MIPS: SB1250: Include correct header and fix a warning
[linux-2.6/linux-mips.git] / arch / powerpc / kernel / time.c
blob1b16b9a3e49a57dbc0e444e230528763b1faa762
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 #include <asm/trace.h>
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
112 static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
115 .shift = 0, /* To be filled in */
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
123 struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
138 #define XSEC_PER_SEC (1024*1024)
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145 #endif
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
152 u64 tb_to_xs;
153 unsigned tb_to_us;
155 #define TICKLEN_SCALE NTP_SCALE_SHIFT
156 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157 static u64 ticklen_to_xs; /* 0.64 fraction */
159 /* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
163 DEFINE_SPINLOCK(rtc_lock);
164 EXPORT_SYMBOL_GPL(rtc_lock);
166 static u64 tb_to_ns_scale __read_mostly;
167 static unsigned tb_to_ns_shift __read_mostly;
168 static unsigned long boot_tb __read_mostly;
170 extern struct timezone sys_tz;
171 static long timezone_offset;
173 unsigned long ppc_proc_freq;
174 EXPORT_SYMBOL(ppc_proc_freq);
175 unsigned long ppc_tb_freq;
177 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178 static DEFINE_PER_CPU(u64, last_jiffy);
180 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
182 * Factors for converting from cputime_t (timebase ticks) to
183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184 * These are all stored as 0.64 fixed-point binary fractions.
186 u64 __cputime_jiffies_factor;
187 EXPORT_SYMBOL(__cputime_jiffies_factor);
188 u64 __cputime_msec_factor;
189 EXPORT_SYMBOL(__cputime_msec_factor);
190 u64 __cputime_sec_factor;
191 EXPORT_SYMBOL(__cputime_sec_factor);
192 u64 __cputime_clockt_factor;
193 EXPORT_SYMBOL(__cputime_clockt_factor);
194 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
195 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
197 cputime_t cputime_one_jiffy;
199 static void calc_cputime_factors(void)
201 struct div_result res;
203 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_jiffies_factor = res.result_low;
205 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
206 __cputime_msec_factor = res.result_low;
207 div128_by_32(1, 0, tb_ticks_per_sec, &res);
208 __cputime_sec_factor = res.result_low;
209 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
210 __cputime_clockt_factor = res.result_low;
214 * Read the PURR on systems that have it, otherwise the timebase.
216 static u64 read_purr(void)
218 if (cpu_has_feature(CPU_FTR_PURR))
219 return mfspr(SPRN_PURR);
220 return mftb();
224 * Read the SPURR on systems that have it, otherwise the purr
226 static u64 read_spurr(u64 purr)
229 * cpus without PURR won't have a SPURR
230 * We already know the former when we use this, so tell gcc
232 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
233 return mfspr(SPRN_SPURR);
234 return purr;
238 * Account time for a transition between system, hard irq
239 * or soft irq state.
241 void account_system_vtime(struct task_struct *tsk)
243 u64 now, nowscaled, delta, deltascaled, sys_time;
244 unsigned long flags;
246 local_irq_save(flags);
247 now = read_purr();
248 nowscaled = read_spurr(now);
249 delta = now - get_paca()->startpurr;
250 deltascaled = nowscaled - get_paca()->startspurr;
251 get_paca()->startpurr = now;
252 get_paca()->startspurr = nowscaled;
253 if (!in_interrupt()) {
254 /* deltascaled includes both user and system time.
255 * Hence scale it based on the purr ratio to estimate
256 * the system time */
257 sys_time = get_paca()->system_time;
258 if (get_paca()->user_time)
259 deltascaled = deltascaled * sys_time /
260 (sys_time + get_paca()->user_time);
261 delta += sys_time;
262 get_paca()->system_time = 0;
264 if (in_irq() || idle_task(smp_processor_id()) != tsk)
265 account_system_time(tsk, 0, delta, deltascaled);
266 else
267 account_idle_time(delta);
268 __get_cpu_var(cputime_last_delta) = delta;
269 __get_cpu_var(cputime_scaled_last_delta) = deltascaled;
270 local_irq_restore(flags);
272 EXPORT_SYMBOL_GPL(account_system_vtime);
275 * Transfer the user and system times accumulated in the paca
276 * by the exception entry and exit code to the generic process
277 * user and system time records.
278 * Must be called with interrupts disabled.
280 void account_process_tick(struct task_struct *tsk, int user_tick)
282 cputime_t utime, utimescaled;
284 utime = get_paca()->user_time;
285 get_paca()->user_time = 0;
286 utimescaled = cputime_to_scaled(utime);
287 account_user_time(tsk, utime, utimescaled);
291 * Stuff for accounting stolen time.
293 struct cpu_purr_data {
294 int initialized; /* thread is running */
295 u64 tb; /* last TB value read */
296 u64 purr; /* last PURR value read */
297 u64 spurr; /* last SPURR value read */
301 * Each entry in the cpu_purr_data array is manipulated only by its
302 * "owner" cpu -- usually in the timer interrupt but also occasionally
303 * in process context for cpu online. As long as cpus do not touch
304 * each others' cpu_purr_data, disabling local interrupts is
305 * sufficient to serialize accesses.
307 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
309 static void snapshot_tb_and_purr(void *data)
311 unsigned long flags;
312 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
314 local_irq_save(flags);
315 p->tb = get_tb_or_rtc();
316 p->purr = mfspr(SPRN_PURR);
317 wmb();
318 p->initialized = 1;
319 local_irq_restore(flags);
323 * Called during boot when all cpus have come up.
325 void snapshot_timebases(void)
327 if (!cpu_has_feature(CPU_FTR_PURR))
328 return;
329 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
333 * Must be called with interrupts disabled.
335 void calculate_steal_time(void)
337 u64 tb, purr;
338 s64 stolen;
339 struct cpu_purr_data *pme;
341 pme = &__get_cpu_var(cpu_purr_data);
342 if (!pme->initialized)
343 return; /* !CPU_FTR_PURR or early in early boot */
344 tb = mftb();
345 purr = mfspr(SPRN_PURR);
346 stolen = (tb - pme->tb) - (purr - pme->purr);
347 if (stolen > 0) {
348 if (idle_task(smp_processor_id()) != current)
349 account_steal_time(stolen);
350 else
351 account_idle_time(stolen);
353 pme->tb = tb;
354 pme->purr = purr;
357 #ifdef CONFIG_PPC_SPLPAR
359 * Must be called before the cpu is added to the online map when
360 * a cpu is being brought up at runtime.
362 static void snapshot_purr(void)
364 struct cpu_purr_data *pme;
365 unsigned long flags;
367 if (!cpu_has_feature(CPU_FTR_PURR))
368 return;
369 local_irq_save(flags);
370 pme = &__get_cpu_var(cpu_purr_data);
371 pme->tb = mftb();
372 pme->purr = mfspr(SPRN_PURR);
373 pme->initialized = 1;
374 local_irq_restore(flags);
377 #endif /* CONFIG_PPC_SPLPAR */
379 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
380 #define calc_cputime_factors()
381 #define calculate_steal_time() do { } while (0)
382 #endif
384 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
385 #define snapshot_purr() do { } while (0)
386 #endif
389 * Called when a cpu comes up after the system has finished booting,
390 * i.e. as a result of a hotplug cpu action.
392 void snapshot_timebase(void)
394 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
395 snapshot_purr();
398 void __delay(unsigned long loops)
400 unsigned long start;
401 int diff;
403 if (__USE_RTC()) {
404 start = get_rtcl();
405 do {
406 /* the RTCL register wraps at 1000000000 */
407 diff = get_rtcl() - start;
408 if (diff < 0)
409 diff += 1000000000;
410 } while (diff < loops);
411 } else {
412 start = get_tbl();
413 while (get_tbl() - start < loops)
414 HMT_low();
415 HMT_medium();
418 EXPORT_SYMBOL(__delay);
420 void udelay(unsigned long usecs)
422 __delay(tb_ticks_per_usec * usecs);
424 EXPORT_SYMBOL(udelay);
426 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
427 u64 new_tb_to_xs)
430 * tb_update_count is used to allow the userspace gettimeofday code
431 * to assure itself that it sees a consistent view of the tb_to_xs and
432 * stamp_xsec variables. It reads the tb_update_count, then reads
433 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
434 * the two values of tb_update_count match and are even then the
435 * tb_to_xs and stamp_xsec values are consistent. If not, then it
436 * loops back and reads them again until this criteria is met.
437 * We expect the caller to have done the first increment of
438 * vdso_data->tb_update_count already.
440 vdso_data->tb_orig_stamp = new_tb_stamp;
441 vdso_data->stamp_xsec = new_stamp_xsec;
442 vdso_data->tb_to_xs = new_tb_to_xs;
443 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
444 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
445 vdso_data->stamp_xtime = xtime;
446 smp_wmb();
447 ++(vdso_data->tb_update_count);
450 #ifdef CONFIG_SMP
451 unsigned long profile_pc(struct pt_regs *regs)
453 unsigned long pc = instruction_pointer(regs);
455 if (in_lock_functions(pc))
456 return regs->link;
458 return pc;
460 EXPORT_SYMBOL(profile_pc);
461 #endif
463 #ifdef CONFIG_PPC_ISERIES
466 * This function recalibrates the timebase based on the 49-bit time-of-day
467 * value in the Titan chip. The Titan is much more accurate than the value
468 * returned by the service processor for the timebase frequency.
471 static int __init iSeries_tb_recal(void)
473 struct div_result divres;
474 unsigned long titan, tb;
476 /* Make sure we only run on iSeries */
477 if (!firmware_has_feature(FW_FEATURE_ISERIES))
478 return -ENODEV;
480 tb = get_tb();
481 titan = HvCallXm_loadTod();
482 if ( iSeries_recal_titan ) {
483 unsigned long tb_ticks = tb - iSeries_recal_tb;
484 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
485 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
486 unsigned long new_tb_ticks_per_jiffy =
487 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
488 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
489 char sign = '+';
490 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
491 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
493 if ( tick_diff < 0 ) {
494 tick_diff = -tick_diff;
495 sign = '-';
497 if ( tick_diff ) {
498 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
499 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
500 new_tb_ticks_per_jiffy, sign, tick_diff );
501 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
502 tb_ticks_per_sec = new_tb_ticks_per_sec;
503 calc_cputime_factors();
504 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
505 tb_to_xs = divres.result_low;
506 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
507 vdso_data->tb_to_xs = tb_to_xs;
508 setup_cputime_one_jiffy();
510 else {
511 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
512 " new tb_ticks_per_jiffy = %lu\n"
513 " old tb_ticks_per_jiffy = %lu\n",
514 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
518 iSeries_recal_titan = titan;
519 iSeries_recal_tb = tb;
521 /* Called here as now we know accurate values for the timebase */
522 clocksource_init();
523 return 0;
525 late_initcall(iSeries_tb_recal);
527 /* Called from platform early init */
528 void __init iSeries_time_init_early(void)
530 iSeries_recal_tb = get_tb();
531 iSeries_recal_titan = HvCallXm_loadTod();
533 #endif /* CONFIG_PPC_ISERIES */
535 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
536 DEFINE_PER_CPU(u8, perf_event_pending);
538 void set_perf_event_pending(void)
540 get_cpu_var(perf_event_pending) = 1;
541 set_dec(1);
542 put_cpu_var(perf_event_pending);
545 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
546 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
548 #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
550 #define test_perf_event_pending() 0
551 #define clear_perf_event_pending()
553 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
556 * For iSeries shared processors, we have to let the hypervisor
557 * set the hardware decrementer. We set a virtual decrementer
558 * in the lppaca and call the hypervisor if the virtual
559 * decrementer is less than the current value in the hardware
560 * decrementer. (almost always the new decrementer value will
561 * be greater than the current hardware decementer so the hypervisor
562 * call will not be needed)
566 * timer_interrupt - gets called when the decrementer overflows,
567 * with interrupts disabled.
569 void timer_interrupt(struct pt_regs * regs)
571 struct pt_regs *old_regs;
572 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
573 struct clock_event_device *evt = &decrementer->event;
574 u64 now;
576 trace_timer_interrupt_entry(regs);
578 __get_cpu_var(irq_stat).timer_irqs++;
580 /* Ensure a positive value is written to the decrementer, or else
581 * some CPUs will continuue to take decrementer exceptions */
582 set_dec(DECREMENTER_MAX);
584 #ifdef CONFIG_PPC32
585 if (test_perf_event_pending()) {
586 clear_perf_event_pending();
587 perf_event_do_pending();
589 if (atomic_read(&ppc_n_lost_interrupts) != 0)
590 do_IRQ(regs);
591 #endif
593 now = get_tb_or_rtc();
594 if (now < decrementer->next_tb) {
595 /* not time for this event yet */
596 now = decrementer->next_tb - now;
597 if (now <= DECREMENTER_MAX)
598 set_dec((int)now);
599 trace_timer_interrupt_exit(regs);
600 return;
602 old_regs = set_irq_regs(regs);
603 irq_enter();
605 calculate_steal_time();
607 #ifdef CONFIG_PPC_ISERIES
608 if (firmware_has_feature(FW_FEATURE_ISERIES))
609 get_lppaca()->int_dword.fields.decr_int = 0;
610 #endif
612 if (evt->event_handler)
613 evt->event_handler(evt);
615 #ifdef CONFIG_PPC_ISERIES
616 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
617 process_hvlpevents();
618 #endif
620 #ifdef CONFIG_PPC64
621 /* collect purr register values often, for accurate calculations */
622 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
623 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
624 cu->current_tb = mfspr(SPRN_PURR);
626 #endif
628 irq_exit();
629 set_irq_regs(old_regs);
631 trace_timer_interrupt_exit(regs);
634 void wakeup_decrementer(void)
636 unsigned long ticks;
639 * The timebase gets saved on sleep and restored on wakeup,
640 * so all we need to do is to reset the decrementer.
642 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
643 if (ticks < tb_ticks_per_jiffy)
644 ticks = tb_ticks_per_jiffy - ticks;
645 else
646 ticks = 1;
647 set_dec(ticks);
650 #ifdef CONFIG_SUSPEND
651 void generic_suspend_disable_irqs(void)
653 preempt_disable();
655 /* Disable the decrementer, so that it doesn't interfere
656 * with suspending.
659 set_dec(0x7fffffff);
660 local_irq_disable();
661 set_dec(0x7fffffff);
664 void generic_suspend_enable_irqs(void)
666 wakeup_decrementer();
668 local_irq_enable();
669 preempt_enable();
672 /* Overrides the weak version in kernel/power/main.c */
673 void arch_suspend_disable_irqs(void)
675 if (ppc_md.suspend_disable_irqs)
676 ppc_md.suspend_disable_irqs();
677 generic_suspend_disable_irqs();
680 /* Overrides the weak version in kernel/power/main.c */
681 void arch_suspend_enable_irqs(void)
683 generic_suspend_enable_irqs();
684 if (ppc_md.suspend_enable_irqs)
685 ppc_md.suspend_enable_irqs();
687 #endif
689 #ifdef CONFIG_SMP
690 void __init smp_space_timers(unsigned int max_cpus)
692 int i;
693 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
695 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
696 previous_tb -= tb_ticks_per_jiffy;
698 for_each_possible_cpu(i) {
699 if (i == boot_cpuid)
700 continue;
701 per_cpu(last_jiffy, i) = previous_tb;
704 #endif
707 * Scheduler clock - returns current time in nanosec units.
709 * Note: mulhdu(a, b) (multiply high double unsigned) returns
710 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
711 * are 64-bit unsigned numbers.
713 unsigned long long sched_clock(void)
715 if (__USE_RTC())
716 return get_rtc();
717 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
720 static int __init get_freq(char *name, int cells, unsigned long *val)
722 struct device_node *cpu;
723 const unsigned int *fp;
724 int found = 0;
726 /* The cpu node should have timebase and clock frequency properties */
727 cpu = of_find_node_by_type(NULL, "cpu");
729 if (cpu) {
730 fp = of_get_property(cpu, name, NULL);
731 if (fp) {
732 found = 1;
733 *val = of_read_ulong(fp, cells);
736 of_node_put(cpu);
739 return found;
742 /* should become __cpuinit when secondary_cpu_time_init also is */
743 void start_cpu_decrementer(void)
745 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
746 /* Clear any pending timer interrupts */
747 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
749 /* Enable decrementer interrupt */
750 mtspr(SPRN_TCR, TCR_DIE);
751 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
754 void __init generic_calibrate_decr(void)
756 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
758 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
759 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
761 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
762 "(not found)\n");
765 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
767 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
768 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
770 printk(KERN_ERR "WARNING: Estimating processor frequency "
771 "(not found)\n");
775 int update_persistent_clock(struct timespec now)
777 struct rtc_time tm;
779 if (!ppc_md.set_rtc_time)
780 return 0;
782 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
783 tm.tm_year -= 1900;
784 tm.tm_mon -= 1;
786 return ppc_md.set_rtc_time(&tm);
789 static void __read_persistent_clock(struct timespec *ts)
791 struct rtc_time tm;
792 static int first = 1;
794 ts->tv_nsec = 0;
795 /* XXX this is a litle fragile but will work okay in the short term */
796 if (first) {
797 first = 0;
798 if (ppc_md.time_init)
799 timezone_offset = ppc_md.time_init();
801 /* get_boot_time() isn't guaranteed to be safe to call late */
802 if (ppc_md.get_boot_time) {
803 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
804 return;
807 if (!ppc_md.get_rtc_time) {
808 ts->tv_sec = 0;
809 return;
811 ppc_md.get_rtc_time(&tm);
813 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
814 tm.tm_hour, tm.tm_min, tm.tm_sec);
817 void read_persistent_clock(struct timespec *ts)
819 __read_persistent_clock(ts);
821 /* Sanitize it in case real time clock is set below EPOCH */
822 if (ts->tv_sec < 0) {
823 ts->tv_sec = 0;
824 ts->tv_nsec = 0;
829 /* clocksource code */
830 static cycle_t rtc_read(struct clocksource *cs)
832 return (cycle_t)get_rtc();
835 static cycle_t timebase_read(struct clocksource *cs)
837 return (cycle_t)get_tb();
840 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
841 u32 mult)
843 u64 t2x, stamp_xsec;
845 if (clock != &clocksource_timebase)
846 return;
848 /* Make userspace gettimeofday spin until we're done. */
849 ++vdso_data->tb_update_count;
850 smp_mb();
852 /* XXX this assumes clock->shift == 22 */
853 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
854 t2x = (u64) mult * 4611686018ULL;
855 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
856 do_div(stamp_xsec, 1000000000);
857 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
858 update_gtod(clock->cycle_last, stamp_xsec, t2x);
861 void update_vsyscall_tz(void)
863 /* Make userspace gettimeofday spin until we're done. */
864 ++vdso_data->tb_update_count;
865 smp_mb();
866 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
867 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
868 smp_mb();
869 ++vdso_data->tb_update_count;
872 static void __init clocksource_init(void)
874 struct clocksource *clock;
876 if (__USE_RTC())
877 clock = &clocksource_rtc;
878 else
879 clock = &clocksource_timebase;
881 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
883 if (clocksource_register(clock)) {
884 printk(KERN_ERR "clocksource: %s is already registered\n",
885 clock->name);
886 return;
889 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
890 clock->name, clock->mult, clock->shift);
893 static int decrementer_set_next_event(unsigned long evt,
894 struct clock_event_device *dev)
896 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
897 set_dec(evt);
898 return 0;
901 static void decrementer_set_mode(enum clock_event_mode mode,
902 struct clock_event_device *dev)
904 if (mode != CLOCK_EVT_MODE_ONESHOT)
905 decrementer_set_next_event(DECREMENTER_MAX, dev);
908 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
909 int shift)
911 uint64_t tmp = ((uint64_t)ticks) << shift;
913 do_div(tmp, nsec);
914 return tmp;
917 static void __init setup_clockevent_multiplier(unsigned long hz)
919 u64 mult, shift = 32;
921 while (1) {
922 mult = div_sc64(hz, NSEC_PER_SEC, shift);
923 if (mult && (mult >> 32UL) == 0UL)
924 break;
926 shift--;
929 decrementer_clockevent.shift = shift;
930 decrementer_clockevent.mult = mult;
933 static void register_decrementer_clockevent(int cpu)
935 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
937 *dec = decrementer_clockevent;
938 dec->cpumask = cpumask_of(cpu);
940 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
941 dec->name, dec->mult, dec->shift, cpu);
943 clockevents_register_device(dec);
946 static void __init init_decrementer_clockevent(void)
948 int cpu = smp_processor_id();
950 setup_clockevent_multiplier(ppc_tb_freq);
951 decrementer_clockevent.max_delta_ns =
952 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
953 decrementer_clockevent.min_delta_ns =
954 clockevent_delta2ns(2, &decrementer_clockevent);
956 register_decrementer_clockevent(cpu);
959 void secondary_cpu_time_init(void)
961 /* Start the decrementer on CPUs that have manual control
962 * such as BookE
964 start_cpu_decrementer();
966 /* FIME: Should make unrelatred change to move snapshot_timebase
967 * call here ! */
968 register_decrementer_clockevent(smp_processor_id());
971 /* This function is only called on the boot processor */
972 void __init time_init(void)
974 unsigned long flags;
975 struct div_result res;
976 u64 scale, x;
977 unsigned shift;
979 if (__USE_RTC()) {
980 /* 601 processor: dec counts down by 128 every 128ns */
981 ppc_tb_freq = 1000000000;
982 tb_last_jiffy = get_rtcl();
983 } else {
984 /* Normal PowerPC with timebase register */
985 ppc_md.calibrate_decr();
986 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
987 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
988 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
989 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
990 tb_last_jiffy = get_tb();
993 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
994 tb_ticks_per_sec = ppc_tb_freq;
995 tb_ticks_per_usec = ppc_tb_freq / 1000000;
996 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
997 calc_cputime_factors();
998 setup_cputime_one_jiffy();
1001 * Calculate the length of each tick in ns. It will not be
1002 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1003 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1004 * rounded up.
1006 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
1007 do_div(x, ppc_tb_freq);
1008 tick_nsec = x;
1009 last_tick_len = x << TICKLEN_SCALE;
1012 * Compute ticklen_to_xs, which is a factor which gets multiplied
1013 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1014 * It is computed as:
1015 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1016 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1017 * which turns out to be N = 51 - SHIFT_HZ.
1018 * This gives the result as a 0.64 fixed-point fraction.
1019 * That value is reduced by an offset amounting to 1 xsec per
1020 * 2^31 timebase ticks to avoid problems with time going backwards
1021 * by 1 xsec when we do timer_recalc_offset due to losing the
1022 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1023 * since there are 2^20 xsec in a second.
1025 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1026 tb_ticks_per_jiffy << SHIFT_HZ, &res);
1027 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1028 ticklen_to_xs = res.result_low;
1030 /* Compute tb_to_xs from tick_nsec */
1031 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1034 * Compute scale factor for sched_clock.
1035 * The calibrate_decr() function has set tb_ticks_per_sec,
1036 * which is the timebase frequency.
1037 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1038 * the 128-bit result as a 64.64 fixed-point number.
1039 * We then shift that number right until it is less than 1.0,
1040 * giving us the scale factor and shift count to use in
1041 * sched_clock().
1043 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1044 scale = res.result_low;
1045 for (shift = 0; res.result_high != 0; ++shift) {
1046 scale = (scale >> 1) | (res.result_high << 63);
1047 res.result_high >>= 1;
1049 tb_to_ns_scale = scale;
1050 tb_to_ns_shift = shift;
1051 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1052 boot_tb = get_tb_or_rtc();
1054 write_seqlock_irqsave(&xtime_lock, flags);
1056 /* If platform provided a timezone (pmac), we correct the time */
1057 if (timezone_offset) {
1058 sys_tz.tz_minuteswest = -timezone_offset / 60;
1059 sys_tz.tz_dsttime = 0;
1062 vdso_data->tb_orig_stamp = tb_last_jiffy;
1063 vdso_data->tb_update_count = 0;
1064 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1065 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1066 vdso_data->tb_to_xs = tb_to_xs;
1068 write_sequnlock_irqrestore(&xtime_lock, flags);
1070 /* Start the decrementer on CPUs that have manual control
1071 * such as BookE
1073 start_cpu_decrementer();
1075 /* Register the clocksource, if we're not running on iSeries */
1076 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1077 clocksource_init();
1079 init_decrementer_clockevent();
1083 #define FEBRUARY 2
1084 #define STARTOFTIME 1970
1085 #define SECDAY 86400L
1086 #define SECYR (SECDAY * 365)
1087 #define leapyear(year) ((year) % 4 == 0 && \
1088 ((year) % 100 != 0 || (year) % 400 == 0))
1089 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1090 #define days_in_month(a) (month_days[(a) - 1])
1092 static int month_days[12] = {
1093 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1097 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1099 void GregorianDay(struct rtc_time * tm)
1101 int leapsToDate;
1102 int lastYear;
1103 int day;
1104 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1106 lastYear = tm->tm_year - 1;
1109 * Number of leap corrections to apply up to end of last year
1111 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1114 * This year is a leap year if it is divisible by 4 except when it is
1115 * divisible by 100 unless it is divisible by 400
1117 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1119 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1121 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1122 tm->tm_mday;
1124 tm->tm_wday = day % 7;
1127 void to_tm(int tim, struct rtc_time * tm)
1129 register int i;
1130 register long hms, day;
1132 day = tim / SECDAY;
1133 hms = tim % SECDAY;
1135 /* Hours, minutes, seconds are easy */
1136 tm->tm_hour = hms / 3600;
1137 tm->tm_min = (hms % 3600) / 60;
1138 tm->tm_sec = (hms % 3600) % 60;
1140 /* Number of years in days */
1141 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1142 day -= days_in_year(i);
1143 tm->tm_year = i;
1145 /* Number of months in days left */
1146 if (leapyear(tm->tm_year))
1147 days_in_month(FEBRUARY) = 29;
1148 for (i = 1; day >= days_in_month(i); i++)
1149 day -= days_in_month(i);
1150 days_in_month(FEBRUARY) = 28;
1151 tm->tm_mon = i;
1153 /* Days are what is left over (+1) from all that. */
1154 tm->tm_mday = day + 1;
1157 * Determine the day of week
1159 GregorianDay(tm);
1162 /* Auxiliary function to compute scaling factors */
1163 /* Actually the choice of a timebase running at 1/4 the of the bus
1164 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1165 * It makes this computation very precise (27-28 bits typically) which
1166 * is optimistic considering the stability of most processor clock
1167 * oscillators and the precision with which the timebase frequency
1168 * is measured but does not harm.
1170 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1172 unsigned mlt=0, tmp, err;
1173 /* No concern for performance, it's done once: use a stupid
1174 * but safe and compact method to find the multiplier.
1177 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1178 if (mulhwu(inscale, mlt|tmp) < outscale)
1179 mlt |= tmp;
1182 /* We might still be off by 1 for the best approximation.
1183 * A side effect of this is that if outscale is too large
1184 * the returned value will be zero.
1185 * Many corner cases have been checked and seem to work,
1186 * some might have been forgotten in the test however.
1189 err = inscale * (mlt+1);
1190 if (err <= inscale/2)
1191 mlt++;
1192 return mlt;
1196 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1197 * result.
1199 void div128_by_32(u64 dividend_high, u64 dividend_low,
1200 unsigned divisor, struct div_result *dr)
1202 unsigned long a, b, c, d;
1203 unsigned long w, x, y, z;
1204 u64 ra, rb, rc;
1206 a = dividend_high >> 32;
1207 b = dividend_high & 0xffffffff;
1208 c = dividend_low >> 32;
1209 d = dividend_low & 0xffffffff;
1211 w = a / divisor;
1212 ra = ((u64)(a - (w * divisor)) << 32) + b;
1214 rb = ((u64) do_div(ra, divisor) << 32) + c;
1215 x = ra;
1217 rc = ((u64) do_div(rb, divisor) << 32) + d;
1218 y = rb;
1220 do_div(rc, divisor);
1221 z = rc;
1223 dr->result_high = ((u64)w << 32) + x;
1224 dr->result_low = ((u64)y << 32) + z;
1228 /* We don't need to calibrate delay, we use the CPU timebase for that */
1229 void calibrate_delay(void)
1231 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1232 * as the number of __delay(1) in a jiffy, so make it so
1234 loops_per_jiffy = tb_ticks_per_jiffy;
1237 static int __init rtc_init(void)
1239 struct platform_device *pdev;
1241 if (!ppc_md.get_rtc_time)
1242 return -ENODEV;
1244 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1245 if (IS_ERR(pdev))
1246 return PTR_ERR(pdev);
1248 return 0;
1251 module_init(rtc_init);