2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 #include <asm/trace.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
68 #include <asm/div64.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t
rtc_read(struct clocksource
*);
84 static struct clocksource clocksource_rtc
= {
87 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
88 .mask
= CLOCKSOURCE_MASK(64),
90 .mult
= 0, /* To be filled in */
94 static cycle_t
timebase_read(struct clocksource
*);
95 static struct clocksource clocksource_timebase
= {
98 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
99 .mask
= CLOCKSOURCE_MASK(64),
101 .mult
= 0, /* To be filled in */
102 .read
= timebase_read
,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt
,
108 struct clock_event_device
*dev
);
109 static void decrementer_set_mode(enum clock_event_mode mode
,
110 struct clock_event_device
*dev
);
112 static struct clock_event_device decrementer_clockevent
= {
113 .name
= "decrementer",
115 .shift
= 0, /* To be filled in */
116 .mult
= 0, /* To be filled in */
118 .set_next_event
= decrementer_set_next_event
,
119 .set_mode
= decrementer_set_mode
,
120 .features
= CLOCK_EVT_FEAT_ONESHOT
,
123 struct decrementer_clock
{
124 struct clock_event_device event
;
128 static DEFINE_PER_CPU(struct decrementer_clock
, decrementers
);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan
;
132 static signed long __initdata iSeries_recal_tb
;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init
clocksource_init(void);
138 #define XSEC_PER_SEC (1024*1024)
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
147 unsigned long tb_ticks_per_jiffy
;
148 unsigned long tb_ticks_per_usec
= 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec
);
150 unsigned long tb_ticks_per_sec
;
151 EXPORT_SYMBOL(tb_ticks_per_sec
); /* for cputime_t conversions */
155 #define TICKLEN_SCALE NTP_SCALE_SHIFT
156 static u64 last_tick_len
; /* units are ns / 2^TICKLEN_SCALE */
157 static u64 ticklen_to_xs
; /* 0.64 fraction */
159 /* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
163 DEFINE_SPINLOCK(rtc_lock
);
164 EXPORT_SYMBOL_GPL(rtc_lock
);
166 static u64 tb_to_ns_scale __read_mostly
;
167 static unsigned tb_to_ns_shift __read_mostly
;
168 static unsigned long boot_tb __read_mostly
;
170 extern struct timezone sys_tz
;
171 static long timezone_offset
;
173 unsigned long ppc_proc_freq
;
174 EXPORT_SYMBOL(ppc_proc_freq
);
175 unsigned long ppc_tb_freq
;
177 static u64 tb_last_jiffy __cacheline_aligned_in_smp
;
178 static DEFINE_PER_CPU(u64
, last_jiffy
);
180 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
182 * Factors for converting from cputime_t (timebase ticks) to
183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184 * These are all stored as 0.64 fixed-point binary fractions.
186 u64 __cputime_jiffies_factor
;
187 EXPORT_SYMBOL(__cputime_jiffies_factor
);
188 u64 __cputime_msec_factor
;
189 EXPORT_SYMBOL(__cputime_msec_factor
);
190 u64 __cputime_sec_factor
;
191 EXPORT_SYMBOL(__cputime_sec_factor
);
192 u64 __cputime_clockt_factor
;
193 EXPORT_SYMBOL(__cputime_clockt_factor
);
194 DEFINE_PER_CPU(unsigned long, cputime_last_delta
);
195 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta
);
197 cputime_t cputime_one_jiffy
;
199 static void calc_cputime_factors(void)
201 struct div_result res
;
203 div128_by_32(HZ
, 0, tb_ticks_per_sec
, &res
);
204 __cputime_jiffies_factor
= res
.result_low
;
205 div128_by_32(1000, 0, tb_ticks_per_sec
, &res
);
206 __cputime_msec_factor
= res
.result_low
;
207 div128_by_32(1, 0, tb_ticks_per_sec
, &res
);
208 __cputime_sec_factor
= res
.result_low
;
209 div128_by_32(USER_HZ
, 0, tb_ticks_per_sec
, &res
);
210 __cputime_clockt_factor
= res
.result_low
;
214 * Read the PURR on systems that have it, otherwise the timebase.
216 static u64
read_purr(void)
218 if (cpu_has_feature(CPU_FTR_PURR
))
219 return mfspr(SPRN_PURR
);
224 * Read the SPURR on systems that have it, otherwise the purr
226 static u64
read_spurr(u64 purr
)
229 * cpus without PURR won't have a SPURR
230 * We already know the former when we use this, so tell gcc
232 if (cpu_has_feature(CPU_FTR_PURR
) && cpu_has_feature(CPU_FTR_SPURR
))
233 return mfspr(SPRN_SPURR
);
238 * Account time for a transition between system, hard irq
241 void account_system_vtime(struct task_struct
*tsk
)
243 u64 now
, nowscaled
, delta
, deltascaled
, sys_time
;
246 local_irq_save(flags
);
248 nowscaled
= read_spurr(now
);
249 delta
= now
- get_paca()->startpurr
;
250 deltascaled
= nowscaled
- get_paca()->startspurr
;
251 get_paca()->startpurr
= now
;
252 get_paca()->startspurr
= nowscaled
;
253 if (!in_interrupt()) {
254 /* deltascaled includes both user and system time.
255 * Hence scale it based on the purr ratio to estimate
257 sys_time
= get_paca()->system_time
;
258 if (get_paca()->user_time
)
259 deltascaled
= deltascaled
* sys_time
/
260 (sys_time
+ get_paca()->user_time
);
262 get_paca()->system_time
= 0;
264 if (in_irq() || idle_task(smp_processor_id()) != tsk
)
265 account_system_time(tsk
, 0, delta
, deltascaled
);
267 account_idle_time(delta
);
268 __get_cpu_var(cputime_last_delta
) = delta
;
269 __get_cpu_var(cputime_scaled_last_delta
) = deltascaled
;
270 local_irq_restore(flags
);
272 EXPORT_SYMBOL_GPL(account_system_vtime
);
275 * Transfer the user and system times accumulated in the paca
276 * by the exception entry and exit code to the generic process
277 * user and system time records.
278 * Must be called with interrupts disabled.
280 void account_process_tick(struct task_struct
*tsk
, int user_tick
)
282 cputime_t utime
, utimescaled
;
284 utime
= get_paca()->user_time
;
285 get_paca()->user_time
= 0;
286 utimescaled
= cputime_to_scaled(utime
);
287 account_user_time(tsk
, utime
, utimescaled
);
291 * Stuff for accounting stolen time.
293 struct cpu_purr_data
{
294 int initialized
; /* thread is running */
295 u64 tb
; /* last TB value read */
296 u64 purr
; /* last PURR value read */
297 u64 spurr
; /* last SPURR value read */
301 * Each entry in the cpu_purr_data array is manipulated only by its
302 * "owner" cpu -- usually in the timer interrupt but also occasionally
303 * in process context for cpu online. As long as cpus do not touch
304 * each others' cpu_purr_data, disabling local interrupts is
305 * sufficient to serialize accesses.
307 static DEFINE_PER_CPU(struct cpu_purr_data
, cpu_purr_data
);
309 static void snapshot_tb_and_purr(void *data
)
312 struct cpu_purr_data
*p
= &__get_cpu_var(cpu_purr_data
);
314 local_irq_save(flags
);
315 p
->tb
= get_tb_or_rtc();
316 p
->purr
= mfspr(SPRN_PURR
);
319 local_irq_restore(flags
);
323 * Called during boot when all cpus have come up.
325 void snapshot_timebases(void)
327 if (!cpu_has_feature(CPU_FTR_PURR
))
329 on_each_cpu(snapshot_tb_and_purr
, NULL
, 1);
333 * Must be called with interrupts disabled.
335 void calculate_steal_time(void)
339 struct cpu_purr_data
*pme
;
341 pme
= &__get_cpu_var(cpu_purr_data
);
342 if (!pme
->initialized
)
343 return; /* !CPU_FTR_PURR or early in early boot */
345 purr
= mfspr(SPRN_PURR
);
346 stolen
= (tb
- pme
->tb
) - (purr
- pme
->purr
);
348 if (idle_task(smp_processor_id()) != current
)
349 account_steal_time(stolen
);
351 account_idle_time(stolen
);
357 #ifdef CONFIG_PPC_SPLPAR
359 * Must be called before the cpu is added to the online map when
360 * a cpu is being brought up at runtime.
362 static void snapshot_purr(void)
364 struct cpu_purr_data
*pme
;
367 if (!cpu_has_feature(CPU_FTR_PURR
))
369 local_irq_save(flags
);
370 pme
= &__get_cpu_var(cpu_purr_data
);
372 pme
->purr
= mfspr(SPRN_PURR
);
373 pme
->initialized
= 1;
374 local_irq_restore(flags
);
377 #endif /* CONFIG_PPC_SPLPAR */
379 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
380 #define calc_cputime_factors()
381 #define calculate_steal_time() do { } while (0)
384 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
385 #define snapshot_purr() do { } while (0)
389 * Called when a cpu comes up after the system has finished booting,
390 * i.e. as a result of a hotplug cpu action.
392 void snapshot_timebase(void)
394 __get_cpu_var(last_jiffy
) = get_tb_or_rtc();
398 void __delay(unsigned long loops
)
406 /* the RTCL register wraps at 1000000000 */
407 diff
= get_rtcl() - start
;
410 } while (diff
< loops
);
413 while (get_tbl() - start
< loops
)
418 EXPORT_SYMBOL(__delay
);
420 void udelay(unsigned long usecs
)
422 __delay(tb_ticks_per_usec
* usecs
);
424 EXPORT_SYMBOL(udelay
);
426 static inline void update_gtod(u64 new_tb_stamp
, u64 new_stamp_xsec
,
430 * tb_update_count is used to allow the userspace gettimeofday code
431 * to assure itself that it sees a consistent view of the tb_to_xs and
432 * stamp_xsec variables. It reads the tb_update_count, then reads
433 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
434 * the two values of tb_update_count match and are even then the
435 * tb_to_xs and stamp_xsec values are consistent. If not, then it
436 * loops back and reads them again until this criteria is met.
437 * We expect the caller to have done the first increment of
438 * vdso_data->tb_update_count already.
440 vdso_data
->tb_orig_stamp
= new_tb_stamp
;
441 vdso_data
->stamp_xsec
= new_stamp_xsec
;
442 vdso_data
->tb_to_xs
= new_tb_to_xs
;
443 vdso_data
->wtom_clock_sec
= wall_to_monotonic
.tv_sec
;
444 vdso_data
->wtom_clock_nsec
= wall_to_monotonic
.tv_nsec
;
445 vdso_data
->stamp_xtime
= xtime
;
447 ++(vdso_data
->tb_update_count
);
451 unsigned long profile_pc(struct pt_regs
*regs
)
453 unsigned long pc
= instruction_pointer(regs
);
455 if (in_lock_functions(pc
))
460 EXPORT_SYMBOL(profile_pc
);
463 #ifdef CONFIG_PPC_ISERIES
466 * This function recalibrates the timebase based on the 49-bit time-of-day
467 * value in the Titan chip. The Titan is much more accurate than the value
468 * returned by the service processor for the timebase frequency.
471 static int __init
iSeries_tb_recal(void)
473 struct div_result divres
;
474 unsigned long titan
, tb
;
476 /* Make sure we only run on iSeries */
477 if (!firmware_has_feature(FW_FEATURE_ISERIES
))
481 titan
= HvCallXm_loadTod();
482 if ( iSeries_recal_titan
) {
483 unsigned long tb_ticks
= tb
- iSeries_recal_tb
;
484 unsigned long titan_usec
= (titan
- iSeries_recal_titan
) >> 12;
485 unsigned long new_tb_ticks_per_sec
= (tb_ticks
* USEC_PER_SEC
)/titan_usec
;
486 unsigned long new_tb_ticks_per_jiffy
=
487 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec
, HZ
);
488 long tick_diff
= new_tb_ticks_per_jiffy
- tb_ticks_per_jiffy
;
490 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
491 new_tb_ticks_per_sec
= new_tb_ticks_per_jiffy
* HZ
;
493 if ( tick_diff
< 0 ) {
494 tick_diff
= -tick_diff
;
498 if ( tick_diff
< tb_ticks_per_jiffy
/25 ) {
499 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
500 new_tb_ticks_per_jiffy
, sign
, tick_diff
);
501 tb_ticks_per_jiffy
= new_tb_ticks_per_jiffy
;
502 tb_ticks_per_sec
= new_tb_ticks_per_sec
;
503 calc_cputime_factors();
504 div128_by_32( XSEC_PER_SEC
, 0, tb_ticks_per_sec
, &divres
);
505 tb_to_xs
= divres
.result_low
;
506 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
507 vdso_data
->tb_to_xs
= tb_to_xs
;
508 setup_cputime_one_jiffy();
511 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
512 " new tb_ticks_per_jiffy = %lu\n"
513 " old tb_ticks_per_jiffy = %lu\n",
514 new_tb_ticks_per_jiffy
, tb_ticks_per_jiffy
);
518 iSeries_recal_titan
= titan
;
519 iSeries_recal_tb
= tb
;
521 /* Called here as now we know accurate values for the timebase */
525 late_initcall(iSeries_tb_recal
);
527 /* Called from platform early init */
528 void __init
iSeries_time_init_early(void)
530 iSeries_recal_tb
= get_tb();
531 iSeries_recal_titan
= HvCallXm_loadTod();
533 #endif /* CONFIG_PPC_ISERIES */
535 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
536 DEFINE_PER_CPU(u8
, perf_event_pending
);
538 void set_perf_event_pending(void)
540 get_cpu_var(perf_event_pending
) = 1;
542 put_cpu_var(perf_event_pending
);
545 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
546 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
548 #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
550 #define test_perf_event_pending() 0
551 #define clear_perf_event_pending()
553 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
556 * For iSeries shared processors, we have to let the hypervisor
557 * set the hardware decrementer. We set a virtual decrementer
558 * in the lppaca and call the hypervisor if the virtual
559 * decrementer is less than the current value in the hardware
560 * decrementer. (almost always the new decrementer value will
561 * be greater than the current hardware decementer so the hypervisor
562 * call will not be needed)
566 * timer_interrupt - gets called when the decrementer overflows,
567 * with interrupts disabled.
569 void timer_interrupt(struct pt_regs
* regs
)
571 struct pt_regs
*old_regs
;
572 struct decrementer_clock
*decrementer
= &__get_cpu_var(decrementers
);
573 struct clock_event_device
*evt
= &decrementer
->event
;
576 trace_timer_interrupt_entry(regs
);
578 __get_cpu_var(irq_stat
).timer_irqs
++;
580 /* Ensure a positive value is written to the decrementer, or else
581 * some CPUs will continuue to take decrementer exceptions */
582 set_dec(DECREMENTER_MAX
);
585 if (test_perf_event_pending()) {
586 clear_perf_event_pending();
587 perf_event_do_pending();
589 if (atomic_read(&ppc_n_lost_interrupts
) != 0)
593 now
= get_tb_or_rtc();
594 if (now
< decrementer
->next_tb
) {
595 /* not time for this event yet */
596 now
= decrementer
->next_tb
- now
;
597 if (now
<= DECREMENTER_MAX
)
599 trace_timer_interrupt_exit(regs
);
602 old_regs
= set_irq_regs(regs
);
605 calculate_steal_time();
607 #ifdef CONFIG_PPC_ISERIES
608 if (firmware_has_feature(FW_FEATURE_ISERIES
))
609 get_lppaca()->int_dword
.fields
.decr_int
= 0;
612 if (evt
->event_handler
)
613 evt
->event_handler(evt
);
615 #ifdef CONFIG_PPC_ISERIES
616 if (firmware_has_feature(FW_FEATURE_ISERIES
) && hvlpevent_is_pending())
617 process_hvlpevents();
621 /* collect purr register values often, for accurate calculations */
622 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
623 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
624 cu
->current_tb
= mfspr(SPRN_PURR
);
629 set_irq_regs(old_regs
);
631 trace_timer_interrupt_exit(regs
);
634 void wakeup_decrementer(void)
639 * The timebase gets saved on sleep and restored on wakeup,
640 * so all we need to do is to reset the decrementer.
642 ticks
= tb_ticks_since(__get_cpu_var(last_jiffy
));
643 if (ticks
< tb_ticks_per_jiffy
)
644 ticks
= tb_ticks_per_jiffy
- ticks
;
650 #ifdef CONFIG_SUSPEND
651 void generic_suspend_disable_irqs(void)
655 /* Disable the decrementer, so that it doesn't interfere
664 void generic_suspend_enable_irqs(void)
666 wakeup_decrementer();
672 /* Overrides the weak version in kernel/power/main.c */
673 void arch_suspend_disable_irqs(void)
675 if (ppc_md
.suspend_disable_irqs
)
676 ppc_md
.suspend_disable_irqs();
677 generic_suspend_disable_irqs();
680 /* Overrides the weak version in kernel/power/main.c */
681 void arch_suspend_enable_irqs(void)
683 generic_suspend_enable_irqs();
684 if (ppc_md
.suspend_enable_irqs
)
685 ppc_md
.suspend_enable_irqs();
690 void __init
smp_space_timers(unsigned int max_cpus
)
693 u64 previous_tb
= per_cpu(last_jiffy
, boot_cpuid
);
695 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
696 previous_tb
-= tb_ticks_per_jiffy
;
698 for_each_possible_cpu(i
) {
701 per_cpu(last_jiffy
, i
) = previous_tb
;
707 * Scheduler clock - returns current time in nanosec units.
709 * Note: mulhdu(a, b) (multiply high double unsigned) returns
710 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
711 * are 64-bit unsigned numbers.
713 unsigned long long sched_clock(void)
717 return mulhdu(get_tb() - boot_tb
, tb_to_ns_scale
) << tb_to_ns_shift
;
720 static int __init
get_freq(char *name
, int cells
, unsigned long *val
)
722 struct device_node
*cpu
;
723 const unsigned int *fp
;
726 /* The cpu node should have timebase and clock frequency properties */
727 cpu
= of_find_node_by_type(NULL
, "cpu");
730 fp
= of_get_property(cpu
, name
, NULL
);
733 *val
= of_read_ulong(fp
, cells
);
742 /* should become __cpuinit when secondary_cpu_time_init also is */
743 void start_cpu_decrementer(void)
745 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
746 /* Clear any pending timer interrupts */
747 mtspr(SPRN_TSR
, TSR_ENW
| TSR_WIS
| TSR_DIS
| TSR_FIS
);
749 /* Enable decrementer interrupt */
750 mtspr(SPRN_TCR
, TCR_DIE
);
751 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
754 void __init
generic_calibrate_decr(void)
756 ppc_tb_freq
= DEFAULT_TB_FREQ
; /* hardcoded default */
758 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq
) &&
759 !get_freq("timebase-frequency", 1, &ppc_tb_freq
)) {
761 printk(KERN_ERR
"WARNING: Estimating decrementer frequency "
765 ppc_proc_freq
= DEFAULT_PROC_FREQ
; /* hardcoded default */
767 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq
) &&
768 !get_freq("clock-frequency", 1, &ppc_proc_freq
)) {
770 printk(KERN_ERR
"WARNING: Estimating processor frequency "
775 int update_persistent_clock(struct timespec now
)
779 if (!ppc_md
.set_rtc_time
)
782 to_tm(now
.tv_sec
+ 1 + timezone_offset
, &tm
);
786 return ppc_md
.set_rtc_time(&tm
);
789 static void __read_persistent_clock(struct timespec
*ts
)
792 static int first
= 1;
795 /* XXX this is a litle fragile but will work okay in the short term */
798 if (ppc_md
.time_init
)
799 timezone_offset
= ppc_md
.time_init();
801 /* get_boot_time() isn't guaranteed to be safe to call late */
802 if (ppc_md
.get_boot_time
) {
803 ts
->tv_sec
= ppc_md
.get_boot_time() - timezone_offset
;
807 if (!ppc_md
.get_rtc_time
) {
811 ppc_md
.get_rtc_time(&tm
);
813 ts
->tv_sec
= mktime(tm
.tm_year
+1900, tm
.tm_mon
+1, tm
.tm_mday
,
814 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
);
817 void read_persistent_clock(struct timespec
*ts
)
819 __read_persistent_clock(ts
);
821 /* Sanitize it in case real time clock is set below EPOCH */
822 if (ts
->tv_sec
< 0) {
829 /* clocksource code */
830 static cycle_t
rtc_read(struct clocksource
*cs
)
832 return (cycle_t
)get_rtc();
835 static cycle_t
timebase_read(struct clocksource
*cs
)
837 return (cycle_t
)get_tb();
840 void update_vsyscall(struct timespec
*wall_time
, struct clocksource
*clock
,
845 if (clock
!= &clocksource_timebase
)
848 /* Make userspace gettimeofday spin until we're done. */
849 ++vdso_data
->tb_update_count
;
852 /* XXX this assumes clock->shift == 22 */
853 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
854 t2x
= (u64
) mult
* 4611686018ULL;
855 stamp_xsec
= (u64
) xtime
.tv_nsec
* XSEC_PER_SEC
;
856 do_div(stamp_xsec
, 1000000000);
857 stamp_xsec
+= (u64
) xtime
.tv_sec
* XSEC_PER_SEC
;
858 update_gtod(clock
->cycle_last
, stamp_xsec
, t2x
);
861 void update_vsyscall_tz(void)
863 /* Make userspace gettimeofday spin until we're done. */
864 ++vdso_data
->tb_update_count
;
866 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
867 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
869 ++vdso_data
->tb_update_count
;
872 static void __init
clocksource_init(void)
874 struct clocksource
*clock
;
877 clock
= &clocksource_rtc
;
879 clock
= &clocksource_timebase
;
881 clock
->mult
= clocksource_hz2mult(tb_ticks_per_sec
, clock
->shift
);
883 if (clocksource_register(clock
)) {
884 printk(KERN_ERR
"clocksource: %s is already registered\n",
889 printk(KERN_INFO
"clocksource: %s mult[%x] shift[%d] registered\n",
890 clock
->name
, clock
->mult
, clock
->shift
);
893 static int decrementer_set_next_event(unsigned long evt
,
894 struct clock_event_device
*dev
)
896 __get_cpu_var(decrementers
).next_tb
= get_tb_or_rtc() + evt
;
901 static void decrementer_set_mode(enum clock_event_mode mode
,
902 struct clock_event_device
*dev
)
904 if (mode
!= CLOCK_EVT_MODE_ONESHOT
)
905 decrementer_set_next_event(DECREMENTER_MAX
, dev
);
908 static inline uint64_t div_sc64(unsigned long ticks
, unsigned long nsec
,
911 uint64_t tmp
= ((uint64_t)ticks
) << shift
;
917 static void __init
setup_clockevent_multiplier(unsigned long hz
)
919 u64 mult
, shift
= 32;
922 mult
= div_sc64(hz
, NSEC_PER_SEC
, shift
);
923 if (mult
&& (mult
>> 32UL) == 0UL)
929 decrementer_clockevent
.shift
= shift
;
930 decrementer_clockevent
.mult
= mult
;
933 static void register_decrementer_clockevent(int cpu
)
935 struct clock_event_device
*dec
= &per_cpu(decrementers
, cpu
).event
;
937 *dec
= decrementer_clockevent
;
938 dec
->cpumask
= cpumask_of(cpu
);
940 printk_once(KERN_DEBUG
"clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
941 dec
->name
, dec
->mult
, dec
->shift
, cpu
);
943 clockevents_register_device(dec
);
946 static void __init
init_decrementer_clockevent(void)
948 int cpu
= smp_processor_id();
950 setup_clockevent_multiplier(ppc_tb_freq
);
951 decrementer_clockevent
.max_delta_ns
=
952 clockevent_delta2ns(DECREMENTER_MAX
, &decrementer_clockevent
);
953 decrementer_clockevent
.min_delta_ns
=
954 clockevent_delta2ns(2, &decrementer_clockevent
);
956 register_decrementer_clockevent(cpu
);
959 void secondary_cpu_time_init(void)
961 /* Start the decrementer on CPUs that have manual control
964 start_cpu_decrementer();
966 /* FIME: Should make unrelatred change to move snapshot_timebase
968 register_decrementer_clockevent(smp_processor_id());
971 /* This function is only called on the boot processor */
972 void __init
time_init(void)
975 struct div_result res
;
980 /* 601 processor: dec counts down by 128 every 128ns */
981 ppc_tb_freq
= 1000000000;
982 tb_last_jiffy
= get_rtcl();
984 /* Normal PowerPC with timebase register */
985 ppc_md
.calibrate_decr();
986 printk(KERN_DEBUG
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
987 ppc_tb_freq
/ 1000000, ppc_tb_freq
% 1000000);
988 printk(KERN_DEBUG
"time_init: processor frequency = %lu.%.6lu MHz\n",
989 ppc_proc_freq
/ 1000000, ppc_proc_freq
% 1000000);
990 tb_last_jiffy
= get_tb();
993 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
994 tb_ticks_per_sec
= ppc_tb_freq
;
995 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
996 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
997 calc_cputime_factors();
998 setup_cputime_one_jiffy();
1001 * Calculate the length of each tick in ns. It will not be
1002 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
1003 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
1006 x
= (u64
) NSEC_PER_SEC
* tb_ticks_per_jiffy
+ ppc_tb_freq
- 1;
1007 do_div(x
, ppc_tb_freq
);
1009 last_tick_len
= x
<< TICKLEN_SCALE
;
1012 * Compute ticklen_to_xs, which is a factor which gets multiplied
1013 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1014 * It is computed as:
1015 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1016 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1017 * which turns out to be N = 51 - SHIFT_HZ.
1018 * This gives the result as a 0.64 fixed-point fraction.
1019 * That value is reduced by an offset amounting to 1 xsec per
1020 * 2^31 timebase ticks to avoid problems with time going backwards
1021 * by 1 xsec when we do timer_recalc_offset due to losing the
1022 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1023 * since there are 2^20 xsec in a second.
1025 div128_by_32((1ULL << 51) - ppc_tb_freq
, 0,
1026 tb_ticks_per_jiffy
<< SHIFT_HZ
, &res
);
1027 div128_by_32(res
.result_high
, res
.result_low
, NSEC_PER_SEC
, &res
);
1028 ticklen_to_xs
= res
.result_low
;
1030 /* Compute tb_to_xs from tick_nsec */
1031 tb_to_xs
= mulhdu(last_tick_len
<< TICKLEN_SHIFT
, ticklen_to_xs
);
1034 * Compute scale factor for sched_clock.
1035 * The calibrate_decr() function has set tb_ticks_per_sec,
1036 * which is the timebase frequency.
1037 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1038 * the 128-bit result as a 64.64 fixed-point number.
1039 * We then shift that number right until it is less than 1.0,
1040 * giving us the scale factor and shift count to use in
1043 div128_by_32(1000000000, 0, tb_ticks_per_sec
, &res
);
1044 scale
= res
.result_low
;
1045 for (shift
= 0; res
.result_high
!= 0; ++shift
) {
1046 scale
= (scale
>> 1) | (res
.result_high
<< 63);
1047 res
.result_high
>>= 1;
1049 tb_to_ns_scale
= scale
;
1050 tb_to_ns_shift
= shift
;
1051 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1052 boot_tb
= get_tb_or_rtc();
1054 write_seqlock_irqsave(&xtime_lock
, flags
);
1056 /* If platform provided a timezone (pmac), we correct the time */
1057 if (timezone_offset
) {
1058 sys_tz
.tz_minuteswest
= -timezone_offset
/ 60;
1059 sys_tz
.tz_dsttime
= 0;
1062 vdso_data
->tb_orig_stamp
= tb_last_jiffy
;
1063 vdso_data
->tb_update_count
= 0;
1064 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
1065 vdso_data
->stamp_xsec
= (u64
) xtime
.tv_sec
* XSEC_PER_SEC
;
1066 vdso_data
->tb_to_xs
= tb_to_xs
;
1068 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1070 /* Start the decrementer on CPUs that have manual control
1073 start_cpu_decrementer();
1075 /* Register the clocksource, if we're not running on iSeries */
1076 if (!firmware_has_feature(FW_FEATURE_ISERIES
))
1079 init_decrementer_clockevent();
1084 #define STARTOFTIME 1970
1085 #define SECDAY 86400L
1086 #define SECYR (SECDAY * 365)
1087 #define leapyear(year) ((year) % 4 == 0 && \
1088 ((year) % 100 != 0 || (year) % 400 == 0))
1089 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1090 #define days_in_month(a) (month_days[(a) - 1])
1092 static int month_days
[12] = {
1093 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1097 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1099 void GregorianDay(struct rtc_time
* tm
)
1104 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1106 lastYear
= tm
->tm_year
- 1;
1109 * Number of leap corrections to apply up to end of last year
1111 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1114 * This year is a leap year if it is divisible by 4 except when it is
1115 * divisible by 100 unless it is divisible by 400
1117 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1119 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1121 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1124 tm
->tm_wday
= day
% 7;
1127 void to_tm(int tim
, struct rtc_time
* tm
)
1130 register long hms
, day
;
1135 /* Hours, minutes, seconds are easy */
1136 tm
->tm_hour
= hms
/ 3600;
1137 tm
->tm_min
= (hms
% 3600) / 60;
1138 tm
->tm_sec
= (hms
% 3600) % 60;
1140 /* Number of years in days */
1141 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1142 day
-= days_in_year(i
);
1145 /* Number of months in days left */
1146 if (leapyear(tm
->tm_year
))
1147 days_in_month(FEBRUARY
) = 29;
1148 for (i
= 1; day
>= days_in_month(i
); i
++)
1149 day
-= days_in_month(i
);
1150 days_in_month(FEBRUARY
) = 28;
1153 /* Days are what is left over (+1) from all that. */
1154 tm
->tm_mday
= day
+ 1;
1157 * Determine the day of week
1162 /* Auxiliary function to compute scaling factors */
1163 /* Actually the choice of a timebase running at 1/4 the of the bus
1164 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1165 * It makes this computation very precise (27-28 bits typically) which
1166 * is optimistic considering the stability of most processor clock
1167 * oscillators and the precision with which the timebase frequency
1168 * is measured but does not harm.
1170 unsigned mulhwu_scale_factor(unsigned inscale
, unsigned outscale
)
1172 unsigned mlt
=0, tmp
, err
;
1173 /* No concern for performance, it's done once: use a stupid
1174 * but safe and compact method to find the multiplier.
1177 for (tmp
= 1U<<31; tmp
!= 0; tmp
>>= 1) {
1178 if (mulhwu(inscale
, mlt
|tmp
) < outscale
)
1182 /* We might still be off by 1 for the best approximation.
1183 * A side effect of this is that if outscale is too large
1184 * the returned value will be zero.
1185 * Many corner cases have been checked and seem to work,
1186 * some might have been forgotten in the test however.
1189 err
= inscale
* (mlt
+1);
1190 if (err
<= inscale
/2)
1196 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1199 void div128_by_32(u64 dividend_high
, u64 dividend_low
,
1200 unsigned divisor
, struct div_result
*dr
)
1202 unsigned long a
, b
, c
, d
;
1203 unsigned long w
, x
, y
, z
;
1206 a
= dividend_high
>> 32;
1207 b
= dividend_high
& 0xffffffff;
1208 c
= dividend_low
>> 32;
1209 d
= dividend_low
& 0xffffffff;
1212 ra
= ((u64
)(a
- (w
* divisor
)) << 32) + b
;
1214 rb
= ((u64
) do_div(ra
, divisor
) << 32) + c
;
1217 rc
= ((u64
) do_div(rb
, divisor
) << 32) + d
;
1220 do_div(rc
, divisor
);
1223 dr
->result_high
= ((u64
)w
<< 32) + x
;
1224 dr
->result_low
= ((u64
)y
<< 32) + z
;
1228 /* We don't need to calibrate delay, we use the CPU timebase for that */
1229 void calibrate_delay(void)
1231 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1232 * as the number of __delay(1) in a jiffy, so make it so
1234 loops_per_jiffy
= tb_ticks_per_jiffy
;
1237 static int __init
rtc_init(void)
1239 struct platform_device
*pdev
;
1241 if (!ppc_md
.get_rtc_time
)
1244 pdev
= platform_device_register_simple("rtc-generic", -1, NULL
, 0);
1246 return PTR_ERR(pdev
);
1251 module_init(rtc_init
);