2 * Parisc performance counters
3 * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
5 * This code is derived, with permission, from HP/UX sources.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * Edited comment from original sources:
25 * This driver programs the PCX-U/PCX-W performance counters
26 * on the PA-RISC 2.0 chips. The driver keeps all images now
27 * internally to the kernel to hopefully eliminate the possibility
28 * of a bad image halting the CPU. Also, there are different
29 * images for the PCX-W and later chips vs the PCX-U chips.
31 * Only 1 process is allowed to access the driver at any time,
32 * so the only protection that is needed is at open and close.
33 * A variable "perf_enabled" is used to hold the state of the
34 * driver. The spinlock "perf_lock" is used to protect the
35 * modification of the state during open/close operations so
36 * multiple processes don't get into the driver simultaneously.
38 * This driver accesses the processor directly vs going through
39 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
40 * in various PDC revisions. The code is much more maintainable
41 * and reliable this way vs having to debug on every version of PDC
45 #include <linux/capability.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/miscdevice.h>
49 #include <linux/smp_lock.h>
50 #include <linux/spinlock.h>
52 #include <asm/uaccess.h>
54 #include <asm/parisc-device.h>
55 #include <asm/processor.h>
56 #include <asm/runway.h>
57 #include <asm/io.h> /* for __raw_read() */
59 #include "perf_images.h"
61 #define MAX_RDR_WORDS 24
62 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
64 /* definition of RDR regs */
68 uint8_t write_control
;
71 static int perf_processor_interface __read_mostly
= UNKNOWN_INTF
;
72 static int perf_enabled __read_mostly
;
73 static spinlock_t perf_lock
;
74 struct parisc_device
*cpu_device __read_mostly
;
76 /* RDRs to write for PCX-W */
77 static const int perf_rdrs_W
[] =
78 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
80 /* RDRs to write for PCX-U */
81 static const int perf_rdrs_U
[] =
82 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
84 /* RDR register descriptions for PCX-W */
85 static const struct rdr_tbl_ent perf_rdr_tbl_W
[] = {
86 { 19, 1, 8 }, /* RDR 0 */
87 { 16, 1, 16 }, /* RDR 1 */
88 { 72, 2, 0 }, /* RDR 2 */
89 { 81, 2, 0 }, /* RDR 3 */
90 { 328, 6, 0 }, /* RDR 4 */
91 { 160, 3, 0 }, /* RDR 5 */
92 { 336, 6, 0 }, /* RDR 6 */
93 { 164, 3, 0 }, /* RDR 7 */
94 { 0, 0, 0 }, /* RDR 8 */
95 { 35, 1, 0 }, /* RDR 9 */
96 { 6, 1, 0 }, /* RDR 10 */
97 { 18, 1, 0 }, /* RDR 11 */
98 { 13, 1, 0 }, /* RDR 12 */
99 { 8, 1, 0 }, /* RDR 13 */
100 { 8, 1, 0 }, /* RDR 14 */
101 { 8, 1, 0 }, /* RDR 15 */
102 { 1530, 24, 0 }, /* RDR 16 */
103 { 16, 1, 0 }, /* RDR 17 */
104 { 4, 1, 0 }, /* RDR 18 */
105 { 0, 0, 0 }, /* RDR 19 */
106 { 152, 3, 24 }, /* RDR 20 */
107 { 152, 3, 24 }, /* RDR 21 */
108 { 233, 4, 48 }, /* RDR 22 */
109 { 233, 4, 48 }, /* RDR 23 */
110 { 71, 2, 0 }, /* RDR 24 */
111 { 71, 2, 0 }, /* RDR 25 */
112 { 11, 1, 0 }, /* RDR 26 */
113 { 18, 1, 0 }, /* RDR 27 */
114 { 128, 2, 0 }, /* RDR 28 */
115 { 0, 0, 0 }, /* RDR 29 */
116 { 16, 1, 0 }, /* RDR 30 */
117 { 16, 1, 0 }, /* RDR 31 */
120 /* RDR register descriptions for PCX-U */
121 static const struct rdr_tbl_ent perf_rdr_tbl_U
[] = {
122 { 19, 1, 8 }, /* RDR 0 */
123 { 32, 1, 16 }, /* RDR 1 */
124 { 20, 1, 0 }, /* RDR 2 */
125 { 0, 0, 0 }, /* RDR 3 */
126 { 344, 6, 0 }, /* RDR 4 */
127 { 176, 3, 0 }, /* RDR 5 */
128 { 336, 6, 0 }, /* RDR 6 */
129 { 0, 0, 0 }, /* RDR 7 */
130 { 0, 0, 0 }, /* RDR 8 */
131 { 0, 0, 0 }, /* RDR 9 */
132 { 28, 1, 0 }, /* RDR 10 */
133 { 33, 1, 0 }, /* RDR 11 */
134 { 0, 0, 0 }, /* RDR 12 */
135 { 230, 4, 0 }, /* RDR 13 */
136 { 32, 1, 0 }, /* RDR 14 */
137 { 128, 2, 0 }, /* RDR 15 */
138 { 1494, 24, 0 }, /* RDR 16 */
139 { 18, 1, 0 }, /* RDR 17 */
140 { 4, 1, 0 }, /* RDR 18 */
141 { 0, 0, 0 }, /* RDR 19 */
142 { 158, 3, 24 }, /* RDR 20 */
143 { 158, 3, 24 }, /* RDR 21 */
144 { 194, 4, 48 }, /* RDR 22 */
145 { 194, 4, 48 }, /* RDR 23 */
146 { 71, 2, 0 }, /* RDR 24 */
147 { 71, 2, 0 }, /* RDR 25 */
148 { 28, 1, 0 }, /* RDR 26 */
149 { 33, 1, 0 }, /* RDR 27 */
150 { 88, 2, 0 }, /* RDR 28 */
151 { 32, 1, 0 }, /* RDR 29 */
152 { 24, 1, 0 }, /* RDR 30 */
153 { 16, 1, 0 }, /* RDR 31 */
157 * A non-zero write_control in the above tables is a byte offset into
160 static const uint64_t perf_bitmasks
[] = {
161 0x0000000000000000ul
, /* first dbl word must be zero */
162 0xfdffe00000000000ul
, /* RDR0 bitmask */
163 0x003f000000000000ul
, /* RDR1 bitmask */
164 0x00fffffffffffffful
, /* RDR20-RDR21 bitmask (152 bits) */
165 0xfffffffffffffffful
,
166 0xfffffffc00000000ul
,
167 0xfffffffffffffffful
, /* RDR22-RDR23 bitmask (233 bits) */
168 0xfffffffffffffffful
,
169 0xfffffffffffffffcul
,
174 * Write control bitmasks for Pa-8700 processor given
175 * some things have changed slightly.
177 static const uint64_t perf_bitmasks_piranha
[] = {
178 0x0000000000000000ul
, /* first dbl word must be zero */
179 0xfdffe00000000000ul
, /* RDR0 bitmask */
180 0x003f000000000000ul
, /* RDR1 bitmask */
181 0x00fffffffffffffful
, /* RDR20-RDR21 bitmask (158 bits) */
182 0xfffffffffffffffful
,
183 0xfffffffc00000000ul
,
184 0xfffffffffffffffful
, /* RDR22-RDR23 bitmask (210 bits) */
185 0xfffffffffffffffful
,
186 0xfffffffffffffffful
,
190 static const uint64_t *bitmask_array
; /* array of bitmasks to use */
192 /******************************************************************************
193 * Function Prototypes
194 *****************************************************************************/
195 static int perf_config(uint32_t *image_ptr
);
196 static int perf_release(struct inode
*inode
, struct file
*file
);
197 static int perf_open(struct inode
*inode
, struct file
*file
);
198 static ssize_t
perf_read(struct file
*file
, char __user
*buf
, size_t cnt
, loff_t
*ppos
);
199 static ssize_t
perf_write(struct file
*file
, const char __user
*buf
, size_t count
,
201 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
202 static void perf_start_counters(void);
203 static int perf_stop_counters(uint32_t *raddr
);
204 static const struct rdr_tbl_ent
* perf_rdr_get_entry(uint32_t rdr_num
);
205 static int perf_rdr_read_ubuf(uint32_t rdr_num
, uint64_t *buffer
);
206 static int perf_rdr_clear(uint32_t rdr_num
);
207 static int perf_write_image(uint64_t *memaddr
);
208 static void perf_rdr_write(uint32_t rdr_num
, uint64_t *buffer
);
210 /* External Assembly Routines */
211 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num
, uint16_t width
);
212 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num
, uint16_t width
);
213 extern void perf_rdr_shift_out_W (uint32_t rdr_num
, uint64_t buffer
);
214 extern void perf_rdr_shift_out_U (uint32_t rdr_num
, uint64_t buffer
);
215 extern void perf_intrigue_enable_perf_counters (void);
216 extern void perf_intrigue_disable_perf_counters (void);
218 /******************************************************************************
219 * Function Definitions
220 *****************************************************************************/
226 * Configure the cpu with a given data image. First turn off the counters,
227 * then download the image, then turn the counters back on.
229 static int perf_config(uint32_t *image_ptr
)
234 /* Stop the counters*/
235 error
= perf_stop_counters(raddr
);
237 printk("perf_config: perf_stop_counters = %ld\n", error
);
241 printk("Preparing to write image\n");
242 /* Write the image to the chip */
243 error
= perf_write_image((uint64_t *)image_ptr
);
245 printk("perf_config: DOWNLOAD = %ld\n", error
);
249 printk("Preparing to start counters\n");
251 /* Start the counters */
252 perf_start_counters();
254 return sizeof(uint32_t);
258 * Open the device and initialize all of its memory. The device is only
259 * opened once, but can be "queried" by multiple processes that know its
262 static int perf_open(struct inode
*inode
, struct file
*file
)
265 spin_lock(&perf_lock
);
267 spin_unlock(&perf_lock
);
272 spin_unlock(&perf_lock
);
281 static int perf_release(struct inode
*inode
, struct file
*file
)
283 spin_lock(&perf_lock
);
285 spin_unlock(&perf_lock
);
291 * Read does nothing for this driver
293 static ssize_t
perf_read(struct file
*file
, char __user
*buf
, size_t cnt
, loff_t
*ppos
)
301 * This routine downloads the image to the chip. It must be
302 * called on the processor that the download should happen
305 static ssize_t
perf_write(struct file
*file
, const char __user
*buf
, size_t count
,
311 uint32_t interface_type
;
314 if (perf_processor_interface
== ONYX_INTF
)
315 image_size
= PCXU_IMAGE_SIZE
;
316 else if (perf_processor_interface
== CUDA_INTF
)
317 image_size
= PCXW_IMAGE_SIZE
;
321 if (!capable(CAP_SYS_ADMIN
))
324 if (count
!= sizeof(uint32_t))
327 if ((err
= copy_from_user(&image_type
, buf
, sizeof(uint32_t))) != 0)
330 /* Get the interface type and test type */
331 interface_type
= (image_type
>> 16) & 0xffff;
332 test
= (image_type
& 0xffff);
334 /* Make sure everything makes sense */
336 /* First check the machine type is correct for
337 the requested image */
338 if (((perf_processor_interface
== CUDA_INTF
) &&
339 (interface_type
!= CUDA_INTF
)) ||
340 ((perf_processor_interface
== ONYX_INTF
) &&
341 (interface_type
!= ONYX_INTF
)))
344 /* Next check to make sure the requested image
346 if (((interface_type
== CUDA_INTF
) &&
347 (test
>= MAX_CUDA_IMAGES
)) ||
348 ((interface_type
== ONYX_INTF
) &&
349 (test
>= MAX_ONYX_IMAGES
)))
352 /* Copy the image into the processor */
353 if (interface_type
== CUDA_INTF
)
354 return perf_config(cuda_images
[test
]);
356 return perf_config(onyx_images
[test
]);
362 * Patch the images that need to know the IVA addresses.
364 static void perf_patch_images(void)
368 * NOTE: this routine is VERY specific to the current TLB image.
369 * If the image is changed, this routine might also need to be changed.
371 extern void $
i_itlb_miss_2_0();
372 extern void $
i_dtlb_miss_2_0();
373 extern void PA2_0_iva();
376 * We can only use the lower 32-bits, the upper 32-bits should be 0
377 * anyway given this is in the kernel
379 uint32_t itlb_addr
= (uint32_t)&($i_itlb_miss_2_0
);
380 uint32_t dtlb_addr
= (uint32_t)&($i_dtlb_miss_2_0
);
381 uint32_t IVAaddress
= (uint32_t)&PA2_0_iva
;
383 if (perf_processor_interface
== ONYX_INTF
) {
384 /* clear last 2 bytes */
385 onyx_images
[TLBMISS
][15] &= 0xffffff00;
387 onyx_images
[TLBMISS
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
388 onyx_images
[TLBMISS
][16] = (dtlb_addr
<< 8)&0xffffff00;
389 onyx_images
[TLBMISS
][17] = itlb_addr
;
391 /* clear last 2 bytes */
392 onyx_images
[TLBHANDMISS
][15] &= 0xffffff00;
394 onyx_images
[TLBHANDMISS
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
395 onyx_images
[TLBHANDMISS
][16] = (dtlb_addr
<< 8)&0xffffff00;
396 onyx_images
[TLBHANDMISS
][17] = itlb_addr
;
398 /* clear last 2 bytes */
399 onyx_images
[BIG_CPI
][15] &= 0xffffff00;
401 onyx_images
[BIG_CPI
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
402 onyx_images
[BIG_CPI
][16] = (dtlb_addr
<< 8)&0xffffff00;
403 onyx_images
[BIG_CPI
][17] = itlb_addr
;
405 onyx_images
[PANIC
][15] &= 0xffffff00; /* clear last 2 bytes */
406 onyx_images
[PANIC
][15] |= (0x000000ff&((IVAaddress
) >> 24)); /* set 2 bytes */
407 onyx_images
[PANIC
][16] = (IVAaddress
<< 8)&0xffffff00;
410 } else if (perf_processor_interface
== CUDA_INTF
) {
412 cuda_images
[TLBMISS
][16] =
413 (cuda_images
[TLBMISS
][16]&0xffff0000) |
414 ((dtlb_addr
>> 8)&0x0000ffff);
415 cuda_images
[TLBMISS
][17] =
416 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
417 cuda_images
[TLBMISS
][18] = (itlb_addr
<< 16)&0xffff0000;
419 cuda_images
[TLBHANDMISS
][16] =
420 (cuda_images
[TLBHANDMISS
][16]&0xffff0000) |
421 ((dtlb_addr
>> 8)&0x0000ffff);
422 cuda_images
[TLBHANDMISS
][17] =
423 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
424 cuda_images
[TLBHANDMISS
][18] = (itlb_addr
<< 16)&0xffff0000;
426 cuda_images
[BIG_CPI
][16] =
427 (cuda_images
[BIG_CPI
][16]&0xffff0000) |
428 ((dtlb_addr
>> 8)&0x0000ffff);
429 cuda_images
[BIG_CPI
][17] =
430 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
431 cuda_images
[BIG_CPI
][18] = (itlb_addr
<< 16)&0xffff0000;
441 * All routines effect the processor that they are executed on. Thus you
442 * must be running on the processor that you wish to change.
445 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
454 /* Start the counters */
455 perf_start_counters();
459 error_start
= perf_stop_counters(raddr
);
460 if (error_start
!= 0) {
461 printk(KERN_ERR
"perf_off: perf_stop_counters = %ld\n", error_start
);
466 /* copy out the Counters */
467 if (copy_to_user((void __user
*)arg
, raddr
,
468 sizeof (raddr
)) != 0) {
474 case PA_PERF_VERSION
:
475 /* Return the version # */
476 error
= put_user(PERF_VERSION
, (int *)arg
);
486 static const struct file_operations perf_fops
= {
490 .unlocked_ioctl
= perf_ioctl
,
491 .compat_ioctl
= perf_ioctl
,
493 .release
= perf_release
496 static struct miscdevice perf_dev
= {
503 * Initialize the module
505 static int __init
perf_init(void)
509 /* Determine correct processor interface to use */
510 bitmask_array
= perf_bitmasks
;
512 if (boot_cpu_data
.cpu_type
== pcxu
||
513 boot_cpu_data
.cpu_type
== pcxu_
) {
514 perf_processor_interface
= ONYX_INTF
;
515 } else if (boot_cpu_data
.cpu_type
== pcxw
||
516 boot_cpu_data
.cpu_type
== pcxw_
||
517 boot_cpu_data
.cpu_type
== pcxw2
||
518 boot_cpu_data
.cpu_type
== mako
||
519 boot_cpu_data
.cpu_type
== mako2
) {
520 perf_processor_interface
= CUDA_INTF
;
521 if (boot_cpu_data
.cpu_type
== pcxw2
||
522 boot_cpu_data
.cpu_type
== mako
||
523 boot_cpu_data
.cpu_type
== mako2
)
524 bitmask_array
= perf_bitmasks_piranha
;
526 perf_processor_interface
= UNKNOWN_INTF
;
527 printk("Performance monitoring counters not supported on this processor\n");
531 ret
= misc_register(&perf_dev
);
533 printk(KERN_ERR
"Performance monitoring counters: "
534 "cannot register misc device.\n");
538 /* Patch the images to match the system */
541 spin_lock_init(&perf_lock
);
543 /* TODO: this only lets us access the first cpu.. what to do for SMP? */
544 cpu_device
= per_cpu(cpu_data
, 0).dev
;
545 printk("Performance monitoring counters enabled for %s\n",
546 per_cpu(cpu_data
, 0).dev
->name
);
552 * perf_start_counters(void)
554 * Start the counters.
556 static void perf_start_counters(void)
558 /* Enable performance monitor counters */
559 perf_intrigue_enable_perf_counters();
565 * Stop the performance counters and save counts
566 * in a per_processor array.
568 static int perf_stop_counters(uint32_t *raddr
)
570 uint64_t userbuf
[MAX_RDR_WORDS
];
572 /* Disable performance counters */
573 perf_intrigue_disable_perf_counters();
575 if (perf_processor_interface
== ONYX_INTF
) {
580 if (!perf_rdr_read_ubuf(16, userbuf
))
583 /* Counter0 is bits 1398 to 1429 */
584 tmp64
= (userbuf
[21] << 22) & 0x00000000ffc00000;
585 tmp64
|= (userbuf
[22] >> 42) & 0x00000000003fffff;
586 /* OR sticky0 (bit 1430) to counter0 bit 32 */
587 tmp64
|= (userbuf
[22] >> 10) & 0x0000000080000000;
588 raddr
[0] = (uint32_t)tmp64
;
590 /* Counter1 is bits 1431 to 1462 */
591 tmp64
= (userbuf
[22] >> 9) & 0x00000000ffffffff;
592 /* OR sticky1 (bit 1463) to counter1 bit 32 */
593 tmp64
|= (userbuf
[22] << 23) & 0x0000000080000000;
594 raddr
[1] = (uint32_t)tmp64
;
596 /* Counter2 is bits 1464 to 1495 */
597 tmp64
= (userbuf
[22] << 24) & 0x00000000ff000000;
598 tmp64
|= (userbuf
[23] >> 40) & 0x0000000000ffffff;
599 /* OR sticky2 (bit 1496) to counter2 bit 32 */
600 tmp64
|= (userbuf
[23] >> 8) & 0x0000000080000000;
601 raddr
[2] = (uint32_t)tmp64
;
603 /* Counter3 is bits 1497 to 1528 */
604 tmp64
= (userbuf
[23] >> 7) & 0x00000000ffffffff;
605 /* OR sticky3 (bit 1529) to counter3 bit 32 */
606 tmp64
|= (userbuf
[23] << 25) & 0x0000000080000000;
607 raddr
[3] = (uint32_t)tmp64
;
610 * Zero out the counters
614 * The counters and sticky-bits comprise the last 132 bits
615 * (1398 - 1529) of RDR16 on a U chip. We'll zero these
616 * out the easy way: zero out last 10 bits of dword 21,
617 * all of dword 22 and 58 bits (plus 6 don't care bits) of
620 userbuf
[21] &= 0xfffffffffffffc00ul
; /* 0 to last 10 bits */
625 * Write back the zeroed bytes + the image given
626 * the read was destructive.
628 perf_rdr_write(16, userbuf
);
632 * Read RDR-15 which contains the counters and sticky bits
634 if (!perf_rdr_read_ubuf(15, userbuf
)) {
639 * Clear out the counters
646 raddr
[0] = (uint32_t)((userbuf
[0] >> 32) & 0x00000000ffffffffUL
);
647 raddr
[1] = (uint32_t)(userbuf
[0] & 0x00000000ffffffffUL
);
648 raddr
[2] = (uint32_t)((userbuf
[1] >> 32) & 0x00000000ffffffffUL
);
649 raddr
[3] = (uint32_t)(userbuf
[1] & 0x00000000ffffffffUL
);
658 * Retrieve a pointer to the description of what this
661 static const struct rdr_tbl_ent
* perf_rdr_get_entry(uint32_t rdr_num
)
663 if (perf_processor_interface
== ONYX_INTF
) {
664 return &perf_rdr_tbl_U
[rdr_num
];
666 return &perf_rdr_tbl_W
[rdr_num
];
673 * Read the RDR value into the buffer specified.
675 static int perf_rdr_read_ubuf(uint32_t rdr_num
, uint64_t *buffer
)
677 uint64_t data
, data_mask
= 0;
678 uint32_t width
, xbits
, i
;
679 const struct rdr_tbl_ent
*tentry
;
681 tentry
= perf_rdr_get_entry(rdr_num
);
682 if ((width
= tentry
->width
) == 0)
685 /* Clear out buffer */
686 i
= tentry
->num_words
;
691 /* Check for bits an even number of 64 */
692 if ((xbits
= width
& 0x03f) != 0) {
694 data_mask
<<= (64 - xbits
);
698 /* Grab all of the data */
699 i
= tentry
->num_words
;
702 if (perf_processor_interface
== ONYX_INTF
) {
703 data
= perf_rdr_shift_in_U(rdr_num
, width
);
705 data
= perf_rdr_shift_in_W(rdr_num
, width
);
708 buffer
[i
] |= (data
<< (64 - xbits
));
710 buffer
[i
-1] |= ((data
>> xbits
) & data_mask
);
723 * Zero out the given RDR register
725 static int perf_rdr_clear(uint32_t rdr_num
)
727 const struct rdr_tbl_ent
*tentry
;
730 tentry
= perf_rdr_get_entry(rdr_num
);
732 if (tentry
->width
== 0) {
736 i
= tentry
->num_words
;
738 if (perf_processor_interface
== ONYX_INTF
) {
739 perf_rdr_shift_out_U(rdr_num
, 0UL);
741 perf_rdr_shift_out_W(rdr_num
, 0UL);
752 * Write the given image out to the processor
754 static int perf_write_image(uint64_t *memaddr
)
756 uint64_t buffer
[MAX_RDR_WORDS
];
759 const uint32_t *intrigue_rdr
;
760 const uint64_t *intrigue_bitmask
;
762 void __iomem
*runway
;
763 const struct rdr_tbl_ent
*tentry
;
766 /* Clear out counters */
767 if (perf_processor_interface
== ONYX_INTF
) {
771 /* Toggle performance monitor */
772 perf_intrigue_enable_perf_counters();
773 perf_intrigue_disable_perf_counters();
775 intrigue_rdr
= perf_rdrs_U
;
778 intrigue_rdr
= perf_rdrs_W
;
782 while (*intrigue_rdr
!= -1) {
783 tentry
= perf_rdr_get_entry(*intrigue_rdr
);
784 perf_rdr_read_ubuf(*intrigue_rdr
, buffer
);
786 dwords
= tentry
->num_words
;
787 if (tentry
->write_control
) {
788 intrigue_bitmask
= &bitmask_array
[tentry
->write_control
>> 3];
790 tmp64
= *intrigue_bitmask
& *memaddr
++;
791 tmp64
|= (~(*intrigue_bitmask
++)) & *bptr
;
796 *bptr
++ = *memaddr
++;
800 perf_rdr_write(*intrigue_rdr
, buffer
);
805 * Now copy out the Runway stuff which is not in RDRs
808 if (cpu_device
== NULL
)
810 printk(KERN_ERR
"write_image: cpu_device not yet initialized!\n");
814 runway
= ioremap_nocache(cpu_device
->hpa
.start
, 4096);
816 /* Merge intrigue bits into Runway STATUS 0 */
817 tmp64
= __raw_readq(runway
+ RUNWAY_STATUS
) & 0xffecfffffffffffful
;
818 __raw_writeq(tmp64
| (*memaddr
++ & 0x0013000000000000ul
),
819 runway
+ RUNWAY_STATUS
);
821 /* Write RUNWAY DEBUG registers */
822 for (i
= 0; i
< 8; i
++) {
823 __raw_writeq(*memaddr
++, runway
+ RUNWAY_DEBUG
);
832 * Write the given RDR register with the contents
833 * of the given buffer.
835 static void perf_rdr_write(uint32_t rdr_num
, uint64_t *buffer
)
837 const struct rdr_tbl_ent
*tentry
;
840 printk("perf_rdr_write\n");
841 tentry
= perf_rdr_get_entry(rdr_num
);
842 if (tentry
->width
== 0) { return; }
844 i
= tentry
->num_words
;
846 if (perf_processor_interface
== ONYX_INTF
) {
847 perf_rdr_shift_out_U(rdr_num
, buffer
[i
]);
849 perf_rdr_shift_out_W(rdr_num
, buffer
[i
]);
852 printk("perf_rdr_write done\n");
855 module_init(perf_init
);