1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <linux/topology.h>
22 #include <linux/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
31 #include <linux/numa.h>
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask
;
46 cpumask_var_t cpu_callout_mask
;
47 cpumask_var_t cpu_callin_mask
;
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask
;
52 /* correctly size the local cpu masks */
53 void __init
setup_cpu_local_masks(void)
55 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
56 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
57 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
58 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
61 static void __cpuinit
default_init(struct cpuinfo_x86
*c
)
64 cpu_detect_cache_sizes(c
);
66 /* Not much we can do here... */
67 /* Check if at least it has cpuid */
68 if (c
->cpuid_level
== -1) {
69 /* No cpuid. It must be an ancient CPU */
71 strcpy(c
->x86_model_id
, "486");
73 strcpy(c
->x86_model_id
, "386");
78 static const struct cpu_dev __cpuinitconst default_cpu
= {
79 .c_init
= default_init
,
80 .c_vendor
= "Unknown",
81 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
84 static const struct cpu_dev
*this_cpu __cpuinitdata
= &default_cpu
;
86 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
89 * We need valid kernel segments for data and code in long mode too
90 * IRET will check the segment types kkeil 2000/10/28
91 * Also sysret mandates a special GDT layout
93 * TLS descriptors are currently at a different place compared to i386.
94 * Hopefully nobody expects them at a fixed place (Wine?)
96 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
108 * Segments used for calling PnP BIOS have byte granularity.
109 * They code segments and data segments have fixed 64k limits,
110 * the transfer segment sizes are set at run time.
113 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
115 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
117 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
119 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
121 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
123 * The APM segments have byte granularity and their bases
124 * are set at run time. All have 64k limits.
127 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
133 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 GDT_STACK_CANARY_INIT
138 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
140 static int __init
x86_xsave_setup(char *s
)
142 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
145 __setup("noxsave", x86_xsave_setup
);
148 static int cachesize_override __cpuinitdata
= -1;
149 static int disable_x86_serial_nr __cpuinitdata
= 1;
151 static int __init
cachesize_setup(char *str
)
153 get_option(&str
, &cachesize_override
);
156 __setup("cachesize=", cachesize_setup
);
158 static int __init
x86_fxsr_setup(char *s
)
160 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
161 setup_clear_cpu_cap(X86_FEATURE_XMM
);
164 __setup("nofxsr", x86_fxsr_setup
);
166 static int __init
x86_sep_setup(char *s
)
168 setup_clear_cpu_cap(X86_FEATURE_SEP
);
171 __setup("nosep", x86_sep_setup
);
173 /* Standard macro to see if a specific flag is changeable */
174 static inline int flag_is_changeable_p(u32 flag
)
179 * Cyrix and IDT cpus allow disabling of CPUID
180 * so the code below may return different results
181 * when it is executed before and after enabling
182 * the CPUID. Add "volatile" to not allow gcc to
183 * optimize the subsequent calls to this function.
185 asm volatile ("pushfl \n\t"
196 : "=&r" (f1
), "=&r" (f2
)
199 return ((f1
^f2
) & flag
) != 0;
202 /* Probe for the CPUID instruction */
203 static int __cpuinit
have_cpuid_p(void)
205 return flag_is_changeable_p(X86_EFLAGS_ID
);
208 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
210 unsigned long lo
, hi
;
212 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
215 /* Disable processor serial number: */
217 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
219 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
221 printk(KERN_NOTICE
"CPU serial number disabled.\n");
222 clear_cpu_cap(c
, X86_FEATURE_PN
);
224 /* Disabling the serial number may affect the cpuid level */
225 c
->cpuid_level
= cpuid_eax(0);
228 static int __init
x86_serial_nr_setup(char *s
)
230 disable_x86_serial_nr
= 0;
233 __setup("serialnumber", x86_serial_nr_setup
);
235 static inline int flag_is_changeable_p(u32 flag
)
239 /* Probe for the CPUID instruction */
240 static inline int have_cpuid_p(void)
244 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
250 * Some CPU features depend on higher CPUID levels, which may not always
251 * be available due to CPUID level capping or broken virtualization
252 * software. Add those features to this table to auto-disable them.
254 struct cpuid_dependent_feature
{
259 static const struct cpuid_dependent_feature __cpuinitconst
260 cpuid_dependent_features
[] = {
261 { X86_FEATURE_MWAIT
, 0x00000005 },
262 { X86_FEATURE_DCA
, 0x00000009 },
263 { X86_FEATURE_XSAVE
, 0x0000000d },
267 static void __cpuinit
filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
269 const struct cpuid_dependent_feature
*df
;
271 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
273 if (!cpu_has(c
, df
->feature
))
276 * Note: cpuid_level is set to -1 if unavailable, but
277 * extended_extended_level is set to 0 if unavailable
278 * and the legitimate extended levels are all negative
279 * when signed; hence the weird messing around with
282 if (!((s32
)df
->level
< 0 ?
283 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
284 (s32
)df
->level
> (s32
)c
->cpuid_level
))
287 clear_cpu_cap(c
, df
->feature
);
292 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
293 x86_cap_flags
[df
->feature
], df
->level
);
298 * Naming convention should be: <Name> [(<Codename>)]
299 * This table only is used unless init_<vendor>() below doesn't set it;
300 * in particular, if CPUID levels 0x80000002..4 are supported, this
304 /* Look up CPU names by table lookup. */
305 static const char *__cpuinit
table_lookup_model(struct cpuinfo_x86
*c
)
307 const struct cpu_model_info
*info
;
309 if (c
->x86_model
>= 16)
310 return NULL
; /* Range check */
315 info
= this_cpu
->c_models
;
317 while (info
&& info
->family
) {
318 if (info
->family
== c
->x86
)
319 return info
->model_names
[c
->x86_model
];
322 return NULL
; /* Not found */
325 __u32 cpu_caps_cleared
[NCAPINTS
] __cpuinitdata
;
326 __u32 cpu_caps_set
[NCAPINTS
] __cpuinitdata
;
328 void load_percpu_segment(int cpu
)
331 loadsegment(fs
, __KERNEL_PERCPU
);
334 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
336 load_stack_canary_segment();
340 * Current gdt points %fs at the "master" per-cpu area: after this,
341 * it's on the real one.
343 void switch_to_new_gdt(int cpu
)
345 struct desc_ptr gdt_descr
;
347 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
348 gdt_descr
.size
= GDT_SIZE
- 1;
349 load_gdt(&gdt_descr
);
350 /* Reload the per-cpu base */
352 load_percpu_segment(cpu
);
355 static const struct cpu_dev
*__cpuinitdata cpu_devs
[X86_VENDOR_NUM
] = {};
357 static void __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
362 if (c
->extended_cpuid_level
< 0x80000004)
365 v
= (unsigned int *)c
->x86_model_id
;
366 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
367 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
368 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
369 c
->x86_model_id
[48] = 0;
372 * Intel chips right-justify this string for some dumb reason;
373 * undo that brain damage:
375 p
= q
= &c
->x86_model_id
[0];
381 while (q
<= &c
->x86_model_id
[48])
382 *q
++ = '\0'; /* Zero-pad the rest */
386 void __cpuinit
cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
388 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
390 n
= c
->extended_cpuid_level
;
392 if (n
>= 0x80000005) {
393 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
394 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
396 /* On K8 L1 TLB is inclusive, so don't count it */
401 if (n
< 0x80000006) /* Some chips just has a large L1. */
404 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
408 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
410 /* do processor-specific cache resizing */
411 if (this_cpu
->c_size_cache
)
412 l2size
= this_cpu
->c_size_cache(c
, l2size
);
414 /* Allow user to override all this if necessary. */
415 if (cachesize_override
!= -1)
416 l2size
= cachesize_override
;
419 return; /* Again, no L2 cache is possible */
422 c
->x86_cache_size
= l2size
;
425 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
428 u32 eax
, ebx
, ecx
, edx
;
429 int index_msb
, core_bits
;
432 if (!cpu_has(c
, X86_FEATURE_HT
))
435 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
438 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
441 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
443 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
445 if (smp_num_siblings
== 1) {
446 printk_once(KERN_INFO
"CPU0: Hyper-Threading is disabled\n");
450 if (smp_num_siblings
<= 1)
453 if (smp_num_siblings
> nr_cpu_ids
) {
454 pr_warning("CPU: Unsupported number of siblings %d",
456 smp_num_siblings
= 1;
460 index_msb
= get_count_order(smp_num_siblings
);
461 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
463 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
465 index_msb
= get_count_order(smp_num_siblings
);
467 core_bits
= get_count_order(c
->x86_max_cores
);
469 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
470 ((1 << core_bits
) - 1);
473 if (!printed
&& (c
->x86_max_cores
* smp_num_siblings
) > 1) {
474 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
476 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
483 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
485 char *v
= c
->x86_vendor_id
;
488 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
492 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
493 (cpu_devs
[i
]->c_ident
[1] &&
494 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
496 this_cpu
= cpu_devs
[i
];
497 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
503 "CPU: vendor_id '%s' unknown, using generic init.\n" \
504 "CPU: Your system may be unstable.\n", v
);
506 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
507 this_cpu
= &default_cpu
;
510 void __cpuinit
cpu_detect(struct cpuinfo_x86
*c
)
512 /* Get vendor name */
513 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
514 (unsigned int *)&c
->x86_vendor_id
[0],
515 (unsigned int *)&c
->x86_vendor_id
[8],
516 (unsigned int *)&c
->x86_vendor_id
[4]);
519 /* Intel-defined flags: level 0x00000001 */
520 if (c
->cpuid_level
>= 0x00000001) {
521 u32 junk
, tfms
, cap0
, misc
;
523 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
524 c
->x86
= (tfms
>> 8) & 0xf;
525 c
->x86_model
= (tfms
>> 4) & 0xf;
526 c
->x86_mask
= tfms
& 0xf;
529 c
->x86
+= (tfms
>> 20) & 0xff;
531 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
533 if (cap0
& (1<<19)) {
534 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
535 c
->x86_cache_alignment
= c
->x86_clflush_size
;
540 static void __cpuinit
get_cpu_cap(struct cpuinfo_x86
*c
)
545 /* Intel-defined flags: level 0x00000001 */
546 if (c
->cpuid_level
>= 0x00000001) {
547 u32 capability
, excap
;
549 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
550 c
->x86_capability
[0] = capability
;
551 c
->x86_capability
[4] = excap
;
554 /* AMD-defined flags: level 0x80000001 */
555 xlvl
= cpuid_eax(0x80000000);
556 c
->extended_cpuid_level
= xlvl
;
558 if ((xlvl
& 0xffff0000) == 0x80000000) {
559 if (xlvl
>= 0x80000001) {
560 c
->x86_capability
[1] = cpuid_edx(0x80000001);
561 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
565 if (c
->extended_cpuid_level
>= 0x80000008) {
566 u32 eax
= cpuid_eax(0x80000008);
568 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
569 c
->x86_phys_bits
= eax
& 0xff;
572 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
573 c
->x86_phys_bits
= 36;
576 if (c
->extended_cpuid_level
>= 0x80000007)
577 c
->x86_power
= cpuid_edx(0x80000007);
581 static void __cpuinit
identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
587 * First of all, decide if this is a 486 or higher
588 * It's a 486 if we can modify the AC flag
590 if (flag_is_changeable_p(X86_EFLAGS_AC
))
595 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
596 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
597 c
->x86_vendor_id
[0] = 0;
598 cpu_devs
[i
]->c_identify(c
);
599 if (c
->x86_vendor_id
[0]) {
608 * Do minimum CPU detection early.
609 * Fields really needed: vendor, cpuid_level, family, model, mask,
611 * The others are not touched to avoid unwanted side effects.
613 * WARNING: this function is only called on the BP. Don't add code here
614 * that is supposed to run on all CPUs.
616 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
619 c
->x86_clflush_size
= 64;
620 c
->x86_phys_bits
= 36;
621 c
->x86_virt_bits
= 48;
623 c
->x86_clflush_size
= 32;
624 c
->x86_phys_bits
= 32;
625 c
->x86_virt_bits
= 32;
627 c
->x86_cache_alignment
= c
->x86_clflush_size
;
629 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
630 c
->extended_cpuid_level
= 0;
633 identify_cpu_without_cpuid(c
);
635 /* cyrix could have cpuid enabled via c_identify()*/
645 if (this_cpu
->c_early_init
)
646 this_cpu
->c_early_init(c
);
649 c
->cpu_index
= boot_cpu_id
;
651 filter_cpuid_features(c
, false);
654 void __init
early_cpu_init(void)
656 const struct cpu_dev
*const *cdev
;
659 #ifdef PROCESSOR_SELECT
660 printk(KERN_INFO
"KERNEL supported cpus:\n");
663 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
664 const struct cpu_dev
*cpudev
= *cdev
;
666 if (count
>= X86_VENDOR_NUM
)
668 cpu_devs
[count
] = cpudev
;
671 #ifdef PROCESSOR_SELECT
675 for (j
= 0; j
< 2; j
++) {
676 if (!cpudev
->c_ident
[j
])
678 printk(KERN_INFO
" %s %s\n", cpudev
->c_vendor
,
684 early_identify_cpu(&boot_cpu_data
);
688 * The NOPL instruction is supposed to exist on all CPUs with
689 * family >= 6; unfortunately, that's not true in practice because
690 * of early VIA chips and (more importantly) broken virtualizers that
691 * are not easy to detect. In the latter case it doesn't even *fail*
692 * reliably, so probing for it doesn't even work. Disable it completely
693 * unless we can find a reliable way to detect all the broken cases.
695 static void __cpuinit
detect_nopl(struct cpuinfo_x86
*c
)
697 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
700 static void __cpuinit
generic_identify(struct cpuinfo_x86
*c
)
702 c
->extended_cpuid_level
= 0;
705 identify_cpu_without_cpuid(c
);
707 /* cyrix could have cpuid enabled via c_identify()*/
717 if (c
->cpuid_level
>= 0x00000001) {
718 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
720 # ifdef CONFIG_X86_HT
721 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
723 c
->apicid
= c
->initial_apicid
;
728 c
->phys_proc_id
= c
->initial_apicid
;
732 get_model_name(c
); /* Default name */
734 init_scattered_cpuid_features(c
);
739 * This does the hard work of actually picking apart the CPU stuff...
741 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
745 c
->loops_per_jiffy
= loops_per_jiffy
;
746 c
->x86_cache_size
= -1;
747 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
748 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
749 c
->x86_vendor_id
[0] = '\0'; /* Unset */
750 c
->x86_model_id
[0] = '\0'; /* Unset */
751 c
->x86_max_cores
= 1;
752 c
->x86_coreid_bits
= 0;
754 c
->x86_clflush_size
= 64;
755 c
->x86_phys_bits
= 36;
756 c
->x86_virt_bits
= 48;
758 c
->cpuid_level
= -1; /* CPUID not detected */
759 c
->x86_clflush_size
= 32;
760 c
->x86_phys_bits
= 32;
761 c
->x86_virt_bits
= 32;
763 c
->x86_cache_alignment
= c
->x86_clflush_size
;
764 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
768 if (this_cpu
->c_identify
)
769 this_cpu
->c_identify(c
);
771 /* Clear/Set all flags overriden by options, after probe */
772 for (i
= 0; i
< NCAPINTS
; i
++) {
773 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
774 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
778 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
782 * Vendor-specific initialization. In this section we
783 * canonicalize the feature flags, meaning if there are
784 * features a certain CPU supports which CPUID doesn't
785 * tell us, CPUID claiming incorrect flags, or other bugs,
786 * we handle them here.
788 * At the end of this section, c->x86_capability better
789 * indicate the features this CPU genuinely supports!
791 if (this_cpu
->c_init
)
794 /* Disable the PN if appropriate */
795 squash_the_stupid_serial_number(c
);
798 * The vendor-specific functions might have changed features.
799 * Now we do "generic changes."
802 /* Filter out anything that depends on CPUID levels we don't have */
803 filter_cpuid_features(c
, true);
805 /* If the model name is still unset, do table lookup. */
806 if (!c
->x86_model_id
[0]) {
808 p
= table_lookup_model(c
);
810 strcpy(c
->x86_model_id
, p
);
813 sprintf(c
->x86_model_id
, "%02x/%02x",
814 c
->x86
, c
->x86_model
);
824 * Clear/Set all flags overriden by options, need do it
825 * before following smp all cpus cap AND.
827 for (i
= 0; i
< NCAPINTS
; i
++) {
828 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
829 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
833 * On SMP, boot_cpu_data holds the common feature set between
834 * all CPUs; so make sure that we indicate which features are
835 * common between the CPUs. The first time this routine gets
836 * executed, c == &boot_cpu_data.
838 if (c
!= &boot_cpu_data
) {
839 /* AND the already accumulated flags with these */
840 for (i
= 0; i
< NCAPINTS
; i
++)
841 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
844 /* Init Machine Check Exception if available. */
847 select_idle_routine(c
);
849 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
850 numa_add_cpu(smp_processor_id());
855 static void vgetcpu_set_mode(void)
857 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
858 vgetcpu_mode
= VGETCPU_RDTSCP
;
860 vgetcpu_mode
= VGETCPU_LSL
;
864 void __init
identify_boot_cpu(void)
866 identify_cpu(&boot_cpu_data
);
874 init_hw_perf_events();
877 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
879 BUG_ON(c
== &boot_cpu_data
);
892 static const struct msr_range msr_range_array
[] __cpuinitconst
= {
893 { 0x00000000, 0x00000418},
894 { 0xc0000000, 0xc000040b},
895 { 0xc0010000, 0xc0010142},
896 { 0xc0011000, 0xc001103b},
899 static void __cpuinit
print_cpu_msr(void)
901 unsigned index_min
, index_max
;
906 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
907 index_min
= msr_range_array
[i
].min
;
908 index_max
= msr_range_array
[i
].max
;
910 for (index
= index_min
; index
< index_max
; index
++) {
911 if (rdmsrl_amd_safe(index
, &val
))
913 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
918 static int show_msr __cpuinitdata
;
920 static __init
int setup_show_msr(char *arg
)
924 get_option(&arg
, &num
);
930 __setup("show_msr=", setup_show_msr
);
932 static __init
int setup_noclflush(char *arg
)
934 setup_clear_cpu_cap(X86_FEATURE_CLFLSH
);
937 __setup("noclflush", setup_noclflush
);
939 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
941 const char *vendor
= NULL
;
943 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
944 vendor
= this_cpu
->c_vendor
;
946 if (c
->cpuid_level
>= 0)
947 vendor
= c
->x86_vendor_id
;
950 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
951 printk(KERN_CONT
"%s ", vendor
);
953 if (c
->x86_model_id
[0])
954 printk(KERN_CONT
"%s", c
->x86_model_id
);
956 printk(KERN_CONT
"%d86", c
->x86
);
958 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
959 printk(KERN_CONT
" stepping %02x\n", c
->x86_mask
);
961 printk(KERN_CONT
"\n");
964 if (c
->cpu_index
< show_msr
)
972 static __init
int setup_disablecpuid(char *arg
)
976 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
977 setup_clear_cpu_cap(bit
);
983 __setup("clearcpuid=", setup_disablecpuid
);
986 struct desc_ptr idt_descr
= { NR_VECTORS
* 16 - 1, (unsigned long) idt_table
};
988 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
989 irq_stack_union
) __aligned(PAGE_SIZE
);
992 * The following four percpu variables are hot. Align current_task to
993 * cacheline size such that all four fall in the same cacheline.
995 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
997 EXPORT_PER_CPU_SYMBOL(current_task
);
999 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
1000 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
1001 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
1003 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1004 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
1006 DEFINE_PER_CPU(unsigned int, irq_count
) = -1;
1009 * Special IST stacks which the CPU switches to when it calls
1010 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1011 * limit), all of them are 4K, except the debug stack which
1014 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
1015 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1016 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1019 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1020 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
]);
1022 /* May not be marked __init: used by software suspend */
1023 void syscall_init(void)
1026 * LSTAR and STAR live in a bit strange symbiosis.
1027 * They both write to the same internal register. STAR allows to
1028 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1030 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
1031 wrmsrl(MSR_LSTAR
, system_call
);
1032 wrmsrl(MSR_CSTAR
, ignore_sysret
);
1034 #ifdef CONFIG_IA32_EMULATION
1035 syscall32_cpu_init();
1038 /* Flags to clear on syscall */
1039 wrmsrl(MSR_SYSCALL_MASK
,
1040 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|X86_EFLAGS_IOPL
);
1043 unsigned long kernel_eflags
;
1046 * Copies of the original ist values from the tss are only accessed during
1047 * debugging, no special alignment required.
1049 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1051 #else /* CONFIG_X86_64 */
1053 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1054 EXPORT_PER_CPU_SYMBOL(current_task
);
1056 #ifdef CONFIG_CC_STACKPROTECTOR
1057 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1060 /* Make sure %fs and %gs are initialized properly in idle threads */
1061 struct pt_regs
* __cpuinit
idle_regs(struct pt_regs
*regs
)
1063 memset(regs
, 0, sizeof(struct pt_regs
));
1064 regs
->fs
= __KERNEL_PERCPU
;
1065 regs
->gs
= __KERNEL_STACK_CANARY
;
1069 #endif /* CONFIG_X86_64 */
1072 * Clear all 6 debug registers:
1074 static void clear_all_debug_regs(void)
1078 for (i
= 0; i
< 8; i
++) {
1079 /* Ignore db4, db5 */
1080 if ((i
== 4) || (i
== 5))
1088 * cpu_init() initializes state that is per-CPU. Some data is already
1089 * initialized (naturally) in the bootstrap process, such as the GDT
1090 * and IDT. We reload them nevertheless, this function acts as a
1091 * 'CPU state barrier', nothing should get across.
1092 * A lot of state is already set up in PDA init for 64 bit
1094 #ifdef CONFIG_X86_64
1096 void __cpuinit
cpu_init(void)
1098 struct orig_ist
*oist
;
1099 struct task_struct
*me
;
1100 struct tss_struct
*t
;
1105 cpu
= stack_smp_processor_id();
1106 t
= &per_cpu(init_tss
, cpu
);
1107 oist
= &per_cpu(orig_ist
, cpu
);
1110 if (cpu
!= 0 && percpu_read(node_number
) == 0 &&
1111 cpu_to_node(cpu
) != NUMA_NO_NODE
)
1112 percpu_write(node_number
, cpu_to_node(cpu
));
1117 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1118 panic("CPU#%d already initialized!\n", cpu
);
1120 pr_debug("Initializing CPU#%d\n", cpu
);
1122 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1125 * Initialize the per-CPU GDT with the boot GDT,
1126 * and set up the GDT descriptor:
1129 switch_to_new_gdt(cpu
);
1132 load_idt((const struct desc_ptr
*)&idt_descr
);
1134 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1137 wrmsrl(MSR_FS_BASE
, 0);
1138 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1146 * set up and load the per-CPU TSS
1148 if (!oist
->ist
[0]) {
1149 char *estacks
= per_cpu(exception_stacks
, cpu
);
1151 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1152 estacks
+= exception_stack_sizes
[v
];
1153 oist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1154 (unsigned long)estacks
;
1158 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1161 * <= is required because the CPU will access up to
1162 * 8 bits beyond the end of the IO permission bitmap.
1164 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1165 t
->io_bitmap
[i
] = ~0UL;
1167 atomic_inc(&init_mm
.mm_count
);
1168 me
->active_mm
= &init_mm
;
1170 enter_lazy_tlb(&init_mm
, me
);
1172 load_sp0(t
, ¤t
->thread
);
1173 set_tss_desc(cpu
, t
);
1175 load_LDT(&init_mm
.context
);
1179 * If the kgdb is connected no debug regs should be altered. This
1180 * is only applicable when KGDB and a KGDB I/O module are built
1181 * into the kernel and you are using early debugging with
1182 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1184 if (kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
)
1185 arch_kgdb_ops
.correct_hw_break();
1188 clear_all_debug_regs();
1192 raw_local_save_flags(kernel_eflags
);
1200 void __cpuinit
cpu_init(void)
1202 int cpu
= smp_processor_id();
1203 struct task_struct
*curr
= current
;
1204 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1205 struct thread_struct
*thread
= &curr
->thread
;
1207 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1208 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1213 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1215 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1216 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1218 load_idt(&idt_descr
);
1219 switch_to_new_gdt(cpu
);
1222 * Set up and load the per-CPU TSS and LDT
1224 atomic_inc(&init_mm
.mm_count
);
1225 curr
->active_mm
= &init_mm
;
1227 enter_lazy_tlb(&init_mm
, curr
);
1229 load_sp0(t
, thread
);
1230 set_tss_desc(cpu
, t
);
1232 load_LDT(&init_mm
.context
);
1234 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1236 #ifdef CONFIG_DOUBLEFAULT
1237 /* Set up doublefault TSS pointer in the GDT */
1238 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1241 clear_all_debug_regs();
1244 * Force FPU initialization:
1247 current_thread_info()->status
= TS_XSAVE
;
1249 current_thread_info()->status
= 0;
1251 mxcsr_feature_mask_init();
1254 * Boot processor to setup the FP and extended state context info.
1256 if (smp_processor_id() == boot_cpu_id
)
1257 init_thread_xstate();