[SCSI] scsi_dh_rdac: Add two new SUN devices to rdac_dev_list
[linux-2.6/linux-mips.git] / drivers / misc / eeprom / at24.c
blob559b0b3c16c379584be01a08db209e2437549a04
1 /*
2 * at24.c - handle most I2C EEPROMs
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c/at24.h>
27 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
28 * Differences between different vendor product lines (like Atmel AT24C or
29 * MicroChip 24LC, etc) won't much matter for typical read/write access.
30 * There are also I2C RAM chips, likewise interchangeable. One example
31 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
33 * However, misconfiguration can lose data. "Set 16-bit memory address"
34 * to a part with 8-bit addressing will overwrite data. Writing with too
35 * big a page size also loses data. And it's not safe to assume that the
36 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
37 * uses 0x51, for just one example.
39 * Accordingly, explicit board-specific configuration data should be used
40 * in almost all cases. (One partial exception is an SMBus used to access
41 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
43 * So this driver uses "new style" I2C driver binding, expecting to be
44 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
45 * similar kernel-resident tables; or, configuration data coming from
46 * a bootloader.
48 * Other than binding model, current differences from "eeprom" driver are
49 * that this one handles write access and isn't restricted to 24c02 devices.
50 * It also handles larger devices (32 kbit and up) with two-byte addresses,
51 * which won't work on pure SMBus systems.
54 struct at24_data {
55 struct at24_platform_data chip;
56 struct memory_accessor macc;
57 int use_smbus;
60 * Lock protects against activities from other Linux tasks,
61 * but not from changes by other I2C masters.
63 struct mutex lock;
64 struct bin_attribute bin;
66 u8 *writebuf;
67 unsigned write_max;
68 unsigned num_addresses;
71 * Some chips tie up multiple I2C addresses; dummy devices reserve
72 * them for us, and we'll use them with SMBus calls.
74 struct i2c_client *client[];
78 * This parameter is to help this driver avoid blocking other drivers out
79 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
80 * clock, one 256 byte read takes about 1/43 second which is excessive;
81 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
82 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
84 * This value is forced to be a power of two so that writes align on pages.
86 static unsigned io_limit = 128;
87 module_param(io_limit, uint, 0);
88 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
91 * Specs often allow 5 msec for a page write, sometimes 20 msec;
92 * it's important to recover from write timeouts.
94 static unsigned write_timeout = 25;
95 module_param(write_timeout, uint, 0);
96 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
98 #define AT24_SIZE_BYTELEN 5
99 #define AT24_SIZE_FLAGS 8
101 #define AT24_BITMASK(x) (BIT(x) - 1)
103 /* create non-zero magic value for given eeprom parameters */
104 #define AT24_DEVICE_MAGIC(_len, _flags) \
105 ((1 << AT24_SIZE_FLAGS | (_flags)) \
106 << AT24_SIZE_BYTELEN | ilog2(_len))
108 static const struct i2c_device_id at24_ids[] = {
109 /* needs 8 addresses as A0-A2 are ignored */
110 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
111 /* old variants can't be handled with this generic entry! */
112 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
113 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
114 /* spd is a 24c02 in memory DIMMs */
115 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
116 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
117 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
118 /* 24rf08 quirk is handled at i2c-core */
119 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
120 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
121 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
122 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
123 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
124 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
125 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
126 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
127 { "at24", 0 },
128 { /* END OF LIST */ }
130 MODULE_DEVICE_TABLE(i2c, at24_ids);
132 /*-------------------------------------------------------------------------*/
135 * This routine supports chips which consume multiple I2C addresses. It
136 * computes the addressing information to be used for a given r/w request.
137 * Assumes that sanity checks for offset happened at sysfs-layer.
139 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
140 unsigned *offset)
142 unsigned i;
144 if (at24->chip.flags & AT24_FLAG_ADDR16) {
145 i = *offset >> 16;
146 *offset &= 0xffff;
147 } else {
148 i = *offset >> 8;
149 *offset &= 0xff;
152 return at24->client[i];
155 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
156 unsigned offset, size_t count)
158 struct i2c_msg msg[2];
159 u8 msgbuf[2];
160 struct i2c_client *client;
161 unsigned long timeout, read_time;
162 int status, i;
164 memset(msg, 0, sizeof(msg));
167 * REVISIT some multi-address chips don't rollover page reads to
168 * the next slave address, so we may need to truncate the count.
169 * Those chips might need another quirk flag.
171 * If the real hardware used four adjacent 24c02 chips and that
172 * were misconfigured as one 24c08, that would be a similar effect:
173 * one "eeprom" file not four, but larger reads would fail when
174 * they crossed certain pages.
178 * Slave address and byte offset derive from the offset. Always
179 * set the byte address; on a multi-master board, another master
180 * may have changed the chip's "current" address pointer.
182 client = at24_translate_offset(at24, &offset);
184 if (count > io_limit)
185 count = io_limit;
187 switch (at24->use_smbus) {
188 case I2C_SMBUS_I2C_BLOCK_DATA:
189 /* Smaller eeproms can work given some SMBus extension calls */
190 if (count > I2C_SMBUS_BLOCK_MAX)
191 count = I2C_SMBUS_BLOCK_MAX;
192 break;
193 case I2C_SMBUS_WORD_DATA:
194 count = 2;
195 break;
196 case I2C_SMBUS_BYTE_DATA:
197 count = 1;
198 break;
199 default:
201 * When we have a better choice than SMBus calls, use a
202 * combined I2C message. Write address; then read up to
203 * io_limit data bytes. Note that read page rollover helps us
204 * here (unlike writes). msgbuf is u8 and will cast to our
205 * needs.
207 i = 0;
208 if (at24->chip.flags & AT24_FLAG_ADDR16)
209 msgbuf[i++] = offset >> 8;
210 msgbuf[i++] = offset;
212 msg[0].addr = client->addr;
213 msg[0].buf = msgbuf;
214 msg[0].len = i;
216 msg[1].addr = client->addr;
217 msg[1].flags = I2C_M_RD;
218 msg[1].buf = buf;
219 msg[1].len = count;
223 * Reads fail if the previous write didn't complete yet. We may
224 * loop a few times until this one succeeds, waiting at least
225 * long enough for one entire page write to work.
227 timeout = jiffies + msecs_to_jiffies(write_timeout);
228 do {
229 read_time = jiffies;
230 switch (at24->use_smbus) {
231 case I2C_SMBUS_I2C_BLOCK_DATA:
232 status = i2c_smbus_read_i2c_block_data(client, offset,
233 count, buf);
234 break;
235 case I2C_SMBUS_WORD_DATA:
236 status = i2c_smbus_read_word_data(client, offset);
237 if (status >= 0) {
238 buf[0] = status & 0xff;
239 buf[1] = status >> 8;
240 status = count;
242 break;
243 case I2C_SMBUS_BYTE_DATA:
244 status = i2c_smbus_read_byte_data(client, offset);
245 if (status >= 0) {
246 buf[0] = status;
247 status = count;
249 break;
250 default:
251 status = i2c_transfer(client->adapter, msg, 2);
252 if (status == 2)
253 status = count;
255 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
256 count, offset, status, jiffies);
258 if (status == count)
259 return count;
261 /* REVISIT: at HZ=100, this is sloooow */
262 msleep(1);
263 } while (time_before(read_time, timeout));
265 return -ETIMEDOUT;
268 static ssize_t at24_read(struct at24_data *at24,
269 char *buf, loff_t off, size_t count)
271 ssize_t retval = 0;
273 if (unlikely(!count))
274 return count;
277 * Read data from chip, protecting against concurrent updates
278 * from this host, but not from other I2C masters.
280 mutex_lock(&at24->lock);
282 while (count) {
283 ssize_t status;
285 status = at24_eeprom_read(at24, buf, off, count);
286 if (status <= 0) {
287 if (retval == 0)
288 retval = status;
289 break;
291 buf += status;
292 off += status;
293 count -= status;
294 retval += status;
297 mutex_unlock(&at24->lock);
299 return retval;
302 static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
303 struct bin_attribute *attr,
304 char *buf, loff_t off, size_t count)
306 struct at24_data *at24;
308 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
309 return at24_read(at24, buf, off, count);
314 * Note that if the hardware write-protect pin is pulled high, the whole
315 * chip is normally write protected. But there are plenty of product
316 * variants here, including OTP fuses and partial chip protect.
318 * We only use page mode writes; the alternative is sloooow. This routine
319 * writes at most one page.
321 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
322 unsigned offset, size_t count)
324 struct i2c_client *client;
325 struct i2c_msg msg;
326 ssize_t status;
327 unsigned long timeout, write_time;
328 unsigned next_page;
330 /* Get corresponding I2C address and adjust offset */
331 client = at24_translate_offset(at24, &offset);
333 /* write_max is at most a page */
334 if (count > at24->write_max)
335 count = at24->write_max;
337 /* Never roll over backwards, to the start of this page */
338 next_page = roundup(offset + 1, at24->chip.page_size);
339 if (offset + count > next_page)
340 count = next_page - offset;
342 /* If we'll use I2C calls for I/O, set up the message */
343 if (!at24->use_smbus) {
344 int i = 0;
346 msg.addr = client->addr;
347 msg.flags = 0;
349 /* msg.buf is u8 and casts will mask the values */
350 msg.buf = at24->writebuf;
351 if (at24->chip.flags & AT24_FLAG_ADDR16)
352 msg.buf[i++] = offset >> 8;
354 msg.buf[i++] = offset;
355 memcpy(&msg.buf[i], buf, count);
356 msg.len = i + count;
360 * Writes fail if the previous one didn't complete yet. We may
361 * loop a few times until this one succeeds, waiting at least
362 * long enough for one entire page write to work.
364 timeout = jiffies + msecs_to_jiffies(write_timeout);
365 do {
366 write_time = jiffies;
367 if (at24->use_smbus) {
368 status = i2c_smbus_write_i2c_block_data(client,
369 offset, count, buf);
370 if (status == 0)
371 status = count;
372 } else {
373 status = i2c_transfer(client->adapter, &msg, 1);
374 if (status == 1)
375 status = count;
377 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
378 count, offset, status, jiffies);
380 if (status == count)
381 return count;
383 /* REVISIT: at HZ=100, this is sloooow */
384 msleep(1);
385 } while (time_before(write_time, timeout));
387 return -ETIMEDOUT;
390 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
391 size_t count)
393 ssize_t retval = 0;
395 if (unlikely(!count))
396 return count;
399 * Write data to chip, protecting against concurrent updates
400 * from this host, but not from other I2C masters.
402 mutex_lock(&at24->lock);
404 while (count) {
405 ssize_t status;
407 status = at24_eeprom_write(at24, buf, off, count);
408 if (status <= 0) {
409 if (retval == 0)
410 retval = status;
411 break;
413 buf += status;
414 off += status;
415 count -= status;
416 retval += status;
419 mutex_unlock(&at24->lock);
421 return retval;
424 static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
425 struct bin_attribute *attr,
426 char *buf, loff_t off, size_t count)
428 struct at24_data *at24;
430 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
431 return at24_write(at24, buf, off, count);
434 /*-------------------------------------------------------------------------*/
437 * This lets other kernel code access the eeprom data. For example, it
438 * might hold a board's Ethernet address, or board-specific calibration
439 * data generated on the manufacturing floor.
442 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
443 off_t offset, size_t count)
445 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
447 return at24_read(at24, buf, offset, count);
450 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
451 off_t offset, size_t count)
453 struct at24_data *at24 = container_of(macc, struct at24_data, macc);
455 return at24_write(at24, buf, offset, count);
458 /*-------------------------------------------------------------------------*/
460 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
462 struct at24_platform_data chip;
463 bool writable;
464 int use_smbus = 0;
465 struct at24_data *at24;
466 int err;
467 unsigned i, num_addresses;
468 kernel_ulong_t magic;
470 if (client->dev.platform_data) {
471 chip = *(struct at24_platform_data *)client->dev.platform_data;
472 } else {
473 if (!id->driver_data) {
474 err = -ENODEV;
475 goto err_out;
477 magic = id->driver_data;
478 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
479 magic >>= AT24_SIZE_BYTELEN;
480 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
482 * This is slow, but we can't know all eeproms, so we better
483 * play safe. Specifying custom eeprom-types via platform_data
484 * is recommended anyhow.
486 chip.page_size = 1;
488 chip.setup = NULL;
489 chip.context = NULL;
492 if (!is_power_of_2(chip.byte_len))
493 dev_warn(&client->dev,
494 "byte_len looks suspicious (no power of 2)!\n");
495 if (!is_power_of_2(chip.page_size))
496 dev_warn(&client->dev,
497 "page_size looks suspicious (no power of 2)!\n");
499 /* Use I2C operations unless we're stuck with SMBus extensions. */
500 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
501 if (chip.flags & AT24_FLAG_ADDR16) {
502 err = -EPFNOSUPPORT;
503 goto err_out;
505 if (i2c_check_functionality(client->adapter,
506 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
507 use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
508 } else if (i2c_check_functionality(client->adapter,
509 I2C_FUNC_SMBUS_READ_WORD_DATA)) {
510 use_smbus = I2C_SMBUS_WORD_DATA;
511 } else if (i2c_check_functionality(client->adapter,
512 I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
513 use_smbus = I2C_SMBUS_BYTE_DATA;
514 } else {
515 err = -EPFNOSUPPORT;
516 goto err_out;
520 if (chip.flags & AT24_FLAG_TAKE8ADDR)
521 num_addresses = 8;
522 else
523 num_addresses = DIV_ROUND_UP(chip.byte_len,
524 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
526 at24 = kzalloc(sizeof(struct at24_data) +
527 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
528 if (!at24) {
529 err = -ENOMEM;
530 goto err_out;
533 mutex_init(&at24->lock);
534 at24->use_smbus = use_smbus;
535 at24->chip = chip;
536 at24->num_addresses = num_addresses;
539 * Export the EEPROM bytes through sysfs, since that's convenient.
540 * By default, only root should see the data (maybe passwords etc)
542 sysfs_bin_attr_init(&at24->bin);
543 at24->bin.attr.name = "eeprom";
544 at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
545 at24->bin.read = at24_bin_read;
546 at24->bin.size = chip.byte_len;
548 at24->macc.read = at24_macc_read;
550 writable = !(chip.flags & AT24_FLAG_READONLY);
551 if (writable) {
552 if (!use_smbus || i2c_check_functionality(client->adapter,
553 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
555 unsigned write_max = chip.page_size;
557 at24->macc.write = at24_macc_write;
559 at24->bin.write = at24_bin_write;
560 at24->bin.attr.mode |= S_IWUSR;
562 if (write_max > io_limit)
563 write_max = io_limit;
564 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
565 write_max = I2C_SMBUS_BLOCK_MAX;
566 at24->write_max = write_max;
568 /* buffer (data + address at the beginning) */
569 at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
570 if (!at24->writebuf) {
571 err = -ENOMEM;
572 goto err_struct;
574 } else {
575 dev_warn(&client->dev,
576 "cannot write due to controller restrictions.");
580 at24->client[0] = client;
582 /* use dummy devices for multiple-address chips */
583 for (i = 1; i < num_addresses; i++) {
584 at24->client[i] = i2c_new_dummy(client->adapter,
585 client->addr + i);
586 if (!at24->client[i]) {
587 dev_err(&client->dev, "address 0x%02x unavailable\n",
588 client->addr + i);
589 err = -EADDRINUSE;
590 goto err_clients;
594 err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
595 if (err)
596 goto err_clients;
598 i2c_set_clientdata(client, at24);
600 dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
601 at24->bin.size, client->name,
602 writable ? "(writable)" : "(read-only)");
603 if (use_smbus == I2C_SMBUS_WORD_DATA ||
604 use_smbus == I2C_SMBUS_BYTE_DATA) {
605 dev_notice(&client->dev, "Falling back to %s reads, "
606 "performance will suffer\n", use_smbus ==
607 I2C_SMBUS_WORD_DATA ? "word" : "byte");
609 dev_dbg(&client->dev,
610 "page_size %d, num_addresses %d, write_max %d, use_smbus %d\n",
611 chip.page_size, num_addresses,
612 at24->write_max, use_smbus);
614 /* export data to kernel code */
615 if (chip.setup)
616 chip.setup(&at24->macc, chip.context);
618 return 0;
620 err_clients:
621 for (i = 1; i < num_addresses; i++)
622 if (at24->client[i])
623 i2c_unregister_device(at24->client[i]);
625 kfree(at24->writebuf);
626 err_struct:
627 kfree(at24);
628 err_out:
629 dev_dbg(&client->dev, "probe error %d\n", err);
630 return err;
633 static int __devexit at24_remove(struct i2c_client *client)
635 struct at24_data *at24;
636 int i;
638 at24 = i2c_get_clientdata(client);
639 sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
641 for (i = 1; i < at24->num_addresses; i++)
642 i2c_unregister_device(at24->client[i]);
644 kfree(at24->writebuf);
645 kfree(at24);
646 return 0;
649 /*-------------------------------------------------------------------------*/
651 static struct i2c_driver at24_driver = {
652 .driver = {
653 .name = "at24",
654 .owner = THIS_MODULE,
656 .probe = at24_probe,
657 .remove = __devexit_p(at24_remove),
658 .id_table = at24_ids,
661 static int __init at24_init(void)
663 io_limit = rounddown_pow_of_two(io_limit);
664 return i2c_add_driver(&at24_driver);
666 module_init(at24_init);
668 static void __exit at24_exit(void)
670 i2c_del_driver(&at24_driver);
672 module_exit(at24_exit);
674 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
675 MODULE_AUTHOR("David Brownell and Wolfram Sang");
676 MODULE_LICENSE("GPL");