IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / fs / ext4 / inode.c
blobad8e303c0d2997c396489d80b8b210fdad67a092
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
51 #include <trace/events/ext4.h>
53 #define MPAGE_DA_EXTENT_TAIL 0x01
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size)
58 trace_ext4_begin_ordered_truncate(inode, new_size);
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
65 if (!EXT4_I(inode)->jinode)
66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode,
69 new_size);
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
81 * Test whether an inode is a fast symlink.
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 (inode->i_sb->s_blocksize >> 9) : 0;
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
95 static unsigned long blocks_for_truncate(struct inode *inode)
97 ext4_lblk_t needed;
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
107 if (needed < 2)
108 needed = 2;
110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */
112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA;
115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
128 static handle_t *start_transaction(struct inode *inode)
130 handle_t *result;
132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 if (!IS_ERR(result))
134 return result;
136 ext4_std_error(inode->i_sb, PTR_ERR(result));
137 return result;
141 * Try to extend this transaction for the purposes of truncation.
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
148 if (!ext4_handle_valid(handle))
149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 return 0;
152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 return 0;
154 return 1;
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 int nblocks)
165 int ret;
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, nblocks);
177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode);
180 return ret;
184 * Called at the last iput() if i_nlink is zero.
186 void ext4_evict_inode(struct inode *inode)
188 handle_t *handle;
189 int err;
191 trace_ext4_evict_inode(inode);
192 if (inode->i_nlink) {
193 truncate_inode_pages(&inode->i_data, 0);
194 goto no_delete;
197 if (!is_bad_inode(inode))
198 dquot_initialize(inode);
200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0);
202 truncate_inode_pages(&inode->i_data, 0);
204 if (is_bad_inode(inode))
205 goto no_delete;
207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 if (IS_ERR(handle)) {
209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
213 * cleaned up.
215 ext4_orphan_del(NULL, inode);
216 goto no_delete;
219 if (IS_SYNC(inode))
220 ext4_handle_sync(handle);
221 inode->i_size = 0;
222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) {
224 ext4_warning(inode->i_sb,
225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle;
228 if (inode->i_blocks)
229 ext4_truncate(inode);
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
237 if (!ext4_handle_has_enough_credits(handle, 3)) {
238 err = ext4_journal_extend(handle, 3);
239 if (err > 0)
240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) {
242 ext4_warning(inode->i_sb,
243 "couldn't extend journal (err %d)", err);
244 stop_handle:
245 ext4_journal_stop(handle);
246 ext4_orphan_del(NULL, inode);
247 goto no_delete;
252 * Kill off the orphan record which ext4_truncate created.
253 * AKPM: I think this can be inside the above `if'.
254 * Note that ext4_orphan_del() has to be able to cope with the
255 * deletion of a non-existent orphan - this is because we don't
256 * know if ext4_truncate() actually created an orphan record.
257 * (Well, we could do this if we need to, but heck - it works)
259 ext4_orphan_del(handle, inode);
260 EXT4_I(inode)->i_dtime = get_seconds();
263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty
267 * fails.
269 if (ext4_mark_inode_dirty(handle, inode))
270 /* If that failed, just do the required in-core inode clear. */
271 ext4_clear_inode(inode);
272 else
273 ext4_free_inode(handle, inode);
274 ext4_journal_stop(handle);
275 return;
276 no_delete:
277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
280 typedef struct {
281 __le32 *p;
282 __le32 key;
283 struct buffer_head *bh;
284 } Indirect;
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
288 p->key = *(p->p = v);
289 p->bh = bh;
293 * ext4_block_to_path - parse the block number into array of offsets
294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in
297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block.
300 * To store the locations of file's data ext4 uses a data structure common
301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned.
308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the
310 * inode->i_sb).
314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not
320 * get there at all.
323 static int ext4_block_to_path(struct inode *inode,
324 ext4_lblk_t i_block,
325 ext4_lblk_t offsets[4], int *boundary)
327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 const long direct_blocks = EXT4_NDIR_BLOCKS,
330 indirect_blocks = ptrs,
331 double_blocks = (1 << (ptrs_bits * 2));
332 int n = 0;
333 int final = 0;
335 if (i_block < direct_blocks) {
336 offsets[n++] = i_block;
337 final = direct_blocks;
338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
339 offsets[n++] = EXT4_IND_BLOCK;
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
343 offsets[n++] = EXT4_DIND_BLOCK;
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 offsets[n++] = EXT4_TIND_BLOCK;
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks, inode->i_ino);
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 struct inode *inode,
365 __le32 *p, unsigned int max)
367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 __le32 *bref = p;
369 unsigned int blk;
371 while (bref < p+max) {
372 blk = le32_to_cpu(*bref++);
373 if (blk &&
374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 blk, 1))) {
376 es->s_last_error_block = cpu_to_le64(blk);
377 ext4_error_inode(inode, function, line, blk,
378 "invalid block");
379 return -EIO;
382 return 0;
386 #define ext4_check_indirect_blockref(inode, bh) \
387 __ext4_check_blockref(__func__, __LINE__, inode, \
388 (__le32 *)(bh)->b_data, \
389 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
391 #define ext4_check_inode_blockref(inode) \
392 __ext4_check_blockref(__func__, __LINE__, inode, \
393 EXT4_I(inode)->i_data, \
394 EXT4_NDIR_BLOCKS)
397 * ext4_get_branch - read the chain of indirect blocks leading to data
398 * @inode: inode in question
399 * @depth: depth of the chain (1 - direct pointer, etc.)
400 * @offsets: offsets of pointers in inode/indirect blocks
401 * @chain: place to store the result
402 * @err: here we store the error value
404 * Function fills the array of triples <key, p, bh> and returns %NULL
405 * if everything went OK or the pointer to the last filled triple
406 * (incomplete one) otherwise. Upon the return chain[i].key contains
407 * the number of (i+1)-th block in the chain (as it is stored in memory,
408 * i.e. little-endian 32-bit), chain[i].p contains the address of that
409 * number (it points into struct inode for i==0 and into the bh->b_data
410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411 * block for i>0 and NULL for i==0. In other words, it holds the block
412 * numbers of the chain, addresses they were taken from (and where we can
413 * verify that chain did not change) and buffer_heads hosting these
414 * numbers.
416 * Function stops when it stumbles upon zero pointer (absent block)
417 * (pointer to last triple returned, *@err == 0)
418 * or when it gets an IO error reading an indirect block
419 * (ditto, *@err == -EIO)
420 * or when it reads all @depth-1 indirect blocks successfully and finds
421 * the whole chain, all way to the data (returns %NULL, *err == 0).
423 * Need to be called with
424 * down_read(&EXT4_I(inode)->i_data_sem)
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 ext4_lblk_t *offsets,
428 Indirect chain[4], int *err)
430 struct super_block *sb = inode->i_sb;
431 Indirect *p = chain;
432 struct buffer_head *bh;
434 *err = 0;
435 /* i_data is not going away, no lock needed */
436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 if (!p->key)
438 goto no_block;
439 while (--depth) {
440 bh = sb_getblk(sb, le32_to_cpu(p->key));
441 if (unlikely(!bh))
442 goto failure;
444 if (!bh_uptodate_or_lock(bh)) {
445 if (bh_submit_read(bh) < 0) {
446 put_bh(bh);
447 goto failure;
449 /* validate block references */
450 if (ext4_check_indirect_blockref(inode, bh)) {
451 put_bh(bh);
452 goto failure;
456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 /* Reader: end */
458 if (!p->key)
459 goto no_block;
461 return NULL;
463 failure:
464 *err = -EIO;
465 no_block:
466 return p;
470 * ext4_find_near - find a place for allocation with sufficient locality
471 * @inode: owner
472 * @ind: descriptor of indirect block.
474 * This function returns the preferred place for block allocation.
475 * It is used when heuristic for sequential allocation fails.
476 * Rules are:
477 * + if there is a block to the left of our position - allocate near it.
478 * + if pointer will live in indirect block - allocate near that block.
479 * + if pointer will live in inode - allocate in the same
480 * cylinder group.
482 * In the latter case we colour the starting block by the callers PID to
483 * prevent it from clashing with concurrent allocations for a different inode
484 * in the same block group. The PID is used here so that functionally related
485 * files will be close-by on-disk.
487 * Caller must make sure that @ind is valid and will stay that way.
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
491 struct ext4_inode_info *ei = EXT4_I(inode);
492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 __le32 *p;
494 ext4_fsblk_t bg_start;
495 ext4_fsblk_t last_block;
496 ext4_grpblk_t colour;
497 ext4_group_t block_group;
498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
500 /* Try to find previous block */
501 for (p = ind->p - 1; p >= start; p--) {
502 if (*p)
503 return le32_to_cpu(*p);
506 /* No such thing, so let's try location of indirect block */
507 if (ind->bh)
508 return ind->bh->b_blocknr;
511 * It is going to be referred to from the inode itself? OK, just put it
512 * into the same cylinder group then.
514 block_group = ei->i_block_group;
515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 block_group &= ~(flex_size-1);
517 if (S_ISREG(inode->i_mode))
518 block_group++;
520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
524 * If we are doing delayed allocation, we don't need take
525 * colour into account.
527 if (test_opt(inode->i_sb, DELALLOC))
528 return bg_start;
530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 colour = (current->pid % 16) *
532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 else
534 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 return bg_start + colour;
539 * ext4_find_goal - find a preferred place for allocation.
540 * @inode: owner
541 * @block: block we want
542 * @partial: pointer to the last triple within a chain
544 * Normally this function find the preferred place for block allocation,
545 * returns it.
546 * Because this is only used for non-extent files, we limit the block nr
547 * to 32 bits.
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 Indirect *partial)
552 ext4_fsblk_t goal;
555 * XXX need to get goal block from mballoc's data structures
558 goal = ext4_find_near(inode, partial);
559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 return goal;
564 * ext4_blks_to_allocate - Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
578 unsigned int count = 0;
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
598 return count;
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @handle: handle for this transaction
604 * @inode: inode which needs allocated blocks
605 * @iblock: the logical block to start allocated at
606 * @goal: preferred physical block of allocation
607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks
609 * @blks: number of desired blocks
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @err: on return it will store the error code
614 * This function will return the number of blocks allocated as
615 * requested by the passed-in parameters.
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 ext4_lblk_t iblock, ext4_fsblk_t goal,
619 int indirect_blks, int blks,
620 ext4_fsblk_t new_blocks[4], int *err)
622 struct ext4_allocation_request ar;
623 int target, i;
624 unsigned long count = 0, blk_allocated = 0;
625 int index = 0;
626 ext4_fsblk_t current_block = 0;
627 int ret = 0;
630 * Here we try to allocate the requested multiple blocks at once,
631 * on a best-effort basis.
632 * To build a branch, we should allocate blocks for
633 * the indirect blocks(if not allocated yet), and at least
634 * the first direct block of this branch. That's the
635 * minimum number of blocks need to allocate(required)
637 /* first we try to allocate the indirect blocks */
638 target = indirect_blks;
639 while (target > 0) {
640 count = target;
641 /* allocating blocks for indirect blocks and direct blocks */
642 current_block = ext4_new_meta_blocks(handle, inode,
643 goal, &count, err);
644 if (*err)
645 goto failed_out;
647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 EXT4_ERROR_INODE(inode,
649 "current_block %llu + count %lu > %d!",
650 current_block, count,
651 EXT4_MAX_BLOCK_FILE_PHYS);
652 *err = -EIO;
653 goto failed_out;
656 target -= count;
657 /* allocate blocks for indirect blocks */
658 while (index < indirect_blks && count) {
659 new_blocks[index++] = current_block++;
660 count--;
662 if (count > 0) {
664 * save the new block number
665 * for the first direct block
667 new_blocks[index] = current_block;
668 printk(KERN_INFO "%s returned more blocks than "
669 "requested\n", __func__);
670 WARN_ON(1);
671 break;
675 target = blks - count ;
676 blk_allocated = count;
677 if (!target)
678 goto allocated;
679 /* Now allocate data blocks */
680 memset(&ar, 0, sizeof(ar));
681 ar.inode = inode;
682 ar.goal = goal;
683 ar.len = target;
684 ar.logical = iblock;
685 if (S_ISREG(inode->i_mode))
686 /* enable in-core preallocation only for regular files */
687 ar.flags = EXT4_MB_HINT_DATA;
689 current_block = ext4_mb_new_blocks(handle, &ar, err);
690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 EXT4_ERROR_INODE(inode,
692 "current_block %llu + ar.len %d > %d!",
693 current_block, ar.len,
694 EXT4_MAX_BLOCK_FILE_PHYS);
695 *err = -EIO;
696 goto failed_out;
699 if (*err && (target == blks)) {
701 * if the allocation failed and we didn't allocate
702 * any blocks before
704 goto failed_out;
706 if (!*err) {
707 if (target == blks) {
709 * save the new block number
710 * for the first direct block
712 new_blocks[index] = current_block;
714 blk_allocated += ar.len;
716 allocated:
717 /* total number of blocks allocated for direct blocks */
718 ret = blk_allocated;
719 *err = 0;
720 return ret;
721 failed_out:
722 for (i = 0; i < index; i++)
723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 return ret;
728 * ext4_alloc_branch - allocate and set up a chain of blocks.
729 * @handle: handle for this transaction
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @goal: preferred place for allocation
734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in.
737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in
741 * the same format as ext4_get_branch() would do. We are calling it after
742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same
744 * picture as after the successful ext4_get_block(), except that in one
745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap.
749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed
751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 * as described above and return 0.
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 ext4_lblk_t iblock, int indirect_blks,
756 int *blks, ext4_fsblk_t goal,
757 ext4_lblk_t *offsets, Indirect *branch)
759 int blocksize = inode->i_sb->s_blocksize;
760 int i, n = 0;
761 int err = 0;
762 struct buffer_head *bh;
763 int num;
764 ext4_fsblk_t new_blocks[4];
765 ext4_fsblk_t current_block;
767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 *blks, new_blocks, &err);
769 if (err)
770 return err;
772 branch[0].key = cpu_to_le32(new_blocks[0]);
774 * metadata blocks and data blocks are allocated.
776 for (n = 1; n <= indirect_blks; n++) {
778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send
780 * parent to disk.
782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 if (unlikely(!bh)) {
784 err = -EIO;
785 goto failed;
788 branch[n].bh = bh;
789 lock_buffer(bh);
790 BUFFER_TRACE(bh, "call get_create_access");
791 err = ext4_journal_get_create_access(handle, bh);
792 if (err) {
793 /* Don't brelse(bh) here; it's done in
794 * ext4_journal_forget() below */
795 unlock_buffer(bh);
796 goto failed;
799 memset(bh->b_data, 0, blocksize);
800 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 branch[n].key = cpu_to_le32(new_blocks[n]);
802 *branch[n].p = branch[n].key;
803 if (n == indirect_blks) {
804 current_block = new_blocks[n];
806 * End of chain, update the last new metablock of
807 * the chain to point to the new allocated
808 * data blocks numbers
810 for (i = 1; i < num; i++)
811 *(branch[n].p + i) = cpu_to_le32(++current_block);
813 BUFFER_TRACE(bh, "marking uptodate");
814 set_buffer_uptodate(bh);
815 unlock_buffer(bh);
817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 err = ext4_handle_dirty_metadata(handle, inode, bh);
819 if (err)
820 goto failed;
822 *blks = num;
823 return err;
824 failed:
825 /* Allocation failed, free what we already allocated */
826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827 for (i = 1; i <= n ; i++) {
829 * branch[i].bh is newly allocated, so there is no
830 * need to revoke the block, which is why we don't
831 * need to set EXT4_FREE_BLOCKS_METADATA.
833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834 EXT4_FREE_BLOCKS_FORGET);
836 for (i = n+1; i < indirect_blks; i++)
837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
841 return err;
845 * ext4_splice_branch - splice the allocated branch onto inode.
846 * @handle: handle for this transaction
847 * @inode: owner
848 * @block: (logical) number of block we are adding
849 * @chain: chain of indirect blocks (with a missing link - see
850 * ext4_alloc_branch)
851 * @where: location of missing link
852 * @num: number of indirect blocks we are adding
853 * @blks: number of direct blocks we are adding
855 * This function fills the missing link and does all housekeeping needed in
856 * inode (->i_blocks, etc.). In case of success we end up with the full
857 * chain to new block and return 0.
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 ext4_lblk_t block, Indirect *where, int num,
861 int blks)
863 int i;
864 int err = 0;
865 ext4_fsblk_t current_block;
868 * If we're splicing into a [td]indirect block (as opposed to the
869 * inode) then we need to get write access to the [td]indirect block
870 * before the splice.
872 if (where->bh) {
873 BUFFER_TRACE(where->bh, "get_write_access");
874 err = ext4_journal_get_write_access(handle, where->bh);
875 if (err)
876 goto err_out;
878 /* That's it */
880 *where->p = where->key;
883 * Update the host buffer_head or inode to point to more just allocated
884 * direct blocks blocks
886 if (num == 0 && blks > 1) {
887 current_block = le32_to_cpu(where->key) + 1;
888 for (i = 1; i < blks; i++)
889 *(where->p + i) = cpu_to_le32(current_block++);
892 /* We are done with atomic stuff, now do the rest of housekeeping */
893 /* had we spliced it onto indirect block? */
894 if (where->bh) {
896 * If we spliced it onto an indirect block, we haven't
897 * altered the inode. Note however that if it is being spliced
898 * onto an indirect block at the very end of the file (the
899 * file is growing) then we *will* alter the inode to reflect
900 * the new i_size. But that is not done here - it is done in
901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
903 jbd_debug(5, "splicing indirect only\n");
904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 if (err)
907 goto err_out;
908 } else {
910 * OK, we spliced it into the inode itself on a direct block.
912 ext4_mark_inode_dirty(handle, inode);
913 jbd_debug(5, "splicing direct\n");
915 return err;
917 err_out:
918 for (i = 1; i <= num; i++) {
920 * branch[i].bh is newly allocated, so there is no
921 * need to revoke the block, which is why we don't
922 * need to set EXT4_FREE_BLOCKS_METADATA.
924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 EXT4_FREE_BLOCKS_FORGET);
927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928 blks, 0);
930 return err;
934 * The ext4_ind_map_blocks() function handles non-extents inodes
935 * (i.e., using the traditional indirect/double-indirect i_blocks
936 * scheme) for ext4_map_blocks().
938 * Allocation strategy is simple: if we have to allocate something, we will
939 * have to go the whole way to leaf. So let's do it before attaching anything
940 * to tree, set linkage between the newborn blocks, write them if sync is
941 * required, recheck the path, free and repeat if check fails, otherwise
942 * set the last missing link (that will protect us from any truncate-generated
943 * removals - all blocks on the path are immune now) and possibly force the
944 * write on the parent block.
945 * That has a nice additional property: no special recovery from the failed
946 * allocations is needed - we simply release blocks and do not touch anything
947 * reachable from inode.
949 * `handle' can be NULL if create == 0.
951 * return > 0, # of blocks mapped or allocated.
952 * return = 0, if plain lookup failed.
953 * return < 0, error case.
955 * The ext4_ind_get_blocks() function should be called with
956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959 * blocks.
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 struct ext4_map_blocks *map,
963 int flags)
965 int err = -EIO;
966 ext4_lblk_t offsets[4];
967 Indirect chain[4];
968 Indirect *partial;
969 ext4_fsblk_t goal;
970 int indirect_blks;
971 int blocks_to_boundary = 0;
972 int depth;
973 int count = 0;
974 ext4_fsblk_t first_block = 0;
976 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
977 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
978 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
979 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
980 &blocks_to_boundary);
982 if (depth == 0)
983 goto out;
985 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
987 /* Simplest case - block found, no allocation needed */
988 if (!partial) {
989 first_block = le32_to_cpu(chain[depth - 1].key);
990 count++;
991 /*map more blocks*/
992 while (count < map->m_len && count <= blocks_to_boundary) {
993 ext4_fsblk_t blk;
995 blk = le32_to_cpu(*(chain[depth-1].p + count));
997 if (blk == first_block + count)
998 count++;
999 else
1000 break;
1002 goto got_it;
1005 /* Next simple case - plain lookup or failed read of indirect block */
1006 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1007 goto cleanup;
1010 * Okay, we need to do block allocation.
1012 goal = ext4_find_goal(inode, map->m_lblk, partial);
1014 /* the number of blocks need to allocate for [d,t]indirect blocks */
1015 indirect_blks = (chain + depth) - partial - 1;
1018 * Next look up the indirect map to count the totoal number of
1019 * direct blocks to allocate for this branch.
1021 count = ext4_blks_to_allocate(partial, indirect_blks,
1022 map->m_len, blocks_to_boundary);
1024 * Block out ext4_truncate while we alter the tree
1026 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1027 &count, goal,
1028 offsets + (partial - chain), partial);
1031 * The ext4_splice_branch call will free and forget any buffers
1032 * on the new chain if there is a failure, but that risks using
1033 * up transaction credits, especially for bitmaps where the
1034 * credits cannot be returned. Can we handle this somehow? We
1035 * may need to return -EAGAIN upwards in the worst case. --sct
1037 if (!err)
1038 err = ext4_splice_branch(handle, inode, map->m_lblk,
1039 partial, indirect_blks, count);
1040 if (err)
1041 goto cleanup;
1043 map->m_flags |= EXT4_MAP_NEW;
1045 ext4_update_inode_fsync_trans(handle, inode, 1);
1046 got_it:
1047 map->m_flags |= EXT4_MAP_MAPPED;
1048 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1049 map->m_len = count;
1050 if (count > blocks_to_boundary)
1051 map->m_flags |= EXT4_MAP_BOUNDARY;
1052 err = count;
1053 /* Clean up and exit */
1054 partial = chain + depth - 1; /* the whole chain */
1055 cleanup:
1056 while (partial > chain) {
1057 BUFFER_TRACE(partial->bh, "call brelse");
1058 brelse(partial->bh);
1059 partial--;
1061 out:
1062 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1063 map->m_pblk, map->m_len, err);
1064 return err;
1067 #ifdef CONFIG_QUOTA
1068 qsize_t *ext4_get_reserved_space(struct inode *inode)
1070 return &EXT4_I(inode)->i_reserved_quota;
1072 #endif
1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate a new block at @lblocks for non extent file based file
1078 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1079 sector_t lblock)
1081 struct ext4_inode_info *ei = EXT4_I(inode);
1082 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1083 int blk_bits;
1085 if (lblock < EXT4_NDIR_BLOCKS)
1086 return 0;
1088 lblock -= EXT4_NDIR_BLOCKS;
1090 if (ei->i_da_metadata_calc_len &&
1091 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1092 ei->i_da_metadata_calc_len++;
1093 return 0;
1095 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1096 ei->i_da_metadata_calc_len = 1;
1097 blk_bits = order_base_2(lblock);
1098 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1102 * Calculate the number of metadata blocks need to reserve
1103 * to allocate a block located at @lblock
1105 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1107 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1108 return ext4_ext_calc_metadata_amount(inode, lblock);
1110 return ext4_indirect_calc_metadata_amount(inode, lblock);
1114 * Called with i_data_sem down, which is important since we can call
1115 * ext4_discard_preallocations() from here.
1117 void ext4_da_update_reserve_space(struct inode *inode,
1118 int used, int quota_claim)
1120 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1121 struct ext4_inode_info *ei = EXT4_I(inode);
1123 spin_lock(&ei->i_block_reservation_lock);
1124 trace_ext4_da_update_reserve_space(inode, used);
1125 if (unlikely(used > ei->i_reserved_data_blocks)) {
1126 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1127 "with only %d reserved data blocks\n",
1128 __func__, inode->i_ino, used,
1129 ei->i_reserved_data_blocks);
1130 WARN_ON(1);
1131 used = ei->i_reserved_data_blocks;
1134 /* Update per-inode reservations */
1135 ei->i_reserved_data_blocks -= used;
1136 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1137 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1138 used + ei->i_allocated_meta_blocks);
1139 ei->i_allocated_meta_blocks = 0;
1141 if (ei->i_reserved_data_blocks == 0) {
1143 * We can release all of the reserved metadata blocks
1144 * only when we have written all of the delayed
1145 * allocation blocks.
1147 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1148 ei->i_reserved_meta_blocks);
1149 ei->i_reserved_meta_blocks = 0;
1150 ei->i_da_metadata_calc_len = 0;
1152 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1154 /* Update quota subsystem for data blocks */
1155 if (quota_claim)
1156 dquot_claim_block(inode, used);
1157 else {
1159 * We did fallocate with an offset that is already delayed
1160 * allocated. So on delayed allocated writeback we should
1161 * not re-claim the quota for fallocated blocks.
1163 dquot_release_reservation_block(inode, used);
1167 * If we have done all the pending block allocations and if
1168 * there aren't any writers on the inode, we can discard the
1169 * inode's preallocations.
1171 if ((ei->i_reserved_data_blocks == 0) &&
1172 (atomic_read(&inode->i_writecount) == 0))
1173 ext4_discard_preallocations(inode);
1176 static int __check_block_validity(struct inode *inode, const char *func,
1177 unsigned int line,
1178 struct ext4_map_blocks *map)
1180 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1181 map->m_len)) {
1182 ext4_error_inode(inode, func, line, map->m_pblk,
1183 "lblock %lu mapped to illegal pblock "
1184 "(length %d)", (unsigned long) map->m_lblk,
1185 map->m_len);
1186 return -EIO;
1188 return 0;
1191 #define check_block_validity(inode, map) \
1192 __check_block_validity((inode), __func__, __LINE__, (map))
1195 * Return the number of contiguous dirty pages in a given inode
1196 * starting at page frame idx.
1198 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1199 unsigned int max_pages)
1201 struct address_space *mapping = inode->i_mapping;
1202 pgoff_t index;
1203 struct pagevec pvec;
1204 pgoff_t num = 0;
1205 int i, nr_pages, done = 0;
1207 if (max_pages == 0)
1208 return 0;
1209 pagevec_init(&pvec, 0);
1210 while (!done) {
1211 index = idx;
1212 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1213 PAGECACHE_TAG_DIRTY,
1214 (pgoff_t)PAGEVEC_SIZE);
1215 if (nr_pages == 0)
1216 break;
1217 for (i = 0; i < nr_pages; i++) {
1218 struct page *page = pvec.pages[i];
1219 struct buffer_head *bh, *head;
1221 lock_page(page);
1222 if (unlikely(page->mapping != mapping) ||
1223 !PageDirty(page) ||
1224 PageWriteback(page) ||
1225 page->index != idx) {
1226 done = 1;
1227 unlock_page(page);
1228 break;
1230 if (page_has_buffers(page)) {
1231 bh = head = page_buffers(page);
1232 do {
1233 if (!buffer_delay(bh) &&
1234 !buffer_unwritten(bh))
1235 done = 1;
1236 bh = bh->b_this_page;
1237 } while (!done && (bh != head));
1239 unlock_page(page);
1240 if (done)
1241 break;
1242 idx++;
1243 num++;
1244 if (num >= max_pages) {
1245 done = 1;
1246 break;
1249 pagevec_release(&pvec);
1251 return num;
1255 * The ext4_map_blocks() function tries to look up the requested blocks,
1256 * and returns if the blocks are already mapped.
1258 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1259 * and store the allocated blocks in the result buffer head and mark it
1260 * mapped.
1262 * If file type is extents based, it will call ext4_ext_map_blocks(),
1263 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1264 * based files
1266 * On success, it returns the number of blocks being mapped or allocate.
1267 * if create==0 and the blocks are pre-allocated and uninitialized block,
1268 * the result buffer head is unmapped. If the create ==1, it will make sure
1269 * the buffer head is mapped.
1271 * It returns 0 if plain look up failed (blocks have not been allocated), in
1272 * that casem, buffer head is unmapped
1274 * It returns the error in case of allocation failure.
1276 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1277 struct ext4_map_blocks *map, int flags)
1279 int retval;
1281 map->m_flags = 0;
1282 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1283 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1284 (unsigned long) map->m_lblk);
1286 * Try to see if we can get the block without requesting a new
1287 * file system block.
1289 down_read((&EXT4_I(inode)->i_data_sem));
1290 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1291 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1292 } else {
1293 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1295 up_read((&EXT4_I(inode)->i_data_sem));
1297 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1298 int ret = check_block_validity(inode, map);
1299 if (ret != 0)
1300 return ret;
1303 /* If it is only a block(s) look up */
1304 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1305 return retval;
1308 * Returns if the blocks have already allocated
1310 * Note that if blocks have been preallocated
1311 * ext4_ext_get_block() returns th create = 0
1312 * with buffer head unmapped.
1314 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1315 return retval;
1318 * When we call get_blocks without the create flag, the
1319 * BH_Unwritten flag could have gotten set if the blocks
1320 * requested were part of a uninitialized extent. We need to
1321 * clear this flag now that we are committed to convert all or
1322 * part of the uninitialized extent to be an initialized
1323 * extent. This is because we need to avoid the combination
1324 * of BH_Unwritten and BH_Mapped flags being simultaneously
1325 * set on the buffer_head.
1327 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1330 * New blocks allocate and/or writing to uninitialized extent
1331 * will possibly result in updating i_data, so we take
1332 * the write lock of i_data_sem, and call get_blocks()
1333 * with create == 1 flag.
1335 down_write((&EXT4_I(inode)->i_data_sem));
1338 * if the caller is from delayed allocation writeout path
1339 * we have already reserved fs blocks for allocation
1340 * let the underlying get_block() function know to
1341 * avoid double accounting
1343 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1344 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1346 * We need to check for EXT4 here because migrate
1347 * could have changed the inode type in between
1349 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1350 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1351 } else {
1352 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1354 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1356 * We allocated new blocks which will result in
1357 * i_data's format changing. Force the migrate
1358 * to fail by clearing migrate flags
1360 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1364 * Update reserved blocks/metadata blocks after successful
1365 * block allocation which had been deferred till now. We don't
1366 * support fallocate for non extent files. So we can update
1367 * reserve space here.
1369 if ((retval > 0) &&
1370 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1371 ext4_da_update_reserve_space(inode, retval, 1);
1373 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1374 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1376 up_write((&EXT4_I(inode)->i_data_sem));
1377 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1378 int ret = check_block_validity(inode, map);
1379 if (ret != 0)
1380 return ret;
1382 return retval;
1385 /* Maximum number of blocks we map for direct IO at once. */
1386 #define DIO_MAX_BLOCKS 4096
1388 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1389 struct buffer_head *bh, int flags)
1391 handle_t *handle = ext4_journal_current_handle();
1392 struct ext4_map_blocks map;
1393 int ret = 0, started = 0;
1394 int dio_credits;
1396 map.m_lblk = iblock;
1397 map.m_len = bh->b_size >> inode->i_blkbits;
1399 if (flags && !handle) {
1400 /* Direct IO write... */
1401 if (map.m_len > DIO_MAX_BLOCKS)
1402 map.m_len = DIO_MAX_BLOCKS;
1403 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1404 handle = ext4_journal_start(inode, dio_credits);
1405 if (IS_ERR(handle)) {
1406 ret = PTR_ERR(handle);
1407 return ret;
1409 started = 1;
1412 ret = ext4_map_blocks(handle, inode, &map, flags);
1413 if (ret > 0) {
1414 map_bh(bh, inode->i_sb, map.m_pblk);
1415 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1416 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1417 ret = 0;
1419 if (started)
1420 ext4_journal_stop(handle);
1421 return ret;
1424 int ext4_get_block(struct inode *inode, sector_t iblock,
1425 struct buffer_head *bh, int create)
1427 return _ext4_get_block(inode, iblock, bh,
1428 create ? EXT4_GET_BLOCKS_CREATE : 0);
1432 * `handle' can be NULL if create is zero
1434 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1435 ext4_lblk_t block, int create, int *errp)
1437 struct ext4_map_blocks map;
1438 struct buffer_head *bh;
1439 int fatal = 0, err;
1441 J_ASSERT(handle != NULL || create == 0);
1443 map.m_lblk = block;
1444 map.m_len = 1;
1445 err = ext4_map_blocks(handle, inode, &map,
1446 create ? EXT4_GET_BLOCKS_CREATE : 0);
1448 if (err < 0)
1449 *errp = err;
1450 if (err <= 0)
1451 return NULL;
1452 *errp = 0;
1454 bh = sb_getblk(inode->i_sb, map.m_pblk);
1455 if (!bh) {
1456 *errp = -EIO;
1457 return NULL;
1459 if (map.m_flags & EXT4_MAP_NEW) {
1460 J_ASSERT(create != 0);
1461 J_ASSERT(handle != NULL);
1464 * Now that we do not always journal data, we should
1465 * keep in mind whether this should always journal the
1466 * new buffer as metadata. For now, regular file
1467 * writes use ext4_get_block instead, so it's not a
1468 * problem.
1470 lock_buffer(bh);
1471 BUFFER_TRACE(bh, "call get_create_access");
1472 fatal = ext4_journal_get_create_access(handle, bh);
1473 if (!fatal && !buffer_uptodate(bh)) {
1474 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1475 set_buffer_uptodate(bh);
1477 unlock_buffer(bh);
1478 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1479 err = ext4_handle_dirty_metadata(handle, inode, bh);
1480 if (!fatal)
1481 fatal = err;
1482 } else {
1483 BUFFER_TRACE(bh, "not a new buffer");
1485 if (fatal) {
1486 *errp = fatal;
1487 brelse(bh);
1488 bh = NULL;
1490 return bh;
1493 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1494 ext4_lblk_t block, int create, int *err)
1496 struct buffer_head *bh;
1498 bh = ext4_getblk(handle, inode, block, create, err);
1499 if (!bh)
1500 return bh;
1501 if (buffer_uptodate(bh))
1502 return bh;
1503 ll_rw_block(READ_META, 1, &bh);
1504 wait_on_buffer(bh);
1505 if (buffer_uptodate(bh))
1506 return bh;
1507 put_bh(bh);
1508 *err = -EIO;
1509 return NULL;
1512 static int walk_page_buffers(handle_t *handle,
1513 struct buffer_head *head,
1514 unsigned from,
1515 unsigned to,
1516 int *partial,
1517 int (*fn)(handle_t *handle,
1518 struct buffer_head *bh))
1520 struct buffer_head *bh;
1521 unsigned block_start, block_end;
1522 unsigned blocksize = head->b_size;
1523 int err, ret = 0;
1524 struct buffer_head *next;
1526 for (bh = head, block_start = 0;
1527 ret == 0 && (bh != head || !block_start);
1528 block_start = block_end, bh = next) {
1529 next = bh->b_this_page;
1530 block_end = block_start + blocksize;
1531 if (block_end <= from || block_start >= to) {
1532 if (partial && !buffer_uptodate(bh))
1533 *partial = 1;
1534 continue;
1536 err = (*fn)(handle, bh);
1537 if (!ret)
1538 ret = err;
1540 return ret;
1544 * To preserve ordering, it is essential that the hole instantiation and
1545 * the data write be encapsulated in a single transaction. We cannot
1546 * close off a transaction and start a new one between the ext4_get_block()
1547 * and the commit_write(). So doing the jbd2_journal_start at the start of
1548 * prepare_write() is the right place.
1550 * Also, this function can nest inside ext4_writepage() ->
1551 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1552 * has generated enough buffer credits to do the whole page. So we won't
1553 * block on the journal in that case, which is good, because the caller may
1554 * be PF_MEMALLOC.
1556 * By accident, ext4 can be reentered when a transaction is open via
1557 * quota file writes. If we were to commit the transaction while thus
1558 * reentered, there can be a deadlock - we would be holding a quota
1559 * lock, and the commit would never complete if another thread had a
1560 * transaction open and was blocking on the quota lock - a ranking
1561 * violation.
1563 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1564 * will _not_ run commit under these circumstances because handle->h_ref
1565 * is elevated. We'll still have enough credits for the tiny quotafile
1566 * write.
1568 static int do_journal_get_write_access(handle_t *handle,
1569 struct buffer_head *bh)
1571 int dirty = buffer_dirty(bh);
1572 int ret;
1574 if (!buffer_mapped(bh) || buffer_freed(bh))
1575 return 0;
1577 * __block_write_begin() could have dirtied some buffers. Clean
1578 * the dirty bit as jbd2_journal_get_write_access() could complain
1579 * otherwise about fs integrity issues. Setting of the dirty bit
1580 * by __block_write_begin() isn't a real problem here as we clear
1581 * the bit before releasing a page lock and thus writeback cannot
1582 * ever write the buffer.
1584 if (dirty)
1585 clear_buffer_dirty(bh);
1586 ret = ext4_journal_get_write_access(handle, bh);
1587 if (!ret && dirty)
1588 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1589 return ret;
1593 * Truncate blocks that were not used by write. We have to truncate the
1594 * pagecache as well so that corresponding buffers get properly unmapped.
1596 static void ext4_truncate_failed_write(struct inode *inode)
1598 truncate_inode_pages(inode->i_mapping, inode->i_size);
1599 ext4_truncate(inode);
1602 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1603 struct buffer_head *bh_result, int create);
1604 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1605 loff_t pos, unsigned len, unsigned flags,
1606 struct page **pagep, void **fsdata)
1608 struct inode *inode = mapping->host;
1609 int ret, needed_blocks;
1610 handle_t *handle;
1611 int retries = 0;
1612 struct page *page;
1613 pgoff_t index;
1614 unsigned from, to;
1616 trace_ext4_write_begin(inode, pos, len, flags);
1618 * Reserve one block more for addition to orphan list in case
1619 * we allocate blocks but write fails for some reason
1621 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1622 index = pos >> PAGE_CACHE_SHIFT;
1623 from = pos & (PAGE_CACHE_SIZE - 1);
1624 to = from + len;
1626 retry:
1627 handle = ext4_journal_start(inode, needed_blocks);
1628 if (IS_ERR(handle)) {
1629 ret = PTR_ERR(handle);
1630 goto out;
1633 /* We cannot recurse into the filesystem as the transaction is already
1634 * started */
1635 flags |= AOP_FLAG_NOFS;
1637 page = grab_cache_page_write_begin(mapping, index, flags);
1638 if (!page) {
1639 ext4_journal_stop(handle);
1640 ret = -ENOMEM;
1641 goto out;
1643 *pagep = page;
1645 if (ext4_should_dioread_nolock(inode))
1646 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1647 else
1648 ret = __block_write_begin(page, pos, len, ext4_get_block);
1650 if (!ret && ext4_should_journal_data(inode)) {
1651 ret = walk_page_buffers(handle, page_buffers(page),
1652 from, to, NULL, do_journal_get_write_access);
1655 if (ret) {
1656 unlock_page(page);
1657 page_cache_release(page);
1659 * __block_write_begin may have instantiated a few blocks
1660 * outside i_size. Trim these off again. Don't need
1661 * i_size_read because we hold i_mutex.
1663 * Add inode to orphan list in case we crash before
1664 * truncate finishes
1666 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1667 ext4_orphan_add(handle, inode);
1669 ext4_journal_stop(handle);
1670 if (pos + len > inode->i_size) {
1671 ext4_truncate_failed_write(inode);
1673 * If truncate failed early the inode might
1674 * still be on the orphan list; we need to
1675 * make sure the inode is removed from the
1676 * orphan list in that case.
1678 if (inode->i_nlink)
1679 ext4_orphan_del(NULL, inode);
1683 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1684 goto retry;
1685 out:
1686 return ret;
1689 /* For write_end() in data=journal mode */
1690 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1692 if (!buffer_mapped(bh) || buffer_freed(bh))
1693 return 0;
1694 set_buffer_uptodate(bh);
1695 return ext4_handle_dirty_metadata(handle, NULL, bh);
1698 static int ext4_generic_write_end(struct file *file,
1699 struct address_space *mapping,
1700 loff_t pos, unsigned len, unsigned copied,
1701 struct page *page, void *fsdata)
1703 int i_size_changed = 0;
1704 struct inode *inode = mapping->host;
1705 handle_t *handle = ext4_journal_current_handle();
1707 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1710 * No need to use i_size_read() here, the i_size
1711 * cannot change under us because we hold i_mutex.
1713 * But it's important to update i_size while still holding page lock:
1714 * page writeout could otherwise come in and zero beyond i_size.
1716 if (pos + copied > inode->i_size) {
1717 i_size_write(inode, pos + copied);
1718 i_size_changed = 1;
1721 if (pos + copied > EXT4_I(inode)->i_disksize) {
1722 /* We need to mark inode dirty even if
1723 * new_i_size is less that inode->i_size
1724 * bu greater than i_disksize.(hint delalloc)
1726 ext4_update_i_disksize(inode, (pos + copied));
1727 i_size_changed = 1;
1729 unlock_page(page);
1730 page_cache_release(page);
1733 * Don't mark the inode dirty under page lock. First, it unnecessarily
1734 * makes the holding time of page lock longer. Second, it forces lock
1735 * ordering of page lock and transaction start for journaling
1736 * filesystems.
1738 if (i_size_changed)
1739 ext4_mark_inode_dirty(handle, inode);
1741 return copied;
1745 * We need to pick up the new inode size which generic_commit_write gave us
1746 * `file' can be NULL - eg, when called from page_symlink().
1748 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1749 * buffers are managed internally.
1751 static int ext4_ordered_write_end(struct file *file,
1752 struct address_space *mapping,
1753 loff_t pos, unsigned len, unsigned copied,
1754 struct page *page, void *fsdata)
1756 handle_t *handle = ext4_journal_current_handle();
1757 struct inode *inode = mapping->host;
1758 int ret = 0, ret2;
1760 trace_ext4_ordered_write_end(inode, pos, len, copied);
1761 ret = ext4_jbd2_file_inode(handle, inode);
1763 if (ret == 0) {
1764 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1765 page, fsdata);
1766 copied = ret2;
1767 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1768 /* if we have allocated more blocks and copied
1769 * less. We will have blocks allocated outside
1770 * inode->i_size. So truncate them
1772 ext4_orphan_add(handle, inode);
1773 if (ret2 < 0)
1774 ret = ret2;
1776 ret2 = ext4_journal_stop(handle);
1777 if (!ret)
1778 ret = ret2;
1780 if (pos + len > inode->i_size) {
1781 ext4_truncate_failed_write(inode);
1783 * If truncate failed early the inode might still be
1784 * on the orphan list; we need to make sure the inode
1785 * is removed from the orphan list in that case.
1787 if (inode->i_nlink)
1788 ext4_orphan_del(NULL, inode);
1792 return ret ? ret : copied;
1795 static int ext4_writeback_write_end(struct file *file,
1796 struct address_space *mapping,
1797 loff_t pos, unsigned len, unsigned copied,
1798 struct page *page, void *fsdata)
1800 handle_t *handle = ext4_journal_current_handle();
1801 struct inode *inode = mapping->host;
1802 int ret = 0, ret2;
1804 trace_ext4_writeback_write_end(inode, pos, len, copied);
1805 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1806 page, fsdata);
1807 copied = ret2;
1808 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1809 /* if we have allocated more blocks and copied
1810 * less. We will have blocks allocated outside
1811 * inode->i_size. So truncate them
1813 ext4_orphan_add(handle, inode);
1815 if (ret2 < 0)
1816 ret = ret2;
1818 ret2 = ext4_journal_stop(handle);
1819 if (!ret)
1820 ret = ret2;
1822 if (pos + len > inode->i_size) {
1823 ext4_truncate_failed_write(inode);
1825 * If truncate failed early the inode might still be
1826 * on the orphan list; we need to make sure the inode
1827 * is removed from the orphan list in that case.
1829 if (inode->i_nlink)
1830 ext4_orphan_del(NULL, inode);
1833 return ret ? ret : copied;
1836 static int ext4_journalled_write_end(struct file *file,
1837 struct address_space *mapping,
1838 loff_t pos, unsigned len, unsigned copied,
1839 struct page *page, void *fsdata)
1841 handle_t *handle = ext4_journal_current_handle();
1842 struct inode *inode = mapping->host;
1843 int ret = 0, ret2;
1844 int partial = 0;
1845 unsigned from, to;
1846 loff_t new_i_size;
1848 trace_ext4_journalled_write_end(inode, pos, len, copied);
1849 from = pos & (PAGE_CACHE_SIZE - 1);
1850 to = from + len;
1852 if (copied < len) {
1853 if (!PageUptodate(page))
1854 copied = 0;
1855 page_zero_new_buffers(page, from+copied, to);
1858 ret = walk_page_buffers(handle, page_buffers(page), from,
1859 to, &partial, write_end_fn);
1860 if (!partial)
1861 SetPageUptodate(page);
1862 new_i_size = pos + copied;
1863 if (new_i_size > inode->i_size)
1864 i_size_write(inode, pos+copied);
1865 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1866 if (new_i_size > EXT4_I(inode)->i_disksize) {
1867 ext4_update_i_disksize(inode, new_i_size);
1868 ret2 = ext4_mark_inode_dirty(handle, inode);
1869 if (!ret)
1870 ret = ret2;
1873 unlock_page(page);
1874 page_cache_release(page);
1875 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1876 /* if we have allocated more blocks and copied
1877 * less. We will have blocks allocated outside
1878 * inode->i_size. So truncate them
1880 ext4_orphan_add(handle, inode);
1882 ret2 = ext4_journal_stop(handle);
1883 if (!ret)
1884 ret = ret2;
1885 if (pos + len > inode->i_size) {
1886 ext4_truncate_failed_write(inode);
1888 * If truncate failed early the inode might still be
1889 * on the orphan list; we need to make sure the inode
1890 * is removed from the orphan list in that case.
1892 if (inode->i_nlink)
1893 ext4_orphan_del(NULL, inode);
1896 return ret ? ret : copied;
1900 * Reserve a single block located at lblock
1902 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1904 int retries = 0;
1905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906 struct ext4_inode_info *ei = EXT4_I(inode);
1907 unsigned long md_needed;
1908 int ret;
1911 * recalculate the amount of metadata blocks to reserve
1912 * in order to allocate nrblocks
1913 * worse case is one extent per block
1915 repeat:
1916 spin_lock(&ei->i_block_reservation_lock);
1917 md_needed = ext4_calc_metadata_amount(inode, lblock);
1918 trace_ext4_da_reserve_space(inode, md_needed);
1919 spin_unlock(&ei->i_block_reservation_lock);
1922 * We will charge metadata quota at writeout time; this saves
1923 * us from metadata over-estimation, though we may go over by
1924 * a small amount in the end. Here we just reserve for data.
1926 ret = dquot_reserve_block(inode, 1);
1927 if (ret)
1928 return ret;
1930 * We do still charge estimated metadata to the sb though;
1931 * we cannot afford to run out of free blocks.
1933 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1934 dquot_release_reservation_block(inode, 1);
1935 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1936 yield();
1937 goto repeat;
1939 return -ENOSPC;
1941 spin_lock(&ei->i_block_reservation_lock);
1942 ei->i_reserved_data_blocks++;
1943 ei->i_reserved_meta_blocks += md_needed;
1944 spin_unlock(&ei->i_block_reservation_lock);
1946 return 0; /* success */
1949 static void ext4_da_release_space(struct inode *inode, int to_free)
1951 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1952 struct ext4_inode_info *ei = EXT4_I(inode);
1954 if (!to_free)
1955 return; /* Nothing to release, exit */
1957 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1959 trace_ext4_da_release_space(inode, to_free);
1960 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1962 * if there aren't enough reserved blocks, then the
1963 * counter is messed up somewhere. Since this
1964 * function is called from invalidate page, it's
1965 * harmless to return without any action.
1967 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1968 "ino %lu, to_free %d with only %d reserved "
1969 "data blocks\n", inode->i_ino, to_free,
1970 ei->i_reserved_data_blocks);
1971 WARN_ON(1);
1972 to_free = ei->i_reserved_data_blocks;
1974 ei->i_reserved_data_blocks -= to_free;
1976 if (ei->i_reserved_data_blocks == 0) {
1978 * We can release all of the reserved metadata blocks
1979 * only when we have written all of the delayed
1980 * allocation blocks.
1982 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1983 ei->i_reserved_meta_blocks);
1984 ei->i_reserved_meta_blocks = 0;
1985 ei->i_da_metadata_calc_len = 0;
1988 /* update fs dirty data blocks counter */
1989 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1991 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1993 dquot_release_reservation_block(inode, to_free);
1996 static void ext4_da_page_release_reservation(struct page *page,
1997 unsigned long offset)
1999 int to_release = 0;
2000 struct buffer_head *head, *bh;
2001 unsigned int curr_off = 0;
2003 head = page_buffers(page);
2004 bh = head;
2005 do {
2006 unsigned int next_off = curr_off + bh->b_size;
2008 if ((offset <= curr_off) && (buffer_delay(bh))) {
2009 to_release++;
2010 clear_buffer_delay(bh);
2012 curr_off = next_off;
2013 } while ((bh = bh->b_this_page) != head);
2014 ext4_da_release_space(page->mapping->host, to_release);
2018 * Delayed allocation stuff
2022 * mpage_da_submit_io - walks through extent of pages and try to write
2023 * them with writepage() call back
2025 * @mpd->inode: inode
2026 * @mpd->first_page: first page of the extent
2027 * @mpd->next_page: page after the last page of the extent
2029 * By the time mpage_da_submit_io() is called we expect all blocks
2030 * to be allocated. this may be wrong if allocation failed.
2032 * As pages are already locked by write_cache_pages(), we can't use it
2034 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2035 struct ext4_map_blocks *map)
2037 struct pagevec pvec;
2038 unsigned long index, end;
2039 int ret = 0, err, nr_pages, i;
2040 struct inode *inode = mpd->inode;
2041 struct address_space *mapping = inode->i_mapping;
2042 loff_t size = i_size_read(inode);
2043 unsigned int len, block_start;
2044 struct buffer_head *bh, *page_bufs = NULL;
2045 int journal_data = ext4_should_journal_data(inode);
2046 sector_t pblock = 0, cur_logical = 0;
2047 struct ext4_io_submit io_submit;
2049 BUG_ON(mpd->next_page <= mpd->first_page);
2050 memset(&io_submit, 0, sizeof(io_submit));
2052 * We need to start from the first_page to the next_page - 1
2053 * to make sure we also write the mapped dirty buffer_heads.
2054 * If we look at mpd->b_blocknr we would only be looking
2055 * at the currently mapped buffer_heads.
2057 index = mpd->first_page;
2058 end = mpd->next_page - 1;
2060 pagevec_init(&pvec, 0);
2061 while (index <= end) {
2062 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2063 if (nr_pages == 0)
2064 break;
2065 for (i = 0; i < nr_pages; i++) {
2066 int commit_write = 0, skip_page = 0;
2067 struct page *page = pvec.pages[i];
2069 index = page->index;
2070 if (index > end)
2071 break;
2073 if (index == size >> PAGE_CACHE_SHIFT)
2074 len = size & ~PAGE_CACHE_MASK;
2075 else
2076 len = PAGE_CACHE_SIZE;
2077 if (map) {
2078 cur_logical = index << (PAGE_CACHE_SHIFT -
2079 inode->i_blkbits);
2080 pblock = map->m_pblk + (cur_logical -
2081 map->m_lblk);
2083 index++;
2085 BUG_ON(!PageLocked(page));
2086 BUG_ON(PageWriteback(page));
2089 * If the page does not have buffers (for
2090 * whatever reason), try to create them using
2091 * __block_write_begin. If this fails,
2092 * skip the page and move on.
2094 if (!page_has_buffers(page)) {
2095 if (__block_write_begin(page, 0, len,
2096 noalloc_get_block_write)) {
2097 skip_page:
2098 unlock_page(page);
2099 continue;
2101 commit_write = 1;
2104 bh = page_bufs = page_buffers(page);
2105 block_start = 0;
2106 do {
2107 if (!bh)
2108 goto skip_page;
2109 if (map && (cur_logical >= map->m_lblk) &&
2110 (cur_logical <= (map->m_lblk +
2111 (map->m_len - 1)))) {
2112 if (buffer_delay(bh)) {
2113 clear_buffer_delay(bh);
2114 bh->b_blocknr = pblock;
2116 if (buffer_unwritten(bh) ||
2117 buffer_mapped(bh))
2118 BUG_ON(bh->b_blocknr != pblock);
2119 if (map->m_flags & EXT4_MAP_UNINIT)
2120 set_buffer_uninit(bh);
2121 clear_buffer_unwritten(bh);
2124 /* skip page if block allocation undone */
2125 if (buffer_delay(bh) || buffer_unwritten(bh))
2126 skip_page = 1;
2127 bh = bh->b_this_page;
2128 block_start += bh->b_size;
2129 cur_logical++;
2130 pblock++;
2131 } while (bh != page_bufs);
2133 if (skip_page)
2134 goto skip_page;
2136 if (commit_write)
2137 /* mark the buffer_heads as dirty & uptodate */
2138 block_commit_write(page, 0, len);
2140 clear_page_dirty_for_io(page);
2142 * Delalloc doesn't support data journalling,
2143 * but eventually maybe we'll lift this
2144 * restriction.
2146 if (unlikely(journal_data && PageChecked(page)))
2147 err = __ext4_journalled_writepage(page, len);
2148 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2149 err = ext4_bio_write_page(&io_submit, page,
2150 len, mpd->wbc);
2151 else
2152 err = block_write_full_page(page,
2153 noalloc_get_block_write, mpd->wbc);
2155 if (!err)
2156 mpd->pages_written++;
2158 * In error case, we have to continue because
2159 * remaining pages are still locked
2161 if (ret == 0)
2162 ret = err;
2164 pagevec_release(&pvec);
2166 ext4_io_submit(&io_submit);
2167 return ret;
2170 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2172 int nr_pages, i;
2173 pgoff_t index, end;
2174 struct pagevec pvec;
2175 struct inode *inode = mpd->inode;
2176 struct address_space *mapping = inode->i_mapping;
2178 index = mpd->first_page;
2179 end = mpd->next_page - 1;
2180 while (index <= end) {
2181 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 if (nr_pages == 0)
2183 break;
2184 for (i = 0; i < nr_pages; i++) {
2185 struct page *page = pvec.pages[i];
2186 if (page->index > end)
2187 break;
2188 BUG_ON(!PageLocked(page));
2189 BUG_ON(PageWriteback(page));
2190 block_invalidatepage(page, 0);
2191 ClearPageUptodate(page);
2192 unlock_page(page);
2194 index = pvec.pages[nr_pages - 1]->index + 1;
2195 pagevec_release(&pvec);
2197 return;
2200 static void ext4_print_free_blocks(struct inode *inode)
2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 printk(KERN_CRIT "Total free blocks count %lld\n",
2204 ext4_count_free_blocks(inode->i_sb));
2205 printk(KERN_CRIT "Free/Dirty block details\n");
2206 printk(KERN_CRIT "free_blocks=%lld\n",
2207 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 printk(KERN_CRIT "Block reservation details\n");
2211 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 EXT4_I(inode)->i_reserved_data_blocks);
2213 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 EXT4_I(inode)->i_reserved_meta_blocks);
2215 return;
2219 * mpage_da_map_and_submit - go through given space, map them
2220 * if necessary, and then submit them for I/O
2222 * @mpd - bh describing space
2224 * The function skips space we know is already mapped to disk blocks.
2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2229 int err, blks, get_blocks_flags;
2230 struct ext4_map_blocks map, *mapp = NULL;
2231 sector_t next = mpd->b_blocknr;
2232 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 handle_t *handle = NULL;
2237 * If the blocks are mapped already, or we couldn't accumulate
2238 * any blocks, then proceed immediately to the submission stage.
2240 if ((mpd->b_size == 0) ||
2241 ((mpd->b_state & (1 << BH_Mapped)) &&
2242 !(mpd->b_state & (1 << BH_Delay)) &&
2243 !(mpd->b_state & (1 << BH_Unwritten))))
2244 goto submit_io;
2246 handle = ext4_journal_current_handle();
2247 BUG_ON(!handle);
2250 * Call ext4_map_blocks() to allocate any delayed allocation
2251 * blocks, or to convert an uninitialized extent to be
2252 * initialized (in the case where we have written into
2253 * one or more preallocated blocks).
2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 * indicate that we are on the delayed allocation path. This
2257 * affects functions in many different parts of the allocation
2258 * call path. This flag exists primarily because we don't
2259 * want to change *many* call functions, so ext4_map_blocks()
2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 * inode's allocation semaphore is taken.
2263 * If the blocks in questions were delalloc blocks, set
2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 * variables are updated after the blocks have been allocated.
2267 map.m_lblk = next;
2268 map.m_len = max_blocks;
2269 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 if (ext4_should_dioread_nolock(mpd->inode))
2271 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272 if (mpd->b_state & (1 << BH_Delay))
2273 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2275 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276 if (blks < 0) {
2277 struct super_block *sb = mpd->inode->i_sb;
2279 err = blks;
2281 * If get block returns EAGAIN or ENOSPC and there
2282 * appears to be free blocks we will just let
2283 * mpage_da_submit_io() unlock all of the pages.
2285 if (err == -EAGAIN)
2286 goto submit_io;
2288 if (err == -ENOSPC &&
2289 ext4_count_free_blocks(sb)) {
2290 mpd->retval = err;
2291 goto submit_io;
2295 * get block failure will cause us to loop in
2296 * writepages, because a_ops->writepage won't be able
2297 * to make progress. The page will be redirtied by
2298 * writepage and writepages will again try to write
2299 * the same.
2301 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2302 ext4_msg(sb, KERN_CRIT,
2303 "delayed block allocation failed for inode %lu "
2304 "at logical offset %llu with max blocks %zd "
2305 "with error %d", mpd->inode->i_ino,
2306 (unsigned long long) next,
2307 mpd->b_size >> mpd->inode->i_blkbits, err);
2308 ext4_msg(sb, KERN_CRIT,
2309 "This should not happen!! Data will be lost\n");
2310 if (err == -ENOSPC)
2311 ext4_print_free_blocks(mpd->inode);
2313 /* invalidate all the pages */
2314 ext4_da_block_invalidatepages(mpd);
2316 /* Mark this page range as having been completed */
2317 mpd->io_done = 1;
2318 return;
2320 BUG_ON(blks == 0);
2322 mapp = &map;
2323 if (map.m_flags & EXT4_MAP_NEW) {
2324 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2325 int i;
2327 for (i = 0; i < map.m_len; i++)
2328 unmap_underlying_metadata(bdev, map.m_pblk + i);
2331 if (ext4_should_order_data(mpd->inode)) {
2332 err = ext4_jbd2_file_inode(handle, mpd->inode);
2333 if (err)
2334 /* This only happens if the journal is aborted */
2335 return;
2339 * Update on-disk size along with block allocation.
2341 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2342 if (disksize > i_size_read(mpd->inode))
2343 disksize = i_size_read(mpd->inode);
2344 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2345 ext4_update_i_disksize(mpd->inode, disksize);
2346 err = ext4_mark_inode_dirty(handle, mpd->inode);
2347 if (err)
2348 ext4_error(mpd->inode->i_sb,
2349 "Failed to mark inode %lu dirty",
2350 mpd->inode->i_ino);
2353 submit_io:
2354 mpage_da_submit_io(mpd, mapp);
2355 mpd->io_done = 1;
2358 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2359 (1 << BH_Delay) | (1 << BH_Unwritten))
2362 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2364 * @mpd->lbh - extent of blocks
2365 * @logical - logical number of the block in the file
2366 * @bh - bh of the block (used to access block's state)
2368 * the function is used to collect contig. blocks in same state
2370 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2371 sector_t logical, size_t b_size,
2372 unsigned long b_state)
2374 sector_t next;
2375 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2378 * XXX Don't go larger than mballoc is willing to allocate
2379 * This is a stopgap solution. We eventually need to fold
2380 * mpage_da_submit_io() into this function and then call
2381 * ext4_map_blocks() multiple times in a loop
2383 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2384 goto flush_it;
2386 /* check if thereserved journal credits might overflow */
2387 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2388 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2390 * With non-extent format we are limited by the journal
2391 * credit available. Total credit needed to insert
2392 * nrblocks contiguous blocks is dependent on the
2393 * nrblocks. So limit nrblocks.
2395 goto flush_it;
2396 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2397 EXT4_MAX_TRANS_DATA) {
2399 * Adding the new buffer_head would make it cross the
2400 * allowed limit for which we have journal credit
2401 * reserved. So limit the new bh->b_size
2403 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2404 mpd->inode->i_blkbits;
2405 /* we will do mpage_da_submit_io in the next loop */
2409 * First block in the extent
2411 if (mpd->b_size == 0) {
2412 mpd->b_blocknr = logical;
2413 mpd->b_size = b_size;
2414 mpd->b_state = b_state & BH_FLAGS;
2415 return;
2418 next = mpd->b_blocknr + nrblocks;
2420 * Can we merge the block to our big extent?
2422 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2423 mpd->b_size += b_size;
2424 return;
2427 flush_it:
2429 * We couldn't merge the block to our extent, so we
2430 * need to flush current extent and start new one
2432 mpage_da_map_and_submit(mpd);
2433 return;
2436 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2438 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2442 * This is a special get_blocks_t callback which is used by
2443 * ext4_da_write_begin(). It will either return mapped block or
2444 * reserve space for a single block.
2446 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447 * We also have b_blocknr = -1 and b_bdev initialized properly
2449 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451 * initialized properly.
2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454 struct buffer_head *bh, int create)
2456 struct ext4_map_blocks map;
2457 int ret = 0;
2458 sector_t invalid_block = ~((sector_t) 0xffff);
2460 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2461 invalid_block = ~0;
2463 BUG_ON(create == 0);
2464 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2466 map.m_lblk = iblock;
2467 map.m_len = 1;
2470 * first, we need to know whether the block is allocated already
2471 * preallocated blocks are unmapped but should treated
2472 * the same as allocated blocks.
2474 ret = ext4_map_blocks(NULL, inode, &map, 0);
2475 if (ret < 0)
2476 return ret;
2477 if (ret == 0) {
2478 if (buffer_delay(bh))
2479 return 0; /* Not sure this could or should happen */
2481 * XXX: __block_write_begin() unmaps passed block, is it OK?
2483 ret = ext4_da_reserve_space(inode, iblock);
2484 if (ret)
2485 /* not enough space to reserve */
2486 return ret;
2488 map_bh(bh, inode->i_sb, invalid_block);
2489 set_buffer_new(bh);
2490 set_buffer_delay(bh);
2491 return 0;
2494 map_bh(bh, inode->i_sb, map.m_pblk);
2495 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2497 if (buffer_unwritten(bh)) {
2498 /* A delayed write to unwritten bh should be marked
2499 * new and mapped. Mapped ensures that we don't do
2500 * get_block multiple times when we write to the same
2501 * offset and new ensures that we do proper zero out
2502 * for partial write.
2504 set_buffer_new(bh);
2506 return 0;
2510 * This function is used as a standard get_block_t calback function
2511 * when there is no desire to allocate any blocks. It is used as a
2512 * callback function for block_write_begin() and block_write_full_page().
2513 * These functions should only try to map a single block at a time.
2515 * Since this function doesn't do block allocations even if the caller
2516 * requests it by passing in create=1, it is critically important that
2517 * any caller checks to make sure that any buffer heads are returned
2518 * by this function are either all already mapped or marked for
2519 * delayed allocation before calling block_write_full_page(). Otherwise,
2520 * b_blocknr could be left unitialized, and the page write functions will
2521 * be taken by surprise.
2523 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2524 struct buffer_head *bh_result, int create)
2526 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2527 return _ext4_get_block(inode, iblock, bh_result, 0);
2530 static int bget_one(handle_t *handle, struct buffer_head *bh)
2532 get_bh(bh);
2533 return 0;
2536 static int bput_one(handle_t *handle, struct buffer_head *bh)
2538 put_bh(bh);
2539 return 0;
2542 static int __ext4_journalled_writepage(struct page *page,
2543 unsigned int len)
2545 struct address_space *mapping = page->mapping;
2546 struct inode *inode = mapping->host;
2547 struct buffer_head *page_bufs;
2548 handle_t *handle = NULL;
2549 int ret = 0;
2550 int err;
2552 ClearPageChecked(page);
2553 page_bufs = page_buffers(page);
2554 BUG_ON(!page_bufs);
2555 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2556 /* As soon as we unlock the page, it can go away, but we have
2557 * references to buffers so we are safe */
2558 unlock_page(page);
2560 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2561 if (IS_ERR(handle)) {
2562 ret = PTR_ERR(handle);
2563 goto out;
2566 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2567 do_journal_get_write_access);
2569 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2570 write_end_fn);
2571 if (ret == 0)
2572 ret = err;
2573 err = ext4_journal_stop(handle);
2574 if (!ret)
2575 ret = err;
2577 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2578 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2579 out:
2580 return ret;
2583 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2584 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2587 * Note that we don't need to start a transaction unless we're journaling data
2588 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2589 * need to file the inode to the transaction's list in ordered mode because if
2590 * we are writing back data added by write(), the inode is already there and if
2591 * we are writing back data modified via mmap(), no one guarantees in which
2592 * transaction the data will hit the disk. In case we are journaling data, we
2593 * cannot start transaction directly because transaction start ranks above page
2594 * lock so we have to do some magic.
2596 * This function can get called via...
2597 * - ext4_da_writepages after taking page lock (have journal handle)
2598 * - journal_submit_inode_data_buffers (no journal handle)
2599 * - shrink_page_list via pdflush (no journal handle)
2600 * - grab_page_cache when doing write_begin (have journal handle)
2602 * We don't do any block allocation in this function. If we have page with
2603 * multiple blocks we need to write those buffer_heads that are mapped. This
2604 * is important for mmaped based write. So if we do with blocksize 1K
2605 * truncate(f, 1024);
2606 * a = mmap(f, 0, 4096);
2607 * a[0] = 'a';
2608 * truncate(f, 4096);
2609 * we have in the page first buffer_head mapped via page_mkwrite call back
2610 * but other bufer_heads would be unmapped but dirty(dirty done via the
2611 * do_wp_page). So writepage should write the first block. If we modify
2612 * the mmap area beyond 1024 we will again get a page_fault and the
2613 * page_mkwrite callback will do the block allocation and mark the
2614 * buffer_heads mapped.
2616 * We redirty the page if we have any buffer_heads that is either delay or
2617 * unwritten in the page.
2619 * We can get recursively called as show below.
2621 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2622 * ext4_writepage()
2624 * But since we don't do any block allocation we should not deadlock.
2625 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2627 static int ext4_writepage(struct page *page,
2628 struct writeback_control *wbc)
2630 int ret = 0, commit_write = 0;
2631 loff_t size;
2632 unsigned int len;
2633 struct buffer_head *page_bufs = NULL;
2634 struct inode *inode = page->mapping->host;
2636 trace_ext4_writepage(inode, page);
2637 size = i_size_read(inode);
2638 if (page->index == size >> PAGE_CACHE_SHIFT)
2639 len = size & ~PAGE_CACHE_MASK;
2640 else
2641 len = PAGE_CACHE_SIZE;
2644 * If the page does not have buffers (for whatever reason),
2645 * try to create them using __block_write_begin. If this
2646 * fails, redirty the page and move on.
2648 if (!page_has_buffers(page)) {
2649 if (__block_write_begin(page, 0, len,
2650 noalloc_get_block_write)) {
2651 redirty_page:
2652 redirty_page_for_writepage(wbc, page);
2653 unlock_page(page);
2654 return 0;
2656 commit_write = 1;
2658 page_bufs = page_buffers(page);
2659 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2660 ext4_bh_delay_or_unwritten)) {
2662 * We don't want to do block allocation, so redirty
2663 * the page and return. We may reach here when we do
2664 * a journal commit via journal_submit_inode_data_buffers.
2665 * We can also reach here via shrink_page_list
2667 goto redirty_page;
2669 if (commit_write)
2670 /* now mark the buffer_heads as dirty and uptodate */
2671 block_commit_write(page, 0, len);
2673 if (PageChecked(page) && ext4_should_journal_data(inode))
2675 * It's mmapped pagecache. Add buffers and journal it. There
2676 * doesn't seem much point in redirtying the page here.
2678 return __ext4_journalled_writepage(page, len);
2680 if (buffer_uninit(page_bufs)) {
2681 ext4_set_bh_endio(page_bufs, inode);
2682 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2683 wbc, ext4_end_io_buffer_write);
2684 } else
2685 ret = block_write_full_page(page, noalloc_get_block_write,
2686 wbc);
2688 return ret;
2692 * This is called via ext4_da_writepages() to
2693 * calculate the total number of credits to reserve to fit
2694 * a single extent allocation into a single transaction,
2695 * ext4_da_writpeages() will loop calling this before
2696 * the block allocation.
2699 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2701 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2704 * With non-extent format the journal credit needed to
2705 * insert nrblocks contiguous block is dependent on
2706 * number of contiguous block. So we will limit
2707 * number of contiguous block to a sane value
2709 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2710 (max_blocks > EXT4_MAX_TRANS_DATA))
2711 max_blocks = EXT4_MAX_TRANS_DATA;
2713 return ext4_chunk_trans_blocks(inode, max_blocks);
2717 * write_cache_pages_da - walk the list of dirty pages of the given
2718 * address space and accumulate pages that need writing, and call
2719 * mpage_da_map_and_submit to map a single contiguous memory region
2720 * and then write them.
2722 static int write_cache_pages_da(struct address_space *mapping,
2723 struct writeback_control *wbc,
2724 struct mpage_da_data *mpd,
2725 pgoff_t *done_index)
2727 struct buffer_head *bh, *head;
2728 struct inode *inode = mapping->host;
2729 struct pagevec pvec;
2730 unsigned int nr_pages;
2731 sector_t logical;
2732 pgoff_t index, end;
2733 long nr_to_write = wbc->nr_to_write;
2734 int i, tag, ret = 0;
2736 memset(mpd, 0, sizeof(struct mpage_da_data));
2737 mpd->wbc = wbc;
2738 mpd->inode = inode;
2739 pagevec_init(&pvec, 0);
2740 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2741 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2743 if (wbc->sync_mode == WB_SYNC_ALL)
2744 tag = PAGECACHE_TAG_TOWRITE;
2745 else
2746 tag = PAGECACHE_TAG_DIRTY;
2748 *done_index = index;
2749 while (index <= end) {
2750 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2751 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2752 if (nr_pages == 0)
2753 return 0;
2755 for (i = 0; i < nr_pages; i++) {
2756 struct page *page = pvec.pages[i];
2759 * At this point, the page may be truncated or
2760 * invalidated (changing page->mapping to NULL), or
2761 * even swizzled back from swapper_space to tmpfs file
2762 * mapping. However, page->index will not change
2763 * because we have a reference on the page.
2765 if (page->index > end)
2766 goto out;
2768 *done_index = page->index + 1;
2771 * If we can't merge this page, and we have
2772 * accumulated an contiguous region, write it
2774 if ((mpd->next_page != page->index) &&
2775 (mpd->next_page != mpd->first_page)) {
2776 mpage_da_map_and_submit(mpd);
2777 goto ret_extent_tail;
2780 lock_page(page);
2783 * If the page is no longer dirty, or its
2784 * mapping no longer corresponds to inode we
2785 * are writing (which means it has been
2786 * truncated or invalidated), or the page is
2787 * already under writeback and we are not
2788 * doing a data integrity writeback, skip the page
2790 if (!PageDirty(page) ||
2791 (PageWriteback(page) &&
2792 (wbc->sync_mode == WB_SYNC_NONE)) ||
2793 unlikely(page->mapping != mapping)) {
2794 unlock_page(page);
2795 continue;
2798 if (PageWriteback(page))
2799 wait_on_page_writeback(page);
2801 BUG_ON(PageWriteback(page));
2803 if (mpd->next_page != page->index)
2804 mpd->first_page = page->index;
2805 mpd->next_page = page->index + 1;
2806 logical = (sector_t) page->index <<
2807 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2809 if (!page_has_buffers(page)) {
2810 mpage_add_bh_to_extent(mpd, logical,
2811 PAGE_CACHE_SIZE,
2812 (1 << BH_Dirty) | (1 << BH_Uptodate));
2813 if (mpd->io_done)
2814 goto ret_extent_tail;
2815 } else {
2817 * Page with regular buffer heads,
2818 * just add all dirty ones
2820 head = page_buffers(page);
2821 bh = head;
2822 do {
2823 BUG_ON(buffer_locked(bh));
2825 * We need to try to allocate
2826 * unmapped blocks in the same page.
2827 * Otherwise we won't make progress
2828 * with the page in ext4_writepage
2830 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2831 mpage_add_bh_to_extent(mpd, logical,
2832 bh->b_size,
2833 bh->b_state);
2834 if (mpd->io_done)
2835 goto ret_extent_tail;
2836 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2838 * mapped dirty buffer. We need
2839 * to update the b_state
2840 * because we look at b_state
2841 * in mpage_da_map_blocks. We
2842 * don't update b_size because
2843 * if we find an unmapped
2844 * buffer_head later we need to
2845 * use the b_state flag of that
2846 * buffer_head.
2848 if (mpd->b_size == 0)
2849 mpd->b_state = bh->b_state & BH_FLAGS;
2851 logical++;
2852 } while ((bh = bh->b_this_page) != head);
2855 if (nr_to_write > 0) {
2856 nr_to_write--;
2857 if (nr_to_write == 0 &&
2858 wbc->sync_mode == WB_SYNC_NONE)
2860 * We stop writing back only if we are
2861 * not doing integrity sync. In case of
2862 * integrity sync we have to keep going
2863 * because someone may be concurrently
2864 * dirtying pages, and we might have
2865 * synced a lot of newly appeared dirty
2866 * pages, but have not synced all of the
2867 * old dirty pages.
2869 goto out;
2872 pagevec_release(&pvec);
2873 cond_resched();
2875 return 0;
2876 ret_extent_tail:
2877 ret = MPAGE_DA_EXTENT_TAIL;
2878 out:
2879 pagevec_release(&pvec);
2880 cond_resched();
2881 return ret;
2885 static int ext4_da_writepages(struct address_space *mapping,
2886 struct writeback_control *wbc)
2888 pgoff_t index;
2889 int range_whole = 0;
2890 handle_t *handle = NULL;
2891 struct mpage_da_data mpd;
2892 struct inode *inode = mapping->host;
2893 int pages_written = 0;
2894 unsigned int max_pages;
2895 int range_cyclic, cycled = 1, io_done = 0;
2896 int needed_blocks, ret = 0;
2897 long desired_nr_to_write, nr_to_writebump = 0;
2898 loff_t range_start = wbc->range_start;
2899 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2900 pgoff_t done_index = 0;
2901 pgoff_t end;
2903 trace_ext4_da_writepages(inode, wbc);
2906 * No pages to write? This is mainly a kludge to avoid starting
2907 * a transaction for special inodes like journal inode on last iput()
2908 * because that could violate lock ordering on umount
2910 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2911 return 0;
2914 * If the filesystem has aborted, it is read-only, so return
2915 * right away instead of dumping stack traces later on that
2916 * will obscure the real source of the problem. We test
2917 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2918 * the latter could be true if the filesystem is mounted
2919 * read-only, and in that case, ext4_da_writepages should
2920 * *never* be called, so if that ever happens, we would want
2921 * the stack trace.
2923 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2924 return -EROFS;
2926 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2927 range_whole = 1;
2929 range_cyclic = wbc->range_cyclic;
2930 if (wbc->range_cyclic) {
2931 index = mapping->writeback_index;
2932 if (index)
2933 cycled = 0;
2934 wbc->range_start = index << PAGE_CACHE_SHIFT;
2935 wbc->range_end = LLONG_MAX;
2936 wbc->range_cyclic = 0;
2937 end = -1;
2938 } else {
2939 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2940 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2944 * This works around two forms of stupidity. The first is in
2945 * the writeback code, which caps the maximum number of pages
2946 * written to be 1024 pages. This is wrong on multiple
2947 * levels; different architectues have a different page size,
2948 * which changes the maximum amount of data which gets
2949 * written. Secondly, 4 megabytes is way too small. XFS
2950 * forces this value to be 16 megabytes by multiplying
2951 * nr_to_write parameter by four, and then relies on its
2952 * allocator to allocate larger extents to make them
2953 * contiguous. Unfortunately this brings us to the second
2954 * stupidity, which is that ext4's mballoc code only allocates
2955 * at most 2048 blocks. So we force contiguous writes up to
2956 * the number of dirty blocks in the inode, or
2957 * sbi->max_writeback_mb_bump whichever is smaller.
2959 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2960 if (!range_cyclic && range_whole) {
2961 if (wbc->nr_to_write == LONG_MAX)
2962 desired_nr_to_write = wbc->nr_to_write;
2963 else
2964 desired_nr_to_write = wbc->nr_to_write * 8;
2965 } else
2966 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2967 max_pages);
2968 if (desired_nr_to_write > max_pages)
2969 desired_nr_to_write = max_pages;
2971 if (wbc->nr_to_write < desired_nr_to_write) {
2972 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2973 wbc->nr_to_write = desired_nr_to_write;
2976 retry:
2977 if (wbc->sync_mode == WB_SYNC_ALL)
2978 tag_pages_for_writeback(mapping, index, end);
2980 while (!ret && wbc->nr_to_write > 0) {
2983 * we insert one extent at a time. So we need
2984 * credit needed for single extent allocation.
2985 * journalled mode is currently not supported
2986 * by delalloc
2988 BUG_ON(ext4_should_journal_data(inode));
2989 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2991 /* start a new transaction*/
2992 handle = ext4_journal_start(inode, needed_blocks);
2993 if (IS_ERR(handle)) {
2994 ret = PTR_ERR(handle);
2995 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2996 "%ld pages, ino %lu; err %d", __func__,
2997 wbc->nr_to_write, inode->i_ino, ret);
2998 goto out_writepages;
3002 * Now call write_cache_pages_da() to find the next
3003 * contiguous region of logical blocks that need
3004 * blocks to be allocated by ext4 and submit them.
3006 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3008 * If we have a contiguous extent of pages and we
3009 * haven't done the I/O yet, map the blocks and submit
3010 * them for I/O.
3012 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3013 mpage_da_map_and_submit(&mpd);
3014 ret = MPAGE_DA_EXTENT_TAIL;
3016 trace_ext4_da_write_pages(inode, &mpd);
3017 wbc->nr_to_write -= mpd.pages_written;
3019 ext4_journal_stop(handle);
3021 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3022 /* commit the transaction which would
3023 * free blocks released in the transaction
3024 * and try again
3026 jbd2_journal_force_commit_nested(sbi->s_journal);
3027 ret = 0;
3028 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3030 * got one extent now try with
3031 * rest of the pages
3033 pages_written += mpd.pages_written;
3034 ret = 0;
3035 io_done = 1;
3036 } else if (wbc->nr_to_write)
3038 * There is no more writeout needed
3039 * or we requested for a noblocking writeout
3040 * and we found the device congested
3042 break;
3044 if (!io_done && !cycled) {
3045 cycled = 1;
3046 index = 0;
3047 wbc->range_start = index << PAGE_CACHE_SHIFT;
3048 wbc->range_end = mapping->writeback_index - 1;
3049 goto retry;
3052 /* Update index */
3053 wbc->range_cyclic = range_cyclic;
3054 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3056 * set the writeback_index so that range_cyclic
3057 * mode will write it back later
3059 mapping->writeback_index = done_index;
3061 out_writepages:
3062 wbc->nr_to_write -= nr_to_writebump;
3063 wbc->range_start = range_start;
3064 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3065 return ret;
3068 #define FALL_BACK_TO_NONDELALLOC 1
3069 static int ext4_nonda_switch(struct super_block *sb)
3071 s64 free_blocks, dirty_blocks;
3072 struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 * switch to non delalloc mode if we are running low
3076 * on free block. The free block accounting via percpu
3077 * counters can get slightly wrong with percpu_counter_batch getting
3078 * accumulated on each CPU without updating global counters
3079 * Delalloc need an accurate free block accounting. So switch
3080 * to non delalloc when we are near to error range.
3082 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3083 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3084 if (2 * free_blocks < 3 * dirty_blocks ||
3085 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3087 * free block count is less than 150% of dirty blocks
3088 * or free blocks is less than watermark
3090 return 1;
3093 * Even if we don't switch but are nearing capacity,
3094 * start pushing delalloc when 1/2 of free blocks are dirty.
3096 if (free_blocks < 2 * dirty_blocks)
3097 writeback_inodes_sb_if_idle(sb);
3099 return 0;
3102 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3103 loff_t pos, unsigned len, unsigned flags,
3104 struct page **pagep, void **fsdata)
3106 int ret, retries = 0;
3107 struct page *page;
3108 pgoff_t index;
3109 struct inode *inode = mapping->host;
3110 handle_t *handle;
3112 index = pos >> PAGE_CACHE_SHIFT;
3114 if (ext4_nonda_switch(inode->i_sb)) {
3115 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3116 return ext4_write_begin(file, mapping, pos,
3117 len, flags, pagep, fsdata);
3119 *fsdata = (void *)0;
3120 trace_ext4_da_write_begin(inode, pos, len, flags);
3121 retry:
3123 * With delayed allocation, we don't log the i_disksize update
3124 * if there is delayed block allocation. But we still need
3125 * to journalling the i_disksize update if writes to the end
3126 * of file which has an already mapped buffer.
3128 handle = ext4_journal_start(inode, 1);
3129 if (IS_ERR(handle)) {
3130 ret = PTR_ERR(handle);
3131 goto out;
3133 /* We cannot recurse into the filesystem as the transaction is already
3134 * started */
3135 flags |= AOP_FLAG_NOFS;
3137 page = grab_cache_page_write_begin(mapping, index, flags);
3138 if (!page) {
3139 ext4_journal_stop(handle);
3140 ret = -ENOMEM;
3141 goto out;
3143 *pagep = page;
3145 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3146 if (ret < 0) {
3147 unlock_page(page);
3148 ext4_journal_stop(handle);
3149 page_cache_release(page);
3151 * block_write_begin may have instantiated a few blocks
3152 * outside i_size. Trim these off again. Don't need
3153 * i_size_read because we hold i_mutex.
3155 if (pos + len > inode->i_size)
3156 ext4_truncate_failed_write(inode);
3159 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3160 goto retry;
3161 out:
3162 return ret;
3166 * Check if we should update i_disksize
3167 * when write to the end of file but not require block allocation
3169 static int ext4_da_should_update_i_disksize(struct page *page,
3170 unsigned long offset)
3172 struct buffer_head *bh;
3173 struct inode *inode = page->mapping->host;
3174 unsigned int idx;
3175 int i;
3177 bh = page_buffers(page);
3178 idx = offset >> inode->i_blkbits;
3180 for (i = 0; i < idx; i++)
3181 bh = bh->b_this_page;
3183 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3184 return 0;
3185 return 1;
3188 static int ext4_da_write_end(struct file *file,
3189 struct address_space *mapping,
3190 loff_t pos, unsigned len, unsigned copied,
3191 struct page *page, void *fsdata)
3193 struct inode *inode = mapping->host;
3194 int ret = 0, ret2;
3195 handle_t *handle = ext4_journal_current_handle();
3196 loff_t new_i_size;
3197 unsigned long start, end;
3198 int write_mode = (int)(unsigned long)fsdata;
3200 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3201 if (ext4_should_order_data(inode)) {
3202 return ext4_ordered_write_end(file, mapping, pos,
3203 len, copied, page, fsdata);
3204 } else if (ext4_should_writeback_data(inode)) {
3205 return ext4_writeback_write_end(file, mapping, pos,
3206 len, copied, page, fsdata);
3207 } else {
3208 BUG();
3212 trace_ext4_da_write_end(inode, pos, len, copied);
3213 start = pos & (PAGE_CACHE_SIZE - 1);
3214 end = start + copied - 1;
3217 * generic_write_end() will run mark_inode_dirty() if i_size
3218 * changes. So let's piggyback the i_disksize mark_inode_dirty
3219 * into that.
3222 new_i_size = pos + copied;
3223 if (new_i_size > EXT4_I(inode)->i_disksize) {
3224 if (ext4_da_should_update_i_disksize(page, end)) {
3225 down_write(&EXT4_I(inode)->i_data_sem);
3226 if (new_i_size > EXT4_I(inode)->i_disksize) {
3228 * Updating i_disksize when extending file
3229 * without needing block allocation
3231 if (ext4_should_order_data(inode))
3232 ret = ext4_jbd2_file_inode(handle,
3233 inode);
3235 EXT4_I(inode)->i_disksize = new_i_size;
3237 up_write(&EXT4_I(inode)->i_data_sem);
3238 /* We need to mark inode dirty even if
3239 * new_i_size is less that inode->i_size
3240 * bu greater than i_disksize.(hint delalloc)
3242 ext4_mark_inode_dirty(handle, inode);
3245 ret2 = generic_write_end(file, mapping, pos, len, copied,
3246 page, fsdata);
3247 copied = ret2;
3248 if (ret2 < 0)
3249 ret = ret2;
3250 ret2 = ext4_journal_stop(handle);
3251 if (!ret)
3252 ret = ret2;
3254 return ret ? ret : copied;
3257 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3260 * Drop reserved blocks
3262 BUG_ON(!PageLocked(page));
3263 if (!page_has_buffers(page))
3264 goto out;
3266 ext4_da_page_release_reservation(page, offset);
3268 out:
3269 ext4_invalidatepage(page, offset);
3271 return;
3275 * Force all delayed allocation blocks to be allocated for a given inode.
3277 int ext4_alloc_da_blocks(struct inode *inode)
3279 trace_ext4_alloc_da_blocks(inode);
3281 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3282 !EXT4_I(inode)->i_reserved_meta_blocks)
3283 return 0;
3286 * We do something simple for now. The filemap_flush() will
3287 * also start triggering a write of the data blocks, which is
3288 * not strictly speaking necessary (and for users of
3289 * laptop_mode, not even desirable). However, to do otherwise
3290 * would require replicating code paths in:
3292 * ext4_da_writepages() ->
3293 * write_cache_pages() ---> (via passed in callback function)
3294 * __mpage_da_writepage() -->
3295 * mpage_add_bh_to_extent()
3296 * mpage_da_map_blocks()
3298 * The problem is that write_cache_pages(), located in
3299 * mm/page-writeback.c, marks pages clean in preparation for
3300 * doing I/O, which is not desirable if we're not planning on
3301 * doing I/O at all.
3303 * We could call write_cache_pages(), and then redirty all of
3304 * the pages by calling redirty_page_for_writepage() but that
3305 * would be ugly in the extreme. So instead we would need to
3306 * replicate parts of the code in the above functions,
3307 * simplifying them because we wouldn't actually intend to
3308 * write out the pages, but rather only collect contiguous
3309 * logical block extents, call the multi-block allocator, and
3310 * then update the buffer heads with the block allocations.
3312 * For now, though, we'll cheat by calling filemap_flush(),
3313 * which will map the blocks, and start the I/O, but not
3314 * actually wait for the I/O to complete.
3316 return filemap_flush(inode->i_mapping);
3320 * bmap() is special. It gets used by applications such as lilo and by
3321 * the swapper to find the on-disk block of a specific piece of data.
3323 * Naturally, this is dangerous if the block concerned is still in the
3324 * journal. If somebody makes a swapfile on an ext4 data-journaling
3325 * filesystem and enables swap, then they may get a nasty shock when the
3326 * data getting swapped to that swapfile suddenly gets overwritten by
3327 * the original zero's written out previously to the journal and
3328 * awaiting writeback in the kernel's buffer cache.
3330 * So, if we see any bmap calls here on a modified, data-journaled file,
3331 * take extra steps to flush any blocks which might be in the cache.
3333 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3335 struct inode *inode = mapping->host;
3336 journal_t *journal;
3337 int err;
3339 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3340 test_opt(inode->i_sb, DELALLOC)) {
3342 * With delalloc we want to sync the file
3343 * so that we can make sure we allocate
3344 * blocks for file
3346 filemap_write_and_wait(mapping);
3349 if (EXT4_JOURNAL(inode) &&
3350 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3352 * This is a REALLY heavyweight approach, but the use of
3353 * bmap on dirty files is expected to be extremely rare:
3354 * only if we run lilo or swapon on a freshly made file
3355 * do we expect this to happen.
3357 * (bmap requires CAP_SYS_RAWIO so this does not
3358 * represent an unprivileged user DOS attack --- we'd be
3359 * in trouble if mortal users could trigger this path at
3360 * will.)
3362 * NB. EXT4_STATE_JDATA is not set on files other than
3363 * regular files. If somebody wants to bmap a directory
3364 * or symlink and gets confused because the buffer
3365 * hasn't yet been flushed to disk, they deserve
3366 * everything they get.
3369 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3370 journal = EXT4_JOURNAL(inode);
3371 jbd2_journal_lock_updates(journal);
3372 err = jbd2_journal_flush(journal);
3373 jbd2_journal_unlock_updates(journal);
3375 if (err)
3376 return 0;
3379 return generic_block_bmap(mapping, block, ext4_get_block);
3382 static int ext4_readpage(struct file *file, struct page *page)
3384 trace_ext4_readpage(page);
3385 return mpage_readpage(page, ext4_get_block);
3388 static int
3389 ext4_readpages(struct file *file, struct address_space *mapping,
3390 struct list_head *pages, unsigned nr_pages)
3392 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3395 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3397 struct buffer_head *head, *bh;
3398 unsigned int curr_off = 0;
3400 if (!page_has_buffers(page))
3401 return;
3402 head = bh = page_buffers(page);
3403 do {
3404 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3405 && bh->b_private) {
3406 ext4_free_io_end(bh->b_private);
3407 bh->b_private = NULL;
3408 bh->b_end_io = NULL;
3410 curr_off = curr_off + bh->b_size;
3411 bh = bh->b_this_page;
3412 } while (bh != head);
3415 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3417 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3419 trace_ext4_invalidatepage(page, offset);
3422 * free any io_end structure allocated for buffers to be discarded
3424 if (ext4_should_dioread_nolock(page->mapping->host))
3425 ext4_invalidatepage_free_endio(page, offset);
3427 * If it's a full truncate we just forget about the pending dirtying
3429 if (offset == 0)
3430 ClearPageChecked(page);
3432 if (journal)
3433 jbd2_journal_invalidatepage(journal, page, offset);
3434 else
3435 block_invalidatepage(page, offset);
3438 static int ext4_releasepage(struct page *page, gfp_t wait)
3440 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3442 trace_ext4_releasepage(page);
3444 WARN_ON(PageChecked(page));
3445 if (!page_has_buffers(page))
3446 return 0;
3447 if (journal)
3448 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3449 else
3450 return try_to_free_buffers(page);
3454 * O_DIRECT for ext3 (or indirect map) based files
3456 * If the O_DIRECT write will extend the file then add this inode to the
3457 * orphan list. So recovery will truncate it back to the original size
3458 * if the machine crashes during the write.
3460 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3461 * crashes then stale disk data _may_ be exposed inside the file. But current
3462 * VFS code falls back into buffered path in that case so we are safe.
3464 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3465 const struct iovec *iov, loff_t offset,
3466 unsigned long nr_segs)
3468 struct file *file = iocb->ki_filp;
3469 struct inode *inode = file->f_mapping->host;
3470 struct ext4_inode_info *ei = EXT4_I(inode);
3471 handle_t *handle;
3472 ssize_t ret;
3473 int orphan = 0;
3474 size_t count = iov_length(iov, nr_segs);
3475 int retries = 0;
3477 if (rw == WRITE) {
3478 loff_t final_size = offset + count;
3480 if (final_size > inode->i_size) {
3481 /* Credits for sb + inode write */
3482 handle = ext4_journal_start(inode, 2);
3483 if (IS_ERR(handle)) {
3484 ret = PTR_ERR(handle);
3485 goto out;
3487 ret = ext4_orphan_add(handle, inode);
3488 if (ret) {
3489 ext4_journal_stop(handle);
3490 goto out;
3492 orphan = 1;
3493 ei->i_disksize = inode->i_size;
3494 ext4_journal_stop(handle);
3498 retry:
3499 if (rw == READ && ext4_should_dioread_nolock(inode))
3500 ret = __blockdev_direct_IO(rw, iocb, inode,
3501 inode->i_sb->s_bdev, iov,
3502 offset, nr_segs,
3503 ext4_get_block, NULL, NULL, 0);
3504 else {
3505 ret = blockdev_direct_IO(rw, iocb, inode,
3506 inode->i_sb->s_bdev, iov,
3507 offset, nr_segs,
3508 ext4_get_block, NULL);
3510 if (unlikely((rw & WRITE) && ret < 0)) {
3511 loff_t isize = i_size_read(inode);
3512 loff_t end = offset + iov_length(iov, nr_segs);
3514 if (end > isize)
3515 vmtruncate(inode, isize);
3518 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3519 goto retry;
3521 if (orphan) {
3522 int err;
3524 /* Credits for sb + inode write */
3525 handle = ext4_journal_start(inode, 2);
3526 if (IS_ERR(handle)) {
3527 /* This is really bad luck. We've written the data
3528 * but cannot extend i_size. Bail out and pretend
3529 * the write failed... */
3530 ret = PTR_ERR(handle);
3531 if (inode->i_nlink)
3532 ext4_orphan_del(NULL, inode);
3534 goto out;
3536 if (inode->i_nlink)
3537 ext4_orphan_del(handle, inode);
3538 if (ret > 0) {
3539 loff_t end = offset + ret;
3540 if (end > inode->i_size) {
3541 ei->i_disksize = end;
3542 i_size_write(inode, end);
3544 * We're going to return a positive `ret'
3545 * here due to non-zero-length I/O, so there's
3546 * no way of reporting error returns from
3547 * ext4_mark_inode_dirty() to userspace. So
3548 * ignore it.
3550 ext4_mark_inode_dirty(handle, inode);
3553 err = ext4_journal_stop(handle);
3554 if (ret == 0)
3555 ret = err;
3557 out:
3558 return ret;
3562 * ext4_get_block used when preparing for a DIO write or buffer write.
3563 * We allocate an uinitialized extent if blocks haven't been allocated.
3564 * The extent will be converted to initialized after the IO is complete.
3566 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3567 struct buffer_head *bh_result, int create)
3569 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3570 inode->i_ino, create);
3571 return _ext4_get_block(inode, iblock, bh_result,
3572 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3575 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3576 ssize_t size, void *private, int ret,
3577 bool is_async)
3579 ext4_io_end_t *io_end = iocb->private;
3580 struct workqueue_struct *wq;
3581 unsigned long flags;
3582 struct ext4_inode_info *ei;
3584 /* if not async direct IO or dio with 0 bytes write, just return */
3585 if (!io_end || !size)
3586 goto out;
3588 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3589 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3590 iocb->private, io_end->inode->i_ino, iocb, offset,
3591 size);
3593 /* if not aio dio with unwritten extents, just free io and return */
3594 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3595 ext4_free_io_end(io_end);
3596 iocb->private = NULL;
3597 out:
3598 if (is_async)
3599 aio_complete(iocb, ret, 0);
3600 return;
3603 io_end->offset = offset;
3604 io_end->size = size;
3605 if (is_async) {
3606 io_end->iocb = iocb;
3607 io_end->result = ret;
3609 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3611 /* Add the io_end to per-inode completed aio dio list*/
3612 ei = EXT4_I(io_end->inode);
3613 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3614 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3615 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3617 /* queue the work to convert unwritten extents to written */
3618 queue_work(wq, &io_end->work);
3619 iocb->private = NULL;
3622 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3624 ext4_io_end_t *io_end = bh->b_private;
3625 struct workqueue_struct *wq;
3626 struct inode *inode;
3627 unsigned long flags;
3629 if (!test_clear_buffer_uninit(bh) || !io_end)
3630 goto out;
3632 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3633 printk("sb umounted, discard end_io request for inode %lu\n",
3634 io_end->inode->i_ino);
3635 ext4_free_io_end(io_end);
3636 goto out;
3639 io_end->flag = EXT4_IO_END_UNWRITTEN;
3640 inode = io_end->inode;
3642 /* Add the io_end to per-inode completed io list*/
3643 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3644 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3645 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3647 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3648 /* queue the work to convert unwritten extents to written */
3649 queue_work(wq, &io_end->work);
3650 out:
3651 bh->b_private = NULL;
3652 bh->b_end_io = NULL;
3653 clear_buffer_uninit(bh);
3654 end_buffer_async_write(bh, uptodate);
3657 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3659 ext4_io_end_t *io_end;
3660 struct page *page = bh->b_page;
3661 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3662 size_t size = bh->b_size;
3664 retry:
3665 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3666 if (!io_end) {
3667 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3668 schedule();
3669 goto retry;
3671 io_end->offset = offset;
3672 io_end->size = size;
3674 * We need to hold a reference to the page to make sure it
3675 * doesn't get evicted before ext4_end_io_work() has a chance
3676 * to convert the extent from written to unwritten.
3678 io_end->page = page;
3679 get_page(io_end->page);
3681 bh->b_private = io_end;
3682 bh->b_end_io = ext4_end_io_buffer_write;
3683 return 0;
3687 * For ext4 extent files, ext4 will do direct-io write to holes,
3688 * preallocated extents, and those write extend the file, no need to
3689 * fall back to buffered IO.
3691 * For holes, we fallocate those blocks, mark them as uninitialized
3692 * If those blocks were preallocated, we mark sure they are splited, but
3693 * still keep the range to write as uninitialized.
3695 * The unwrritten extents will be converted to written when DIO is completed.
3696 * For async direct IO, since the IO may still pending when return, we
3697 * set up an end_io call back function, which will do the conversion
3698 * when async direct IO completed.
3700 * If the O_DIRECT write will extend the file then add this inode to the
3701 * orphan list. So recovery will truncate it back to the original size
3702 * if the machine crashes during the write.
3705 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3706 const struct iovec *iov, loff_t offset,
3707 unsigned long nr_segs)
3709 struct file *file = iocb->ki_filp;
3710 struct inode *inode = file->f_mapping->host;
3711 ssize_t ret;
3712 size_t count = iov_length(iov, nr_segs);
3714 loff_t final_size = offset + count;
3715 if (rw == WRITE && final_size <= inode->i_size) {
3717 * We could direct write to holes and fallocate.
3719 * Allocated blocks to fill the hole are marked as uninitialized
3720 * to prevent parallel buffered read to expose the stale data
3721 * before DIO complete the data IO.
3723 * As to previously fallocated extents, ext4 get_block
3724 * will just simply mark the buffer mapped but still
3725 * keep the extents uninitialized.
3727 * for non AIO case, we will convert those unwritten extents
3728 * to written after return back from blockdev_direct_IO.
3730 * for async DIO, the conversion needs to be defered when
3731 * the IO is completed. The ext4 end_io callback function
3732 * will be called to take care of the conversion work.
3733 * Here for async case, we allocate an io_end structure to
3734 * hook to the iocb.
3736 iocb->private = NULL;
3737 EXT4_I(inode)->cur_aio_dio = NULL;
3738 if (!is_sync_kiocb(iocb)) {
3739 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3740 if (!iocb->private)
3741 return -ENOMEM;
3743 * we save the io structure for current async
3744 * direct IO, so that later ext4_map_blocks()
3745 * could flag the io structure whether there
3746 * is a unwritten extents needs to be converted
3747 * when IO is completed.
3749 EXT4_I(inode)->cur_aio_dio = iocb->private;
3752 ret = blockdev_direct_IO(rw, iocb, inode,
3753 inode->i_sb->s_bdev, iov,
3754 offset, nr_segs,
3755 ext4_get_block_write,
3756 ext4_end_io_dio);
3757 if (iocb->private)
3758 EXT4_I(inode)->cur_aio_dio = NULL;
3760 * The io_end structure takes a reference to the inode,
3761 * that structure needs to be destroyed and the
3762 * reference to the inode need to be dropped, when IO is
3763 * complete, even with 0 byte write, or failed.
3765 * In the successful AIO DIO case, the io_end structure will be
3766 * desctroyed and the reference to the inode will be dropped
3767 * after the end_io call back function is called.
3769 * In the case there is 0 byte write, or error case, since
3770 * VFS direct IO won't invoke the end_io call back function,
3771 * we need to free the end_io structure here.
3773 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3774 ext4_free_io_end(iocb->private);
3775 iocb->private = NULL;
3776 } else if (ret > 0 && ext4_test_inode_state(inode,
3777 EXT4_STATE_DIO_UNWRITTEN)) {
3778 int err;
3780 * for non AIO case, since the IO is already
3781 * completed, we could do the conversion right here
3783 err = ext4_convert_unwritten_extents(inode,
3784 offset, ret);
3785 if (err < 0)
3786 ret = err;
3787 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3789 return ret;
3792 /* for write the the end of file case, we fall back to old way */
3793 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3796 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3797 const struct iovec *iov, loff_t offset,
3798 unsigned long nr_segs)
3800 struct file *file = iocb->ki_filp;
3801 struct inode *inode = file->f_mapping->host;
3802 ssize_t ret;
3804 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3805 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3806 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3807 else
3808 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3809 trace_ext4_direct_IO_exit(inode, offset,
3810 iov_length(iov, nr_segs), rw, ret);
3811 return ret;
3815 * Pages can be marked dirty completely asynchronously from ext4's journalling
3816 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3817 * much here because ->set_page_dirty is called under VFS locks. The page is
3818 * not necessarily locked.
3820 * We cannot just dirty the page and leave attached buffers clean, because the
3821 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3822 * or jbddirty because all the journalling code will explode.
3824 * So what we do is to mark the page "pending dirty" and next time writepage
3825 * is called, propagate that into the buffers appropriately.
3827 static int ext4_journalled_set_page_dirty(struct page *page)
3829 SetPageChecked(page);
3830 return __set_page_dirty_nobuffers(page);
3833 static const struct address_space_operations ext4_ordered_aops = {
3834 .readpage = ext4_readpage,
3835 .readpages = ext4_readpages,
3836 .writepage = ext4_writepage,
3837 .write_begin = ext4_write_begin,
3838 .write_end = ext4_ordered_write_end,
3839 .bmap = ext4_bmap,
3840 .invalidatepage = ext4_invalidatepage,
3841 .releasepage = ext4_releasepage,
3842 .direct_IO = ext4_direct_IO,
3843 .migratepage = buffer_migrate_page,
3844 .is_partially_uptodate = block_is_partially_uptodate,
3845 .error_remove_page = generic_error_remove_page,
3848 static const struct address_space_operations ext4_writeback_aops = {
3849 .readpage = ext4_readpage,
3850 .readpages = ext4_readpages,
3851 .writepage = ext4_writepage,
3852 .write_begin = ext4_write_begin,
3853 .write_end = ext4_writeback_write_end,
3854 .bmap = ext4_bmap,
3855 .invalidatepage = ext4_invalidatepage,
3856 .releasepage = ext4_releasepage,
3857 .direct_IO = ext4_direct_IO,
3858 .migratepage = buffer_migrate_page,
3859 .is_partially_uptodate = block_is_partially_uptodate,
3860 .error_remove_page = generic_error_remove_page,
3863 static const struct address_space_operations ext4_journalled_aops = {
3864 .readpage = ext4_readpage,
3865 .readpages = ext4_readpages,
3866 .writepage = ext4_writepage,
3867 .write_begin = ext4_write_begin,
3868 .write_end = ext4_journalled_write_end,
3869 .set_page_dirty = ext4_journalled_set_page_dirty,
3870 .bmap = ext4_bmap,
3871 .invalidatepage = ext4_invalidatepage,
3872 .releasepage = ext4_releasepage,
3873 .is_partially_uptodate = block_is_partially_uptodate,
3874 .error_remove_page = generic_error_remove_page,
3877 static const struct address_space_operations ext4_da_aops = {
3878 .readpage = ext4_readpage,
3879 .readpages = ext4_readpages,
3880 .writepage = ext4_writepage,
3881 .writepages = ext4_da_writepages,
3882 .write_begin = ext4_da_write_begin,
3883 .write_end = ext4_da_write_end,
3884 .bmap = ext4_bmap,
3885 .invalidatepage = ext4_da_invalidatepage,
3886 .releasepage = ext4_releasepage,
3887 .direct_IO = ext4_direct_IO,
3888 .migratepage = buffer_migrate_page,
3889 .is_partially_uptodate = block_is_partially_uptodate,
3890 .error_remove_page = generic_error_remove_page,
3893 void ext4_set_aops(struct inode *inode)
3895 if (ext4_should_order_data(inode) &&
3896 test_opt(inode->i_sb, DELALLOC))
3897 inode->i_mapping->a_ops = &ext4_da_aops;
3898 else if (ext4_should_order_data(inode))
3899 inode->i_mapping->a_ops = &ext4_ordered_aops;
3900 else if (ext4_should_writeback_data(inode) &&
3901 test_opt(inode->i_sb, DELALLOC))
3902 inode->i_mapping->a_ops = &ext4_da_aops;
3903 else if (ext4_should_writeback_data(inode))
3904 inode->i_mapping->a_ops = &ext4_writeback_aops;
3905 else
3906 inode->i_mapping->a_ops = &ext4_journalled_aops;
3910 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3911 * up to the end of the block which corresponds to `from'.
3912 * This required during truncate. We need to physically zero the tail end
3913 * of that block so it doesn't yield old data if the file is later grown.
3915 int ext4_block_truncate_page(handle_t *handle,
3916 struct address_space *mapping, loff_t from)
3918 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3919 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3920 unsigned blocksize, length, pos;
3921 ext4_lblk_t iblock;
3922 struct inode *inode = mapping->host;
3923 struct buffer_head *bh;
3924 struct page *page;
3925 int err = 0;
3927 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3928 mapping_gfp_mask(mapping) & ~__GFP_FS);
3929 if (!page)
3930 return -EINVAL;
3932 blocksize = inode->i_sb->s_blocksize;
3933 length = blocksize - (offset & (blocksize - 1));
3934 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3936 if (!page_has_buffers(page))
3937 create_empty_buffers(page, blocksize, 0);
3939 /* Find the buffer that contains "offset" */
3940 bh = page_buffers(page);
3941 pos = blocksize;
3942 while (offset >= pos) {
3943 bh = bh->b_this_page;
3944 iblock++;
3945 pos += blocksize;
3948 err = 0;
3949 if (buffer_freed(bh)) {
3950 BUFFER_TRACE(bh, "freed: skip");
3951 goto unlock;
3954 if (!buffer_mapped(bh)) {
3955 BUFFER_TRACE(bh, "unmapped");
3956 ext4_get_block(inode, iblock, bh, 0);
3957 /* unmapped? It's a hole - nothing to do */
3958 if (!buffer_mapped(bh)) {
3959 BUFFER_TRACE(bh, "still unmapped");
3960 goto unlock;
3964 /* Ok, it's mapped. Make sure it's up-to-date */
3965 if (PageUptodate(page))
3966 set_buffer_uptodate(bh);
3968 if (!buffer_uptodate(bh)) {
3969 err = -EIO;
3970 ll_rw_block(READ, 1, &bh);
3971 wait_on_buffer(bh);
3972 /* Uhhuh. Read error. Complain and punt. */
3973 if (!buffer_uptodate(bh))
3974 goto unlock;
3977 if (ext4_should_journal_data(inode)) {
3978 BUFFER_TRACE(bh, "get write access");
3979 err = ext4_journal_get_write_access(handle, bh);
3980 if (err)
3981 goto unlock;
3984 zero_user(page, offset, length);
3986 BUFFER_TRACE(bh, "zeroed end of block");
3988 err = 0;
3989 if (ext4_should_journal_data(inode)) {
3990 err = ext4_handle_dirty_metadata(handle, inode, bh);
3991 } else {
3992 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3993 err = ext4_jbd2_file_inode(handle, inode);
3994 mark_buffer_dirty(bh);
3997 unlock:
3998 unlock_page(page);
3999 page_cache_release(page);
4000 return err;
4004 * Probably it should be a library function... search for first non-zero word
4005 * or memcmp with zero_page, whatever is better for particular architecture.
4006 * Linus?
4008 static inline int all_zeroes(__le32 *p, __le32 *q)
4010 while (p < q)
4011 if (*p++)
4012 return 0;
4013 return 1;
4017 * ext4_find_shared - find the indirect blocks for partial truncation.
4018 * @inode: inode in question
4019 * @depth: depth of the affected branch
4020 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4021 * @chain: place to store the pointers to partial indirect blocks
4022 * @top: place to the (detached) top of branch
4024 * This is a helper function used by ext4_truncate().
4026 * When we do truncate() we may have to clean the ends of several
4027 * indirect blocks but leave the blocks themselves alive. Block is
4028 * partially truncated if some data below the new i_size is referred
4029 * from it (and it is on the path to the first completely truncated
4030 * data block, indeed). We have to free the top of that path along
4031 * with everything to the right of the path. Since no allocation
4032 * past the truncation point is possible until ext4_truncate()
4033 * finishes, we may safely do the latter, but top of branch may
4034 * require special attention - pageout below the truncation point
4035 * might try to populate it.
4037 * We atomically detach the top of branch from the tree, store the
4038 * block number of its root in *@top, pointers to buffer_heads of
4039 * partially truncated blocks - in @chain[].bh and pointers to
4040 * their last elements that should not be removed - in
4041 * @chain[].p. Return value is the pointer to last filled element
4042 * of @chain.
4044 * The work left to caller to do the actual freeing of subtrees:
4045 * a) free the subtree starting from *@top
4046 * b) free the subtrees whose roots are stored in
4047 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4048 * c) free the subtrees growing from the inode past the @chain[0].
4049 * (no partially truncated stuff there). */
4051 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4052 ext4_lblk_t offsets[4], Indirect chain[4],
4053 __le32 *top)
4055 Indirect *partial, *p;
4056 int k, err;
4058 *top = 0;
4059 /* Make k index the deepest non-null offset + 1 */
4060 for (k = depth; k > 1 && !offsets[k-1]; k--)
4062 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4063 /* Writer: pointers */
4064 if (!partial)
4065 partial = chain + k-1;
4067 * If the branch acquired continuation since we've looked at it -
4068 * fine, it should all survive and (new) top doesn't belong to us.
4070 if (!partial->key && *partial->p)
4071 /* Writer: end */
4072 goto no_top;
4073 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4076 * OK, we've found the last block that must survive. The rest of our
4077 * branch should be detached before unlocking. However, if that rest
4078 * of branch is all ours and does not grow immediately from the inode
4079 * it's easier to cheat and just decrement partial->p.
4081 if (p == chain + k - 1 && p > chain) {
4082 p->p--;
4083 } else {
4084 *top = *p->p;
4085 /* Nope, don't do this in ext4. Must leave the tree intact */
4086 #if 0
4087 *p->p = 0;
4088 #endif
4090 /* Writer: end */
4092 while (partial > p) {
4093 brelse(partial->bh);
4094 partial--;
4096 no_top:
4097 return partial;
4101 * Zero a number of block pointers in either an inode or an indirect block.
4102 * If we restart the transaction we must again get write access to the
4103 * indirect block for further modification.
4105 * We release `count' blocks on disk, but (last - first) may be greater
4106 * than `count' because there can be holes in there.
4108 * Return 0 on success, 1 on invalid block range
4109 * and < 0 on fatal error.
4111 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4112 struct buffer_head *bh,
4113 ext4_fsblk_t block_to_free,
4114 unsigned long count, __le32 *first,
4115 __le32 *last)
4117 __le32 *p;
4118 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4119 int err;
4121 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4122 flags |= EXT4_FREE_BLOCKS_METADATA;
4124 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4125 count)) {
4126 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4127 "blocks %llu len %lu",
4128 (unsigned long long) block_to_free, count);
4129 return 1;
4132 if (try_to_extend_transaction(handle, inode)) {
4133 if (bh) {
4134 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4135 err = ext4_handle_dirty_metadata(handle, inode, bh);
4136 if (unlikely(err))
4137 goto out_err;
4139 err = ext4_mark_inode_dirty(handle, inode);
4140 if (unlikely(err))
4141 goto out_err;
4142 err = ext4_truncate_restart_trans(handle, inode,
4143 blocks_for_truncate(inode));
4144 if (unlikely(err))
4145 goto out_err;
4146 if (bh) {
4147 BUFFER_TRACE(bh, "retaking write access");
4148 err = ext4_journal_get_write_access(handle, bh);
4149 if (unlikely(err))
4150 goto out_err;
4154 for (p = first; p < last; p++)
4155 *p = 0;
4157 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4158 return 0;
4159 out_err:
4160 ext4_std_error(inode->i_sb, err);
4161 return err;
4165 * ext4_free_data - free a list of data blocks
4166 * @handle: handle for this transaction
4167 * @inode: inode we are dealing with
4168 * @this_bh: indirect buffer_head which contains *@first and *@last
4169 * @first: array of block numbers
4170 * @last: points immediately past the end of array
4172 * We are freeing all blocks referred from that array (numbers are stored as
4173 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4175 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4176 * blocks are contiguous then releasing them at one time will only affect one
4177 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4178 * actually use a lot of journal space.
4180 * @this_bh will be %NULL if @first and @last point into the inode's direct
4181 * block pointers.
4183 static void ext4_free_data(handle_t *handle, struct inode *inode,
4184 struct buffer_head *this_bh,
4185 __le32 *first, __le32 *last)
4187 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4188 unsigned long count = 0; /* Number of blocks in the run */
4189 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4190 corresponding to
4191 block_to_free */
4192 ext4_fsblk_t nr; /* Current block # */
4193 __le32 *p; /* Pointer into inode/ind
4194 for current block */
4195 int err = 0;
4197 if (this_bh) { /* For indirect block */
4198 BUFFER_TRACE(this_bh, "get_write_access");
4199 err = ext4_journal_get_write_access(handle, this_bh);
4200 /* Important: if we can't update the indirect pointers
4201 * to the blocks, we can't free them. */
4202 if (err)
4203 return;
4206 for (p = first; p < last; p++) {
4207 nr = le32_to_cpu(*p);
4208 if (nr) {
4209 /* accumulate blocks to free if they're contiguous */
4210 if (count == 0) {
4211 block_to_free = nr;
4212 block_to_free_p = p;
4213 count = 1;
4214 } else if (nr == block_to_free + count) {
4215 count++;
4216 } else {
4217 err = ext4_clear_blocks(handle, inode, this_bh,
4218 block_to_free, count,
4219 block_to_free_p, p);
4220 if (err)
4221 break;
4222 block_to_free = nr;
4223 block_to_free_p = p;
4224 count = 1;
4229 if (!err && count > 0)
4230 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4231 count, block_to_free_p, p);
4232 if (err < 0)
4233 /* fatal error */
4234 return;
4236 if (this_bh) {
4237 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4240 * The buffer head should have an attached journal head at this
4241 * point. However, if the data is corrupted and an indirect
4242 * block pointed to itself, it would have been detached when
4243 * the block was cleared. Check for this instead of OOPSing.
4245 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4246 ext4_handle_dirty_metadata(handle, inode, this_bh);
4247 else
4248 EXT4_ERROR_INODE(inode,
4249 "circular indirect block detected at "
4250 "block %llu",
4251 (unsigned long long) this_bh->b_blocknr);
4256 * ext4_free_branches - free an array of branches
4257 * @handle: JBD handle for this transaction
4258 * @inode: inode we are dealing with
4259 * @parent_bh: the buffer_head which contains *@first and *@last
4260 * @first: array of block numbers
4261 * @last: pointer immediately past the end of array
4262 * @depth: depth of the branches to free
4264 * We are freeing all blocks referred from these branches (numbers are
4265 * stored as little-endian 32-bit) and updating @inode->i_blocks
4266 * appropriately.
4268 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4269 struct buffer_head *parent_bh,
4270 __le32 *first, __le32 *last, int depth)
4272 ext4_fsblk_t nr;
4273 __le32 *p;
4275 if (ext4_handle_is_aborted(handle))
4276 return;
4278 if (depth--) {
4279 struct buffer_head *bh;
4280 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4281 p = last;
4282 while (--p >= first) {
4283 nr = le32_to_cpu(*p);
4284 if (!nr)
4285 continue; /* A hole */
4287 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4288 nr, 1)) {
4289 EXT4_ERROR_INODE(inode,
4290 "invalid indirect mapped "
4291 "block %lu (level %d)",
4292 (unsigned long) nr, depth);
4293 break;
4296 /* Go read the buffer for the next level down */
4297 bh = sb_bread(inode->i_sb, nr);
4300 * A read failure? Report error and clear slot
4301 * (should be rare).
4303 if (!bh) {
4304 EXT4_ERROR_INODE_BLOCK(inode, nr,
4305 "Read failure");
4306 continue;
4309 /* This zaps the entire block. Bottom up. */
4310 BUFFER_TRACE(bh, "free child branches");
4311 ext4_free_branches(handle, inode, bh,
4312 (__le32 *) bh->b_data,
4313 (__le32 *) bh->b_data + addr_per_block,
4314 depth);
4315 brelse(bh);
4318 * Everything below this this pointer has been
4319 * released. Now let this top-of-subtree go.
4321 * We want the freeing of this indirect block to be
4322 * atomic in the journal with the updating of the
4323 * bitmap block which owns it. So make some room in
4324 * the journal.
4326 * We zero the parent pointer *after* freeing its
4327 * pointee in the bitmaps, so if extend_transaction()
4328 * for some reason fails to put the bitmap changes and
4329 * the release into the same transaction, recovery
4330 * will merely complain about releasing a free block,
4331 * rather than leaking blocks.
4333 if (ext4_handle_is_aborted(handle))
4334 return;
4335 if (try_to_extend_transaction(handle, inode)) {
4336 ext4_mark_inode_dirty(handle, inode);
4337 ext4_truncate_restart_trans(handle, inode,
4338 blocks_for_truncate(inode));
4342 * The forget flag here is critical because if
4343 * we are journaling (and not doing data
4344 * journaling), we have to make sure a revoke
4345 * record is written to prevent the journal
4346 * replay from overwriting the (former)
4347 * indirect block if it gets reallocated as a
4348 * data block. This must happen in the same
4349 * transaction where the data blocks are
4350 * actually freed.
4352 ext4_free_blocks(handle, inode, NULL, nr, 1,
4353 EXT4_FREE_BLOCKS_METADATA|
4354 EXT4_FREE_BLOCKS_FORGET);
4356 if (parent_bh) {
4358 * The block which we have just freed is
4359 * pointed to by an indirect block: journal it
4361 BUFFER_TRACE(parent_bh, "get_write_access");
4362 if (!ext4_journal_get_write_access(handle,
4363 parent_bh)){
4364 *p = 0;
4365 BUFFER_TRACE(parent_bh,
4366 "call ext4_handle_dirty_metadata");
4367 ext4_handle_dirty_metadata(handle,
4368 inode,
4369 parent_bh);
4373 } else {
4374 /* We have reached the bottom of the tree. */
4375 BUFFER_TRACE(parent_bh, "free data blocks");
4376 ext4_free_data(handle, inode, parent_bh, first, last);
4380 int ext4_can_truncate(struct inode *inode)
4382 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4383 return 0;
4384 if (S_ISREG(inode->i_mode))
4385 return 1;
4386 if (S_ISDIR(inode->i_mode))
4387 return 1;
4388 if (S_ISLNK(inode->i_mode))
4389 return !ext4_inode_is_fast_symlink(inode);
4390 return 0;
4394 * ext4_truncate()
4396 * We block out ext4_get_block() block instantiations across the entire
4397 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4398 * simultaneously on behalf of the same inode.
4400 * As we work through the truncate and commmit bits of it to the journal there
4401 * is one core, guiding principle: the file's tree must always be consistent on
4402 * disk. We must be able to restart the truncate after a crash.
4404 * The file's tree may be transiently inconsistent in memory (although it
4405 * probably isn't), but whenever we close off and commit a journal transaction,
4406 * the contents of (the filesystem + the journal) must be consistent and
4407 * restartable. It's pretty simple, really: bottom up, right to left (although
4408 * left-to-right works OK too).
4410 * Note that at recovery time, journal replay occurs *before* the restart of
4411 * truncate against the orphan inode list.
4413 * The committed inode has the new, desired i_size (which is the same as
4414 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4415 * that this inode's truncate did not complete and it will again call
4416 * ext4_truncate() to have another go. So there will be instantiated blocks
4417 * to the right of the truncation point in a crashed ext4 filesystem. But
4418 * that's fine - as long as they are linked from the inode, the post-crash
4419 * ext4_truncate() run will find them and release them.
4421 void ext4_truncate(struct inode *inode)
4423 handle_t *handle;
4424 struct ext4_inode_info *ei = EXT4_I(inode);
4425 __le32 *i_data = ei->i_data;
4426 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4427 struct address_space *mapping = inode->i_mapping;
4428 ext4_lblk_t offsets[4];
4429 Indirect chain[4];
4430 Indirect *partial;
4431 __le32 nr = 0;
4432 int n;
4433 ext4_lblk_t last_block;
4434 unsigned blocksize = inode->i_sb->s_blocksize;
4436 trace_ext4_truncate_enter(inode);
4438 if (!ext4_can_truncate(inode))
4439 return;
4441 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4443 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4444 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4447 ext4_ext_truncate(inode);
4448 trace_ext4_truncate_exit(inode);
4449 return;
4452 handle = start_transaction(inode);
4453 if (IS_ERR(handle))
4454 return; /* AKPM: return what? */
4456 last_block = (inode->i_size + blocksize-1)
4457 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4459 if (inode->i_size & (blocksize - 1))
4460 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4461 goto out_stop;
4463 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4464 if (n == 0)
4465 goto out_stop; /* error */
4468 * OK. This truncate is going to happen. We add the inode to the
4469 * orphan list, so that if this truncate spans multiple transactions,
4470 * and we crash, we will resume the truncate when the filesystem
4471 * recovers. It also marks the inode dirty, to catch the new size.
4473 * Implication: the file must always be in a sane, consistent
4474 * truncatable state while each transaction commits.
4476 if (ext4_orphan_add(handle, inode))
4477 goto out_stop;
4480 * From here we block out all ext4_get_block() callers who want to
4481 * modify the block allocation tree.
4483 down_write(&ei->i_data_sem);
4485 ext4_discard_preallocations(inode);
4488 * The orphan list entry will now protect us from any crash which
4489 * occurs before the truncate completes, so it is now safe to propagate
4490 * the new, shorter inode size (held for now in i_size) into the
4491 * on-disk inode. We do this via i_disksize, which is the value which
4492 * ext4 *really* writes onto the disk inode.
4494 ei->i_disksize = inode->i_size;
4496 if (n == 1) { /* direct blocks */
4497 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4498 i_data + EXT4_NDIR_BLOCKS);
4499 goto do_indirects;
4502 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4503 /* Kill the top of shared branch (not detached) */
4504 if (nr) {
4505 if (partial == chain) {
4506 /* Shared branch grows from the inode */
4507 ext4_free_branches(handle, inode, NULL,
4508 &nr, &nr+1, (chain+n-1) - partial);
4509 *partial->p = 0;
4511 * We mark the inode dirty prior to restart,
4512 * and prior to stop. No need for it here.
4514 } else {
4515 /* Shared branch grows from an indirect block */
4516 BUFFER_TRACE(partial->bh, "get_write_access");
4517 ext4_free_branches(handle, inode, partial->bh,
4518 partial->p,
4519 partial->p+1, (chain+n-1) - partial);
4522 /* Clear the ends of indirect blocks on the shared branch */
4523 while (partial > chain) {
4524 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4525 (__le32*)partial->bh->b_data+addr_per_block,
4526 (chain+n-1) - partial);
4527 BUFFER_TRACE(partial->bh, "call brelse");
4528 brelse(partial->bh);
4529 partial--;
4531 do_indirects:
4532 /* Kill the remaining (whole) subtrees */
4533 switch (offsets[0]) {
4534 default:
4535 nr = i_data[EXT4_IND_BLOCK];
4536 if (nr) {
4537 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4538 i_data[EXT4_IND_BLOCK] = 0;
4540 case EXT4_IND_BLOCK:
4541 nr = i_data[EXT4_DIND_BLOCK];
4542 if (nr) {
4543 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4544 i_data[EXT4_DIND_BLOCK] = 0;
4546 case EXT4_DIND_BLOCK:
4547 nr = i_data[EXT4_TIND_BLOCK];
4548 if (nr) {
4549 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4550 i_data[EXT4_TIND_BLOCK] = 0;
4552 case EXT4_TIND_BLOCK:
4556 up_write(&ei->i_data_sem);
4557 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4558 ext4_mark_inode_dirty(handle, inode);
4561 * In a multi-transaction truncate, we only make the final transaction
4562 * synchronous
4564 if (IS_SYNC(inode))
4565 ext4_handle_sync(handle);
4566 out_stop:
4568 * If this was a simple ftruncate(), and the file will remain alive
4569 * then we need to clear up the orphan record which we created above.
4570 * However, if this was a real unlink then we were called by
4571 * ext4_delete_inode(), and we allow that function to clean up the
4572 * orphan info for us.
4574 if (inode->i_nlink)
4575 ext4_orphan_del(handle, inode);
4577 ext4_journal_stop(handle);
4578 trace_ext4_truncate_exit(inode);
4582 * ext4_get_inode_loc returns with an extra refcount against the inode's
4583 * underlying buffer_head on success. If 'in_mem' is true, we have all
4584 * data in memory that is needed to recreate the on-disk version of this
4585 * inode.
4587 static int __ext4_get_inode_loc(struct inode *inode,
4588 struct ext4_iloc *iloc, int in_mem)
4590 struct ext4_group_desc *gdp;
4591 struct buffer_head *bh;
4592 struct super_block *sb = inode->i_sb;
4593 ext4_fsblk_t block;
4594 int inodes_per_block, inode_offset;
4596 iloc->bh = NULL;
4597 if (!ext4_valid_inum(sb, inode->i_ino))
4598 return -EIO;
4600 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4601 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4602 if (!gdp)
4603 return -EIO;
4606 * Figure out the offset within the block group inode table
4608 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4609 inode_offset = ((inode->i_ino - 1) %
4610 EXT4_INODES_PER_GROUP(sb));
4611 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4612 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4614 bh = sb_getblk(sb, block);
4615 if (!bh) {
4616 EXT4_ERROR_INODE_BLOCK(inode, block,
4617 "unable to read itable block");
4618 return -EIO;
4620 if (!buffer_uptodate(bh)) {
4621 lock_buffer(bh);
4624 * If the buffer has the write error flag, we have failed
4625 * to write out another inode in the same block. In this
4626 * case, we don't have to read the block because we may
4627 * read the old inode data successfully.
4629 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4630 set_buffer_uptodate(bh);
4632 if (buffer_uptodate(bh)) {
4633 /* someone brought it uptodate while we waited */
4634 unlock_buffer(bh);
4635 goto has_buffer;
4639 * If we have all information of the inode in memory and this
4640 * is the only valid inode in the block, we need not read the
4641 * block.
4643 if (in_mem) {
4644 struct buffer_head *bitmap_bh;
4645 int i, start;
4647 start = inode_offset & ~(inodes_per_block - 1);
4649 /* Is the inode bitmap in cache? */
4650 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4651 if (!bitmap_bh)
4652 goto make_io;
4655 * If the inode bitmap isn't in cache then the
4656 * optimisation may end up performing two reads instead
4657 * of one, so skip it.
4659 if (!buffer_uptodate(bitmap_bh)) {
4660 brelse(bitmap_bh);
4661 goto make_io;
4663 for (i = start; i < start + inodes_per_block; i++) {
4664 if (i == inode_offset)
4665 continue;
4666 if (ext4_test_bit(i, bitmap_bh->b_data))
4667 break;
4669 brelse(bitmap_bh);
4670 if (i == start + inodes_per_block) {
4671 /* all other inodes are free, so skip I/O */
4672 memset(bh->b_data, 0, bh->b_size);
4673 set_buffer_uptodate(bh);
4674 unlock_buffer(bh);
4675 goto has_buffer;
4679 make_io:
4681 * If we need to do any I/O, try to pre-readahead extra
4682 * blocks from the inode table.
4684 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4685 ext4_fsblk_t b, end, table;
4686 unsigned num;
4688 table = ext4_inode_table(sb, gdp);
4689 /* s_inode_readahead_blks is always a power of 2 */
4690 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4691 if (table > b)
4692 b = table;
4693 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4694 num = EXT4_INODES_PER_GROUP(sb);
4695 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4696 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4697 num -= ext4_itable_unused_count(sb, gdp);
4698 table += num / inodes_per_block;
4699 if (end > table)
4700 end = table;
4701 while (b <= end)
4702 sb_breadahead(sb, b++);
4706 * There are other valid inodes in the buffer, this inode
4707 * has in-inode xattrs, or we don't have this inode in memory.
4708 * Read the block from disk.
4710 trace_ext4_load_inode(inode);
4711 get_bh(bh);
4712 bh->b_end_io = end_buffer_read_sync;
4713 submit_bh(READ_META, bh);
4714 wait_on_buffer(bh);
4715 if (!buffer_uptodate(bh)) {
4716 EXT4_ERROR_INODE_BLOCK(inode, block,
4717 "unable to read itable block");
4718 brelse(bh);
4719 return -EIO;
4722 has_buffer:
4723 iloc->bh = bh;
4724 return 0;
4727 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4729 /* We have all inode data except xattrs in memory here. */
4730 return __ext4_get_inode_loc(inode, iloc,
4731 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4734 void ext4_set_inode_flags(struct inode *inode)
4736 unsigned int flags = EXT4_I(inode)->i_flags;
4738 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4739 if (flags & EXT4_SYNC_FL)
4740 inode->i_flags |= S_SYNC;
4741 if (flags & EXT4_APPEND_FL)
4742 inode->i_flags |= S_APPEND;
4743 if (flags & EXT4_IMMUTABLE_FL)
4744 inode->i_flags |= S_IMMUTABLE;
4745 if (flags & EXT4_NOATIME_FL)
4746 inode->i_flags |= S_NOATIME;
4747 if (flags & EXT4_DIRSYNC_FL)
4748 inode->i_flags |= S_DIRSYNC;
4751 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4752 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4754 unsigned int vfs_fl;
4755 unsigned long old_fl, new_fl;
4757 do {
4758 vfs_fl = ei->vfs_inode.i_flags;
4759 old_fl = ei->i_flags;
4760 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4761 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4762 EXT4_DIRSYNC_FL);
4763 if (vfs_fl & S_SYNC)
4764 new_fl |= EXT4_SYNC_FL;
4765 if (vfs_fl & S_APPEND)
4766 new_fl |= EXT4_APPEND_FL;
4767 if (vfs_fl & S_IMMUTABLE)
4768 new_fl |= EXT4_IMMUTABLE_FL;
4769 if (vfs_fl & S_NOATIME)
4770 new_fl |= EXT4_NOATIME_FL;
4771 if (vfs_fl & S_DIRSYNC)
4772 new_fl |= EXT4_DIRSYNC_FL;
4773 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4776 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4777 struct ext4_inode_info *ei)
4779 blkcnt_t i_blocks ;
4780 struct inode *inode = &(ei->vfs_inode);
4781 struct super_block *sb = inode->i_sb;
4783 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4784 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4785 /* we are using combined 48 bit field */
4786 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4787 le32_to_cpu(raw_inode->i_blocks_lo);
4788 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4789 /* i_blocks represent file system block size */
4790 return i_blocks << (inode->i_blkbits - 9);
4791 } else {
4792 return i_blocks;
4794 } else {
4795 return le32_to_cpu(raw_inode->i_blocks_lo);
4799 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4801 struct ext4_iloc iloc;
4802 struct ext4_inode *raw_inode;
4803 struct ext4_inode_info *ei;
4804 struct inode *inode;
4805 journal_t *journal = EXT4_SB(sb)->s_journal;
4806 long ret;
4807 int block;
4809 inode = iget_locked(sb, ino);
4810 if (!inode)
4811 return ERR_PTR(-ENOMEM);
4812 if (!(inode->i_state & I_NEW))
4813 return inode;
4815 ei = EXT4_I(inode);
4816 iloc.bh = NULL;
4818 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4819 if (ret < 0)
4820 goto bad_inode;
4821 raw_inode = ext4_raw_inode(&iloc);
4822 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4823 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4824 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4825 if (!(test_opt(inode->i_sb, NO_UID32))) {
4826 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4827 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4829 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4831 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4832 ei->i_dir_start_lookup = 0;
4833 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4834 /* We now have enough fields to check if the inode was active or not.
4835 * This is needed because nfsd might try to access dead inodes
4836 * the test is that same one that e2fsck uses
4837 * NeilBrown 1999oct15
4839 if (inode->i_nlink == 0) {
4840 if (inode->i_mode == 0 ||
4841 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4842 /* this inode is deleted */
4843 ret = -ESTALE;
4844 goto bad_inode;
4846 /* The only unlinked inodes we let through here have
4847 * valid i_mode and are being read by the orphan
4848 * recovery code: that's fine, we're about to complete
4849 * the process of deleting those. */
4851 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4852 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4853 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4854 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4855 ei->i_file_acl |=
4856 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4857 inode->i_size = ext4_isize(raw_inode);
4858 ei->i_disksize = inode->i_size;
4859 #ifdef CONFIG_QUOTA
4860 ei->i_reserved_quota = 0;
4861 #endif
4862 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4863 ei->i_block_group = iloc.block_group;
4864 ei->i_last_alloc_group = ~0;
4866 * NOTE! The in-memory inode i_data array is in little-endian order
4867 * even on big-endian machines: we do NOT byteswap the block numbers!
4869 for (block = 0; block < EXT4_N_BLOCKS; block++)
4870 ei->i_data[block] = raw_inode->i_block[block];
4871 INIT_LIST_HEAD(&ei->i_orphan);
4874 * Set transaction id's of transactions that have to be committed
4875 * to finish f[data]sync. We set them to currently running transaction
4876 * as we cannot be sure that the inode or some of its metadata isn't
4877 * part of the transaction - the inode could have been reclaimed and
4878 * now it is reread from disk.
4880 if (journal) {
4881 transaction_t *transaction;
4882 tid_t tid;
4884 read_lock(&journal->j_state_lock);
4885 if (journal->j_running_transaction)
4886 transaction = journal->j_running_transaction;
4887 else
4888 transaction = journal->j_committing_transaction;
4889 if (transaction)
4890 tid = transaction->t_tid;
4891 else
4892 tid = journal->j_commit_sequence;
4893 read_unlock(&journal->j_state_lock);
4894 ei->i_sync_tid = tid;
4895 ei->i_datasync_tid = tid;
4898 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4899 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4900 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4901 EXT4_INODE_SIZE(inode->i_sb)) {
4902 ret = -EIO;
4903 goto bad_inode;
4905 if (ei->i_extra_isize == 0) {
4906 /* The extra space is currently unused. Use it. */
4907 ei->i_extra_isize = sizeof(struct ext4_inode) -
4908 EXT4_GOOD_OLD_INODE_SIZE;
4909 } else {
4910 __le32 *magic = (void *)raw_inode +
4911 EXT4_GOOD_OLD_INODE_SIZE +
4912 ei->i_extra_isize;
4913 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4914 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4916 } else
4917 ei->i_extra_isize = 0;
4919 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4920 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4921 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4922 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4924 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4925 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4926 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4927 inode->i_version |=
4928 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4931 ret = 0;
4932 if (ei->i_file_acl &&
4933 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4934 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4935 ei->i_file_acl);
4936 ret = -EIO;
4937 goto bad_inode;
4938 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4939 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4940 (S_ISLNK(inode->i_mode) &&
4941 !ext4_inode_is_fast_symlink(inode)))
4942 /* Validate extent which is part of inode */
4943 ret = ext4_ext_check_inode(inode);
4944 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4945 (S_ISLNK(inode->i_mode) &&
4946 !ext4_inode_is_fast_symlink(inode))) {
4947 /* Validate block references which are part of inode */
4948 ret = ext4_check_inode_blockref(inode);
4950 if (ret)
4951 goto bad_inode;
4953 if (S_ISREG(inode->i_mode)) {
4954 inode->i_op = &ext4_file_inode_operations;
4955 inode->i_fop = &ext4_file_operations;
4956 ext4_set_aops(inode);
4957 } else if (S_ISDIR(inode->i_mode)) {
4958 inode->i_op = &ext4_dir_inode_operations;
4959 inode->i_fop = &ext4_dir_operations;
4960 } else if (S_ISLNK(inode->i_mode)) {
4961 if (ext4_inode_is_fast_symlink(inode)) {
4962 inode->i_op = &ext4_fast_symlink_inode_operations;
4963 nd_terminate_link(ei->i_data, inode->i_size,
4964 sizeof(ei->i_data) - 1);
4965 } else {
4966 inode->i_op = &ext4_symlink_inode_operations;
4967 ext4_set_aops(inode);
4969 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4970 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4971 inode->i_op = &ext4_special_inode_operations;
4972 if (raw_inode->i_block[0])
4973 init_special_inode(inode, inode->i_mode,
4974 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4975 else
4976 init_special_inode(inode, inode->i_mode,
4977 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4978 } else {
4979 ret = -EIO;
4980 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4981 goto bad_inode;
4983 brelse(iloc.bh);
4984 ext4_set_inode_flags(inode);
4985 unlock_new_inode(inode);
4986 return inode;
4988 bad_inode:
4989 brelse(iloc.bh);
4990 iget_failed(inode);
4991 return ERR_PTR(ret);
4994 static int ext4_inode_blocks_set(handle_t *handle,
4995 struct ext4_inode *raw_inode,
4996 struct ext4_inode_info *ei)
4998 struct inode *inode = &(ei->vfs_inode);
4999 u64 i_blocks = inode->i_blocks;
5000 struct super_block *sb = inode->i_sb;
5002 if (i_blocks <= ~0U) {
5004 * i_blocks can be represnted in a 32 bit variable
5005 * as multiple of 512 bytes
5007 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5008 raw_inode->i_blocks_high = 0;
5009 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5010 return 0;
5012 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5013 return -EFBIG;
5015 if (i_blocks <= 0xffffffffffffULL) {
5017 * i_blocks can be represented in a 48 bit variable
5018 * as multiple of 512 bytes
5020 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5021 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5022 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5023 } else {
5024 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5025 /* i_block is stored in file system block size */
5026 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5027 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5028 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5030 return 0;
5034 * Post the struct inode info into an on-disk inode location in the
5035 * buffer-cache. This gobbles the caller's reference to the
5036 * buffer_head in the inode location struct.
5038 * The caller must have write access to iloc->bh.
5040 static int ext4_do_update_inode(handle_t *handle,
5041 struct inode *inode,
5042 struct ext4_iloc *iloc)
5044 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5045 struct ext4_inode_info *ei = EXT4_I(inode);
5046 struct buffer_head *bh = iloc->bh;
5047 int err = 0, rc, block;
5049 /* For fields not not tracking in the in-memory inode,
5050 * initialise them to zero for new inodes. */
5051 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5052 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5054 ext4_get_inode_flags(ei);
5055 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5056 if (!(test_opt(inode->i_sb, NO_UID32))) {
5057 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5058 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5060 * Fix up interoperability with old kernels. Otherwise, old inodes get
5061 * re-used with the upper 16 bits of the uid/gid intact
5063 if (!ei->i_dtime) {
5064 raw_inode->i_uid_high =
5065 cpu_to_le16(high_16_bits(inode->i_uid));
5066 raw_inode->i_gid_high =
5067 cpu_to_le16(high_16_bits(inode->i_gid));
5068 } else {
5069 raw_inode->i_uid_high = 0;
5070 raw_inode->i_gid_high = 0;
5072 } else {
5073 raw_inode->i_uid_low =
5074 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5075 raw_inode->i_gid_low =
5076 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5077 raw_inode->i_uid_high = 0;
5078 raw_inode->i_gid_high = 0;
5080 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5082 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5083 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5084 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5085 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5087 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5088 goto out_brelse;
5089 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5090 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5091 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5092 cpu_to_le32(EXT4_OS_HURD))
5093 raw_inode->i_file_acl_high =
5094 cpu_to_le16(ei->i_file_acl >> 32);
5095 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5096 ext4_isize_set(raw_inode, ei->i_disksize);
5097 if (ei->i_disksize > 0x7fffffffULL) {
5098 struct super_block *sb = inode->i_sb;
5099 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5100 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5101 EXT4_SB(sb)->s_es->s_rev_level ==
5102 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5103 /* If this is the first large file
5104 * created, add a flag to the superblock.
5106 err = ext4_journal_get_write_access(handle,
5107 EXT4_SB(sb)->s_sbh);
5108 if (err)
5109 goto out_brelse;
5110 ext4_update_dynamic_rev(sb);
5111 EXT4_SET_RO_COMPAT_FEATURE(sb,
5112 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5113 sb->s_dirt = 1;
5114 ext4_handle_sync(handle);
5115 err = ext4_handle_dirty_metadata(handle, NULL,
5116 EXT4_SB(sb)->s_sbh);
5119 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5120 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5121 if (old_valid_dev(inode->i_rdev)) {
5122 raw_inode->i_block[0] =
5123 cpu_to_le32(old_encode_dev(inode->i_rdev));
5124 raw_inode->i_block[1] = 0;
5125 } else {
5126 raw_inode->i_block[0] = 0;
5127 raw_inode->i_block[1] =
5128 cpu_to_le32(new_encode_dev(inode->i_rdev));
5129 raw_inode->i_block[2] = 0;
5131 } else
5132 for (block = 0; block < EXT4_N_BLOCKS; block++)
5133 raw_inode->i_block[block] = ei->i_data[block];
5135 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5136 if (ei->i_extra_isize) {
5137 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5138 raw_inode->i_version_hi =
5139 cpu_to_le32(inode->i_version >> 32);
5140 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5143 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5144 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5145 if (!err)
5146 err = rc;
5147 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5149 ext4_update_inode_fsync_trans(handle, inode, 0);
5150 out_brelse:
5151 brelse(bh);
5152 ext4_std_error(inode->i_sb, err);
5153 return err;
5157 * ext4_write_inode()
5159 * We are called from a few places:
5161 * - Within generic_file_write() for O_SYNC files.
5162 * Here, there will be no transaction running. We wait for any running
5163 * trasnaction to commit.
5165 * - Within sys_sync(), kupdate and such.
5166 * We wait on commit, if tol to.
5168 * - Within prune_icache() (PF_MEMALLOC == true)
5169 * Here we simply return. We can't afford to block kswapd on the
5170 * journal commit.
5172 * In all cases it is actually safe for us to return without doing anything,
5173 * because the inode has been copied into a raw inode buffer in
5174 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5175 * knfsd.
5177 * Note that we are absolutely dependent upon all inode dirtiers doing the
5178 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5179 * which we are interested.
5181 * It would be a bug for them to not do this. The code:
5183 * mark_inode_dirty(inode)
5184 * stuff();
5185 * inode->i_size = expr;
5187 * is in error because a kswapd-driven write_inode() could occur while
5188 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5189 * will no longer be on the superblock's dirty inode list.
5191 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5193 int err;
5195 if (current->flags & PF_MEMALLOC)
5196 return 0;
5198 if (EXT4_SB(inode->i_sb)->s_journal) {
5199 if (ext4_journal_current_handle()) {
5200 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5201 dump_stack();
5202 return -EIO;
5205 if (wbc->sync_mode != WB_SYNC_ALL)
5206 return 0;
5208 err = ext4_force_commit(inode->i_sb);
5209 } else {
5210 struct ext4_iloc iloc;
5212 err = __ext4_get_inode_loc(inode, &iloc, 0);
5213 if (err)
5214 return err;
5215 if (wbc->sync_mode == WB_SYNC_ALL)
5216 sync_dirty_buffer(iloc.bh);
5217 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5218 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5219 "IO error syncing inode");
5220 err = -EIO;
5222 brelse(iloc.bh);
5224 return err;
5228 * ext4_setattr()
5230 * Called from notify_change.
5232 * We want to trap VFS attempts to truncate the file as soon as
5233 * possible. In particular, we want to make sure that when the VFS
5234 * shrinks i_size, we put the inode on the orphan list and modify
5235 * i_disksize immediately, so that during the subsequent flushing of
5236 * dirty pages and freeing of disk blocks, we can guarantee that any
5237 * commit will leave the blocks being flushed in an unused state on
5238 * disk. (On recovery, the inode will get truncated and the blocks will
5239 * be freed, so we have a strong guarantee that no future commit will
5240 * leave these blocks visible to the user.)
5242 * Another thing we have to assure is that if we are in ordered mode
5243 * and inode is still attached to the committing transaction, we must
5244 * we start writeout of all the dirty pages which are being truncated.
5245 * This way we are sure that all the data written in the previous
5246 * transaction are already on disk (truncate waits for pages under
5247 * writeback).
5249 * Called with inode->i_mutex down.
5251 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5253 struct inode *inode = dentry->d_inode;
5254 int error, rc = 0;
5255 int orphan = 0;
5256 const unsigned int ia_valid = attr->ia_valid;
5258 error = inode_change_ok(inode, attr);
5259 if (error)
5260 return error;
5262 if (is_quota_modification(inode, attr))
5263 dquot_initialize(inode);
5264 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5265 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5266 handle_t *handle;
5268 /* (user+group)*(old+new) structure, inode write (sb,
5269 * inode block, ? - but truncate inode update has it) */
5270 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5271 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5272 if (IS_ERR(handle)) {
5273 error = PTR_ERR(handle);
5274 goto err_out;
5276 error = dquot_transfer(inode, attr);
5277 if (error) {
5278 ext4_journal_stop(handle);
5279 return error;
5281 /* Update corresponding info in inode so that everything is in
5282 * one transaction */
5283 if (attr->ia_valid & ATTR_UID)
5284 inode->i_uid = attr->ia_uid;
5285 if (attr->ia_valid & ATTR_GID)
5286 inode->i_gid = attr->ia_gid;
5287 error = ext4_mark_inode_dirty(handle, inode);
5288 ext4_journal_stop(handle);
5291 if (attr->ia_valid & ATTR_SIZE) {
5292 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5293 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5295 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5296 return -EFBIG;
5300 if (S_ISREG(inode->i_mode) &&
5301 attr->ia_valid & ATTR_SIZE &&
5302 (attr->ia_size < inode->i_size ||
5303 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5304 handle_t *handle;
5306 handle = ext4_journal_start(inode, 3);
5307 if (IS_ERR(handle)) {
5308 error = PTR_ERR(handle);
5309 goto err_out;
5311 if (ext4_handle_valid(handle)) {
5312 error = ext4_orphan_add(handle, inode);
5313 orphan = 1;
5315 EXT4_I(inode)->i_disksize = attr->ia_size;
5316 rc = ext4_mark_inode_dirty(handle, inode);
5317 if (!error)
5318 error = rc;
5319 ext4_journal_stop(handle);
5321 if (ext4_should_order_data(inode)) {
5322 error = ext4_begin_ordered_truncate(inode,
5323 attr->ia_size);
5324 if (error) {
5325 /* Do as much error cleanup as possible */
5326 handle = ext4_journal_start(inode, 3);
5327 if (IS_ERR(handle)) {
5328 ext4_orphan_del(NULL, inode);
5329 goto err_out;
5331 ext4_orphan_del(handle, inode);
5332 orphan = 0;
5333 ext4_journal_stop(handle);
5334 goto err_out;
5337 /* ext4_truncate will clear the flag */
5338 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5339 ext4_truncate(inode);
5342 if ((attr->ia_valid & ATTR_SIZE) &&
5343 attr->ia_size != i_size_read(inode))
5344 rc = vmtruncate(inode, attr->ia_size);
5346 if (!rc) {
5347 setattr_copy(inode, attr);
5348 mark_inode_dirty(inode);
5352 * If the call to ext4_truncate failed to get a transaction handle at
5353 * all, we need to clean up the in-core orphan list manually.
5355 if (orphan && inode->i_nlink)
5356 ext4_orphan_del(NULL, inode);
5358 if (!rc && (ia_valid & ATTR_MODE))
5359 rc = ext4_acl_chmod(inode);
5361 err_out:
5362 ext4_std_error(inode->i_sb, error);
5363 if (!error)
5364 error = rc;
5365 return error;
5368 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5369 struct kstat *stat)
5371 struct inode *inode;
5372 unsigned long delalloc_blocks;
5374 inode = dentry->d_inode;
5375 generic_fillattr(inode, stat);
5378 * We can't update i_blocks if the block allocation is delayed
5379 * otherwise in the case of system crash before the real block
5380 * allocation is done, we will have i_blocks inconsistent with
5381 * on-disk file blocks.
5382 * We always keep i_blocks updated together with real
5383 * allocation. But to not confuse with user, stat
5384 * will return the blocks that include the delayed allocation
5385 * blocks for this file.
5387 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5389 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5390 return 0;
5393 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5394 int chunk)
5396 int indirects;
5398 /* if nrblocks are contiguous */
5399 if (chunk) {
5401 * With N contiguous data blocks, it need at most
5402 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5403 * 2 dindirect blocks
5404 * 1 tindirect block
5406 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5407 return indirects + 3;
5410 * if nrblocks are not contiguous, worse case, each block touch
5411 * a indirect block, and each indirect block touch a double indirect
5412 * block, plus a triple indirect block
5414 indirects = nrblocks * 2 + 1;
5415 return indirects;
5418 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5420 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5421 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5422 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5426 * Account for index blocks, block groups bitmaps and block group
5427 * descriptor blocks if modify datablocks and index blocks
5428 * worse case, the indexs blocks spread over different block groups
5430 * If datablocks are discontiguous, they are possible to spread over
5431 * different block groups too. If they are contiuguous, with flexbg,
5432 * they could still across block group boundary.
5434 * Also account for superblock, inode, quota and xattr blocks
5436 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5438 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5439 int gdpblocks;
5440 int idxblocks;
5441 int ret = 0;
5444 * How many index blocks need to touch to modify nrblocks?
5445 * The "Chunk" flag indicating whether the nrblocks is
5446 * physically contiguous on disk
5448 * For Direct IO and fallocate, they calls get_block to allocate
5449 * one single extent at a time, so they could set the "Chunk" flag
5451 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5453 ret = idxblocks;
5456 * Now let's see how many group bitmaps and group descriptors need
5457 * to account
5459 groups = idxblocks;
5460 if (chunk)
5461 groups += 1;
5462 else
5463 groups += nrblocks;
5465 gdpblocks = groups;
5466 if (groups > ngroups)
5467 groups = ngroups;
5468 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5469 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5471 /* bitmaps and block group descriptor blocks */
5472 ret += groups + gdpblocks;
5474 /* Blocks for super block, inode, quota and xattr blocks */
5475 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5477 return ret;
5481 * Calculate the total number of credits to reserve to fit
5482 * the modification of a single pages into a single transaction,
5483 * which may include multiple chunks of block allocations.
5485 * This could be called via ext4_write_begin()
5487 * We need to consider the worse case, when
5488 * one new block per extent.
5490 int ext4_writepage_trans_blocks(struct inode *inode)
5492 int bpp = ext4_journal_blocks_per_page(inode);
5493 int ret;
5495 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5497 /* Account for data blocks for journalled mode */
5498 if (ext4_should_journal_data(inode))
5499 ret += bpp;
5500 return ret;
5504 * Calculate the journal credits for a chunk of data modification.
5506 * This is called from DIO, fallocate or whoever calling
5507 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5509 * journal buffers for data blocks are not included here, as DIO
5510 * and fallocate do no need to journal data buffers.
5512 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5514 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5518 * The caller must have previously called ext4_reserve_inode_write().
5519 * Give this, we know that the caller already has write access to iloc->bh.
5521 int ext4_mark_iloc_dirty(handle_t *handle,
5522 struct inode *inode, struct ext4_iloc *iloc)
5524 int err = 0;
5526 if (test_opt(inode->i_sb, I_VERSION))
5527 inode_inc_iversion(inode);
5529 /* the do_update_inode consumes one bh->b_count */
5530 get_bh(iloc->bh);
5532 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5533 err = ext4_do_update_inode(handle, inode, iloc);
5534 put_bh(iloc->bh);
5535 return err;
5539 * On success, We end up with an outstanding reference count against
5540 * iloc->bh. This _must_ be cleaned up later.
5544 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5545 struct ext4_iloc *iloc)
5547 int err;
5549 err = ext4_get_inode_loc(inode, iloc);
5550 if (!err) {
5551 BUFFER_TRACE(iloc->bh, "get_write_access");
5552 err = ext4_journal_get_write_access(handle, iloc->bh);
5553 if (err) {
5554 brelse(iloc->bh);
5555 iloc->bh = NULL;
5558 ext4_std_error(inode->i_sb, err);
5559 return err;
5563 * Expand an inode by new_extra_isize bytes.
5564 * Returns 0 on success or negative error number on failure.
5566 static int ext4_expand_extra_isize(struct inode *inode,
5567 unsigned int new_extra_isize,
5568 struct ext4_iloc iloc,
5569 handle_t *handle)
5571 struct ext4_inode *raw_inode;
5572 struct ext4_xattr_ibody_header *header;
5574 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5575 return 0;
5577 raw_inode = ext4_raw_inode(&iloc);
5579 header = IHDR(inode, raw_inode);
5581 /* No extended attributes present */
5582 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5583 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5584 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5585 new_extra_isize);
5586 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5587 return 0;
5590 /* try to expand with EAs present */
5591 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5592 raw_inode, handle);
5596 * What we do here is to mark the in-core inode as clean with respect to inode
5597 * dirtiness (it may still be data-dirty).
5598 * This means that the in-core inode may be reaped by prune_icache
5599 * without having to perform any I/O. This is a very good thing,
5600 * because *any* task may call prune_icache - even ones which
5601 * have a transaction open against a different journal.
5603 * Is this cheating? Not really. Sure, we haven't written the
5604 * inode out, but prune_icache isn't a user-visible syncing function.
5605 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5606 * we start and wait on commits.
5608 * Is this efficient/effective? Well, we're being nice to the system
5609 * by cleaning up our inodes proactively so they can be reaped
5610 * without I/O. But we are potentially leaving up to five seconds'
5611 * worth of inodes floating about which prune_icache wants us to
5612 * write out. One way to fix that would be to get prune_icache()
5613 * to do a write_super() to free up some memory. It has the desired
5614 * effect.
5616 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5618 struct ext4_iloc iloc;
5619 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5620 static unsigned int mnt_count;
5621 int err, ret;
5623 might_sleep();
5624 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5625 err = ext4_reserve_inode_write(handle, inode, &iloc);
5626 if (ext4_handle_valid(handle) &&
5627 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5628 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5630 * We need extra buffer credits since we may write into EA block
5631 * with this same handle. If journal_extend fails, then it will
5632 * only result in a minor loss of functionality for that inode.
5633 * If this is felt to be critical, then e2fsck should be run to
5634 * force a large enough s_min_extra_isize.
5636 if ((jbd2_journal_extend(handle,
5637 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5638 ret = ext4_expand_extra_isize(inode,
5639 sbi->s_want_extra_isize,
5640 iloc, handle);
5641 if (ret) {
5642 ext4_set_inode_state(inode,
5643 EXT4_STATE_NO_EXPAND);
5644 if (mnt_count !=
5645 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5646 ext4_warning(inode->i_sb,
5647 "Unable to expand inode %lu. Delete"
5648 " some EAs or run e2fsck.",
5649 inode->i_ino);
5650 mnt_count =
5651 le16_to_cpu(sbi->s_es->s_mnt_count);
5656 if (!err)
5657 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5658 return err;
5662 * ext4_dirty_inode() is called from __mark_inode_dirty()
5664 * We're really interested in the case where a file is being extended.
5665 * i_size has been changed by generic_commit_write() and we thus need
5666 * to include the updated inode in the current transaction.
5668 * Also, dquot_alloc_block() will always dirty the inode when blocks
5669 * are allocated to the file.
5671 * If the inode is marked synchronous, we don't honour that here - doing
5672 * so would cause a commit on atime updates, which we don't bother doing.
5673 * We handle synchronous inodes at the highest possible level.
5675 void ext4_dirty_inode(struct inode *inode)
5677 handle_t *handle;
5679 handle = ext4_journal_start(inode, 2);
5680 if (IS_ERR(handle))
5681 goto out;
5683 ext4_mark_inode_dirty(handle, inode);
5685 ext4_journal_stop(handle);
5686 out:
5687 return;
5690 #if 0
5692 * Bind an inode's backing buffer_head into this transaction, to prevent
5693 * it from being flushed to disk early. Unlike
5694 * ext4_reserve_inode_write, this leaves behind no bh reference and
5695 * returns no iloc structure, so the caller needs to repeat the iloc
5696 * lookup to mark the inode dirty later.
5698 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5700 struct ext4_iloc iloc;
5702 int err = 0;
5703 if (handle) {
5704 err = ext4_get_inode_loc(inode, &iloc);
5705 if (!err) {
5706 BUFFER_TRACE(iloc.bh, "get_write_access");
5707 err = jbd2_journal_get_write_access(handle, iloc.bh);
5708 if (!err)
5709 err = ext4_handle_dirty_metadata(handle,
5710 NULL,
5711 iloc.bh);
5712 brelse(iloc.bh);
5715 ext4_std_error(inode->i_sb, err);
5716 return err;
5718 #endif
5720 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5722 journal_t *journal;
5723 handle_t *handle;
5724 int err;
5727 * We have to be very careful here: changing a data block's
5728 * journaling status dynamically is dangerous. If we write a
5729 * data block to the journal, change the status and then delete
5730 * that block, we risk forgetting to revoke the old log record
5731 * from the journal and so a subsequent replay can corrupt data.
5732 * So, first we make sure that the journal is empty and that
5733 * nobody is changing anything.
5736 journal = EXT4_JOURNAL(inode);
5737 if (!journal)
5738 return 0;
5739 if (is_journal_aborted(journal))
5740 return -EROFS;
5742 jbd2_journal_lock_updates(journal);
5743 jbd2_journal_flush(journal);
5746 * OK, there are no updates running now, and all cached data is
5747 * synced to disk. We are now in a completely consistent state
5748 * which doesn't have anything in the journal, and we know that
5749 * no filesystem updates are running, so it is safe to modify
5750 * the inode's in-core data-journaling state flag now.
5753 if (val)
5754 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5755 else
5756 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5757 ext4_set_aops(inode);
5759 jbd2_journal_unlock_updates(journal);
5761 /* Finally we can mark the inode as dirty. */
5763 handle = ext4_journal_start(inode, 1);
5764 if (IS_ERR(handle))
5765 return PTR_ERR(handle);
5767 err = ext4_mark_inode_dirty(handle, inode);
5768 ext4_handle_sync(handle);
5769 ext4_journal_stop(handle);
5770 ext4_std_error(inode->i_sb, err);
5772 return err;
5775 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5777 return !buffer_mapped(bh);
5780 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5782 struct page *page = vmf->page;
5783 loff_t size;
5784 unsigned long len;
5785 int ret = -EINVAL;
5786 void *fsdata;
5787 struct file *file = vma->vm_file;
5788 struct inode *inode = file->f_path.dentry->d_inode;
5789 struct address_space *mapping = inode->i_mapping;
5792 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5793 * get i_mutex because we are already holding mmap_sem.
5795 down_read(&inode->i_alloc_sem);
5796 size = i_size_read(inode);
5797 if (page->mapping != mapping || size <= page_offset(page)
5798 || !PageUptodate(page)) {
5799 /* page got truncated from under us? */
5800 goto out_unlock;
5802 ret = 0;
5803 if (PageMappedToDisk(page))
5804 goto out_unlock;
5806 if (page->index == size >> PAGE_CACHE_SHIFT)
5807 len = size & ~PAGE_CACHE_MASK;
5808 else
5809 len = PAGE_CACHE_SIZE;
5811 lock_page(page);
5813 * return if we have all the buffers mapped. This avoid
5814 * the need to call write_begin/write_end which does a
5815 * journal_start/journal_stop which can block and take
5816 * long time
5818 if (page_has_buffers(page)) {
5819 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5820 ext4_bh_unmapped)) {
5821 unlock_page(page);
5822 goto out_unlock;
5825 unlock_page(page);
5827 * OK, we need to fill the hole... Do write_begin write_end
5828 * to do block allocation/reservation.We are not holding
5829 * inode.i__mutex here. That allow * parallel write_begin,
5830 * write_end call. lock_page prevent this from happening
5831 * on the same page though
5833 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5834 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5835 if (ret < 0)
5836 goto out_unlock;
5837 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5838 len, len, page, fsdata);
5839 if (ret < 0)
5840 goto out_unlock;
5841 ret = 0;
5842 out_unlock:
5843 if (ret)
5844 ret = VM_FAULT_SIGBUS;
5845 up_read(&inode->i_alloc_sem);
5846 return ret;