2 * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License, version 2, as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 #include <linux/kvm_host.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/kvm_book3s.h>
26 #include <asm/mmu-hash64.h>
27 #include <asm/machdep.h>
28 #include <asm/mmu_context.h>
29 #include <asm/hw_irq.h>
34 /* #define DEBUG_MMU */
35 /* #define DEBUG_SLB */
38 #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
40 #define dprintk_mmu(a, ...) do { } while(0)
44 #define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__)
46 #define dprintk_slb(a, ...) do { } while(0)
49 static void invalidate_pte(struct hpte_cache
*pte
)
51 dprintk_mmu("KVM: Flushing SPT %d: 0x%llx (0x%llx) -> 0x%llx\n",
52 i
, pte
->pte
.eaddr
, pte
->pte
.vpage
, pte
->host_va
);
54 ppc_md
.hpte_invalidate(pte
->slot
, pte
->host_va
,
55 MMU_PAGE_4K
, MMU_SEGSIZE_256M
,
58 kvm_release_pfn_dirty(pte
->pfn
);
61 void kvmppc_mmu_pte_flush(struct kvm_vcpu
*vcpu
, u64 guest_ea
, u64 ea_mask
)
65 dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%llx & 0x%llx\n",
66 vcpu
->arch
.hpte_cache_offset
, guest_ea
, ea_mask
);
67 BUG_ON(vcpu
->arch
.hpte_cache_offset
> HPTEG_CACHE_NUM
);
70 for (i
= 0; i
< vcpu
->arch
.hpte_cache_offset
; i
++) {
71 struct hpte_cache
*pte
;
73 pte
= &vcpu
->arch
.hpte_cache
[i
];
77 if ((pte
->pte
.eaddr
& ea_mask
) == guest_ea
) {
82 /* Doing a complete flush -> start from scratch */
84 vcpu
->arch
.hpte_cache_offset
= 0;
87 void kvmppc_mmu_pte_vflush(struct kvm_vcpu
*vcpu
, u64 guest_vp
, u64 vp_mask
)
91 dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
92 vcpu
->arch
.hpte_cache_offset
, guest_vp
, vp_mask
);
93 BUG_ON(vcpu
->arch
.hpte_cache_offset
> HPTEG_CACHE_NUM
);
96 for (i
= 0; i
< vcpu
->arch
.hpte_cache_offset
; i
++) {
97 struct hpte_cache
*pte
;
99 pte
= &vcpu
->arch
.hpte_cache
[i
];
103 if ((pte
->pte
.vpage
& vp_mask
) == guest_vp
) {
109 void kvmppc_mmu_pte_pflush(struct kvm_vcpu
*vcpu
, u64 pa_start
, u64 pa_end
)
113 dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n",
114 vcpu
->arch
.hpte_cache_offset
, guest_pa
, pa_mask
);
115 BUG_ON(vcpu
->arch
.hpte_cache_offset
> HPTEG_CACHE_NUM
);
117 for (i
= 0; i
< vcpu
->arch
.hpte_cache_offset
; i
++) {
118 struct hpte_cache
*pte
;
120 pte
= &vcpu
->arch
.hpte_cache
[i
];
124 if ((pte
->pte
.raddr
>= pa_start
) &&
125 (pte
->pte
.raddr
< pa_end
)) {
131 struct kvmppc_pte
*kvmppc_mmu_find_pte(struct kvm_vcpu
*vcpu
, u64 ea
, bool data
)
136 guest_vp
= vcpu
->arch
.mmu
.ea_to_vp(vcpu
, ea
, false);
137 for (i
=0; i
<vcpu
->arch
.hpte_cache_offset
; i
++) {
138 struct hpte_cache
*pte
;
140 pte
= &vcpu
->arch
.hpte_cache
[i
];
144 if (pte
->pte
.vpage
== guest_vp
)
151 static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu
*vcpu
)
153 if (vcpu
->arch
.hpte_cache_offset
== HPTEG_CACHE_NUM
)
154 kvmppc_mmu_pte_flush(vcpu
, 0, 0);
156 return vcpu
->arch
.hpte_cache_offset
++;
159 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
160 * a hash, so we don't waste cycles on looping */
161 static u16
kvmppc_sid_hash(struct kvm_vcpu
*vcpu
, u64 gvsid
)
163 return (u16
)(((gvsid
>> (SID_MAP_BITS
* 7)) & SID_MAP_MASK
) ^
164 ((gvsid
>> (SID_MAP_BITS
* 6)) & SID_MAP_MASK
) ^
165 ((gvsid
>> (SID_MAP_BITS
* 5)) & SID_MAP_MASK
) ^
166 ((gvsid
>> (SID_MAP_BITS
* 4)) & SID_MAP_MASK
) ^
167 ((gvsid
>> (SID_MAP_BITS
* 3)) & SID_MAP_MASK
) ^
168 ((gvsid
>> (SID_MAP_BITS
* 2)) & SID_MAP_MASK
) ^
169 ((gvsid
>> (SID_MAP_BITS
* 1)) & SID_MAP_MASK
) ^
170 ((gvsid
>> (SID_MAP_BITS
* 0)) & SID_MAP_MASK
));
174 static struct kvmppc_sid_map
*find_sid_vsid(struct kvm_vcpu
*vcpu
, u64 gvsid
)
176 struct kvmppc_sid_map
*map
;
179 if (vcpu
->arch
.msr
& MSR_PR
)
182 sid_map_mask
= kvmppc_sid_hash(vcpu
, gvsid
);
183 map
= &to_book3s(vcpu
)->sid_map
[sid_map_mask
];
184 if (map
->guest_vsid
== gvsid
) {
185 dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n",
186 gvsid
, map
->host_vsid
);
190 map
= &to_book3s(vcpu
)->sid_map
[SID_MAP_MASK
- sid_map_mask
];
191 if (map
->guest_vsid
== gvsid
) {
192 dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n",
193 gvsid
, map
->host_vsid
);
197 dprintk_slb("SLB: Searching 0x%llx -> not found\n", gvsid
);
201 int kvmppc_mmu_map_page(struct kvm_vcpu
*vcpu
, struct kvmppc_pte
*orig_pte
)
204 ulong hash
, hpteg
, va
;
210 struct kvmppc_sid_map
*map
;
212 /* Get host physical address for gpa */
213 hpaddr
= gfn_to_pfn(vcpu
->kvm
, orig_pte
->raddr
>> PAGE_SHIFT
);
214 if (kvm_is_error_hva(hpaddr
)) {
215 printk(KERN_INFO
"Couldn't get guest page for gfn %llx!\n", orig_pte
->eaddr
);
218 hpaddr
<<= PAGE_SHIFT
;
220 #elif PAGE_SHIFT == 16
221 hpaddr
|= orig_pte
->raddr
& 0xf000;
223 #error Unknown page size
226 /* and write the mapping ea -> hpa into the pt */
227 vcpu
->arch
.mmu
.esid_to_vsid(vcpu
, orig_pte
->eaddr
>> SID_SHIFT
, &vsid
);
228 map
= find_sid_vsid(vcpu
, vsid
);
230 kvmppc_mmu_map_segment(vcpu
, orig_pte
->eaddr
);
231 map
= find_sid_vsid(vcpu
, vsid
);
235 vsid
= map
->host_vsid
;
236 va
= hpt_va(orig_pte
->eaddr
, vsid
, MMU_SEGSIZE_256M
);
238 if (!orig_pte
->may_write
)
241 mark_page_dirty(vcpu
->kvm
, orig_pte
->raddr
>> PAGE_SHIFT
);
243 if (!orig_pte
->may_execute
)
246 hash
= hpt_hash(va
, PTE_SIZE
, MMU_SEGSIZE_256M
);
249 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
251 /* In case we tried normal mapping already, let's nuke old entries */
253 if (ppc_md
.hpte_remove(hpteg
) < 0)
256 ret
= ppc_md
.hpte_insert(hpteg
, va
, hpaddr
, rflags
, vflags
, MMU_PAGE_4K
, MMU_SEGSIZE_256M
);
259 /* If we couldn't map a primary PTE, try a secondary */
264 vflags
= HPTE_V_SECONDARY
;
272 int hpte_id
= kvmppc_mmu_hpte_cache_next(vcpu
);
273 struct hpte_cache
*pte
= &vcpu
->arch
.hpte_cache
[hpte_id
];
275 dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%lx (0x%llx) -> %lx\n",
276 ((rflags
& HPTE_R_PP
) == 3) ? '-' : 'w',
277 (rflags
& HPTE_R_N
) ? '-' : 'x',
278 orig_pte
->eaddr
, hpteg
, va
, orig_pte
->vpage
, hpaddr
);
280 pte
->slot
= hpteg
+ (ret
& 7);
282 pte
->pte
= *orig_pte
;
283 pte
->pfn
= hpaddr
>> PAGE_SHIFT
;
289 static struct kvmppc_sid_map
*create_sid_map(struct kvm_vcpu
*vcpu
, u64 gvsid
)
291 struct kvmppc_sid_map
*map
;
292 struct kvmppc_vcpu_book3s
*vcpu_book3s
= to_book3s(vcpu
);
294 static int backwards_map
= 0;
296 if (vcpu
->arch
.msr
& MSR_PR
)
299 /* We might get collisions that trap in preceding order, so let's
300 map them differently */
302 sid_map_mask
= kvmppc_sid_hash(vcpu
, gvsid
);
304 sid_map_mask
= SID_MAP_MASK
- sid_map_mask
;
306 map
= &to_book3s(vcpu
)->sid_map
[sid_map_mask
];
308 /* Make sure we're taking the other map next time */
309 backwards_map
= !backwards_map
;
311 /* Uh-oh ... out of mappings. Let's flush! */
312 if (vcpu_book3s
->vsid_next
== vcpu_book3s
->vsid_max
) {
313 vcpu_book3s
->vsid_next
= vcpu_book3s
->vsid_first
;
314 memset(vcpu_book3s
->sid_map
, 0,
315 sizeof(struct kvmppc_sid_map
) * SID_MAP_NUM
);
316 kvmppc_mmu_pte_flush(vcpu
, 0, 0);
317 kvmppc_mmu_flush_segments(vcpu
);
319 map
->host_vsid
= vcpu_book3s
->vsid_next
++;
321 map
->guest_vsid
= gvsid
;
327 static int kvmppc_mmu_next_segment(struct kvm_vcpu
*vcpu
, ulong esid
)
330 int max_slb_size
= 64;
331 int found_inval
= -1;
334 if (!get_paca()->kvm_slb_max
)
335 get_paca()->kvm_slb_max
= 1;
337 /* Are we overwriting? */
338 for (i
= 1; i
< get_paca()->kvm_slb_max
; i
++) {
339 if (!(get_paca()->kvm_slb
[i
].esid
& SLB_ESID_V
))
341 else if ((get_paca()->kvm_slb
[i
].esid
& ESID_MASK
) == esid
)
345 /* Found a spare entry that was invalidated before */
349 /* No spare invalid entry, so create one */
351 if (mmu_slb_size
< 64)
352 max_slb_size
= mmu_slb_size
;
354 /* Overflowing -> purge */
355 if ((get_paca()->kvm_slb_max
) == max_slb_size
)
356 kvmppc_mmu_flush_segments(vcpu
);
358 r
= get_paca()->kvm_slb_max
;
359 get_paca()->kvm_slb_max
++;
364 int kvmppc_mmu_map_segment(struct kvm_vcpu
*vcpu
, ulong eaddr
)
366 u64 esid
= eaddr
>> SID_SHIFT
;
367 u64 slb_esid
= (eaddr
& ESID_MASK
) | SLB_ESID_V
;
368 u64 slb_vsid
= SLB_VSID_USER
;
371 struct kvmppc_sid_map
*map
;
373 slb_index
= kvmppc_mmu_next_segment(vcpu
, eaddr
& ESID_MASK
);
375 if (vcpu
->arch
.mmu
.esid_to_vsid(vcpu
, esid
, &gvsid
)) {
376 /* Invalidate an entry */
377 get_paca()->kvm_slb
[slb_index
].esid
= 0;
381 map
= find_sid_vsid(vcpu
, gvsid
);
383 map
= create_sid_map(vcpu
, gvsid
);
385 map
->guest_esid
= esid
;
387 slb_vsid
|= (map
->host_vsid
<< 12);
388 slb_vsid
&= ~SLB_VSID_KP
;
389 slb_esid
|= slb_index
;
391 get_paca()->kvm_slb
[slb_index
].esid
= slb_esid
;
392 get_paca()->kvm_slb
[slb_index
].vsid
= slb_vsid
;
394 dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid
, slb_esid
);
399 void kvmppc_mmu_flush_segments(struct kvm_vcpu
*vcpu
)
401 get_paca()->kvm_slb_max
= 1;
402 get_paca()->kvm_slb
[0].esid
= 0;
405 void kvmppc_mmu_destroy(struct kvm_vcpu
*vcpu
)
407 kvmppc_mmu_pte_flush(vcpu
, 0, 0);