2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
26 #include <linux/slab.h>
28 #include <mach/edma.h>
30 /* Offsets matching "struct edmacc_param" */
33 #define PARM_A_B_CNT 0x08
35 #define PARM_SRC_DST_BIDX 0x10
36 #define PARM_LINK_BCNTRLD 0x14
37 #define PARM_SRC_DST_CIDX 0x18
38 #define PARM_CCNT 0x1c
40 #define PARM_SIZE 0x20
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER 0x00 /* 64 bits */
44 #define SH_ECR 0x08 /* 64 bits */
45 #define SH_ESR 0x10 /* 64 bits */
46 #define SH_CER 0x18 /* 64 bits */
47 #define SH_EER 0x20 /* 64 bits */
48 #define SH_EECR 0x28 /* 64 bits */
49 #define SH_EESR 0x30 /* 64 bits */
50 #define SH_SER 0x38 /* 64 bits */
51 #define SH_SECR 0x40 /* 64 bits */
52 #define SH_IER 0x50 /* 64 bits */
53 #define SH_IECR 0x58 /* 64 bits */
54 #define SH_IESR 0x60 /* 64 bits */
55 #define SH_IPR 0x68 /* 64 bits */
56 #define SH_ICR 0x70 /* 64 bits */
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV 0x0000
68 #define EDMA_CCCFG 0x0004
69 #define EDMA_QCHMAP 0x0200 /* 8 registers */
70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM 0x0260
72 #define EDMA_QUETCMAP 0x0280
73 #define EDMA_QUEPRI 0x0284
74 #define EDMA_EMR 0x0300 /* 64 bits */
75 #define EDMA_EMCR 0x0308 /* 64 bits */
76 #define EDMA_QEMR 0x0310
77 #define EDMA_QEMCR 0x0314
78 #define EDMA_CCERR 0x0318
79 #define EDMA_CCERRCLR 0x031c
80 #define EDMA_EEVAL 0x0320
81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82 #define EDMA_QRAE 0x0380 /* 4 registers */
83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84 #define EDMA_QSTAT 0x0600 /* 2 registers */
85 #define EDMA_QWMTHRA 0x0620
86 #define EDMA_QWMTHRB 0x0624
87 #define EDMA_CCSTAT 0x0640
89 #define EDMA_M 0x1000 /* global channel registers */
90 #define EDMA_ECR 0x1008
91 #define EDMA_ECRH 0x100C
92 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93 #define EDMA_PARM 0x4000 /* 128 param entries */
95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
97 #define EDMA_DCHMAP 0x0100 /* 64 registers */
98 #define CHMAP_EXIST BIT(24)
100 #define EDMA_MAX_DMACH 64
101 #define EDMA_MAX_PARAMENTRY 512
102 #define EDMA_MAX_CC 2
105 /*****************************************************************************/
107 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
109 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
111 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
114 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
116 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
118 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
121 unsigned val
= edma_read(ctlr
, offset
);
124 edma_write(ctlr
, offset
, val
);
126 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
128 unsigned val
= edma_read(ctlr
, offset
);
130 edma_write(ctlr
, offset
, val
);
132 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
134 unsigned val
= edma_read(ctlr
, offset
);
136 edma_write(ctlr
, offset
, val
);
138 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
140 return edma_read(ctlr
, offset
+ (i
<< 2));
142 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
145 edma_write(ctlr
, offset
+ (i
<< 2), val
);
147 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
148 unsigned and, unsigned or)
150 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
152 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
154 edma_or(ctlr
, offset
+ (i
<< 2), or);
156 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
159 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
161 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
164 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
166 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
168 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
170 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
173 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
175 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
177 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
179 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
182 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
184 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
187 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
189 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
192 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
194 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
195 unsigned and, unsigned or)
197 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
199 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
202 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
204 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
207 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
210 /*****************************************************************************/
212 /* actual number of DMA channels and slots on this silicon */
214 /* how many dma resources of each type */
215 unsigned num_channels
;
220 enum dma_event_q default_queue
;
222 /* list of channels with no even trigger; terminated by "-1" */
225 /* The edma_inuse bit for each PaRAM slot is clear unless the
226 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
228 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
230 /* The edma_unused bit for each channel is clear unless
231 * it is not being used on this platform. It uses a bit
232 * of SOC-specific initialization code.
234 DECLARE_BITMAP(edma_unused
, EDMA_MAX_DMACH
);
236 unsigned irq_res_start
;
237 unsigned irq_res_end
;
239 struct dma_interrupt_data
{
240 void (*callback
)(unsigned channel
, unsigned short ch_status
,
243 } intr_data
[EDMA_MAX_DMACH
];
246 static struct edma
*edma_info
[EDMA_MAX_CC
];
247 static int arch_num_cc
;
249 /* dummy param set used to (re)initialize parameter RAM slots */
250 static const struct edmacc_param dummy_paramset
= {
251 .link_bcntrld
= 0xffff,
255 /*****************************************************************************/
257 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
258 enum dma_event_q queue_no
)
260 int bit
= (ch_no
& 0x7) * 4;
262 /* default to low priority queue */
263 if (queue_no
== EVENTQ_DEFAULT
)
264 queue_no
= edma_info
[ctlr
]->default_queue
;
267 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
268 ~(0x7 << bit
), queue_no
<< bit
);
271 static void __init
map_queue_tc(unsigned ctlr
, int queue_no
, int tc_no
)
273 int bit
= queue_no
* 4;
274 edma_modify(ctlr
, EDMA_QUETCMAP
, ~(0x7 << bit
), ((tc_no
& 0x7) << bit
));
277 static void __init
assign_priority_to_queue(unsigned ctlr
, int queue_no
,
280 int bit
= queue_no
* 4;
281 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
282 ((priority
& 0x7) << bit
));
286 * map_dmach_param - Maps channel number to param entry number
288 * This maps the dma channel number to param entry numberter. In
289 * other words using the DMA channel mapping registers a param entry
290 * can be mapped to any channel
292 * Callers are responsible for ensuring the channel mapping logic is
293 * included in that particular EDMA variant (Eg : dm646x)
296 static void __init
map_dmach_param(unsigned ctlr
)
299 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
300 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
304 setup_dma_interrupt(unsigned lch
,
305 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
310 ctlr
= EDMA_CTLR(lch
);
311 lch
= EDMA_CHAN_SLOT(lch
);
314 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
315 (1 << (lch
& 0x1f)));
318 edma_info
[ctlr
]->intr_data
[lch
].callback
= callback
;
319 edma_info
[ctlr
]->intr_data
[lch
].data
= data
;
322 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
323 (1 << (lch
& 0x1f)));
324 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
325 (1 << (lch
& 0x1f)));
329 static int irq2ctlr(int irq
)
331 if (irq
>= edma_info
[0]->irq_res_start
&&
332 irq
<= edma_info
[0]->irq_res_end
)
334 else if (irq
>= edma_info
[1]->irq_res_start
&&
335 irq
<= edma_info
[1]->irq_res_end
)
341 /******************************************************************************
343 * DMA interrupt handler
345 *****************************************************************************/
346 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
350 unsigned int cnt
= 0;
352 ctlr
= irq2ctlr(irq
);
354 dev_dbg(data
, "dma_irq_handler\n");
356 if ((edma_shadow0_read_array(ctlr
, SH_IPR
, 0) == 0)
357 && (edma_shadow0_read_array(ctlr
, SH_IPR
, 1) == 0))
362 if (edma_shadow0_read_array(ctlr
, SH_IPR
, 0))
364 else if (edma_shadow0_read_array(ctlr
, SH_IPR
, 1))
368 dev_dbg(data
, "IPR%d %08x\n", j
,
369 edma_shadow0_read_array(ctlr
, SH_IPR
, j
));
370 for (i
= 0; i
< 32; i
++) {
371 int k
= (j
<< 5) + i
;
372 if (edma_shadow0_read_array(ctlr
, SH_IPR
, j
) &
374 /* Clear the corresponding IPR bits */
375 edma_shadow0_write_array(ctlr
, SH_ICR
, j
,
377 if (edma_info
[ctlr
]->intr_data
[k
].callback
) {
378 edma_info
[ctlr
]->intr_data
[k
].callback(
380 edma_info
[ctlr
]->intr_data
[k
].
389 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
393 /******************************************************************************
395 * DMA error interrupt handler
397 *****************************************************************************/
398 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
402 unsigned int cnt
= 0;
404 ctlr
= irq2ctlr(irq
);
406 dev_dbg(data
, "dma_ccerr_handler\n");
408 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
409 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
410 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
411 (edma_read(ctlr
, EDMA_CCERR
) == 0))
416 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
418 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
421 dev_dbg(data
, "EMR%d %08x\n", j
,
422 edma_read_array(ctlr
, EDMA_EMR
, j
));
423 for (i
= 0; i
< 32; i
++) {
424 int k
= (j
<< 5) + i
;
425 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
427 /* Clear the corresponding EMR bits */
428 edma_write_array(ctlr
, EDMA_EMCR
, j
,
431 edma_shadow0_write_array(ctlr
, SH_SECR
,
433 if (edma_info
[ctlr
]->intr_data
[k
].
435 edma_info
[ctlr
]->intr_data
[k
].
438 edma_info
[ctlr
]->intr_data
443 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
444 dev_dbg(data
, "QEMR %02x\n",
445 edma_read(ctlr
, EDMA_QEMR
));
446 for (i
= 0; i
< 8; i
++) {
447 if (edma_read(ctlr
, EDMA_QEMR
) & (1 << i
)) {
448 /* Clear the corresponding IPR bits */
449 edma_write(ctlr
, EDMA_QEMCR
, 1 << i
);
450 edma_shadow0_write(ctlr
, SH_QSECR
,
453 /* NOTE: not reported!! */
456 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
457 dev_dbg(data
, "CCERR %08x\n",
458 edma_read(ctlr
, EDMA_CCERR
));
459 /* FIXME: CCERR.BIT(16) ignored! much better
460 * to just write CCERRCLR with CCERR value...
462 for (i
= 0; i
< 8; i
++) {
463 if (edma_read(ctlr
, EDMA_CCERR
) & (1 << i
)) {
464 /* Clear the corresponding IPR bits */
465 edma_write(ctlr
, EDMA_CCERRCLR
, 1 << i
);
467 /* NOTE: not reported!! */
471 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0)
472 && (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0)
473 && (edma_read(ctlr
, EDMA_QEMR
) == 0)
474 && (edma_read(ctlr
, EDMA_CCERR
) == 0)) {
481 edma_write(ctlr
, EDMA_EEVAL
, 1);
485 /******************************************************************************
487 * Transfer controller error interrupt handlers
489 *****************************************************************************/
491 #define tc_errs_handled false /* disabled as long as they're NOPs */
493 static irqreturn_t
dma_tc0err_handler(int irq
, void *data
)
495 dev_dbg(data
, "dma_tc0err_handler\n");
499 static irqreturn_t
dma_tc1err_handler(int irq
, void *data
)
501 dev_dbg(data
, "dma_tc1err_handler\n");
505 static int reserve_contiguous_slots(int ctlr
, unsigned int id
,
506 unsigned int num_slots
,
507 unsigned int start_slot
)
510 unsigned int count
= num_slots
;
511 int stop_slot
= start_slot
;
512 DECLARE_BITMAP(tmp_inuse
, EDMA_MAX_PARAMENTRY
);
514 for (i
= start_slot
; i
< edma_info
[ctlr
]->num_slots
; ++i
) {
515 j
= EDMA_CHAN_SLOT(i
);
516 if (!test_and_set_bit(j
, edma_info
[ctlr
]->edma_inuse
)) {
517 /* Record our current beginning slot */
518 if (count
== num_slots
)
522 set_bit(j
, tmp_inuse
);
527 clear_bit(j
, tmp_inuse
);
529 if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
) {
538 * We have to clear any bits that we set
539 * if we run out parameter RAM slots, i.e we do find a set
540 * of contiguous parameter RAM slots but do not find the exact number
541 * requested as we may reach the total number of parameter RAM slots
543 if (i
== edma_info
[ctlr
]->num_slots
)
546 for (j
= start_slot
; j
< stop_slot
; j
++)
547 if (test_bit(j
, tmp_inuse
))
548 clear_bit(j
, edma_info
[ctlr
]->edma_inuse
);
553 for (j
= i
- num_slots
+ 1; j
<= i
; ++j
)
554 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
555 &dummy_paramset
, PARM_SIZE
);
557 return EDMA_CTLR_CHAN(ctlr
, i
- num_slots
+ 1);
560 static int prepare_unused_channel_list(struct device
*dev
, void *data
)
562 struct platform_device
*pdev
= to_platform_device(dev
);
565 for (i
= 0; i
< pdev
->num_resources
; i
++) {
566 if ((pdev
->resource
[i
].flags
& IORESOURCE_DMA
) &&
567 (int)pdev
->resource
[i
].start
>= 0) {
568 ctlr
= EDMA_CTLR(pdev
->resource
[i
].start
);
569 clear_bit(EDMA_CHAN_SLOT(pdev
->resource
[i
].start
),
570 edma_info
[ctlr
]->edma_unused
);
577 /*-----------------------------------------------------------------------*/
579 static bool unused_chan_list_done
;
581 /* Resource alloc/free: dma channels, parameter RAM slots */
584 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
585 * @channel: specific channel to allocate; negative for "any unmapped channel"
586 * @callback: optional; to be issued on DMA completion or errors
587 * @data: passed to callback
588 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
589 * Controller (TC) executes requests using this channel. Use
590 * EVENTQ_DEFAULT unless you really need a high priority queue.
592 * This allocates a DMA channel and its associated parameter RAM slot.
593 * The parameter RAM is initialized to hold a dummy transfer.
595 * Normal use is to pass a specific channel number as @channel, to make
596 * use of hardware events mapped to that channel. When the channel will
597 * be used only for software triggering or event chaining, channels not
598 * mapped to hardware events (or mapped to unused events) are preferable.
600 * DMA transfers start from a channel using edma_start(), or by
601 * chaining. When the transfer described in that channel's parameter RAM
602 * slot completes, that slot's data may be reloaded through a link.
604 * DMA errors are only reported to the @callback associated with the
605 * channel driving that transfer, but transfer completion callbacks can
606 * be sent to another channel under control of the TCC field in
607 * the option word of the transfer's parameter RAM set. Drivers must not
608 * use DMA transfer completion callbacks for channels they did not allocate.
609 * (The same applies to TCC codes used in transfer chaining.)
611 * Returns the number of the channel, else negative errno.
613 int edma_alloc_channel(int channel
,
614 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
616 enum dma_event_q eventq_no
)
618 unsigned i
, done
= 0, ctlr
= 0;
621 if (!unused_chan_list_done
) {
623 * Scan all the platform devices to find out the EDMA channels
624 * used and clear them in the unused list, making the rest
625 * available for ARM usage.
627 ret
= bus_for_each_dev(&platform_bus_type
, NULL
, NULL
,
628 prepare_unused_channel_list
);
632 unused_chan_list_done
= true;
636 ctlr
= EDMA_CTLR(channel
);
637 channel
= EDMA_CHAN_SLOT(channel
);
641 for (i
= 0; i
< arch_num_cc
; i
++) {
644 channel
= find_next_bit(edma_info
[i
]->
646 edma_info
[i
]->num_channels
,
648 if (channel
== edma_info
[i
]->num_channels
)
650 if (!test_and_set_bit(channel
,
651 edma_info
[i
]->edma_inuse
)) {
663 } else if (channel
>= edma_info
[ctlr
]->num_channels
) {
665 } else if (test_and_set_bit(channel
, edma_info
[ctlr
]->edma_inuse
)) {
669 /* ensure access through shadow region 0 */
670 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, 1 << (channel
& 0x1f));
672 /* ensure no events are pending */
673 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
674 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
675 &dummy_paramset
, PARM_SIZE
);
678 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
681 map_dmach_queue(ctlr
, channel
, eventq_no
);
683 return EDMA_CTLR_CHAN(ctlr
, channel
);
685 EXPORT_SYMBOL(edma_alloc_channel
);
689 * edma_free_channel - deallocate DMA channel
690 * @channel: dma channel returned from edma_alloc_channel()
692 * This deallocates the DMA channel and associated parameter RAM slot
693 * allocated by edma_alloc_channel().
695 * Callers are responsible for ensuring the channel is inactive, and
696 * will not be reactivated by linking, chaining, or software calls to
699 void edma_free_channel(unsigned channel
)
703 ctlr
= EDMA_CTLR(channel
);
704 channel
= EDMA_CHAN_SLOT(channel
);
706 if (channel
>= edma_info
[ctlr
]->num_channels
)
709 setup_dma_interrupt(channel
, NULL
, NULL
);
710 /* REVISIT should probably take out of shadow region 0 */
712 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
713 &dummy_paramset
, PARM_SIZE
);
714 clear_bit(channel
, edma_info
[ctlr
]->edma_inuse
);
716 EXPORT_SYMBOL(edma_free_channel
);
719 * edma_alloc_slot - allocate DMA parameter RAM
720 * @slot: specific slot to allocate; negative for "any unused slot"
722 * This allocates a parameter RAM slot, initializing it to hold a
723 * dummy transfer. Slots allocated using this routine have not been
724 * mapped to a hardware DMA channel, and will normally be used by
725 * linking to them from a slot associated with a DMA channel.
727 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
728 * slots may be allocated on behalf of DSP firmware.
730 * Returns the number of the slot, else negative errno.
732 int edma_alloc_slot(unsigned ctlr
, int slot
)
735 slot
= EDMA_CHAN_SLOT(slot
);
738 slot
= edma_info
[ctlr
]->num_channels
;
740 slot
= find_next_zero_bit(edma_info
[ctlr
]->edma_inuse
,
741 edma_info
[ctlr
]->num_slots
, slot
);
742 if (slot
== edma_info
[ctlr
]->num_slots
)
744 if (!test_and_set_bit(slot
,
745 edma_info
[ctlr
]->edma_inuse
))
748 } else if (slot
< edma_info
[ctlr
]->num_channels
||
749 slot
>= edma_info
[ctlr
]->num_slots
) {
751 } else if (test_and_set_bit(slot
, edma_info
[ctlr
]->edma_inuse
)) {
755 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
756 &dummy_paramset
, PARM_SIZE
);
758 return EDMA_CTLR_CHAN(ctlr
, slot
);
760 EXPORT_SYMBOL(edma_alloc_slot
);
763 * edma_free_slot - deallocate DMA parameter RAM
764 * @slot: parameter RAM slot returned from edma_alloc_slot()
766 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
767 * Callers are responsible for ensuring the slot is inactive, and will
770 void edma_free_slot(unsigned slot
)
774 ctlr
= EDMA_CTLR(slot
);
775 slot
= EDMA_CHAN_SLOT(slot
);
777 if (slot
< edma_info
[ctlr
]->num_channels
||
778 slot
>= edma_info
[ctlr
]->num_slots
)
781 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
782 &dummy_paramset
, PARM_SIZE
);
783 clear_bit(slot
, edma_info
[ctlr
]->edma_inuse
);
785 EXPORT_SYMBOL(edma_free_slot
);
789 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
790 * The API will return the starting point of a set of
791 * contiguous parameter RAM slots that have been requested
793 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
794 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
795 * @count: number of contiguous Paramter RAM slots
796 * @slot - the start value of Parameter RAM slot that should be passed if id
797 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
799 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
800 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
801 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
803 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
804 * set of contiguous parameter RAM slots from the "slot" that is passed as an
805 * argument to the API.
807 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
808 * starts looking for a set of contiguous parameter RAMs from the "slot"
809 * that is passed as an argument to the API. On failure the API will try to
810 * find a set of contiguous Parameter RAM slots from the remaining Parameter
813 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
816 * The start slot requested should be greater than
817 * the number of channels and lesser than the total number
820 if ((id
!= EDMA_CONT_PARAMS_ANY
) &&
821 (slot
< edma_info
[ctlr
]->num_channels
||
822 slot
>= edma_info
[ctlr
]->num_slots
))
826 * The number of parameter RAM slots requested cannot be less than 1
827 * and cannot be more than the number of slots minus the number of
830 if (count
< 1 || count
>
831 (edma_info
[ctlr
]->num_slots
- edma_info
[ctlr
]->num_channels
))
835 case EDMA_CONT_PARAMS_ANY
:
836 return reserve_contiguous_slots(ctlr
, id
, count
,
837 edma_info
[ctlr
]->num_channels
);
838 case EDMA_CONT_PARAMS_FIXED_EXACT
:
839 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
840 return reserve_contiguous_slots(ctlr
, id
, count
, slot
);
846 EXPORT_SYMBOL(edma_alloc_cont_slots
);
849 * edma_free_cont_slots - deallocate DMA parameter RAM slots
850 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
851 * @count: the number of contiguous parameter RAM slots to be freed
853 * This deallocates the parameter RAM slots allocated by
854 * edma_alloc_cont_slots.
855 * Callers/applications need to keep track of sets of contiguous
856 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
858 * Callers are responsible for ensuring the slots are inactive, and will
861 int edma_free_cont_slots(unsigned slot
, int count
)
863 unsigned ctlr
, slot_to_free
;
866 ctlr
= EDMA_CTLR(slot
);
867 slot
= EDMA_CHAN_SLOT(slot
);
869 if (slot
< edma_info
[ctlr
]->num_channels
||
870 slot
>= edma_info
[ctlr
]->num_slots
||
874 for (i
= slot
; i
< slot
+ count
; ++i
) {
876 slot_to_free
= EDMA_CHAN_SLOT(i
);
878 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot_to_free
),
879 &dummy_paramset
, PARM_SIZE
);
880 clear_bit(slot_to_free
, edma_info
[ctlr
]->edma_inuse
);
885 EXPORT_SYMBOL(edma_free_cont_slots
);
887 /*-----------------------------------------------------------------------*/
889 /* Parameter RAM operations (i) -- read/write partial slots */
892 * edma_set_src - set initial DMA source address in parameter RAM slot
893 * @slot: parameter RAM slot being configured
894 * @src_port: physical address of source (memory, controller FIFO, etc)
895 * @addressMode: INCR, except in very rare cases
896 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
897 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
899 * Note that the source address is modified during the DMA transfer
900 * according to edma_set_src_index().
902 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
903 enum address_mode mode
, enum fifo_width width
)
907 ctlr
= EDMA_CTLR(slot
);
908 slot
= EDMA_CHAN_SLOT(slot
);
910 if (slot
< edma_info
[ctlr
]->num_slots
) {
911 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
914 /* set SAM and program FWID */
915 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
920 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
922 /* set the source port address
923 in source register of param structure */
924 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
927 EXPORT_SYMBOL(edma_set_src
);
930 * edma_set_dest - set initial DMA destination address in parameter RAM slot
931 * @slot: parameter RAM slot being configured
932 * @dest_port: physical address of destination (memory, controller FIFO, etc)
933 * @addressMode: INCR, except in very rare cases
934 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
935 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
937 * Note that the destination address is modified during the DMA transfer
938 * according to edma_set_dest_index().
940 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
941 enum address_mode mode
, enum fifo_width width
)
945 ctlr
= EDMA_CTLR(slot
);
946 slot
= EDMA_CHAN_SLOT(slot
);
948 if (slot
< edma_info
[ctlr
]->num_slots
) {
949 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
952 /* set DAM and program FWID */
953 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
958 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
959 /* set the destination port address
960 in dest register of param structure */
961 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
964 EXPORT_SYMBOL(edma_set_dest
);
967 * edma_get_position - returns the current transfer points
968 * @slot: parameter RAM slot being examined
969 * @src: pointer to source port position
970 * @dst: pointer to destination port position
972 * Returns current source and destination addresses for a particular
973 * parameter RAM slot. Its channel should not be active when this is called.
975 void edma_get_position(unsigned slot
, dma_addr_t
*src
, dma_addr_t
*dst
)
977 struct edmacc_param temp
;
980 ctlr
= EDMA_CTLR(slot
);
981 slot
= EDMA_CHAN_SLOT(slot
);
983 edma_read_slot(EDMA_CTLR_CHAN(ctlr
, slot
), &temp
);
989 EXPORT_SYMBOL(edma_get_position
);
992 * edma_set_src_index - configure DMA source address indexing
993 * @slot: parameter RAM slot being configured
994 * @src_bidx: byte offset between source arrays in a frame
995 * @src_cidx: byte offset between source frames in a block
997 * Offsets are specified to support either contiguous or discontiguous
998 * memory transfers, or repeated access to a hardware register, as needed.
999 * When accessing hardware registers, both offsets are normally zero.
1001 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
1005 ctlr
= EDMA_CTLR(slot
);
1006 slot
= EDMA_CHAN_SLOT(slot
);
1008 if (slot
< edma_info
[ctlr
]->num_slots
) {
1009 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1010 0xffff0000, src_bidx
);
1011 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1012 0xffff0000, src_cidx
);
1015 EXPORT_SYMBOL(edma_set_src_index
);
1018 * edma_set_dest_index - configure DMA destination address indexing
1019 * @slot: parameter RAM slot being configured
1020 * @dest_bidx: byte offset between destination arrays in a frame
1021 * @dest_cidx: byte offset between destination frames in a block
1023 * Offsets are specified to support either contiguous or discontiguous
1024 * memory transfers, or repeated access to a hardware register, as needed.
1025 * When accessing hardware registers, both offsets are normally zero.
1027 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
1031 ctlr
= EDMA_CTLR(slot
);
1032 slot
= EDMA_CHAN_SLOT(slot
);
1034 if (slot
< edma_info
[ctlr
]->num_slots
) {
1035 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1036 0x0000ffff, dest_bidx
<< 16);
1037 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1038 0x0000ffff, dest_cidx
<< 16);
1041 EXPORT_SYMBOL(edma_set_dest_index
);
1044 * edma_set_transfer_params - configure DMA transfer parameters
1045 * @slot: parameter RAM slot being configured
1046 * @acnt: how many bytes per array (at least one)
1047 * @bcnt: how many arrays per frame (at least one)
1048 * @ccnt: how many frames per block (at least one)
1049 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1050 * the value to reload into bcnt when it decrements to zero
1051 * @sync_mode: ASYNC or ABSYNC
1053 * See the EDMA3 documentation to understand how to configure and link
1054 * transfers using the fields in PaRAM slots. If you are not doing it
1055 * all at once with edma_write_slot(), you will use this routine
1056 * plus two calls each for source and destination, setting the initial
1057 * address and saying how to index that address.
1059 * An example of an A-Synchronized transfer is a serial link using a
1060 * single word shift register. In that case, @acnt would be equal to
1061 * that word size; the serial controller issues a DMA synchronization
1062 * event to transfer each word, and memory access by the DMA transfer
1063 * controller will be word-at-a-time.
1065 * An example of an AB-Synchronized transfer is a device using a FIFO.
1066 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1067 * The controller with the FIFO issues DMA synchronization events when
1068 * the FIFO threshold is reached, and the DMA transfer controller will
1069 * transfer one frame to (or from) the FIFO. It will probably use
1070 * efficient burst modes to access memory.
1072 void edma_set_transfer_params(unsigned slot
,
1073 u16 acnt
, u16 bcnt
, u16 ccnt
,
1074 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1078 ctlr
= EDMA_CTLR(slot
);
1079 slot
= EDMA_CHAN_SLOT(slot
);
1081 if (slot
< edma_info
[ctlr
]->num_slots
) {
1082 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1083 0x0000ffff, bcnt_rld
<< 16);
1084 if (sync_mode
== ASYNC
)
1085 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1087 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1088 /* Set the acount, bcount, ccount registers */
1089 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1090 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1093 EXPORT_SYMBOL(edma_set_transfer_params
);
1096 * edma_link - link one parameter RAM slot to another
1097 * @from: parameter RAM slot originating the link
1098 * @to: parameter RAM slot which is the link target
1100 * The originating slot should not be part of any active DMA transfer.
1102 void edma_link(unsigned from
, unsigned to
)
1104 unsigned ctlr_from
, ctlr_to
;
1106 ctlr_from
= EDMA_CTLR(from
);
1107 from
= EDMA_CHAN_SLOT(from
);
1108 ctlr_to
= EDMA_CTLR(to
);
1109 to
= EDMA_CHAN_SLOT(to
);
1111 if (from
>= edma_info
[ctlr_from
]->num_slots
)
1113 if (to
>= edma_info
[ctlr_to
]->num_slots
)
1115 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1118 EXPORT_SYMBOL(edma_link
);
1121 * edma_unlink - cut link from one parameter RAM slot
1122 * @from: parameter RAM slot originating the link
1124 * The originating slot should not be part of any active DMA transfer.
1125 * Its link is set to 0xffff.
1127 void edma_unlink(unsigned from
)
1131 ctlr
= EDMA_CTLR(from
);
1132 from
= EDMA_CHAN_SLOT(from
);
1134 if (from
>= edma_info
[ctlr
]->num_slots
)
1136 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1138 EXPORT_SYMBOL(edma_unlink
);
1140 /*-----------------------------------------------------------------------*/
1142 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1145 * edma_write_slot - write parameter RAM data for slot
1146 * @slot: number of parameter RAM slot being modified
1147 * @param: data to be written into parameter RAM slot
1149 * Use this to assign all parameters of a transfer at once. This
1150 * allows more efficient setup of transfers than issuing multiple
1151 * calls to set up those parameters in small pieces, and provides
1152 * complete control over all transfer options.
1154 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1158 ctlr
= EDMA_CTLR(slot
);
1159 slot
= EDMA_CHAN_SLOT(slot
);
1161 if (slot
>= edma_info
[ctlr
]->num_slots
)
1163 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1166 EXPORT_SYMBOL(edma_write_slot
);
1169 * edma_read_slot - read parameter RAM data from slot
1170 * @slot: number of parameter RAM slot being copied
1171 * @param: where to store copy of parameter RAM data
1173 * Use this to read data from a parameter RAM slot, perhaps to
1174 * save them as a template for later reuse.
1176 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1180 ctlr
= EDMA_CTLR(slot
);
1181 slot
= EDMA_CHAN_SLOT(slot
);
1183 if (slot
>= edma_info
[ctlr
]->num_slots
)
1185 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1188 EXPORT_SYMBOL(edma_read_slot
);
1190 /*-----------------------------------------------------------------------*/
1192 /* Various EDMA channel control operations */
1195 * edma_pause - pause dma on a channel
1196 * @channel: on which edma_start() has been called
1198 * This temporarily disables EDMA hardware events on the specified channel,
1199 * preventing them from triggering new transfers on its behalf
1201 void edma_pause(unsigned channel
)
1205 ctlr
= EDMA_CTLR(channel
);
1206 channel
= EDMA_CHAN_SLOT(channel
);
1208 if (channel
< edma_info
[ctlr
]->num_channels
) {
1209 unsigned int mask
= (1 << (channel
& 0x1f));
1211 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1214 EXPORT_SYMBOL(edma_pause
);
1217 * edma_resume - resumes dma on a paused channel
1218 * @channel: on which edma_pause() has been called
1220 * This re-enables EDMA hardware events on the specified channel.
1222 void edma_resume(unsigned channel
)
1226 ctlr
= EDMA_CTLR(channel
);
1227 channel
= EDMA_CHAN_SLOT(channel
);
1229 if (channel
< edma_info
[ctlr
]->num_channels
) {
1230 unsigned int mask
= (1 << (channel
& 0x1f));
1232 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1235 EXPORT_SYMBOL(edma_resume
);
1238 * edma_start - start dma on a channel
1239 * @channel: channel being activated
1241 * Channels with event associations will be triggered by their hardware
1242 * events, and channels without such associations will be triggered by
1243 * software. (At this writing there is no interface for using software
1244 * triggers except with channels that don't support hardware triggers.)
1246 * Returns zero on success, else negative errno.
1248 int edma_start(unsigned channel
)
1252 ctlr
= EDMA_CTLR(channel
);
1253 channel
= EDMA_CHAN_SLOT(channel
);
1255 if (channel
< edma_info
[ctlr
]->num_channels
) {
1256 int j
= channel
>> 5;
1257 unsigned int mask
= (1 << (channel
& 0x1f));
1259 /* EDMA channels without event association */
1260 if (test_bit(channel
, edma_info
[ctlr
]->edma_unused
)) {
1261 pr_debug("EDMA: ESR%d %08x\n", j
,
1262 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1263 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1267 /* EDMA channel with event association */
1268 pr_debug("EDMA: ER%d %08x\n", j
,
1269 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1270 /* Clear any pending event or error */
1271 edma_write_array(ctlr
, EDMA_ECR
, j
, mask
);
1272 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1274 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1275 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1276 pr_debug("EDMA: EER%d %08x\n", j
,
1277 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1283 EXPORT_SYMBOL(edma_start
);
1286 * edma_stop - stops dma on the channel passed
1287 * @channel: channel being deactivated
1289 * When @lch is a channel, any active transfer is paused and
1290 * all pending hardware events are cleared. The current transfer
1291 * may not be resumed, and the channel's Parameter RAM should be
1292 * reinitialized before being reused.
1294 void edma_stop(unsigned channel
)
1298 ctlr
= EDMA_CTLR(channel
);
1299 channel
= EDMA_CHAN_SLOT(channel
);
1301 if (channel
< edma_info
[ctlr
]->num_channels
) {
1302 int j
= channel
>> 5;
1303 unsigned int mask
= (1 << (channel
& 0x1f));
1305 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1306 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1307 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1308 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1310 pr_debug("EDMA: EER%d %08x\n", j
,
1311 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1313 /* REVISIT: consider guarding against inappropriate event
1314 * chaining by overwriting with dummy_paramset.
1318 EXPORT_SYMBOL(edma_stop
);
1320 /******************************************************************************
1322 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1323 * been removed before EDMA has finished.It is usedful for removable media.
1325 * ch_no - channel no
1327 * Return: zero on success, or corresponding error no on failure
1329 * FIXME this should not be needed ... edma_stop() should suffice.
1331 *****************************************************************************/
1333 void edma_clean_channel(unsigned channel
)
1337 ctlr
= EDMA_CTLR(channel
);
1338 channel
= EDMA_CHAN_SLOT(channel
);
1340 if (channel
< edma_info
[ctlr
]->num_channels
) {
1341 int j
= (channel
>> 5);
1342 unsigned int mask
= 1 << (channel
& 0x1f);
1344 pr_debug("EDMA: EMR%d %08x\n", j
,
1345 edma_read_array(ctlr
, EDMA_EMR
, j
));
1346 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1347 /* Clear the corresponding EMR bits */
1348 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1350 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1351 edma_write(ctlr
, EDMA_CCERRCLR
, (1 << 16) | 0x3);
1354 EXPORT_SYMBOL(edma_clean_channel
);
1357 * edma_clear_event - clear an outstanding event on the DMA channel
1359 * channel - channel number
1361 void edma_clear_event(unsigned channel
)
1365 ctlr
= EDMA_CTLR(channel
);
1366 channel
= EDMA_CHAN_SLOT(channel
);
1368 if (channel
>= edma_info
[ctlr
]->num_channels
)
1371 edma_write(ctlr
, EDMA_ECR
, 1 << channel
);
1373 edma_write(ctlr
, EDMA_ECRH
, 1 << (channel
- 32));
1375 EXPORT_SYMBOL(edma_clear_event
);
1377 /*-----------------------------------------------------------------------*/
1379 static int __init
edma_probe(struct platform_device
*pdev
)
1381 struct edma_soc_info
*info
= pdev
->dev
.platform_data
;
1382 const s8 (*queue_priority_mapping
)[2];
1383 const s8 (*queue_tc_mapping
)[2];
1384 int i
, j
, found
= 0;
1386 int irq
[EDMA_MAX_CC
] = {0, 0};
1387 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1388 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1389 resource_size_t len
[EDMA_MAX_CC
];
1396 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1397 sprintf(res_name
, "edma_cc%d", j
);
1398 r
[j
] = platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
1408 len
[j
] = resource_size(r
[j
]);
1410 r
[j
] = request_mem_region(r
[j
]->start
, len
[j
],
1411 dev_name(&pdev
->dev
));
1417 edmacc_regs_base
[j
] = ioremap(r
[j
]->start
, len
[j
]);
1418 if (!edmacc_regs_base
[j
]) {
1423 edma_info
[j
] = kmalloc(sizeof(struct edma
), GFP_KERNEL
);
1424 if (!edma_info
[j
]) {
1428 memset(edma_info
[j
], 0, sizeof(struct edma
));
1430 edma_info
[j
]->num_channels
= min_t(unsigned, info
[j
].n_channel
,
1432 edma_info
[j
]->num_slots
= min_t(unsigned, info
[j
].n_slot
,
1433 EDMA_MAX_PARAMENTRY
);
1434 edma_info
[j
]->num_cc
= min_t(unsigned, info
[j
].n_cc
,
1437 edma_info
[j
]->default_queue
= info
[j
].default_queue
;
1438 if (!edma_info
[j
]->default_queue
)
1439 edma_info
[j
]->default_queue
= EVENTQ_1
;
1441 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1442 edmacc_regs_base
[j
]);
1444 for (i
= 0; i
< edma_info
[j
]->num_slots
; i
++)
1445 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1446 &dummy_paramset
, PARM_SIZE
);
1448 /* Mark all channels as unused */
1449 memset(edma_info
[j
]->edma_unused
, 0xff,
1450 sizeof(edma_info
[j
]->edma_unused
));
1452 sprintf(irq_name
, "edma%d", j
);
1453 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1454 edma_info
[j
]->irq_res_start
= irq
[j
];
1455 status
= request_irq(irq
[j
], dma_irq_handler
, 0, "edma",
1458 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1463 sprintf(irq_name
, "edma%d_err", j
);
1464 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1465 edma_info
[j
]->irq_res_end
= err_irq
[j
];
1466 status
= request_irq(err_irq
[j
], dma_ccerr_handler
, 0,
1467 "edma_error", &pdev
->dev
);
1469 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1470 err_irq
[j
], status
);
1474 /* Everything lives on transfer controller 1 until otherwise
1475 * specified. This way, long transfers on the low priority queue
1476 * started by the codec engine will not cause audio defects.
1478 for (i
= 0; i
< edma_info
[j
]->num_channels
; i
++)
1479 map_dmach_queue(j
, i
, EVENTQ_1
);
1481 queue_tc_mapping
= info
[j
].queue_tc_mapping
;
1482 queue_priority_mapping
= info
[j
].queue_priority_mapping
;
1484 /* Event queue to TC mapping */
1485 for (i
= 0; queue_tc_mapping
[i
][0] != -1; i
++)
1486 map_queue_tc(j
, queue_tc_mapping
[i
][0],
1487 queue_tc_mapping
[i
][1]);
1489 /* Event queue priority mapping */
1490 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1491 assign_priority_to_queue(j
,
1492 queue_priority_mapping
[i
][0],
1493 queue_priority_mapping
[i
][1]);
1495 /* Map the channel to param entry if channel mapping logic
1498 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1501 for (i
= 0; i
< info
[j
].n_region
; i
++) {
1502 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1503 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1504 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1509 if (tc_errs_handled
) {
1510 status
= request_irq(IRQ_TCERRINT0
, dma_tc0err_handler
, 0,
1511 "edma_tc0", &pdev
->dev
);
1513 dev_dbg(&pdev
->dev
, "request_irq %d failed --> %d\n",
1514 IRQ_TCERRINT0
, status
);
1517 status
= request_irq(IRQ_TCERRINT
, dma_tc1err_handler
, 0,
1518 "edma_tc1", &pdev
->dev
);
1520 dev_dbg(&pdev
->dev
, "request_irq %d --> %d\n",
1521 IRQ_TCERRINT
, status
);
1529 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1531 free_irq(err_irq
[i
], &pdev
->dev
);
1533 free_irq(irq
[i
], &pdev
->dev
);
1536 for (i
= 0; i
< EDMA_MAX_CC
; i
++) {
1538 release_mem_region(r
[i
]->start
, len
[i
]);
1539 if (edmacc_regs_base
[i
])
1540 iounmap(edmacc_regs_base
[i
]);
1541 kfree(edma_info
[i
]);
1547 static struct platform_driver edma_driver
= {
1548 .driver
.name
= "edma",
1551 static int __init
edma_init(void)
1553 return platform_driver_probe(&edma_driver
, edma_probe
);
1555 arch_initcall(edma_init
);