Addr.upper;
1266 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1267 data_direction);
1271 static void hpsa_map_one(struct pci_dev *pdev,
1272 struct CommandList *cp,
1273 unsigned char *buf,
1274 size_t buflen,
1275 int data_direction)
1277 u64 addr64;
1279 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1280 cp->Header.SGList = 0;
1281 cp->Header.SGTotal = 0;
1282 return;
1285 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1286 cp->SG[0].Addr.lower =
1287 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1288 cp->SG[0].Addr.upper =
1289 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1290 cp->SG[0].Len = buflen;
1291 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1292 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1295 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1296 struct CommandList *c)
1298 DECLARE_COMPLETION_ONSTACK(wait);
1300 c->waiting = &wait;
1301 enqueue_cmd_and_start_io(h, c);
1302 wait_for_completion(&wait);
1305 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1306 struct CommandList *c, int data_direction)
1308 int retry_count = 0;
1310 do {
1311 memset(c->err_info, 0, sizeof(c->err_info));
1312 hpsa_scsi_do_simple_cmd_core(h, c);
1313 retry_count++;
1314 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1315 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1318 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1320 struct ErrorInfo *ei;
1321 struct device *d = &cp->h->pdev->dev;
1323 ei = cp->err_info;
1324 switch (ei->CommandStatus) {
1325 case CMD_TARGET_STATUS:
1326 dev_warn(d, "cmd %p has completed with errors\n", cp);
1327 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1328 ei->ScsiStatus);
1329 if (ei->ScsiStatus == 0)
1330 dev_warn(d, "SCSI status is abnormally zero. "
1331 "(probably indicates selection timeout "
1332 "reported incorrectly due to a known "
1333 "firmware bug, circa July, 2001.)\n");
1334 break;
1335 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1336 dev_info(d, "UNDERRUN\n");
1337 break;
1338 case CMD_DATA_OVERRUN:
1339 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1340 break;
1341 case CMD_INVALID: {
1342 /* controller unfortunately reports SCSI passthru's
1343 * to non-existent targets as invalid commands.
1345 dev_warn(d, "cp %p is reported invalid (probably means "
1346 "target device no longer present)\n", cp);
1347 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1348 print_cmd(cp); */
1350 break;
1351 case CMD_PROTOCOL_ERR:
1352 dev_warn(d, "cp %p has protocol error \n", cp);
1353 break;
1354 case CMD_HARDWARE_ERR:
1355 /* cmd->result = DID_ERROR << 16; */
1356 dev_warn(d, "cp %p had hardware error\n", cp);
1357 break;
1358 case CMD_CONNECTION_LOST:
1359 dev_warn(d, "cp %p had connection lost\n", cp);
1360 break;
1361 case CMD_ABORTED:
1362 dev_warn(d, "cp %p was aborted\n", cp);
1363 break;
1364 case CMD_ABORT_FAILED:
1365 dev_warn(d, "cp %p reports abort failed\n", cp);
1366 break;
1367 case CMD_UNSOLICITED_ABORT:
1368 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1369 break;
1370 case CMD_TIMEOUT:
1371 dev_warn(d, "cp %p timed out\n", cp);
1372 break;
1373 case CMD_UNABORTABLE:
1374 dev_warn(d, "Command unabortable\n");
1375 break;
1376 default:
1377 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1378 ei->CommandStatus);
1382 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1383 unsigned char page, unsigned char *buf,
1384 unsigned char bufsize)
1386 int rc = IO_OK;
1387 struct CommandList *c;
1388 struct ErrorInfo *ei;
1390 c = cmd_special_alloc(h);
1392 if (c == NULL) { /* trouble... */
1393 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1394 return -ENOMEM;
1397 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1398 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1399 ei = c->err_info;
1400 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1401 hpsa_scsi_interpret_error(c);
1402 rc = -1;
1404 cmd_special_free(h, c);
1405 return rc;
1408 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1410 int rc = IO_OK;
1411 struct CommandList *c;
1412 struct ErrorInfo *ei;
1414 c = cmd_special_alloc(h);
1416 if (c == NULL) { /* trouble... */
1417 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1418 return -ENOMEM;
1421 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1422 hpsa_scsi_do_simple_cmd_core(h, c);
1423 /* no unmap needed here because no data xfer. */
1425 ei = c->err_info;
1426 if (ei->CommandStatus != 0) {
1427 hpsa_scsi_interpret_error(c);
1428 rc = -1;
1430 cmd_special_free(h, c);
1431 return rc;
1434 static void hpsa_get_raid_level(struct ctlr_info *h,
1435 unsigned char *scsi3addr, unsigned char *raid_level)
1437 int rc;
1438 unsigned char *buf;
1440 *raid_level = RAID_UNKNOWN;
1441 buf = kzalloc(64, GFP_KERNEL);
1442 if (!buf)
1443 return;
1444 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1445 if (rc == 0)
1446 *raid_level = buf[8];
1447 if (*raid_level > RAID_UNKNOWN)
1448 *raid_level = RAID_UNKNOWN;
1449 kfree(buf);
1450 return;
1453 /* Get the device id from inquiry page 0x83 */
1454 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1455 unsigned char *device_id, int buflen)
1457 int rc;
1458 unsigned char *buf;
1460 if (buflen > 16)
1461 buflen = 16;
1462 buf = kzalloc(64, GFP_KERNEL);
1463 if (!buf)
1464 return -1;
1465 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1466 if (rc == 0)
1467 memcpy(device_id, &buf[8], buflen);
1468 kfree(buf);
1469 return rc != 0;
1472 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1473 struct ReportLUNdata *buf, int bufsize,
1474 int extended_response)
1476 int rc = IO_OK;
1477 struct CommandList *c;
1478 unsigned char scsi3addr[8];
1479 struct ErrorInfo *ei;
1481 c = cmd_special_alloc(h);
1482 if (c == NULL) { /* trouble... */
1483 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1484 return -1;
1486 /* address the controller */
1487 memset(scsi3addr, 0, sizeof(scsi3addr));
1488 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1489 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1490 if (extended_response)
1491 c->Request.CDB[1] = extended_response;
1492 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1493 ei = c->err_info;
1494 if (ei->CommandStatus != 0 &&
1495 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1496 hpsa_scsi_interpret_error(c);
1497 rc = -1;
1499 cmd_special_free(h, c);
1500 return rc;
1503 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1504 struct ReportLUNdata *buf,
1505 int bufsize, int extended_response)
1507 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1510 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1511 struct ReportLUNdata *buf, int bufsize)
1513 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1516 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1517 int bus, int target, int lun)
1519 device->bus = bus;
1520 device->target = target;
1521 device->lun = lun;
1524 static int hpsa_update_device_info(struct ctlr_info *h,
1525 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1527 #define OBDR_TAPE_INQ_SIZE 49
1528 unsigned char *inq_buff;
1530 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1531 if (!inq_buff)
1532 goto bail_out;
1534 /* Do an inquiry to the device to see what it is. */
1535 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1536 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1537 /* Inquiry failed (msg printed already) */
1538 dev_err(&h->pdev->dev,
1539 "hpsa_update_device_info: inquiry failed\n");
1540 goto bail_out;
1543 this_device->devtype = (inq_buff[0] & 0x1f);
1544 memcpy(this_device->scsi3addr, scsi3addr, 8);
1545 memcpy(this_device->vendor, &inq_buff[8],
1546 sizeof(this_device->vendor));
1547 memcpy(this_device->model, &inq_buff[16],
1548 sizeof(this_device->model));
1549 memset(this_device->device_id, 0,
1550 sizeof(this_device->device_id));
1551 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1552 sizeof(this_device->device_id));
1554 if (this_device->devtype == TYPE_DISK &&
1555 is_logical_dev_addr_mode(scsi3addr))
1556 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1557 else
1558 this_device->raid_level = RAID_UNKNOWN;
1560 kfree(inq_buff);
1561 return 0;
1563 bail_out:
1564 kfree(inq_buff);
1565 return 1;
1568 static unsigned char *msa2xxx_model[] = {
1569 "MSA2012",
1570 "MSA2024",
1571 "MSA2312",
1572 "MSA2324",
1573 NULL,
1576 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1578 int i;
1580 for (i = 0; msa2xxx_model[i]; i++)
1581 if (strncmp(device->model, msa2xxx_model[i],
1582 strlen(msa2xxx_model[i])) == 0)
1583 return 1;
1584 return 0;
1587 /* Helper function to assign bus, target, lun mapping of devices.
1588 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1589 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1590 * Logical drive target and lun are assigned at this time, but
1591 * physical device lun and target assignment are deferred (assigned
1592 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1594 static void figure_bus_target_lun(struct ctlr_info *h,
1595 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1596 struct hpsa_scsi_dev_t *device)
1598 u32 lunid;
1600 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1601 /* logical device */
1602 if (unlikely(is_scsi_rev_5(h))) {
1603 /* p1210m, logical drives lun assignments
1604 * match SCSI REPORT LUNS data.
1606 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1607 *bus = 0;
1608 *target = 0;
1609 *lun = (lunid & 0x3fff) + 1;
1610 } else {
1611 /* not p1210m... */
1612 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1613 if (is_msa2xxx(h, device)) {
1614 /* msa2xxx way, put logicals on bus 1
1615 * and match target/lun numbers box
1616 * reports.
1618 *bus = 1;
1619 *target = (lunid >> 16) & 0x3fff;
1620 *lun = lunid & 0x00ff;
1621 } else {
1622 /* Traditional smart array way. */
1623 *bus = 0;
1624 *lun = 0;
1625 *target = lunid & 0x3fff;
1628 } else {
1629 /* physical device */
1630 if (is_hba_lunid(lunaddrbytes))
1631 if (unlikely(is_scsi_rev_5(h))) {
1632 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1633 *target = 0;
1634 *lun = 0;
1635 return;
1636 } else
1637 *bus = 3; /* traditional smartarray */
1638 else
1639 *bus = 2; /* physical disk */
1640 *target = -1;
1641 *lun = -1; /* we will fill these in later. */
1646 * If there is no lun 0 on a target, linux won't find any devices.
1647 * For the MSA2xxx boxes, we have to manually detect the enclosure
1648 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1649 * it for some reason. *tmpdevice is the target we're adding,
1650 * this_device is a pointer into the current element of currentsd[]
1651 * that we're building up in update_scsi_devices(), below.
1652 * lunzerobits is a bitmap that tracks which targets already have a
1653 * lun 0 assigned.
1654 * Returns 1 if an enclosure was added, 0 if not.
1656 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1657 struct hpsa_scsi_dev_t *tmpdevice,
1658 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1659 int bus, int target, int lun, unsigned long lunzerobits[],
1660 int *nmsa2xxx_enclosures)
1662 unsigned char scsi3addr[8];
1664 if (test_bit(target, lunzerobits))
1665 return 0; /* There is already a lun 0 on this target. */
1667 if (!is_logical_dev_addr_mode(lunaddrbytes))
1668 return 0; /* It's the logical targets that may lack lun 0. */
1670 if (!is_msa2xxx(h, tmpdevice))
1671 return 0; /* It's only the MSA2xxx that have this problem. */
1673 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1674 return 0;
1676 memset(scsi3addr, 0, 8);
1677 scsi3addr[3] = target;
1678 if (is_hba_lunid(scsi3addr))
1679 return 0; /* Don't add the RAID controller here. */
1681 if (is_scsi_rev_5(h))
1682 return 0; /* p1210m doesn't need to do this. */
1684 #define MAX_MSA2XXX_ENCLOSURES 32
1685 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1686 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1687 "enclosures exceeded. Check your hardware "
1688 "configuration.");
1689 return 0;
1692 if (hpsa_update_device_info(h, scsi3addr, this_device))
1693 return 0;
1694 (*nmsa2xxx_enclosures)++;
1695 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1696 set_bit(target, lunzerobits);
1697 return 1;
1701 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1702 * logdev. The number of luns in physdev and logdev are returned in
1703 * *nphysicals and *nlogicals, respectively.
1704 * Returns 0 on success, -1 otherwise.
1706 static int hpsa_gather_lun_info(struct ctlr_info *h,
1707 int reportlunsize,
1708 struct ReportLUNdata *physdev, u32 *nphysicals,
1709 struct ReportLUNdata *logdev, u32 *nlogicals)
1711 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1712 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1713 return -1;
1715 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1716 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1717 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1718 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1719 *nphysicals - HPSA_MAX_PHYS_LUN);
1720 *nphysicals = HPSA_MAX_PHYS_LUN;
1722 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1723 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1724 return -1;
1726 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1727 /* Reject Logicals in excess of our max capability. */
1728 if (*nlogicals > HPSA_MAX_LUN) {
1729 dev_warn(&h->pdev->dev,
1730 "maximum logical LUNs (%d) exceeded. "
1731 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1732 *nlogicals - HPSA_MAX_LUN);
1733 *nlogicals = HPSA_MAX_LUN;
1735 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1736 dev_warn(&h->pdev->dev,
1737 "maximum logical + physical LUNs (%d) exceeded. "
1738 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1739 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1740 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1742 return 0;
1745 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1746 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1747 struct ReportLUNdata *logdev_list)
1749 /* Helper function, figure out where the LUN ID info is coming from
1750 * given index i, lists of physical and logical devices, where in
1751 * the list the raid controller is supposed to appear (first or last)
1754 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1755 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1757 if (i == raid_ctlr_position)
1758 return RAID_CTLR_LUNID;
1760 if (i < logicals_start)
1761 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1763 if (i < last_device)
1764 return &logdev_list->LUN[i - nphysicals -
1765 (raid_ctlr_position == 0)][0];
1766 BUG();
1767 return NULL;
1770 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1772 /* the idea here is we could get notified
1773 * that some devices have changed, so we do a report
1774 * physical luns and report logical luns cmd, and adjust
1775 * our list of devices accordingly.
1777 * The scsi3addr's of devices won't change so long as the
1778 * adapter is not reset. That means we can rescan and
1779 * tell which devices we already know about, vs. new
1780 * devices, vs. disappearing devices.
1782 struct ReportLUNdata *physdev_list = NULL;
1783 struct ReportLUNdata *logdev_list = NULL;
1784 unsigned char *inq_buff = NULL;
1785 u32 nphysicals = 0;
1786 u32 nlogicals = 0;
1787 u32 ndev_allocated = 0;
1788 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1789 int ncurrent = 0;
1790 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1791 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1792 int bus, target, lun;
1793 int raid_ctlr_position;
1794 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1796 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1797 GFP_KERNEL);
1798 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1799 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1800 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1801 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1803 if (!currentsd || !physdev_list || !logdev_list ||
1804 !inq_buff || !tmpdevice) {
1805 dev_err(&h->pdev->dev, "out of memory\n");
1806 goto out;
1808 memset(lunzerobits, 0, sizeof(lunzerobits));
1810 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1811 logdev_list, &nlogicals))
1812 goto out;
1814 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1815 * but each of them 4 times through different paths. The plus 1
1816 * is for the RAID controller.
1818 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1820 /* Allocate the per device structures */
1821 for (i = 0; i < ndevs_to_allocate; i++) {
1822 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1823 if (!currentsd[i]) {
1824 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1825 __FILE__, __LINE__);
1826 goto out;
1828 ndev_allocated++;
1831 if (unlikely(is_scsi_rev_5(h)))
1832 raid_ctlr_position = 0;
1833 else
1834 raid_ctlr_position = nphysicals + nlogicals;
1836 /* adjust our table of devices */
1837 nmsa2xxx_enclosures = 0;
1838 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1839 u8 *lunaddrbytes;
1841 /* Figure out where the LUN ID info is coming from */
1842 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1843 i, nphysicals, nlogicals, physdev_list, logdev_list);
1844 /* skip masked physical devices. */
1845 if (lunaddrbytes[3] & 0xC0 &&
1846 i < nphysicals + (raid_ctlr_position == 0))
1847 continue;
1849 /* Get device type, vendor, model, device id */
1850 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1851 continue; /* skip it if we can't talk to it. */
1852 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1853 tmpdevice);
1854 this_device = currentsd[ncurrent];
1857 * For the msa2xxx boxes, we have to insert a LUN 0 which
1858 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1859 * is nonetheless an enclosure device there. We have to
1860 * present that otherwise linux won't find anything if
1861 * there is no lun 0.
1863 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1864 lunaddrbytes, bus, target, lun, lunzerobits,
1865 &nmsa2xxx_enclosures)) {
1866 ncurrent++;
1867 this_device = currentsd[ncurrent];
1870 *this_device = *tmpdevice;
1871 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1873 switch (this_device->devtype) {
1874 case TYPE_ROM: {
1875 /* We don't *really* support actual CD-ROM devices,
1876 * just "One Button Disaster Recovery" tape drive
1877 * which temporarily pretends to be a CD-ROM drive.
1878 * So we check that the device is really an OBDR tape
1879 * device by checking for "$DR-10" in bytes 43-48 of
1880 * the inquiry data.
1882 char obdr_sig[7];
1883 #define OBDR_TAPE_SIG "$DR-10"
1884 strncpy(obdr_sig, &inq_buff[43], 6);
1885 obdr_sig[6] = '\0';
1886 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1887 /* Not OBDR device, ignore it. */
1888 break;
1890 ncurrent++;
1891 break;
1892 case TYPE_DISK:
1893 if (i < nphysicals)
1894 break;
1895 ncurrent++;
1896 break;
1897 case TYPE_TAPE:
1898 case TYPE_MEDIUM_CHANGER:
1899 ncurrent++;
1900 break;
1901 case TYPE_RAID:
1902 /* Only present the Smartarray HBA as a RAID controller.
1903 * If it's a RAID controller other than the HBA itself
1904 * (an external RAID controller, MSA500 or similar)
1905 * don't present it.
1907 if (!is_hba_lunid(lunaddrbytes))
1908 break;
1909 ncurrent++;
1910 break;
1911 default:
1912 break;
1914 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1915 break;
1917 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1918 out:
1919 kfree(tmpdevice);
1920 for (i = 0; i < ndev_allocated; i++)
1921 kfree(currentsd[i]);
1922 kfree(currentsd);
1923 kfree(inq_buff);
1924 kfree(physdev_list);
1925 kfree(logdev_list);
1928 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1929 * dma mapping and fills in the scatter gather entries of the
1930 * hpsa command, cp.
1932 static int hpsa_scatter_gather(struct ctlr_info *h,
1933 struct CommandList *cp,
1934 struct scsi_cmnd *cmd)
1936 unsigned int len;
1937 struct scatterlist *sg;
1938 u64 addr64;
1939 int use_sg, i, sg_index, chained;
1940 struct SGDescriptor *curr_sg;
1942 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1944 use_sg = scsi_dma_map(cmd);
1945 if (use_sg < 0)
1946 return use_sg;
1948 if (!use_sg)
1949 goto sglist_finished;
1951 curr_sg = cp->SG;
1952 chained = 0;
1953 sg_index = 0;
1954 scsi_for_each_sg(cmd, sg, use_sg, i) {
1955 if (i == h->max_cmd_sg_entries - 1 &&
1956 use_sg > h->max_cmd_sg_entries) {
1957 chained = 1;
1958 curr_sg = h->cmd_sg_list[cp->cmdindex];
1959 sg_index = 0;
1961 addr64 = (u64) sg_dma_address(sg);
1962 len = sg_dma_len(sg);
1963 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1964 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1965 curr_sg->Len = len;
1966 curr_sg->Ext = 0; /* we are not chaining */
1967 curr_sg++;
1970 if (use_sg + chained > h->maxSG)
1971 h->maxSG = use_sg + chained;
1973 if (chained) {
1974 cp->Header.SGList = h->max_cmd_sg_entries;
1975 cp->Header.SGTotal = (u16) (use_sg + 1);
1976 hpsa_map_sg_chain_block(h, cp);
1977 return 0;
1980 sglist_finished:
1982 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
1983 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1984 return 0;
1988 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1989 void (*done)(struct scsi_cmnd *))
1991 struct ctlr_info *h;
1992 struct hpsa_scsi_dev_t *dev;
1993 unsigned char scsi3addr[8];
1994 struct CommandList *c;
1995 unsigned long flags;
1997 /* Get the ptr to our adapter structure out of cmd->host. */
1998 h = sdev_to_hba(cmd->device);
1999 dev = cmd->device->hostdata;
2000 if (!dev) {
2001 cmd->result = DID_NO_CONNECT << 16;
2002 done(cmd);
2003 return 0;
2005 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2007 /* Need a lock as this is being allocated from the pool */
2008 spin_lock_irqsave(&h->lock, flags);
2009 c = cmd_alloc(h);
2010 spin_unlock_irqrestore(&h->lock, flags);
2011 if (c == NULL) { /* trouble... */
2012 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2013 return SCSI_MLQUEUE_HOST_BUSY;
2016 /* Fill in the command list header */
2018 cmd->scsi_done = done; /* save this for use by completion code */
2020 /* save c in case we have to abort it */
2021 cmd->host_scribble = (unsigned char *) c;
2023 c->cmd_type = CMD_SCSI;
2024 c->scsi_cmd = cmd;
2025 c->Header.ReplyQueue = 0; /* unused in simple mode */
2026 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2027 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2028 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2030 /* Fill in the request block... */
2032 c->Request.Timeout = 0;
2033 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2034 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2035 c->Request.CDBLen = cmd->cmd_len;
2036 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2037 c->Request.Type.Type = TYPE_CMD;
2038 c->Request.Type.Attribute = ATTR_SIMPLE;
2039 switch (cmd->sc_data_direction) {
2040 case DMA_TO_DEVICE:
2041 c->Request.Type.Direction = XFER_WRITE;
2042 break;
2043 case DMA_FROM_DEVICE:
2044 c->Request.Type.Direction = XFER_READ;
2045 break;
2046 case DMA_NONE:
2047 c->Request.Type.Direction = XFER_NONE;
2048 break;
2049 case DMA_BIDIRECTIONAL:
2050 /* This can happen if a buggy application does a scsi passthru
2051 * and sets both inlen and outlen to non-zero. ( see
2052 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2055 c->Request.Type.Direction = XFER_RSVD;
2056 /* This is technically wrong, and hpsa controllers should
2057 * reject it with CMD_INVALID, which is the most correct
2058 * response, but non-fibre backends appear to let it
2059 * slide by, and give the same results as if this field
2060 * were set correctly. Either way is acceptable for
2061 * our purposes here.
2064 break;
2066 default:
2067 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2068 cmd->sc_data_direction);
2069 BUG();
2070 break;
2073 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2074 cmd_free(h, c);
2075 return SCSI_MLQUEUE_HOST_BUSY;
2077 enqueue_cmd_and_start_io(h, c);
2078 /* the cmd'll come back via intr handler in complete_scsi_command() */
2079 return 0;
2082 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2084 static void hpsa_scan_start(struct Scsi_Host *sh)
2086 struct ctlr_info *h = shost_to_hba(sh);
2087 unsigned long flags;
2089 /* wait until any scan already in progress is finished. */
2090 while (1) {
2091 spin_lock_irqsave(&h->scan_lock, flags);
2092 if (h->scan_finished)
2093 break;
2094 spin_unlock_irqrestore(&h->scan_lock, flags);
2095 wait_event(h->scan_wait_queue, h->scan_finished);
2096 /* Note: We don't need to worry about a race between this
2097 * thread and driver unload because the midlayer will
2098 * have incremented the reference count, so unload won't
2099 * happen if we're in here.
2102 h->scan_finished = 0; /* mark scan as in progress */
2103 spin_unlock_irqrestore(&h->scan_lock, flags);
2105 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2107 spin_lock_irqsave(&h->scan_lock, flags);
2108 h->scan_finished = 1; /* mark scan as finished. */
2109 wake_up_all(&h->scan_wait_queue);
2110 spin_unlock_irqrestore(&h->scan_lock, flags);
2113 static int hpsa_scan_finished(struct Scsi_Host *sh,
2114 unsigned long elapsed_time)
2116 struct ctlr_info *h = shost_to_hba(sh);
2117 unsigned long flags;
2118 int finished;
2120 spin_lock_irqsave(&h->scan_lock, flags);
2121 finished = h->scan_finished;
2122 spin_unlock_irqrestore(&h->scan_lock, flags);
2123 return finished;
2126 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2127 int qdepth, int reason)
2129 struct ctlr_info *h = sdev_to_hba(sdev);
2131 if (reason != SCSI_QDEPTH_DEFAULT)
2132 return -ENOTSUPP;
2134 if (qdepth < 1)
2135 qdepth = 1;
2136 else
2137 if (qdepth > h->nr_cmds)
2138 qdepth = h->nr_cmds;
2139 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2140 return sdev->queue_depth;
2143 static void hpsa_unregister_scsi(struct ctlr_info *h)
2145 /* we are being forcibly unloaded, and may not refuse. */
2146 scsi_remove_host(h->scsi_host);
2147 scsi_host_put(h->scsi_host);
2148 h->scsi_host = NULL;
2151 static int hpsa_register_scsi(struct ctlr_info *h)
2153 int rc;
2155 rc = hpsa_scsi_detect(h);
2156 if (rc != 0)
2157 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2158 " hpsa_scsi_detect(), rc is %d\n", rc);
2159 return rc;
2162 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2163 unsigned char lunaddr[])
2165 int rc = 0;
2166 int count = 0;
2167 int waittime = 1; /* seconds */
2168 struct CommandList *c;
2170 c = cmd_special_alloc(h);
2171 if (!c) {
2172 dev_warn(&h->pdev->dev, "out of memory in "
2173 "wait_for_device_to_become_ready.\n");
2174 return IO_ERROR;
2177 /* Send test unit ready until device ready, or give up. */
2178 while (count < HPSA_TUR_RETRY_LIMIT) {
2180 /* Wait for a bit. do this first, because if we send
2181 * the TUR right away, the reset will just abort it.
2183 msleep(1000 * waittime);
2184 count++;
2186 /* Increase wait time with each try, up to a point. */
2187 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2188 waittime = waittime * 2;
2190 /* Send the Test Unit Ready */
2191 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2192 hpsa_scsi_do_simple_cmd_core(h, c);
2193 /* no unmap needed here because no data xfer. */
2195 if (c->err_info->CommandStatus == CMD_SUCCESS)
2196 break;
2198 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2199 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2200 (c->err_info->SenseInfo[2] == NO_SENSE ||
2201 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2202 break;
2204 dev_warn(&h->pdev->dev, "waiting %d secs "
2205 "for device to become ready.\n", waittime);
2206 rc = 1; /* device not ready. */
2209 if (rc)
2210 dev_warn(&h->pdev->dev, "giving up on device.\n");
2211 else
2212 dev_warn(&h->pdev->dev, "device is ready.\n");
2214 cmd_special_free(h, c);
2215 return rc;
2218 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2219 * complaining. Doing a host- or bus-reset can't do anything good here.
2221 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2223 int rc;
2224 struct ctlr_info *h;
2225 struct hpsa_scsi_dev_t *dev;
2227 /* find the controller to which the command to be aborted was sent */
2228 h = sdev_to_hba(scsicmd->device);
2229 if (h == NULL) /* paranoia */
2230 return FAILED;
2231 dev = scsicmd->device->hostdata;
2232 if (!dev) {
2233 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2234 "device lookup failed.\n");
2235 return FAILED;
2237 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2238 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2239 /* send a reset to the SCSI LUN which the command was sent to */
2240 rc = hpsa_send_reset(h, dev->scsi3addr);
2241 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2242 return SUCCESS;
2244 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2245 return FAILED;
2249 * For operations that cannot sleep, a command block is allocated at init,
2250 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2251 * which ones are free or in use. Lock must be held when calling this.
2252 * cmd_free() is the complement.
2254 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2256 struct CommandList *c;
2257 int i;
2258 union u64bit temp64;
2259 dma_addr_t cmd_dma_handle, err_dma_handle;
2261 do {
2262 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2263 if (i == h->nr_cmds)
2264 return NULL;
2265 } while (test_and_set_bit
2266 (i & (BITS_PER_LONG - 1),
2267 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2268 c = h->cmd_pool + i;
2269 memset(c, 0, sizeof(*c));
2270 cmd_dma_handle = h->cmd_pool_dhandle
2271 + i * sizeof(*c);
2272 c->err_info = h->errinfo_pool + i;
2273 memset(c->err_info, 0, sizeof(*c->err_info));
2274 err_dma_handle = h->errinfo_pool_dhandle
2275 + i * sizeof(*c->err_info);
2276 h->nr_allocs++;
2278 c->cmdindex = i;
2280 INIT_LIST_HEAD(&c->list);
2281 c->busaddr = (u32) cmd_dma_handle;
2282 temp64.val = (u64) err_dma_handle;
2283 c->ErrDesc.Addr.lower = temp64.val32.lower;
2284 c->ErrDesc.Addr.upper = temp64.val32.upper;
2285 c->ErrDesc.Len = sizeof(*c->err_info);
2287 c->h = h;
2288 return c;
2291 /* For operations that can wait for kmalloc to possibly sleep,
2292 * this routine can be called. Lock need not be held to call
2293 * cmd_special_alloc. cmd_special_free() is the complement.
2295 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2297 struct CommandList *c;
2298 union u64bit temp64;
2299 dma_addr_t cmd_dma_handle, err_dma_handle;
2301 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2302 if (c == NULL)
2303 return NULL;
2304 memset(c, 0, sizeof(*c));
2306 c->cmdindex = -1;
2308 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2309 &err_dma_handle);
2311 if (c->err_info == NULL) {
2312 pci_free_consistent(h->pdev,
2313 sizeof(*c), c, cmd_dma_handle);
2314 return NULL;
2316 memset(c->err_info, 0, sizeof(*c->err_info));
2318 INIT_LIST_HEAD(&c->list);
2319 c->busaddr = (u32) cmd_dma_handle;
2320 temp64.val = (u64) err_dma_handle;
2321 c->ErrDesc.Addr.lower = temp64.val32.lower;
2322 c->ErrDesc.Addr.upper = temp64.val32.upper;
2323 c->ErrDesc.Len = sizeof(*c->err_info);
2325 c->h = h;
2326 return c;
2329 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2331 int i;
2333 i = c - h->cmd_pool;
2334 clear_bit(i & (BITS_PER_LONG - 1),
2335 h->cmd_pool_bits + (i / BITS_PER_LONG));
2336 h->nr_frees++;
2339 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2341 union u64bit temp64;
2343 temp64.val32.lower = c->ErrDesc.Addr.lower;
2344 temp64.val32.upper = c->ErrDesc.Addr.upper;
2345 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2346 c->err_info, (dma_addr_t) temp64.val);
2347 pci_free_consistent(h->pdev, sizeof(*c),
2348 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2351 #ifdef CONFIG_COMPAT
2353 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2355 IOCTL32_Command_struct __user *arg32 =
2356 (IOCTL32_Command_struct __user *) arg;
2357 IOCTL_Command_struct arg64;
2358 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2359 int err;
2360 u32 cp;
2362 memset(&arg64, 0, sizeof(arg64));
2363 err = 0;
2364 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2365 sizeof(arg64.LUN_info));
2366 err |= copy_from_user(&arg64.Request, &arg32->Request,
2367 sizeof(arg64.Request));
2368 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2369 sizeof(arg64.error_info));
2370 err |= get_user(arg64.buf_size, &arg32->buf_size);
2371 err |= get_user(cp, &arg32->buf);
2372 arg64.buf = compat_ptr(cp);
2373 err |= copy_to_user(p, &arg64, sizeof(arg64));
2375 if (err)
2376 return -EFAULT;
2378 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2379 if (err)
2380 return err;
2381 err |= copy_in_user(&arg32->error_info, &p->error_info,
2382 sizeof(arg32->error_info));
2383 if (err)
2384 return -EFAULT;
2385 return err;
2388 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2389 int cmd, void *arg)
2391 BIG_IOCTL32_Command_struct __user *arg32 =
2392 (BIG_IOCTL32_Command_struct __user *) arg;
2393 BIG_IOCTL_Command_struct arg64;
2394 BIG_IOCTL_Command_struct __user *p =
2395 compat_alloc_user_space(sizeof(arg64));
2396 int err;
2397 u32 cp;
2399 memset(&arg64, 0, sizeof(arg64));
2400 err = 0;
2401 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2402 sizeof(arg64.LUN_info));
2403 err |= copy_from_user(&arg64.Request, &arg32->Request,
2404 sizeof(arg64.Request));
2405 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2406 sizeof(arg64.error_info));
2407 err |= get_user(arg64.buf_size, &arg32->buf_size);
2408 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2409 err |= get_user(cp, &arg32->buf);
2410 arg64.buf = compat_ptr(cp);
2411 err |= copy_to_user(p, &arg64, sizeof(arg64));
2413 if (err)
2414 return -EFAULT;
2416 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2417 if (err)
2418 return err;
2419 err |= copy_in_user(&arg32->error_info, &p->error_info,
2420 sizeof(arg32->error_info));
2421 if (err)
2422 return -EFAULT;
2423 return err;
2426 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2428 switch (cmd) {
2429 case CCISS_GETPCIINFO:
2430 case CCISS_GETINTINFO:
2431 case CCISS_SETINTINFO:
2432 case CCISS_GETNODENAME:
2433 case CCISS_SETNODENAME:
2434 case CCISS_GETHEARTBEAT:
2435 case CCISS_GETBUSTYPES:
2436 case CCISS_GETFIRMVER:
2437 case CCISS_GETDRIVVER:
2438 case CCISS_REVALIDVOLS:
2439 case CCISS_DEREGDISK:
2440 case CCISS_REGNEWDISK:
2441 case CCISS_REGNEWD:
2442 case CCISS_RESCANDISK:
2443 case CCISS_GETLUNINFO:
2444 return hpsa_ioctl(dev, cmd, arg);
2446 case CCISS_PASSTHRU32:
2447 return hpsa_ioctl32_passthru(dev, cmd, arg);
2448 case CCISS_BIG_PASSTHRU32:
2449 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2451 default:
2452 return -ENOIOCTLCMD;
2455 #endif
2457 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2459 struct hpsa_pci_info pciinfo;
2461 if (!argp)
2462 return -EINVAL;
2463 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2464 pciinfo.bus = h->pdev->bus->number;
2465 pciinfo.dev_fn = h->pdev->devfn;
2466 pciinfo.board_id = h->board_id;
2467 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2468 return -EFAULT;
2469 return 0;
2472 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2474 DriverVer_type DriverVer;
2475 unsigned char vmaj, vmin, vsubmin;
2476 int rc;
2478 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2479 &vmaj, &vmin, &vsubmin);
2480 if (rc != 3) {
2481 dev_info(&h->pdev->dev, "driver version string '%s' "
2482 "unrecognized.", HPSA_DRIVER_VERSION);
2483 vmaj = 0;
2484 vmin = 0;
2485 vsubmin = 0;
2487 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2488 if (!argp)
2489 return -EINVAL;
2490 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2491 return -EFAULT;
2492 return 0;
2495 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2497 IOCTL_Command_struct iocommand;
2498 struct CommandList *c;
2499 char *buff = NULL;
2500 union u64bit temp64;
2502 if (!argp)
2503 return -EINVAL;
2504 if (!capable(CAP_SYS_RAWIO))
2505 return -EPERM;
2506 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2507 return -EFAULT;
2508 if ((iocommand.buf_size < 1) &&
2509 (iocommand.Request.Type.Direction != XFER_NONE)) {
2510 return -EINVAL;
2512 if (iocommand.buf_size > 0) {
2513 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2514 if (buff == NULL)
2515 return -EFAULT;
2516 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2517 /* Copy the data into the buffer we created */
2518 if (copy_from_user(buff, iocommand.buf,
2519 iocommand.buf_size)) {
2520 kfree(buff);
2521 return -EFAULT;
2523 } else {
2524 memset(buff, 0, iocommand.buf_size);
2527 c = cmd_special_alloc(h);
2528 if (c == NULL) {
2529 kfree(buff);
2530 return -ENOMEM;
2532 /* Fill in the command type */
2533 c->cmd_type = CMD_IOCTL_PEND;
2534 /* Fill in Command Header */
2535 c->Header.ReplyQueue = 0; /* unused in simple mode */
2536 if (iocommand.buf_size > 0) { /* buffer to fill */
2537 c->Header.SGList = 1;
2538 c->Header.SGTotal = 1;
2539 } else { /* no buffers to fill */
2540 c->Header.SGList = 0;
2541 c->Header.SGTotal = 0;
2543 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2544 /* use the kernel address the cmd block for tag */
2545 c->Header.Tag.lower = c->busaddr;
2547 /* Fill in Request block */
2548 memcpy(&c->Request, &iocommand.Request,
2549 sizeof(c->Request));
2551 /* Fill in the scatter gather information */
2552 if (iocommand.buf_size > 0) {
2553 temp64.val = pci_map_single(h->pdev, buff,
2554 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2555 c->SG[0].Addr.lower = temp64.val32.lower;
2556 c->SG[0].Addr.upper = temp64.val32.upper;
2557 c->SG[0].Len = iocommand.buf_size;
2558 c->SG[0].Ext = 0; /* we are not chaining*/
2560 hpsa_scsi_do_simple_cmd_core(h, c);
2561 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2562 check_ioctl_unit_attention(h, c);
2564 /* Copy the error information out */
2565 memcpy(&iocommand.error_info, c->err_info,
2566 sizeof(iocommand.error_info));
2567 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2568 kfree(buff);
2569 cmd_special_free(h, c);
2570 return -EFAULT;
2572 if (iocommand.Request.Type.Direction == XFER_READ &&
2573 iocommand.buf_size > 0) {
2574 /* Copy the data out of the buffer we created */
2575 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2576 kfree(buff);
2577 cmd_special_free(h, c);
2578 return -EFAULT;
2581 kfree(buff);
2582 cmd_special_free(h, c);
2583 return 0;
2586 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2588 BIG_IOCTL_Command_struct *ioc;
2589 struct CommandList *c;
2590 unsigned char **buff = NULL;
2591 int *buff_size = NULL;
2592 union u64bit temp64;
2593 BYTE sg_used = 0;
2594 int status = 0;
2595 int i;
2596 u32 left;
2597 u32 sz;
2598 BYTE __user *data_ptr;
2600 if (!argp)
2601 return -EINVAL;
2602 if (!capable(CAP_SYS_RAWIO))
2603 return -EPERM;
2604 ioc = (BIG_IOCTL_Command_struct *)
2605 kmalloc(sizeof(*ioc), GFP_KERNEL);
2606 if (!ioc) {
2607 status = -ENOMEM;
2608 goto cleanup1;
2610 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2611 status = -EFAULT;
2612 goto cleanup1;
2614 if ((ioc->buf_size < 1) &&
2615 (ioc->Request.Type.Direction != XFER_NONE)) {
2616 status = -EINVAL;
2617 goto cleanup1;
2619 /* Check kmalloc limits using all SGs */
2620 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2621 status = -EINVAL;
2622 goto cleanup1;
2624 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2625 status = -EINVAL;
2626 goto cleanup1;
2628 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2629 if (!buff) {
2630 status = -ENOMEM;
2631 goto cleanup1;
2633 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2634 if (!buff_size) {
2635 status = -ENOMEM;
2636 goto cleanup1;
2638 left = ioc->buf_size;
2639 data_ptr = ioc->buf;
2640 while (left) {
2641 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2642 buff_size[sg_used] = sz;
2643 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2644 if (buff[sg_used] == NULL) {
2645 status = -ENOMEM;
2646 goto cleanup1;
2648 if (ioc->Request.Type.Direction == XFER_WRITE) {
2649 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2650 status = -ENOMEM;
2651 goto cleanup1;
2653 } else
2654 memset(buff[sg_used], 0, sz);
2655 left -= sz;
2656 data_ptr += sz;
2657 sg_used++;
2659 c = cmd_special_alloc(h);
2660 if (c == NULL) {
2661 status = -ENOMEM;
2662 goto cleanup1;
2664 c->cmd_type = CMD_IOCTL_PEND;
2665 c->Header.ReplyQueue = 0;
2666 c->Header.SGList = c->Header.SGTotal = sg_used;
2667 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2668 c->Header.Tag.lower = c->busaddr;
2669 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2670 if (ioc->buf_size > 0) {
2671 int i;
2672 for (i = 0; i < sg_used; i++) {
2673 temp64.val = pci_map_single(h->pdev, buff[i],
2674 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2675 c->SG[i].Addr.lower = temp64.val32.lower;
2676 c->SG[i].Addr.upper = temp64.val32.upper;
2677 c->SG[i].Len = buff_size[i];
2678 /* we are not chaining */
2679 c->SG[i].Ext = 0;
2682 hpsa_scsi_do_simple_cmd_core(h, c);
2683 if (sg_used)
2684 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2685 check_ioctl_unit_attention(h, c);
2686 /* Copy the error information out */
2687 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2688 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2689 cmd_special_free(h, c);
2690 status = -EFAULT;
2691 goto cleanup1;
2693 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2694 /* Copy the data out of the buffer we created */
2695 BYTE __user *ptr = ioc->buf;
2696 for (i = 0; i < sg_used; i++) {
2697 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2698 cmd_special_free(h, c);
2699 status = -EFAULT;
2700 goto cleanup1;
2702 ptr += buff_size[i];
2705 cmd_special_free(h, c);
2706 status = 0;
2707 cleanup1:
2708 if (buff) {
2709 for (i = 0; i < sg_used; i++)
2710 kfree(buff[i]);
2711 kfree(buff);
2713 kfree(buff_size);
2714 kfree(ioc);
2715 return status;
2718 static void check_ioctl_unit_attention(struct ctlr_info *h,
2719 struct CommandList *c)
2721 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2722 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2723 (void) check_for_unit_attention(h, c);
2726 * ioctl
2728 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2730 struct ctlr_info *h;
2731 void __user *argp = (void __user *)arg;
2733 h = sdev_to_hba(dev);
2735 switch (cmd) {
2736 case CCISS_DEREGDISK:
2737 case CCISS_REGNEWDISK:
2738 case CCISS_REGNEWD:
2739 hpsa_scan_start(h->scsi_host);
2740 return 0;
2741 case CCISS_GETPCIINFO:
2742 return hpsa_getpciinfo_ioctl(h, argp);
2743 case CCISS_GETDRIVVER:
2744 return hpsa_getdrivver_ioctl(h, argp);
2745 case CCISS_PASSTHRU:
2746 return hpsa_passthru_ioctl(h, argp);
2747 case CCISS_BIG_PASSTHRU:
2748 return hpsa_big_passthru_ioctl(h, argp);
2749 default:
2750 return -ENOTTY;
2754 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2755 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2756 int cmd_type)
2758 int pci_dir = XFER_NONE;
2760 c->cmd_type = CMD_IOCTL_PEND;
2761 c->Header.ReplyQueue = 0;
2762 if (buff != NULL && size > 0) {
2763 c->Header.SGList = 1;
2764 c->Header.SGTotal = 1;
2765 } else {
2766 c->Header.SGList = 0;
2767 c->Header.SGTotal = 0;
2769 c->Header.Tag.lower = c->busaddr;
2770 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2772 c->Request.Type.Type = cmd_type;
2773 if (cmd_type == TYPE_CMD) {
2774 switch (cmd) {
2775 case HPSA_INQUIRY:
2776 /* are we trying to read a vital product page */
2777 if (page_code != 0) {
2778 c->Request.CDB[1] = 0x01;
2779 c->Request.CDB[2] = page_code;
2781 c->Request.CDBLen = 6;
2782 c->Request.Type.Attribute = ATTR_SIMPLE;
2783 c->Request.Type.Direction = XFER_READ;
2784 c->Request.Timeout = 0;
2785 c->Request.CDB[0] = HPSA_INQUIRY;
2786 c->Request.CDB[4] = size & 0xFF;
2787 break;
2788 case HPSA_REPORT_LOG:
2789 case HPSA_REPORT_PHYS:
2790 /* Talking to controller so It's a physical command
2791 mode = 00 target = 0. Nothing to write.
2793 c->Request.CDBLen = 12;
2794 c->Request.Type.Attribute = ATTR_SIMPLE;
2795 c->Request.Type.Direction = XFER_READ;
2796 c->Request.Timeout = 0;
2797 c->Request.CDB[0] = cmd;
2798 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2799 c->Request.CDB[7] = (size >> 16) & 0xFF;
2800 c->Request.CDB[8] = (size >> 8) & 0xFF;
2801 c->Request.CDB[9] = size & 0xFF;
2802 break;
2803 case HPSA_CACHE_FLUSH:
2804 c->Request.CDBLen = 12;
2805 c->Request.Type.Attribute = ATTR_SIMPLE;
2806 c->Request.Type.Direction = XFER_WRITE;
2807 c->Request.Timeout = 0;
2808 c->Request.CDB[0] = BMIC_WRITE;
2809 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2810 break;
2811 case TEST_UNIT_READY:
2812 c->Request.CDBLen = 6;
2813 c->Request.Type.Attribute = ATTR_SIMPLE;
2814 c->Request.Type.Direction = XFER_NONE;
2815 c->Request.Timeout = 0;
2816 break;
2817 default:
2818 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2819 BUG();
2820 return;
2822 } else if (cmd_type == TYPE_MSG) {
2823 switch (cmd) {
2825 case HPSA_DEVICE_RESET_MSG:
2826 c->Request.CDBLen = 16;
2827 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2828 c->Request.Type.Attribute = ATTR_SIMPLE;
2829 c->Request.Type.Direction = XFER_NONE;
2830 c->Request.Timeout = 0; /* Don't time out */
2831 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
2832 c->Request.CDB[1] = 0x03; /* Reset target above */
2833 /* If bytes 4-7 are zero, it means reset the */
2834 /* LunID device */
2835 c->Request.CDB[4] = 0x00;
2836 c->Request.CDB[5] = 0x00;
2837 c->Request.CDB[6] = 0x00;
2838 c->Request.CDB[7] = 0x00;
2839 break;
2841 default:
2842 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2843 cmd);
2844 BUG();
2846 } else {
2847 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2848 BUG();
2851 switch (c->Request.Type.Direction) {
2852 case XFER_READ:
2853 pci_dir = PCI_DMA_FROMDEVICE;
2854 break;
2855 case XFER_WRITE:
2856 pci_dir = PCI_DMA_TODEVICE;
2857 break;
2858 case XFER_NONE:
2859 pci_dir = PCI_DMA_NONE;
2860 break;
2861 default:
2862 pci_dir = PCI_DMA_BIDIRECTIONAL;
2865 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2867 return;
2871 * Map (physical) PCI mem into (virtual) kernel space
2873 static void __iomem *remap_pci_mem(ulong base, ulong size)
2875 ulong page_base = ((ulong) base) & PAGE_MASK;
2876 ulong page_offs = ((ulong) base) - page_base;
2877 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2879 return page_remapped ? (page_remapped + page_offs) : NULL;
2882 /* Takes cmds off the submission queue and sends them to the hardware,
2883 * then puts them on the queue of cmds waiting for completion.
2885 static void start_io(struct ctlr_info *h)
2887 struct CommandList *c;
2889 while (!list_empty(&h->reqQ)) {
2890 c = list_entry(h->reqQ.next, struct CommandList, list);
2891 /* can't do anything if fifo is full */
2892 if ((h->access.fifo_full(h))) {
2893 dev_warn(&h->pdev->dev, "fifo full\n");
2894 break;
2897 /* Get the first entry from the Request Q */
2898 removeQ(c);
2899 h->Qdepth--;
2901 /* Tell the controller execute command */
2902 h->access.submit_command(h, c);
2904 /* Put job onto the completed Q */
2905 addQ(&h->cmpQ, c);
2909 static inline unsigned long get_next_completion(struct ctlr_info *h)
2911 return h->access.command_completed(h);
2914 static inline bool interrupt_pending(struct ctlr_info *h)
2916 return h->access.intr_pending(h);
2919 static inline long interrupt_not_for_us(struct ctlr_info *h)
2921 return (h->access.intr_pending(h) == 0) ||
2922 (h->interrupts_enabled == 0);
2925 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2926 u32 raw_tag)
2928 if (unlikely(tag_index >= h->nr_cmds)) {
2929 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2930 return 1;
2932 return 0;
2935 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2937 removeQ(c);
2938 if (likely(c->cmd_type == CMD_SCSI))
2939 complete_scsi_command(c, 0, raw_tag);
2940 else if (c->cmd_type == CMD_IOCTL_PEND)
2941 complete(c->waiting);
2944 static inline u32 hpsa_tag_contains_index(u32 tag)
2946 return tag & DIRECT_LOOKUP_BIT;
2949 static inline u32 hpsa_tag_to_index(u32 tag)
2951 return tag >> DIRECT_LOOKUP_SHIFT;
2955 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2957 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2958 #define HPSA_SIMPLE_ERROR_BITS 0x03
2959 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2960 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2961 return tag & ~HPSA_PERF_ERROR_BITS;
2964 /* process completion of an indexed ("direct lookup") command */
2965 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2966 u32 raw_tag)
2968 u32 tag_index;
2969 struct CommandList *c;
2971 tag_index = hpsa_tag_to_index(raw_tag);
2972 if (bad_tag(h, tag_index, raw_tag))
2973 return next_command(h);
2974 c = h->cmd_pool + tag_index;
2975 finish_cmd(c, raw_tag);
2976 return next_command(h);
2979 /* process completion of a non-indexed command */
2980 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2981 u32 raw_tag)
2983 u32 tag;
2984 struct CommandList *c = NULL;
2986 tag = hpsa_tag_discard_error_bits(h, raw_tag);
2987 list_for_each_entry(c, &h->cmpQ, list) {
2988 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2989 finish_cmd(c, raw_tag);
2990 return next_command(h);
2993 bad_tag(h, h->nr_cmds + 1, raw_tag);
2994 return next_command(h);
2997 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2999 struct ctlr_info *h = dev_id;
3000 unsigned long flags;
3001 u32 raw_tag;
3003 if (interrupt_not_for_us(h))
3004 return IRQ_NONE;
3005 spin_lock_irqsave(&h->lock, flags);
3006 while (interrupt_pending(h)) {
3007 raw_tag = get_next_completion(h);
3008 while (raw_tag != FIFO_EMPTY) {
3009 if (hpsa_tag_contains_index(raw_tag))
3010 raw_tag = process_indexed_cmd(h, raw_tag);
3011 else
3012 raw_tag = process_nonindexed_cmd(h, raw_tag);
3015 spin_unlock_irqrestore(&h->lock, flags);
3016 return IRQ_HANDLED;
3019 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3021 struct ctlr_info *h = dev_id;
3022 unsigned long flags;
3023 u32 raw_tag;
3025 spin_lock_irqsave(&h->lock, flags);
3026 raw_tag = get_next_completion(h);
3027 while (raw_tag != FIFO_EMPTY) {
3028 if (hpsa_tag_contains_index(raw_tag))
3029 raw_tag = process_indexed_cmd(h, raw_tag);
3030 else
3031 raw_tag = process_nonindexed_cmd(h, raw_tag);
3033 spin_unlock_irqrestore(&h->lock, flags);
3034 return IRQ_HANDLED;
3037 /* Send a message CDB to the firmware. Careful, this only works
3038 * in simple mode, not performant mode due to the tag lookup.
3039 * We only ever use this immediately after a controller reset.
3041 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3042 unsigned char type)
3044 struct Command {
3045 struct CommandListHeader CommandHeader;
3046 struct RequestBlock Request;
3047 struct ErrDescriptor ErrorDescriptor;
3049 struct Command *cmd;
3050 static const size_t cmd_sz = sizeof(*cmd) +
3051 sizeof(cmd->ErrorDescriptor);
3052 dma_addr_t paddr64;
3053 uint32_t paddr32, tag;
3054 void __iomem *vaddr;
3055 int i, err;
3057 vaddr = pci_ioremap_bar(pdev, 0);
3058 if (vaddr == NULL)
3059 return -ENOMEM;
3061 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3062 * CCISS commands, so they must be allocated from the lower 4GiB of
3063 * memory.
3065 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3066 if (err) {
3067 iounmap(vaddr);
3068 return -ENOMEM;
3071 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3072 if (cmd == NULL) {
3073 iounmap(vaddr);
3074 return -ENOMEM;
3077 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3078 * although there's no guarantee, we assume that the address is at
3079 * least 4-byte aligned (most likely, it's page-aligned).
3081 paddr32 = paddr64;
3083 cmd->CommandHeader.ReplyQueue = 0;
3084 cmd->CommandHeader.SGList = 0;
3085 cmd->CommandHeader.SGTotal = 0;
3086 cmd->CommandHeader.Tag.lower = paddr32;
3087 cmd->CommandHeader.Tag.upper = 0;
3088 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3090 cmd->Request.CDBLen = 16;
3091 cmd->Request.Type.Type = TYPE_MSG;
3092 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3093 cmd->Request.Type.Direction = XFER_NONE;
3094 cmd->Request.Timeout = 0; /* Don't time out */
3095 cmd->Request.CDB[0] = opcode;
3096 cmd->Request.CDB[1] = type;
3097 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3098 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3099 cmd->ErrorDescriptor.Addr.upper = 0;
3100 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3102 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3104 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3105 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3106 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3107 break;
3108 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3111 iounmap(vaddr);
3113 /* we leak the DMA buffer here ... no choice since the controller could
3114 * still complete the command.
3116 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3117 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3118 opcode, type);
3119 return -ETIMEDOUT;
3122 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3124 if (tag & HPSA_ERROR_BIT) {
3125 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3126 opcode, type);
3127 return -EIO;
3130 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3131 opcode, type);
3132 return 0;
3135 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3136 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3138 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3139 void * __iomem vaddr, bool use_doorbell)
3141 u16 pmcsr;
3142 int pos;
3144 if (use_doorbell) {
3145 /* For everything after the P600, the PCI power state method
3146 * of resetting the controller doesn't work, so we have this
3147 * other way using the doorbell register.
3149 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3150 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3151 msleep(1000);
3152 } else { /* Try to do it the PCI power state way */
3154 /* Quoting from the Open CISS Specification: "The Power
3155 * Management Control/Status Register (CSR) controls the power
3156 * state of the device. The normal operating state is D0,
3157 * CSR=00h. The software off state is D3, CSR=03h. To reset
3158 * the controller, place the interface device in D3 then to D0,
3159 * this causes a secondary PCI reset which will reset the
3160 * controller." */
3162 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3163 if (pos == 0) {
3164 dev_err(&pdev->dev,
3165 "hpsa_reset_controller: "
3166 "PCI PM not supported\n");
3167 return -ENODEV;
3169 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3170 /* enter the D3hot power management state */
3171 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3172 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3173 pmcsr |= PCI_D3hot;
3174 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3176 msleep(500);
3178 /* enter the D0 power management state */
3179 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3180 pmcsr |= PCI_D0;
3181 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3183 msleep(500);
3185 return 0;
3188 /* This does a hard reset of the controller using PCI power management
3189 * states or the using the doorbell register.
3191 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3193 u64 cfg_offset;
3194 u32 cfg_base_addr;
3195 u64 cfg_base_addr_index;
3196 void __iomem *vaddr;
3197 unsigned long paddr;
3198 u32 misc_fw_support, active_transport;
3199 int rc;
3200 struct CfgTable __iomem *cfgtable;
3201 bool use_doorbell;
3202 u32 board_id;
3203 u16 command_register;
3205 /* For controllers as old as the P600, this is very nearly
3206 * the same thing as
3208 * pci_save_state(pci_dev);
3209 * pci_set_power_state(pci_dev, PCI_D3hot);
3210 * pci_set_power_state(pci_dev, PCI_D0);
3211 * pci_restore_state(pci_dev);
3213 * For controllers newer than the P600, the pci power state
3214 * method of resetting doesn't work so we have another way
3215 * using the doorbell register.
3218 /* Exclude 640x boards. These are two pci devices in one slot
3219 * which share a battery backed cache module. One controls the
3220 * cache, the other accesses the cache through the one that controls
3221 * it. If we reset the one controlling the cache, the other will
3222 * likely not be happy. Just forbid resetting this conjoined mess.
3223 * The 640x isn't really supported by hpsa anyway.
3225 rc = hpsa_lookup_board_id(pdev, &board_id);
3226 if (rc < 0) {
3227 dev_warn(&pdev->dev, "Not resetting device.\n");
3228 return -ENODEV;
3230 if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3231 return -ENOTSUPP;
3233 /* Save the PCI command register */
3234 pci_read_config_word(pdev, 4, &command_register);
3235 /* Turn the board off. This is so that later pci_restore_state()
3236 * won't turn the board on before the rest of config space is ready.
3238 pci_disable_device(pdev);
3239 pci_save_state(pdev);
3241 /* find the first memory BAR, so we can find the cfg table */
3242 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3243 if (rc)
3244 return rc;
3245 vaddr = remap_pci_mem(paddr, 0x250);
3246 if (!vaddr)
3247 return -ENOMEM;
3249 /* find cfgtable in order to check if reset via doorbell is supported */
3250 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3251 &cfg_base_addr_index, &cfg_offset);
3252 if (rc)
3253 goto unmap_vaddr;
3254 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3255 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3256 if (!cfgtable) {
3257 rc = -ENOMEM;
3258 goto unmap_vaddr;
3261 /* If reset via doorbell register is supported, use that. */
3262 misc_fw_support = readl(&cfgtable->misc_fw_support);
3263 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3265 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3266 if (rc)
3267 goto unmap_cfgtable;
3269 pci_restore_state(pdev);
3270 rc = pci_enable_device(pdev);
3271 if (rc) {
3272 dev_warn(&pdev->dev, "failed to enable device.\n");
3273 goto unmap_cfgtable;
3275 pci_write_config_word(pdev, 4, command_register);
3277 /* Some devices (notably the HP Smart Array 5i Controller)
3278 need a little pause here */
3279 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3281 /* Wait for board to become not ready, then ready. */
3282 dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3283 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3284 if (rc)
3285 dev_warn(&pdev->dev,
3286 "failed waiting for board to become not ready\n");
3287 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3288 if (rc) {
3289 dev_warn(&pdev->dev,
3290 "failed waiting for board to become ready\n");
3291 goto unmap_cfgtable;
3293 dev_info(&pdev->dev, "board ready.\n");
3295 /* Controller should be in simple mode at this point. If it's not,
3296 * It means we're on one of those controllers which doesn't support
3297 * the doorbell reset method and on which the PCI power management reset
3298 * method doesn't work (P800, for example.)
3299 * In those cases, don't try to proceed, as it generally doesn't work.
3301 active_transport = readl(&cfgtable->TransportActive);
3302 if (active_transport & PERFORMANT_MODE) {
3303 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3304 " Ignoring controller.\n");
3305 rc = -ENODEV;
3308 unmap_cfgtable:
3309 iounmap(cfgtable);
3311 unmap_vaddr:
3312 iounmap(vaddr);
3313 return rc;
3317 * We cannot read the structure directly, for portability we must use
3318 * the io functions.
3319 * This is for debug only.
3321 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3323 #ifdef HPSA_DEBUG
3324 int i;
3325 char temp_name[17];
3327 dev_info(dev, "Controller Configuration information\n");
3328 dev_info(dev, "------------------------------------\n");
3329 for (i = 0; i < 4; i++)
3330 temp_name[i] = readb(&(tb->Signature[i]));
3331 temp_name[4] = '\0';
3332 dev_info(dev, " Signature = %s\n", temp_name);
3333 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3334 dev_info(dev, " Transport methods supported = 0x%x\n",
3335 readl(&(tb->TransportSupport)));
3336 dev_info(dev, " Transport methods active = 0x%x\n",
3337 readl(&(tb->TransportActive)));
3338 dev_info(dev, " Requested transport Method = 0x%x\n",
3339 readl(&(tb->HostWrite.TransportRequest)));
3340 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3341 readl(&(tb->HostWrite.CoalIntDelay)));
3342 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3343 readl(&(tb->HostWrite.CoalIntCount)));
3344 dev_info(dev, " Max outstanding commands = 0x%d\n",
3345 readl(&(tb->CmdsOutMax)));
3346 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3347 for (i = 0; i < 16; i++)
3348 temp_name[i] = readb(&(tb->ServerName[i]));
3349 temp_name[16] = '\0';
3350 dev_info(dev, " Server Name = %s\n", temp_name);
3351 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3352 readl(&(tb->HeartBeat)));
3353 #endif /* HPSA_DEBUG */
3356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3358 int i, offset, mem_type, bar_type;
3360 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3361 return 0;
3362 offset = 0;
3363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3364 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3365 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3366 offset += 4;
3367 else {
3368 mem_type = pci_resource_flags(pdev, i) &
3369 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3370 switch (mem_type) {
3371 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3372 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3373 offset += 4; /* 32 bit */
3374 break;
3375 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3376 offset += 8;
3377 break;
3378 default: /* reserved in PCI 2.2 */
3379 dev_warn(&pdev->dev,
3380 "base address is invalid\n");
3381 return -1;
3382 break;
3385 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3386 return i + 1;
3388 return -1;
3391 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3392 * controllers that are capable. If not, we use IO-APIC mode.
3395 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3397 #ifdef CONFIG_PCI_MSI
3398 int err;
3399 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3400 {0, 2}, {0, 3}
3403 /* Some boards advertise MSI but don't really support it */
3404 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3405 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3406 goto default_int_mode;
3407 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3408 dev_info(&h->pdev->dev, "MSIX\n");
3409 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3410 if (!err) {
3411 h->intr[0] = hpsa_msix_entries[0].vector;
3412 h->intr[1] = hpsa_msix_entries[1].vector;
3413 h->intr[2] = hpsa_msix_entries[2].vector;
3414 h->intr[3] = hpsa_msix_entries[3].vector;
3415 h->msix_vector = 1;
3416 return;
3418 if (err > 0) {
3419 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3420 "available\n", err);
3421 goto default_int_mode;
3422 } else {
3423 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3424 err);
3425 goto default_int_mode;
3428 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3429 dev_info(&h->pdev->dev, "MSI\n");
3430 if (!pci_enable_msi(h->pdev))
3431 h->msi_vector = 1;
3432 else
3433 dev_warn(&h->pdev->dev, "MSI init failed\n");
3435 default_int_mode:
3436 #endif /* CONFIG_PCI_MSI */
3437 /* if we get here we're going to use the default interrupt mode */
3438 h->intr[h->intr_mode] = h->pdev->irq;
3441 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3443 int i;
3444 u32 subsystem_vendor_id, subsystem_device_id;
3446 subsystem_vendor_id = pdev->subsystem_vendor;
3447 subsystem_device_id = pdev->subsystem_device;
3448 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3449 subsystem_vendor_id;
3451 for (i = 0; i < ARRAY_SIZE(products); i++)
3452 if (*board_id == products[i].board_id)
3453 return i;
3455 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3456 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3457 !hpsa_allow_any) {
3458 dev_warn(&pdev->dev, "unrecognized board ID: "
3459 "0x%08x, ignoring.\n", *board_id);
3460 return -ENODEV;
3462 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3465 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3467 u16 command;
3469 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3470 return ((command & PCI_COMMAND_MEMORY) == 0);
3473 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3474 unsigned long *memory_bar)
3476 int i;
3478 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3479 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3480 /* addressing mode bits already removed */
3481 *memory_bar = pci_resource_start(pdev, i);
3482 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3483 *memory_bar);
3484 return 0;
3486 dev_warn(&pdev->dev, "no memory BAR found\n");
3487 return -ENODEV;
3490 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3491 void __iomem *vaddr, int wait_for_ready)
3493 int i, iterations;
3494 u32 scratchpad;
3495 if (wait_for_ready)
3496 iterations = HPSA_BOARD_READY_ITERATIONS;
3497 else
3498 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3500 for (i = 0; i < iterations; i++) {
3501 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3502 if (wait_for_ready) {
3503 if (scratchpad == HPSA_FIRMWARE_READY)
3504 return 0;
3505 } else {
3506 if (scratchpad != HPSA_FIRMWARE_READY)
3507 return 0;
3509 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3511 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3512 return -ENODEV;
3515 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3516 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3517 u64 *cfg_offset)
3519 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3520 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3521 *cfg_base_addr &= (u32) 0x0000ffff;
3522 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3523 if (*cfg_base_addr_index == -1) {
3524 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3525 return -ENODEV;
3527 return 0;
3530 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3532 u64 cfg_offset;
3533 u32 cfg_base_addr;
3534 u64 cfg_base_addr_index;
3535 u32 trans_offset;
3536 int rc;
3538 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3539 &cfg_base_addr_index, &cfg_offset);
3540 if (rc)
3541 return rc;
3542 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3543 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3544 if (!h->cfgtable)
3545 return -ENOMEM;
3546 /* Find performant mode table. */
3547 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3548 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3549 cfg_base_addr_index)+cfg_offset+trans_offset,
3550 sizeof(*h->transtable));
3551 if (!h->transtable)
3552 return -ENOMEM;
3553 return 0;
3556 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3558 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3560 /* Limit commands in memory limited kdump scenario. */
3561 if (reset_devices && h->max_commands > 32)
3562 h->max_commands = 32;
3564 if (h->max_commands < 16) {
3565 dev_warn(&h->pdev->dev, "Controller reports "
3566 "max supported commands of %d, an obvious lie. "
3567 "Using 16. Ensure that firmware is up to date.\n",
3568 h->max_commands);
3569 h->max_commands = 16;
3573 /* Interrogate the hardware for some limits:
3574 * max commands, max SG elements without chaining, and with chaining,
3575 * SG chain block size, etc.
3577 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3579 hpsa_get_max_perf_mode_cmds(h);
3580 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3581 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3583 * Limit in-command s/g elements to 32 save dma'able memory.
3584 * Howvever spec says if 0, use 31
3586 h->max_cmd_sg_entries = 31;
3587 if (h->maxsgentries > 512) {
3588 h->max_cmd_sg_entries = 32;
3589 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3590 h->maxsgentries--; /* save one for chain pointer */
3591 } else {
3592 h->maxsgentries = 31; /* default to traditional values */
3593 h->chainsize = 0;
3597 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3599 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3600 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3601 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3602 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3603 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3604 return false;
3606 return true;
3609 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3610 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3612 #ifdef CONFIG_X86
3613 u32 prefetch;
3615 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3616 prefetch |= 0x100;
3617 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3618 #endif
3621 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3622 * in a prefetch beyond physical memory.
3624 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3626 u32 dma_prefetch;
3628 if (h->board_id != 0x3225103C)
3629 return;
3630 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3631 dma_prefetch |= 0x8000;
3632 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3635 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3637 int i;
3638 u32 doorbell_value;
3639 unsigned long flags;
3641 /* under certain very rare conditions, this can take awhile.
3642 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3643 * as we enter this code.)
3645 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3646 spin_lock_irqsave(&h->lock, flags);
3647 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3648 spin_unlock_irqrestore(&h->lock, flags);
3649 if (!(doorbell_value & CFGTBL_ChangeReq))
3650 break;
3651 /* delay and try again */
3652 usleep_range(10000, 20000);
3656 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3658 u32 trans_support;
3660 trans_support = readl(&(h->cfgtable->TransportSupport));
3661 if (!(trans_support & SIMPLE_MODE))
3662 return -ENOTSUPP;
3664 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3665 /* Update the field, and then ring the doorbell */
3666 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3667 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3668 hpsa_wait_for_mode_change_ack(h);
3669 print_cfg_table(&h->pdev->dev, h->cfgtable);
3670 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3671 dev_warn(&h->pdev->dev,
3672 "unable to get board into simple mode\n");
3673 return -ENODEV;
3675 h->transMethod = CFGTBL_Trans_Simple;
3676 return 0;
3679 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3681 int prod_index, err;
3683 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3684 if (prod_index < 0)
3685 return -ENODEV;
3686 h->product_name = products[prod_index].product_name;
3687 h->access = *(products[prod_index].access);
3689 if (hpsa_board_disabled(h->pdev)) {
3690 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3691 return -ENODEV;
3693 err = pci_enable_device(h->pdev);
3694 if (err) {
3695 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3696 return err;
3699 err = pci_request_regions(h->pdev, "hpsa");
3700 if (err) {
3701 dev_err(&h->pdev->dev,
3702 "cannot obtain PCI resources, aborting\n");
3703 return err;
3705 hpsa_interrupt_mode(h);
3706 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3707 if (err)
3708 goto err_out_free_res;
3709 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3710 if (!h->vaddr) {
3711 err = -ENOMEM;
3712 goto err_out_free_res;
3714 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3715 if (err)
3716 goto err_out_free_res;
3717 err = hpsa_find_cfgtables(h);
3718 if (err)
3719 goto err_out_free_res;
3720 hpsa_find_board_params(h);
3722 if (!hpsa_CISS_signature_present(h)) {
3723 err = -ENODEV;
3724 goto err_out_free_res;
3726 hpsa_enable_scsi_prefetch(h);
3727 hpsa_p600_dma_prefetch_quirk(h);
3728 err = hpsa_enter_simple_mode(h);
3729 if (err)
3730 goto err_out_free_res;
3731 return 0;
3733 err_out_free_res:
3734 if (h->transtable)
3735 iounmap(h->transtable);
3736 if (h->cfgtable)
3737 iounmap(h->cfgtable);
3738 if (h->vaddr)
3739 iounmap(h->vaddr);
3741 * Deliberately omit pci_disable_device(): it does something nasty to
3742 * Smart Array controllers that pci_enable_device does not undo
3744 pci_release_regions(h->pdev);
3745 return err;
3748 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3750 int rc;
3752 #define HBA_INQUIRY_BYTE_COUNT 64
3753 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3754 if (!h->hba_inquiry_data)
3755 return;
3756 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3757 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3758 if (rc != 0) {
3759 kfree(h->hba_inquiry_data);
3760 h->hba_inquiry_data = NULL;
3764 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3766 int rc, i;
3768 if (!reset_devices)
3769 return 0;
3771 /* Reset the controller with a PCI power-cycle or via doorbell */
3772 rc = hpsa_kdump_hard_reset_controller(pdev);
3774 /* -ENOTSUPP here means we cannot reset the controller
3775 * but it's already (and still) up and running in
3776 * "performant mode". Or, it might be 640x, which can't reset
3777 * due to concerns about shared bbwc between 6402/6404 pair.
3779 if (rc == -ENOTSUPP)
3780 return 0; /* just try to do the kdump anyhow. */
3781 if (rc)
3782 return -ENODEV;
3784 /* Now try to get the controller to respond to a no-op */
3785 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3786 if (hpsa_noop(pdev) == 0)
3787 break;
3788 else
3789 dev_warn(&pdev->dev, "no-op failed%s\n",
3790 (i < 11 ? "; re-trying" : ""));
3792 return 0;
3795 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3796 const struct pci_device_id *ent)
3798 int dac, rc;
3799 struct ctlr_info *h;
3801 if (number_of_controllers == 0)
3802 printk(KERN_INFO DRIVER_NAME "\n");
3804 rc = hpsa_init_reset_devices(pdev);
3805 if (rc)
3806 return rc;
3808 /* Command structures must be aligned on a 32-byte boundary because
3809 * the 5 lower bits of the address are used by the hardware. and by
3810 * the driver. See comments in hpsa.h for more info.
3812 #define COMMANDLIST_ALIGNMENT 32
3813 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3814 h = kzalloc(sizeof(*h), GFP_KERNEL);
3815 if (!h)
3816 return -ENOMEM;
3818 h->pdev = pdev;
3819 h->busy_initializing = 1;
3820 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3821 INIT_LIST_HEAD(&h->cmpQ);
3822 INIT_LIST_HEAD(&h->reqQ);
3823 spin_lock_init(&h->lock);
3824 spin_lock_init(&h->scan_lock);
3825 rc = hpsa_pci_init(h);
3826 if (rc != 0)
3827 goto clean1;
3829 sprintf(h->devname, "hpsa%d", number_of_controllers);
3830 h->ctlr = number_of_controllers;
3831 number_of_controllers++;
3833 /* configure PCI DMA stuff */
3834 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3835 if (rc == 0) {
3836 dac = 1;
3837 } else {
3838 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3839 if (rc == 0) {
3840 dac = 0;
3841 } else {
3842 dev_err(&pdev->dev, "no suitable DMA available\n");
3843 goto clean1;
3847 /* make sure the board interrupts are off */
3848 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3850 if (h->msix_vector || h->msi_vector)
3851 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3852 IRQF_DISABLED, h->devname, h);
3853 else
3854 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3855 IRQF_DISABLED, h->devname, h);
3856 if (rc) {
3857 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3858 h->intr[h->intr_mode], h->devname);
3859 goto clean2;
3862 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3863 h->devname, pdev->device,
3864 h->intr[h->intr_mode], dac ? "" : " not");
3866 h->cmd_pool_bits =
3867 kmalloc(((h->nr_cmds + BITS_PER_LONG -
3868 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3869 h->cmd_pool = pci_alloc_consistent(h->pdev,
3870 h->nr_cmds * sizeof(*h->cmd_pool),
3871 &(h->cmd_pool_dhandle));
3872 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3873 h->nr_cmds * sizeof(*h->errinfo_pool),
3874 &(h->errinfo_pool_dhandle));
3875 if ((h->cmd_pool_bits == NULL)
3876 || (h->cmd_pool == NULL)
3877 || (h->errinfo_pool == NULL)) {
3878 dev_err(&pdev->dev, "out of memory");
3879 rc = -ENOMEM;
3880 goto clean4;
3882 if (hpsa_allocate_sg_chain_blocks(h))
3883 goto clean4;
3884 init_waitqueue_head(&h->scan_wait_queue);
3885 h->scan_finished = 1; /* no scan currently in progress */
3887 pci_set_drvdata(pdev, h);
3888 memset(h->cmd_pool_bits, 0,
3889 ((h->nr_cmds + BITS_PER_LONG -
3890 1) / BITS_PER_LONG) * sizeof(unsigned long));
3892 hpsa_scsi_setup(h);
3894 /* Turn the interrupts on so we can service requests */
3895 h->access.set_intr_mask(h, HPSA_INTR_ON);
3897 hpsa_put_ctlr_into_performant_mode(h);
3898 hpsa_hba_inquiry(h);
3899 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
3900 h->busy_initializing = 0;
3901 return 1;
3903 clean4:
3904 hpsa_free_sg_chain_blocks(h);
3905 kfree(h->cmd_pool_bits);
3906 if (h->cmd_pool)
3907 pci_free_consistent(h->pdev,
3908 h->nr_cmds * sizeof(struct CommandList),
3909 h->cmd_pool, h->cmd_pool_dhandle);
3910 if (h->errinfo_pool)
3911 pci_free_consistent(h->pdev,
3912 h->nr_cmds * sizeof(struct ErrorInfo),
3913 h->errinfo_pool,
3914 h->errinfo_pool_dhandle);
3915 free_irq(h->intr[h->intr_mode], h);
3916 clean2:
3917 clean1:
3918 h->busy_initializing = 0;
3919 kfree(h);
3920 return rc;
3923 static void hpsa_flush_cache(struct ctlr_info *h)
3925 char *flush_buf;
3926 struct CommandList *c;
3928 flush_buf = kzalloc(4, GFP_KERNEL);
3929 if (!flush_buf)
3930 return;
3932 c = cmd_special_alloc(h);
3933 if (!c) {
3934 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3935 goto out_of_memory;
3937 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3938 RAID_CTLR_LUNID, TYPE_CMD);
3939 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3940 if (c->err_info->CommandStatus != 0)
3941 dev_warn(&h->pdev->dev,
3942 "error flushing cache on controller\n");
3943 cmd_special_free(h, c);
3944 out_of_memory:
3945 kfree(flush_buf);
3948 static void hpsa_shutdown(struct pci_dev *pdev)
3950 struct ctlr_info *h;
3952 h = pci_get_drvdata(pdev);
3953 /* Turn board interrupts off and send the flush cache command
3954 * sendcmd will turn off interrupt, and send the flush...
3955 * To write all data in the battery backed cache to disks
3957 hpsa_flush_cache(h);
3958 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3959 free_irq(h->intr[h->intr_mode], h);
3960 #ifdef CONFIG_PCI_MSI
3961 if (h->msix_vector)
3962 pci_disable_msix(h->pdev);
3963 else if (h->msi_vector)
3964 pci_disable_msi(h->pdev);
3965 #endif /* CONFIG_PCI_MSI */
3968 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3970 struct ctlr_info *h;
3972 if (pci_get_drvdata(pdev) == NULL) {
3973 dev_err(&pdev->dev, "unable to remove device \n");
3974 return;
3976 h = pci_get_drvdata(pdev);
3977 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
3978 hpsa_shutdown(pdev);
3979 iounmap(h->vaddr);
3980 iounmap(h->transtable);
3981 iounmap(h->cfgtable);
3982 hpsa_free_sg_chain_blocks(h);
3983 pci_free_consistent(h->pdev,
3984 h->nr_cmds * sizeof(struct CommandList),
3985 h->cmd_pool, h->cmd_pool_dhandle);
3986 pci_free_consistent(h->pdev,
3987 h->nr_cmds * sizeof(struct ErrorInfo),
3988 h->errinfo_pool, h->errinfo_pool_dhandle);
3989 pci_free_consistent(h->pdev, h->reply_pool_size,
3990 h->reply_pool, h->reply_pool_dhandle);
3991 kfree(h->cmd_pool_bits);
3992 kfree(h->blockFetchTable);
3993 kfree(h->hba_inquiry_data);
3995 * Deliberately omit pci_disable_device(): it does something nasty to
3996 * Smart Array controllers that pci_enable_device does not undo
3998 pci_release_regions(pdev);
3999 pci_set_drvdata(pdev, NULL);
4000 kfree(h);
4003 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4004 __attribute__((unused)) pm_message_t state)
4006 return -ENOSYS;
4009 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4011 return -ENOSYS;
4014 static struct pci_driver hpsa_pci_driver = {
4015 .name = "hpsa",
4016 .probe = hpsa_init_one,
4017 .remove = __devexit_p(hpsa_remove_one),
4018 .id_table = hpsa_pci_device_id, /* id_table */
4019 .shutdown = hpsa_shutdown,
4020 .suspend = hpsa_suspend,
4021 .resume = hpsa_resume,
4024 /* Fill in bucket_map[], given nsgs (the max number of
4025 * scatter gather elements supported) and bucket[],
4026 * which is an array of 8 integers. The bucket[] array
4027 * contains 8 different DMA transfer sizes (in 16
4028 * byte increments) which the controller uses to fetch
4029 * commands. This function fills in bucket_map[], which
4030 * maps a given number of scatter gather elements to one of
4031 * the 8 DMA transfer sizes. The point of it is to allow the
4032 * controller to only do as much DMA as needed to fetch the
4033 * command, with the DMA transfer size encoded in the lower
4034 * bits of the command address.
4036 static void calc_bucket_map(int bucket[], int num_buckets,
4037 int nsgs, int *bucket_map)
4039 int i, j, b, size;
4041 /* even a command with 0 SGs requires 4 blocks */
4042 #define MINIMUM_TRANSFER_BLOCKS 4
4043 #define NUM_BUCKETS 8
4044 /* Note, bucket_map must have nsgs+1 entries. */
4045 for (i = 0; i <= nsgs; i++) {
4046 /* Compute size of a command with i SG entries */
4047 size = i + MINIMUM_TRANSFER_BLOCKS;
4048 b = num_buckets; /* Assume the biggest bucket */
4049 /* Find the bucket that is just big enough */
4050 for (j = 0; j < 8; j++) {
4051 if (bucket[j] >= size) {
4052 b = j;
4053 break;
4056 /* for a command with i SG entries, use bucket b. */
4057 bucket_map[i] = b;
4061 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4062 u32 use_short_tags)
4064 int i;
4065 unsigned long register_value;
4067 /* This is a bit complicated. There are 8 registers on
4068 * the controller which we write to to tell it 8 different
4069 * sizes of commands which there may be. It's a way of
4070 * reducing the DMA done to fetch each command. Encoded into
4071 * each command's tag are 3 bits which communicate to the controller
4072 * which of the eight sizes that command fits within. The size of
4073 * each command depends on how many scatter gather entries there are.
4074 * Each SG entry requires 16 bytes. The eight registers are programmed
4075 * with the number of 16-byte blocks a command of that size requires.
4076 * The smallest command possible requires 5 such 16 byte blocks.
4077 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4078 * blocks. Note, this only extends to the SG entries contained
4079 * within the command block, and does not extend to chained blocks
4080 * of SG elements. bft[] contains the eight values we write to
4081 * the registers. They are not evenly distributed, but have more
4082 * sizes for small commands, and fewer sizes for larger commands.
4084 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4085 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4086 /* 5 = 1 s/g entry or 4k
4087 * 6 = 2 s/g entry or 8k
4088 * 8 = 4 s/g entry or 16k
4089 * 10 = 6 s/g entry or 24k
4092 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4094 /* Controller spec: zero out this buffer. */
4095 memset(h->reply_pool, 0, h->reply_pool_size);
4096 h->reply_pool_head = h->reply_pool;
4098 bft[7] = h->max_sg_entries + 4;
4099 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4100 for (i = 0; i < 8; i++)
4101 writel(bft[i], &h->transtable->BlockFetch[i]);
4103 /* size of controller ring buffer */
4104 writel(h->max_commands, &h->transtable->RepQSize);
4105 writel(1, &h->transtable->RepQCount);
4106 writel(0, &h->transtable->RepQCtrAddrLow32);
4107 writel(0, &h->transtable->RepQCtrAddrHigh32);
4108 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4109 writel(0, &h->transtable->RepQAddr0High32);
4110 writel(CFGTBL_Trans_Performant | use_short_tags,
4111 &(h->cfgtable->HostWrite.TransportRequest));
4112 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4113 hpsa_wait_for_mode_change_ack(h);
4114 register_value = readl(&(h->cfgtable->TransportActive));
4115 if (!(register_value & CFGTBL_Trans_Performant)) {
4116 dev_warn(&h->pdev->dev, "unable to get board into"
4117 " performant mode\n");
4118 return;
4120 /* Change the access methods to the performant access methods */
4121 h->access = SA5_performant_access;
4122 h->transMethod = CFGTBL_Trans_Performant;
4125 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4127 u32 trans_support;
4129 if (hpsa_simple_mode)
4130 return;
4132 trans_support = readl(&(h->cfgtable->TransportSupport));
4133 if (!(trans_support & PERFORMANT_MODE))
4134 return;
4136 hpsa_get_max_perf_mode_cmds(h);
4137 h->max_sg_entries = 32;
4138 /* Performant mode ring buffer and supporting data structures */
4139 h->reply_pool_size = h->max_commands * sizeof(u64);
4140 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4141 &(h->reply_pool_dhandle));
4143 /* Need a block fetch table for performant mode */
4144 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4145 sizeof(u32)), GFP_KERNEL);
4147 if ((h->reply_pool == NULL)
4148 || (h->blockFetchTable == NULL))
4149 goto clean_up;
4151 hpsa_enter_performant_mode(h,
4152 trans_support & CFGTBL_Trans_use_short_tags);
4154 return;
4156 clean_up:
4157 if (h->reply_pool)
4158 pci_free_consistent(h->pdev, h->reply_pool_size,
4159 h->reply_pool, h->reply_pool_dhandle);
4160 kfree(h->blockFetchTable);
4164 * This is it. Register the PCI driver information for the cards we control
4165 * the OS will call our registered routines when it finds one of our cards.
4167 static int __init hpsa_init(void)
4169 return pci_register_driver(&hpsa_pci_driver);
4172 static void __exit hpsa_cleanup(void)
4174 pci_unregister_driver(&hpsa_pci_driver);
4177 module_init(hpsa_init);
4178 module_exit(hpsa_cleanup);