1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
30 #include <asm/ptrace.h>
31 #include <asm/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
37 #include <asm/timer.h>
40 #include <asm/irq_regs.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
47 #include <asm/sections.h>
49 #include <asm/mdesc.h>
51 #include <asm/hypervisor.h>
55 int sparc64_multi_core __read_mostly
;
57 DEFINE_PER_CPU(cpumask_t
, cpu_sibling_map
) = CPU_MASK_NONE
;
58 cpumask_t cpu_core_map
[NR_CPUS
] __read_mostly
=
59 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
61 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map
);
62 EXPORT_SYMBOL(cpu_core_map
);
64 static cpumask_t smp_commenced_mask
;
66 void smp_info(struct seq_file
*m
)
70 seq_printf(m
, "State:\n");
71 for_each_online_cpu(i
)
72 seq_printf(m
, "CPU%d:\t\tonline\n", i
);
75 void smp_bogo(struct seq_file
*m
)
79 for_each_online_cpu(i
)
81 "Cpu%dClkTck\t: %016lx\n",
82 i
, cpu_data(i
).clock_tick
);
85 extern void setup_sparc64_timer(void);
87 static volatile unsigned long callin_flag
= 0;
89 void __cpuinit
smp_callin(void)
91 int cpuid
= hard_smp_processor_id();
93 __local_per_cpu_offset
= __per_cpu_offset(cpuid
);
95 if (tlb_type
== hypervisor
)
96 sun4v_ktsb_register();
100 setup_sparc64_timer();
102 if (cheetah_pcache_forced_on
)
103 cheetah_enable_pcache();
108 __asm__
__volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child
= 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm
.mm_count
);
118 current
->active_mm
= &init_mm
;
120 /* inform the notifiers about the new cpu */
121 notify_cpu_starting(cpuid
);
123 while (!cpu_isset(cpuid
, smp_commenced_mask
))
127 cpu_set(cpuid
, cpu_online_map
);
128 ipi_call_unlock_irq();
130 /* idle thread is expected to have preempt disabled */
136 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 panic("SMP bolixed\n");
140 /* This tick register synchronization scheme is taken entirely from
141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143 * The only change I've made is to rework it so that the master
144 * initiates the synchonization instead of the slave. -DaveM
148 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
150 #define NUM_ROUNDS 64 /* magic value */
151 #define NUM_ITERS 5 /* likewise */
153 static DEFINE_SPINLOCK(itc_sync_lock
);
154 static unsigned long go
[SLAVE
+ 1];
156 #define DEBUG_TICK_SYNC 0
158 static inline long get_delta (long *rt
, long *master
)
160 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
161 unsigned long tcenter
, t0
, t1
, tm
;
164 for (i
= 0; i
< NUM_ITERS
; i
++) {
165 t0
= tick_ops
->get_tick();
167 membar_safe("#StoreLoad");
168 while (!(tm
= go
[SLAVE
]))
172 t1
= tick_ops
->get_tick();
174 if (t1
- t0
< best_t1
- best_t0
)
175 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
178 *rt
= best_t1
- best_t0
;
179 *master
= best_tm
- best_t0
;
181 /* average best_t0 and best_t1 without overflow: */
182 tcenter
= (best_t0
/2 + best_t1
/2);
183 if (best_t0
% 2 + best_t1
% 2 == 2)
185 return tcenter
- best_tm
;
188 void smp_synchronize_tick_client(void)
190 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
191 unsigned long flags
, rt
, master_time_stamp
, bound
;
194 long rt
; /* roundtrip time */
195 long master
; /* master's timestamp */
196 long diff
; /* difference between midpoint and master's timestamp */
197 long lat
; /* estimate of itc adjustment latency */
206 local_irq_save(flags
);
208 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
209 delta
= get_delta(&rt
, &master_time_stamp
);
211 done
= 1; /* let's lock on to this... */
217 adjust_latency
+= -delta
;
218 adj
= -delta
+ adjust_latency
/4;
222 tick_ops
->add_tick(adj
);
226 t
[i
].master
= master_time_stamp
;
228 t
[i
].lat
= adjust_latency
/4;
232 local_irq_restore(flags
);
235 for (i
= 0; i
< NUM_ROUNDS
; i
++)
236 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
240 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU "
241 "(last diff %ld cycles, maxerr %lu cycles)\n",
242 smp_processor_id(), delta
, rt
);
245 static void smp_start_sync_tick_client(int cpu
);
247 static void smp_synchronize_one_tick(int cpu
)
249 unsigned long flags
, i
;
253 smp_start_sync_tick_client(cpu
);
255 /* wait for client to be ready */
259 /* now let the client proceed into his loop */
261 membar_safe("#StoreLoad");
263 spin_lock_irqsave(&itc_sync_lock
, flags
);
265 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
270 go
[SLAVE
] = tick_ops
->get_tick();
271 membar_safe("#StoreLoad");
274 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 /* XXX Put this in some common place. XXX */
279 static unsigned long kimage_addr_to_ra(void *p
)
281 unsigned long val
= (unsigned long) p
;
283 return kern_base
+ (val
- KERNBASE
);
286 static void __cpuinit
ldom_startcpu_cpuid(unsigned int cpu
, unsigned long thread_reg
, void **descrp
)
288 extern unsigned long sparc64_ttable_tl0
;
289 extern unsigned long kern_locked_tte_data
;
290 struct hvtramp_descr
*hdesc
;
291 unsigned long trampoline_ra
;
292 struct trap_per_cpu
*tb
;
293 u64 tte_vaddr
, tte_data
;
294 unsigned long hv_err
;
297 hdesc
= kzalloc(sizeof(*hdesc
) +
298 (sizeof(struct hvtramp_mapping
) *
299 num_kernel_image_mappings
- 1),
302 printk(KERN_ERR
"ldom_startcpu_cpuid: Cannot allocate "
309 hdesc
->num_mappings
= num_kernel_image_mappings
;
311 tb
= &trap_block
[cpu
];
313 hdesc
->fault_info_va
= (unsigned long) &tb
->fault_info
;
314 hdesc
->fault_info_pa
= kimage_addr_to_ra(&tb
->fault_info
);
316 hdesc
->thread_reg
= thread_reg
;
318 tte_vaddr
= (unsigned long) KERNBASE
;
319 tte_data
= kern_locked_tte_data
;
321 for (i
= 0; i
< hdesc
->num_mappings
; i
++) {
322 hdesc
->maps
[i
].vaddr
= tte_vaddr
;
323 hdesc
->maps
[i
].tte
= tte_data
;
324 tte_vaddr
+= 0x400000;
325 tte_data
+= 0x400000;
328 trampoline_ra
= kimage_addr_to_ra(hv_cpu_startup
);
330 hv_err
= sun4v_cpu_start(cpu
, trampoline_ra
,
331 kimage_addr_to_ra(&sparc64_ttable_tl0
),
334 printk(KERN_ERR
"ldom_startcpu_cpuid: sun4v_cpu_start() "
335 "gives error %lu\n", hv_err
);
339 extern unsigned long sparc64_cpu_startup
;
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342 * 32-bits (I think) so to be safe we have it read the pointer
343 * contained here so we work on >4GB machines. -DaveM
345 static struct thread_info
*cpu_new_thread
= NULL
;
347 static int __cpuinit
smp_boot_one_cpu(unsigned int cpu
)
349 unsigned long entry
=
350 (unsigned long)(&sparc64_cpu_startup
);
351 unsigned long cookie
=
352 (unsigned long)(&cpu_new_thread
);
353 struct task_struct
*p
;
361 cpu_new_thread
= task_thread_info(p
);
363 if (tlb_type
== hypervisor
) {
364 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
365 if (ldom_domaining_enabled
)
366 ldom_startcpu_cpuid(cpu
,
367 (unsigned long) cpu_new_thread
,
371 prom_startcpu_cpuid(cpu
, entry
, cookie
);
373 struct device_node
*dp
= of_find_node_by_cpuid(cpu
);
375 prom_startcpu(dp
->phandle
, entry
, cookie
);
378 for (timeout
= 0; timeout
< 50000; timeout
++) {
387 printk("Processor %d is stuck.\n", cpu
);
390 cpu_new_thread
= NULL
;
397 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
402 if (this_is_starfire
) {
403 /* map to real upaid */
404 cpu
= (((cpu
& 0x3c) << 1) |
405 ((cpu
& 0x40) >> 4) |
409 target
= (cpu
<< 14) | 0x70;
411 /* Ok, this is the real Spitfire Errata #54.
412 * One must read back from a UDB internal register
413 * after writes to the UDB interrupt dispatch, but
414 * before the membar Sync for that write.
415 * So we use the high UDB control register (ASI 0x7f,
416 * ADDR 0x20) for the dummy read. -DaveM
419 __asm__
__volatile__(
420 "wrpr %1, %2, %%pstate\n\t"
421 "stxa %4, [%0] %3\n\t"
422 "stxa %5, [%0+%8] %3\n\t"
424 "stxa %6, [%0+%8] %3\n\t"
426 "stxa %%g0, [%7] %3\n\t"
429 "ldxa [%%g1] 0x7f, %%g0\n\t"
432 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
433 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
434 "r" (0x10), "0" (tmp
)
437 /* NOTE: PSTATE_IE is still clear. */
440 __asm__
__volatile__("ldxa [%%g0] %1, %0"
442 : "i" (ASI_INTR_DISPATCH_STAT
));
444 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
451 } while (result
& 0x1);
452 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
455 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
456 smp_processor_id(), result
);
463 static void spitfire_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
465 u64
*mondo
, data0
, data1
, data2
;
470 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
471 cpu_list
= __va(tb
->cpu_list_pa
);
472 mondo
= __va(tb
->cpu_mondo_block_pa
);
476 for (i
= 0; i
< cnt
; i
++)
477 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, cpu_list
[i
]);
480 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
481 * packet, but we have no use for that. However we do take advantage of
482 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
484 static void cheetah_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
486 int nack_busy_id
, is_jbus
, need_more
;
487 u64
*mondo
, pstate
, ver
, busy_mask
;
490 cpu_list
= __va(tb
->cpu_list_pa
);
491 mondo
= __va(tb
->cpu_mondo_block_pa
);
493 /* Unfortunately, someone at Sun had the brilliant idea to make the
494 * busy/nack fields hard-coded by ITID number for this Ultra-III
495 * derivative processor.
497 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
498 is_jbus
= ((ver
>> 32) == __JALAPENO_ID
||
499 (ver
>> 32) == __SERRANO_ID
);
501 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
505 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
506 : : "r" (pstate
), "i" (PSTATE_IE
));
508 /* Setup the dispatch data registers. */
509 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
510 "stxa %1, [%4] %6\n\t"
511 "stxa %2, [%5] %6\n\t"
514 : "r" (mondo
[0]), "r" (mondo
[1]), "r" (mondo
[2]),
515 "r" (0x40), "r" (0x50), "r" (0x60),
523 for (i
= 0; i
< cnt
; i
++) {
530 target
= (nr
<< 14) | 0x70;
532 busy_mask
|= (0x1UL
<< (nr
* 2));
534 target
|= (nack_busy_id
<< 24);
535 busy_mask
|= (0x1UL
<<
538 __asm__
__volatile__(
539 "stxa %%g0, [%0] %1\n\t"
542 : "r" (target
), "i" (ASI_INTR_W
));
544 if (nack_busy_id
== 32) {
551 /* Now, poll for completion. */
553 u64 dispatch_stat
, nack_mask
;
556 stuck
= 100000 * nack_busy_id
;
557 nack_mask
= busy_mask
<< 1;
559 __asm__
__volatile__("ldxa [%%g0] %1, %0"
560 : "=r" (dispatch_stat
)
561 : "i" (ASI_INTR_DISPATCH_STAT
));
562 if (!(dispatch_stat
& (busy_mask
| nack_mask
))) {
563 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
565 if (unlikely(need_more
)) {
567 for (i
= 0; i
< cnt
; i
++) {
568 if (cpu_list
[i
] == 0xffff)
570 cpu_list
[i
] = 0xffff;
581 } while (dispatch_stat
& busy_mask
);
583 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
586 if (dispatch_stat
& busy_mask
) {
587 /* Busy bits will not clear, continue instead
588 * of freezing up on this cpu.
590 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
591 smp_processor_id(), dispatch_stat
);
593 int i
, this_busy_nack
= 0;
595 /* Delay some random time with interrupts enabled
596 * to prevent deadlock.
598 udelay(2 * nack_busy_id
);
600 /* Clear out the mask bits for cpus which did not
603 for (i
= 0; i
< cnt
; i
++) {
611 check_mask
= (0x2UL
<< (2*nr
));
613 check_mask
= (0x2UL
<<
615 if ((dispatch_stat
& check_mask
) == 0)
616 cpu_list
[i
] = 0xffff;
618 if (this_busy_nack
== 64)
627 /* Multi-cpu list version. */
628 static void hypervisor_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
630 int retries
, this_cpu
, prev_sent
, i
, saw_cpu_error
;
631 unsigned long status
;
634 this_cpu
= smp_processor_id();
636 cpu_list
= __va(tb
->cpu_list_pa
);
642 int forward_progress
, n_sent
;
644 status
= sun4v_cpu_mondo_send(cnt
,
646 tb
->cpu_mondo_block_pa
);
648 /* HV_EOK means all cpus received the xcall, we're done. */
649 if (likely(status
== HV_EOK
))
652 /* First, see if we made any forward progress.
654 * The hypervisor indicates successful sends by setting
655 * cpu list entries to the value 0xffff.
658 for (i
= 0; i
< cnt
; i
++) {
659 if (likely(cpu_list
[i
] == 0xffff))
663 forward_progress
= 0;
664 if (n_sent
> prev_sent
)
665 forward_progress
= 1;
669 /* If we get a HV_ECPUERROR, then one or more of the cpus
670 * in the list are in error state. Use the cpu_state()
671 * hypervisor call to find out which cpus are in error state.
673 if (unlikely(status
== HV_ECPUERROR
)) {
674 for (i
= 0; i
< cnt
; i
++) {
682 err
= sun4v_cpu_state(cpu
);
683 if (err
== HV_CPU_STATE_ERROR
) {
684 saw_cpu_error
= (cpu
+ 1);
685 cpu_list
[i
] = 0xffff;
688 } else if (unlikely(status
!= HV_EWOULDBLOCK
))
689 goto fatal_mondo_error
;
691 /* Don't bother rewriting the CPU list, just leave the
692 * 0xffff and non-0xffff entries in there and the
693 * hypervisor will do the right thing.
695 * Only advance timeout state if we didn't make any
698 if (unlikely(!forward_progress
)) {
699 if (unlikely(++retries
> 10000))
700 goto fatal_mondo_timeout
;
702 /* Delay a little bit to let other cpus catch up
703 * on their cpu mondo queue work.
709 if (unlikely(saw_cpu_error
))
710 goto fatal_mondo_cpu_error
;
714 fatal_mondo_cpu_error
:
715 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo cpu error, some target cpus "
716 "(including %d) were in error state\n",
717 this_cpu
, saw_cpu_error
- 1);
721 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo timeout, no forward "
722 " progress after %d retries.\n",
724 goto dump_cpu_list_and_out
;
727 printk(KERN_CRIT
"CPU[%d]: Unexpected SUN4V mondo error %lu\n",
729 printk(KERN_CRIT
"CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
730 "mondo_block_pa(%lx)\n",
731 this_cpu
, cnt
, tb
->cpu_list_pa
, tb
->cpu_mondo_block_pa
);
733 dump_cpu_list_and_out
:
734 printk(KERN_CRIT
"CPU[%d]: CPU list [ ", this_cpu
);
735 for (i
= 0; i
< cnt
; i
++)
736 printk("%u ", cpu_list
[i
]);
740 static void (*xcall_deliver_impl
)(struct trap_per_cpu
*, int);
742 static void xcall_deliver(u64 data0
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
744 struct trap_per_cpu
*tb
;
745 int this_cpu
, i
, cnt
;
750 /* We have to do this whole thing with interrupts fully disabled.
751 * Otherwise if we send an xcall from interrupt context it will
752 * corrupt both our mondo block and cpu list state.
754 * One consequence of this is that we cannot use timeout mechanisms
755 * that depend upon interrupts being delivered locally. So, for
756 * example, we cannot sample jiffies and expect it to advance.
758 * Fortunately, udelay() uses %stick/%tick so we can use that.
760 local_irq_save(flags
);
762 this_cpu
= smp_processor_id();
763 tb
= &trap_block
[this_cpu
];
765 mondo
= __va(tb
->cpu_mondo_block_pa
);
771 cpu_list
= __va(tb
->cpu_list_pa
);
773 /* Setup the initial cpu list. */
775 for_each_cpu(i
, mask
) {
776 if (i
== this_cpu
|| !cpu_online(i
))
782 xcall_deliver_impl(tb
, cnt
);
784 local_irq_restore(flags
);
787 /* Send cross call to all processors mentioned in MASK_P
788 * except self. Really, there are only two cases currently,
789 * "&cpu_online_map" and "&mm->cpu_vm_mask".
791 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
793 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
795 xcall_deliver(data0
, data1
, data2
, mask
);
798 /* Send cross call to all processors except self. */
799 static void smp_cross_call(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
)
801 smp_cross_call_masked(func
, ctx
, data1
, data2
, &cpu_online_map
);
804 extern unsigned long xcall_sync_tick
;
806 static void smp_start_sync_tick_client(int cpu
)
808 xcall_deliver((u64
) &xcall_sync_tick
, 0, 0,
809 &cpumask_of_cpu(cpu
));
812 extern unsigned long xcall_call_function
;
814 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
816 xcall_deliver((u64
) &xcall_call_function
, 0, 0, mask
);
819 extern unsigned long xcall_call_function_single
;
821 void arch_send_call_function_single_ipi(int cpu
)
823 xcall_deliver((u64
) &xcall_call_function_single
, 0, 0,
824 &cpumask_of_cpu(cpu
));
827 void __irq_entry
smp_call_function_client(int irq
, struct pt_regs
*regs
)
829 clear_softint(1 << irq
);
830 generic_smp_call_function_interrupt();
833 void __irq_entry
smp_call_function_single_client(int irq
, struct pt_regs
*regs
)
835 clear_softint(1 << irq
);
836 generic_smp_call_function_single_interrupt();
839 static void tsb_sync(void *info
)
841 struct trap_per_cpu
*tp
= &trap_block
[raw_smp_processor_id()];
842 struct mm_struct
*mm
= info
;
844 /* It is not valid to test "currrent->active_mm == mm" here.
846 * The value of "current" is not changed atomically with
847 * switch_mm(). But that's OK, we just need to check the
848 * current cpu's trap block PGD physical address.
850 if (tp
->pgd_paddr
== __pa(mm
->pgd
))
851 tsb_context_switch(mm
);
854 void smp_tsb_sync(struct mm_struct
*mm
)
856 smp_call_function_many(mm_cpumask(mm
), tsb_sync
, mm
, 1);
859 extern unsigned long xcall_flush_tlb_mm
;
860 extern unsigned long xcall_flush_tlb_pending
;
861 extern unsigned long xcall_flush_tlb_kernel_range
;
862 extern unsigned long xcall_fetch_glob_regs
;
863 extern unsigned long xcall_receive_signal
;
864 extern unsigned long xcall_new_mmu_context_version
;
866 extern unsigned long xcall_kgdb_capture
;
869 #ifdef DCACHE_ALIASING_POSSIBLE
870 extern unsigned long xcall_flush_dcache_page_cheetah
;
872 extern unsigned long xcall_flush_dcache_page_spitfire
;
874 #ifdef CONFIG_DEBUG_DCFLUSH
875 extern atomic_t dcpage_flushes
;
876 extern atomic_t dcpage_flushes_xcall
;
879 static inline void __local_flush_dcache_page(struct page
*page
)
881 #ifdef DCACHE_ALIASING_POSSIBLE
882 __flush_dcache_page(page_address(page
),
883 ((tlb_type
== spitfire
) &&
884 page_mapping(page
) != NULL
));
886 if (page_mapping(page
) != NULL
&&
887 tlb_type
== spitfire
)
888 __flush_icache_page(__pa(page_address(page
)));
892 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
896 if (tlb_type
== hypervisor
)
899 #ifdef CONFIG_DEBUG_DCFLUSH
900 atomic_inc(&dcpage_flushes
);
903 this_cpu
= get_cpu();
905 if (cpu
== this_cpu
) {
906 __local_flush_dcache_page(page
);
907 } else if (cpu_online(cpu
)) {
908 void *pg_addr
= page_address(page
);
911 if (tlb_type
== spitfire
) {
912 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
913 if (page_mapping(page
) != NULL
)
914 data0
|= ((u64
)1 << 32);
915 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
916 #ifdef DCACHE_ALIASING_POSSIBLE
917 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
921 xcall_deliver(data0
, __pa(pg_addr
),
922 (u64
) pg_addr
, &cpumask_of_cpu(cpu
));
923 #ifdef CONFIG_DEBUG_DCFLUSH
924 atomic_inc(&dcpage_flushes_xcall
);
932 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
938 if (tlb_type
== hypervisor
)
941 this_cpu
= get_cpu();
943 #ifdef CONFIG_DEBUG_DCFLUSH
944 atomic_inc(&dcpage_flushes
);
947 pg_addr
= page_address(page
);
948 if (tlb_type
== spitfire
) {
949 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
950 if (page_mapping(page
) != NULL
)
951 data0
|= ((u64
)1 << 32);
952 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
953 #ifdef DCACHE_ALIASING_POSSIBLE
954 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
958 xcall_deliver(data0
, __pa(pg_addr
),
959 (u64
) pg_addr
, &cpu_online_map
);
960 #ifdef CONFIG_DEBUG_DCFLUSH
961 atomic_inc(&dcpage_flushes_xcall
);
964 __local_flush_dcache_page(page
);
969 void __irq_entry
smp_new_mmu_context_version_client(int irq
, struct pt_regs
*regs
)
971 struct mm_struct
*mm
;
974 clear_softint(1 << irq
);
976 /* See if we need to allocate a new TLB context because
977 * the version of the one we are using is now out of date.
979 mm
= current
->active_mm
;
980 if (unlikely(!mm
|| (mm
== &init_mm
)))
983 spin_lock_irqsave(&mm
->context
.lock
, flags
);
985 if (unlikely(!CTX_VALID(mm
->context
)))
986 get_new_mmu_context(mm
);
988 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
990 load_secondary_context(mm
);
991 __flush_tlb_mm(CTX_HWBITS(mm
->context
),
995 void smp_new_mmu_context_version(void)
997 smp_cross_call(&xcall_new_mmu_context_version
, 0, 0, 0);
1001 void kgdb_roundup_cpus(unsigned long flags
)
1003 smp_cross_call(&xcall_kgdb_capture
, 0, 0, 0);
1007 void smp_fetch_global_regs(void)
1009 smp_cross_call(&xcall_fetch_glob_regs
, 0, 0, 0);
1012 /* We know that the window frames of the user have been flushed
1013 * to the stack before we get here because all callers of us
1014 * are flush_tlb_*() routines, and these run after flush_cache_*()
1015 * which performs the flushw.
1017 * The SMP TLB coherency scheme we use works as follows:
1019 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1020 * space has (potentially) executed on, this is the heuristic
1021 * we use to avoid doing cross calls.
1023 * Also, for flushing from kswapd and also for clones, we
1024 * use cpu_vm_mask as the list of cpus to make run the TLB.
1026 * 2) TLB context numbers are shared globally across all processors
1027 * in the system, this allows us to play several games to avoid
1030 * One invariant is that when a cpu switches to a process, and
1031 * that processes tsk->active_mm->cpu_vm_mask does not have the
1032 * current cpu's bit set, that tlb context is flushed locally.
1034 * If the address space is non-shared (ie. mm->count == 1) we avoid
1035 * cross calls when we want to flush the currently running process's
1036 * tlb state. This is done by clearing all cpu bits except the current
1037 * processor's in current->mm->cpu_vm_mask and performing the
1038 * flush locally only. This will force any subsequent cpus which run
1039 * this task to flush the context from the local tlb if the process
1040 * migrates to another cpu (again).
1042 * 3) For shared address spaces (threads) and swapping we bite the
1043 * bullet for most cases and perform the cross call (but only to
1044 * the cpus listed in cpu_vm_mask).
1046 * The performance gain from "optimizing" away the cross call for threads is
1047 * questionable (in theory the big win for threads is the massive sharing of
1048 * address space state across processors).
1051 /* This currently is only used by the hugetlb arch pre-fault
1052 * hook on UltraSPARC-III+ and later when changing the pagesize
1053 * bits of the context register for an address space.
1055 void smp_flush_tlb_mm(struct mm_struct
*mm
)
1057 u32 ctx
= CTX_HWBITS(mm
->context
);
1058 int cpu
= get_cpu();
1060 if (atomic_read(&mm
->mm_users
) == 1) {
1061 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1062 goto local_flush_and_out
;
1065 smp_cross_call_masked(&xcall_flush_tlb_mm
,
1069 local_flush_and_out
:
1070 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
1075 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
1077 u32 ctx
= CTX_HWBITS(mm
->context
);
1078 int cpu
= get_cpu();
1080 if (mm
== current
->mm
&& atomic_read(&mm
->mm_users
) == 1)
1081 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1083 smp_cross_call_masked(&xcall_flush_tlb_pending
,
1084 ctx
, nr
, (unsigned long) vaddrs
,
1087 __flush_tlb_pending(ctx
, nr
, vaddrs
);
1092 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
1095 end
= PAGE_ALIGN(end
);
1097 smp_cross_call(&xcall_flush_tlb_kernel_range
,
1100 __flush_tlb_kernel_range(start
, end
);
1105 /* #define CAPTURE_DEBUG */
1106 extern unsigned long xcall_capture
;
1108 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
1109 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
1110 static unsigned long penguins_are_doing_time
;
1112 void smp_capture(void)
1114 int result
= atomic_add_ret(1, &smp_capture_depth
);
1117 int ncpus
= num_online_cpus();
1119 #ifdef CAPTURE_DEBUG
1120 printk("CPU[%d]: Sending penguins to jail...",
1121 smp_processor_id());
1123 penguins_are_doing_time
= 1;
1124 atomic_inc(&smp_capture_registry
);
1125 smp_cross_call(&xcall_capture
, 0, 0, 0);
1126 while (atomic_read(&smp_capture_registry
) != ncpus
)
1128 #ifdef CAPTURE_DEBUG
1134 void smp_release(void)
1136 if (atomic_dec_and_test(&smp_capture_depth
)) {
1137 #ifdef CAPTURE_DEBUG
1138 printk("CPU[%d]: Giving pardon to "
1139 "imprisoned penguins\n",
1140 smp_processor_id());
1142 penguins_are_doing_time
= 0;
1143 membar_safe("#StoreLoad");
1144 atomic_dec(&smp_capture_registry
);
1148 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1149 * set, so they can service tlb flush xcalls...
1151 extern void prom_world(int);
1153 void __irq_entry
smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
1155 clear_softint(1 << irq
);
1159 __asm__
__volatile__("flushw");
1161 atomic_inc(&smp_capture_registry
);
1162 membar_safe("#StoreLoad");
1163 while (penguins_are_doing_time
)
1165 atomic_dec(&smp_capture_registry
);
1171 /* /proc/profile writes can call this, don't __init it please. */
1172 int setup_profiling_timer(unsigned int multiplier
)
1177 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1181 void __devinit
smp_prepare_boot_cpu(void)
1185 void __init
smp_setup_processor_id(void)
1187 if (tlb_type
== spitfire
)
1188 xcall_deliver_impl
= spitfire_xcall_deliver
;
1189 else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1190 xcall_deliver_impl
= cheetah_xcall_deliver
;
1192 xcall_deliver_impl
= hypervisor_xcall_deliver
;
1195 void __devinit
smp_fill_in_sib_core_maps(void)
1199 for_each_present_cpu(i
) {
1202 cpus_clear(cpu_core_map
[i
]);
1203 if (cpu_data(i
).core_id
== 0) {
1204 cpu_set(i
, cpu_core_map
[i
]);
1208 for_each_present_cpu(j
) {
1209 if (cpu_data(i
).core_id
==
1210 cpu_data(j
).core_id
)
1211 cpu_set(j
, cpu_core_map
[i
]);
1215 for_each_present_cpu(i
) {
1218 cpus_clear(per_cpu(cpu_sibling_map
, i
));
1219 if (cpu_data(i
).proc_id
== -1) {
1220 cpu_set(i
, per_cpu(cpu_sibling_map
, i
));
1224 for_each_present_cpu(j
) {
1225 if (cpu_data(i
).proc_id
==
1226 cpu_data(j
).proc_id
)
1227 cpu_set(j
, per_cpu(cpu_sibling_map
, i
));
1232 int __cpuinit
__cpu_up(unsigned int cpu
)
1234 int ret
= smp_boot_one_cpu(cpu
);
1237 cpu_set(cpu
, smp_commenced_mask
);
1238 while (!cpu_isset(cpu
, cpu_online_map
))
1240 if (!cpu_isset(cpu
, cpu_online_map
)) {
1243 /* On SUN4V, writes to %tick and %stick are
1246 if (tlb_type
!= hypervisor
)
1247 smp_synchronize_one_tick(cpu
);
1253 #ifdef CONFIG_HOTPLUG_CPU
1254 void cpu_play_dead(void)
1256 int cpu
= smp_processor_id();
1257 unsigned long pstate
;
1261 if (tlb_type
== hypervisor
) {
1262 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
1264 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO
,
1265 tb
->cpu_mondo_pa
, 0);
1266 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO
,
1267 tb
->dev_mondo_pa
, 0);
1268 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR
,
1269 tb
->resum_mondo_pa
, 0);
1270 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR
,
1271 tb
->nonresum_mondo_pa
, 0);
1274 cpu_clear(cpu
, smp_commenced_mask
);
1275 membar_safe("#Sync");
1277 local_irq_disable();
1279 __asm__
__volatile__(
1280 "rdpr %%pstate, %0\n\t"
1281 "wrpr %0, %1, %%pstate"
1289 int __cpu_disable(void)
1291 int cpu
= smp_processor_id();
1295 for_each_cpu_mask(i
, cpu_core_map
[cpu
])
1296 cpu_clear(cpu
, cpu_core_map
[i
]);
1297 cpus_clear(cpu_core_map
[cpu
]);
1299 for_each_cpu_mask(i
, per_cpu(cpu_sibling_map
, cpu
))
1300 cpu_clear(cpu
, per_cpu(cpu_sibling_map
, i
));
1301 cpus_clear(per_cpu(cpu_sibling_map
, cpu
));
1310 /* Make sure no interrupts point to this cpu. */
1315 local_irq_disable();
1318 cpu_clear(cpu
, cpu_online_map
);
1326 void __cpu_die(unsigned int cpu
)
1330 for (i
= 0; i
< 100; i
++) {
1332 if (!cpu_isset(cpu
, smp_commenced_mask
))
1336 if (cpu_isset(cpu
, smp_commenced_mask
)) {
1337 printk(KERN_ERR
"CPU %u didn't die...\n", cpu
);
1339 #if defined(CONFIG_SUN_LDOMS)
1340 unsigned long hv_err
;
1344 hv_err
= sun4v_cpu_stop(cpu
);
1345 if (hv_err
== HV_EOK
) {
1346 cpu_clear(cpu
, cpu_present_map
);
1349 } while (--limit
> 0);
1351 printk(KERN_ERR
"sun4v_cpu_stop() fails err=%lu\n",
1359 void __init
smp_cpus_done(unsigned int max_cpus
)
1363 void smp_send_reschedule(int cpu
)
1365 xcall_deliver((u64
) &xcall_receive_signal
, 0, 0,
1366 &cpumask_of_cpu(cpu
));
1369 void __irq_entry
smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
1371 clear_softint(1 << irq
);
1374 /* This is a nop because we capture all other cpus
1375 * anyways when making the PROM active.
1377 void smp_send_stop(void)
1382 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1383 * @cpu: cpu to allocate for
1384 * @size: size allocation in bytes
1387 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1388 * does the right thing for NUMA regardless of the current
1392 * Pointer to the allocated area on success, NULL on failure.
1394 static void * __init
pcpu_alloc_bootmem(unsigned int cpu
, size_t size
,
1397 const unsigned long goal
= __pa(MAX_DMA_ADDRESS
);
1398 #ifdef CONFIG_NEED_MULTIPLE_NODES
1399 int node
= cpu_to_node(cpu
);
1402 if (!node_online(node
) || !NODE_DATA(node
)) {
1403 ptr
= __alloc_bootmem(size
, align
, goal
);
1404 pr_info("cpu %d has no node %d or node-local memory\n",
1406 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1407 cpu
, size
, __pa(ptr
));
1409 ptr
= __alloc_bootmem_node(NODE_DATA(node
),
1411 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1412 "%016lx\n", cpu
, size
, node
, __pa(ptr
));
1416 return __alloc_bootmem(size
, align
, goal
);
1420 static void __init
pcpu_free_bootmem(void *ptr
, size_t size
)
1422 free_bootmem(__pa(ptr
), size
);
1425 static int __init
pcpu_cpu_distance(unsigned int from
, unsigned int to
)
1427 if (cpu_to_node(from
) == cpu_to_node(to
))
1428 return LOCAL_DISTANCE
;
1430 return REMOTE_DISTANCE
;
1433 static void __init
pcpu_populate_pte(unsigned long addr
)
1435 pgd_t
*pgd
= pgd_offset_k(addr
);
1439 pud
= pud_offset(pgd
, addr
);
1440 if (pud_none(*pud
)) {
1443 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1444 pud_populate(&init_mm
, pud
, new);
1447 pmd
= pmd_offset(pud
, addr
);
1448 if (!pmd_present(*pmd
)) {
1451 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1452 pmd_populate_kernel(&init_mm
, pmd
, new);
1456 void __init
setup_per_cpu_areas(void)
1458 unsigned long delta
;
1462 if (pcpu_chosen_fc
!= PCPU_FC_PAGE
) {
1463 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
1464 PERCPU_DYNAMIC_RESERVE
, 4 << 20,
1469 pr_warning("PERCPU: %s allocator failed (%d), "
1470 "falling back to page size\n",
1471 pcpu_fc_names
[pcpu_chosen_fc
], rc
);
1474 rc
= pcpu_page_first_chunk(PERCPU_MODULE_RESERVE
,
1479 panic("cannot initialize percpu area (err=%d)", rc
);
1481 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
1482 for_each_possible_cpu(cpu
)
1483 __per_cpu_offset(cpu
) = delta
+ pcpu_unit_offsets
[cpu
];
1485 /* Setup %g5 for the boot cpu. */
1486 __local_per_cpu_offset
= __per_cpu_offset(smp_processor_id());
1488 of_fill_in_cpu_data();
1489 if (tlb_type
== hypervisor
)
1490 mdesc_fill_in_cpu_data(cpu_all_mask
);