2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 #include <trace/events/power.h>
39 #include <linux/acpi.h>
41 #include <linux/delay.h>
42 #include <linux/uaccess.h>
44 #include <acpi/processor.h>
47 #include <asm/processor.h>
48 #include <asm/cpufeature.h>
50 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
53 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
54 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
55 MODULE_LICENSE("GPL");
58 UNDEFINED_CAPABLE
= 0,
59 SYSTEM_INTEL_MSR_CAPABLE
,
63 #define INTEL_MSR_RANGE (0xffff)
65 struct acpi_cpufreq_data
{
66 struct acpi_processor_performance
*acpi_data
;
67 struct cpufreq_frequency_table
*freq_table
;
69 unsigned int cpu_feature
;
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data
*, acfreq_data
);
74 static DEFINE_PER_CPU(struct aperfmperf
, acfreq_old_perf
);
76 /* acpi_perf_data is a pointer to percpu data. */
77 static struct acpi_processor_performance
*acpi_perf_data
;
79 static struct cpufreq_driver acpi_cpufreq_driver
;
81 static unsigned int acpi_pstate_strict
;
83 static int check_est_cpu(unsigned int cpuid
)
85 struct cpuinfo_x86
*cpu
= &cpu_data(cpuid
);
87 return cpu_has(cpu
, X86_FEATURE_EST
);
90 static unsigned extract_io(u32 value
, struct acpi_cpufreq_data
*data
)
92 struct acpi_processor_performance
*perf
;
95 perf
= data
->acpi_data
;
97 for (i
= 0; i
< perf
->state_count
; i
++) {
98 if (value
== perf
->states
[i
].status
)
99 return data
->freq_table
[i
].frequency
;
104 static unsigned extract_msr(u32 msr
, struct acpi_cpufreq_data
*data
)
107 struct acpi_processor_performance
*perf
;
109 msr
&= INTEL_MSR_RANGE
;
110 perf
= data
->acpi_data
;
112 for (i
= 0; data
->freq_table
[i
].frequency
!= CPUFREQ_TABLE_END
; i
++) {
113 if (msr
== perf
->states
[data
->freq_table
[i
].index
].status
)
114 return data
->freq_table
[i
].frequency
;
116 return data
->freq_table
[0].frequency
;
119 static unsigned extract_freq(u32 val
, struct acpi_cpufreq_data
*data
)
121 switch (data
->cpu_feature
) {
122 case SYSTEM_INTEL_MSR_CAPABLE
:
123 return extract_msr(val
, data
);
124 case SYSTEM_IO_CAPABLE
:
125 return extract_io(val
, data
);
142 const struct cpumask
*mask
;
150 /* Called via smp_call_function_single(), on the target CPU */
151 static void do_drv_read(void *_cmd
)
153 struct drv_cmd
*cmd
= _cmd
;
157 case SYSTEM_INTEL_MSR_CAPABLE
:
158 rdmsr(cmd
->addr
.msr
.reg
, cmd
->val
, h
);
160 case SYSTEM_IO_CAPABLE
:
161 acpi_os_read_port((acpi_io_address
)cmd
->addr
.io
.port
,
163 (u32
)cmd
->addr
.io
.bit_width
);
170 /* Called via smp_call_function_many(), on the target CPUs */
171 static void do_drv_write(void *_cmd
)
173 struct drv_cmd
*cmd
= _cmd
;
177 case SYSTEM_INTEL_MSR_CAPABLE
:
178 rdmsr(cmd
->addr
.msr
.reg
, lo
, hi
);
179 lo
= (lo
& ~INTEL_MSR_RANGE
) | (cmd
->val
& INTEL_MSR_RANGE
);
180 wrmsr(cmd
->addr
.msr
.reg
, lo
, hi
);
182 case SYSTEM_IO_CAPABLE
:
183 acpi_os_write_port((acpi_io_address
)cmd
->addr
.io
.port
,
185 (u32
)cmd
->addr
.io
.bit_width
);
192 static void drv_read(struct drv_cmd
*cmd
)
197 err
= smp_call_function_any(cmd
->mask
, do_drv_read
, cmd
, 1);
198 WARN_ON_ONCE(err
); /* smp_call_function_any() was buggy? */
201 static void drv_write(struct drv_cmd
*cmd
)
205 this_cpu
= get_cpu();
206 if (cpumask_test_cpu(this_cpu
, cmd
->mask
))
208 smp_call_function_many(cmd
->mask
, do_drv_write
, cmd
, 1);
212 static u32
get_cur_val(const struct cpumask
*mask
)
214 struct acpi_processor_performance
*perf
;
217 if (unlikely(cpumask_empty(mask
)))
220 switch (per_cpu(acfreq_data
, cpumask_first(mask
))->cpu_feature
) {
221 case SYSTEM_INTEL_MSR_CAPABLE
:
222 cmd
.type
= SYSTEM_INTEL_MSR_CAPABLE
;
223 cmd
.addr
.msr
.reg
= MSR_IA32_PERF_STATUS
;
225 case SYSTEM_IO_CAPABLE
:
226 cmd
.type
= SYSTEM_IO_CAPABLE
;
227 perf
= per_cpu(acfreq_data
, cpumask_first(mask
))->acpi_data
;
228 cmd
.addr
.io
.port
= perf
->control_register
.address
;
229 cmd
.addr
.io
.bit_width
= perf
->control_register
.bit_width
;
238 dprintk("get_cur_val = %u\n", cmd
.val
);
243 /* Called via smp_call_function_single(), on the target CPU */
244 static void read_measured_perf_ctrs(void *_cur
)
246 struct aperfmperf
*am
= _cur
;
252 * Return the measured active (C0) frequency on this CPU since last call
255 * Return: Average CPU frequency in terms of max frequency (zero on error)
257 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
258 * over a period of time, while CPU is in C0 state.
259 * IA32_MPERF counts at the rate of max advertised frequency
260 * IA32_APERF counts at the rate of actual CPU frequency
261 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
262 * no meaning should be associated with absolute values of these MSRs.
264 static unsigned int get_measured_perf(struct cpufreq_policy
*policy
,
267 struct aperfmperf perf
;
271 if (smp_call_function_single(cpu
, read_measured_perf_ctrs
, &perf
, 1))
274 ratio
= calc_aperfmperf_ratio(&per_cpu(acfreq_old_perf
, cpu
), &perf
);
275 per_cpu(acfreq_old_perf
, cpu
) = perf
;
277 retval
= (policy
->cpuinfo
.max_freq
* ratio
) >> APERFMPERF_SHIFT
;
282 static unsigned int get_cur_freq_on_cpu(unsigned int cpu
)
284 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, cpu
);
286 unsigned int cached_freq
;
288 dprintk("get_cur_freq_on_cpu (%d)\n", cpu
);
290 if (unlikely(data
== NULL
||
291 data
->acpi_data
== NULL
|| data
->freq_table
== NULL
)) {
295 cached_freq
= data
->freq_table
[data
->acpi_data
->state
].frequency
;
296 freq
= extract_freq(get_cur_val(cpumask_of(cpu
)), data
);
297 if (freq
!= cached_freq
) {
299 * The dreaded BIOS frequency change behind our back.
300 * Force set the frequency on next target call.
305 dprintk("cur freq = %u\n", freq
);
310 static unsigned int check_freqs(const struct cpumask
*mask
, unsigned int freq
,
311 struct acpi_cpufreq_data
*data
)
313 unsigned int cur_freq
;
316 for (i
= 0; i
< 100; i
++) {
317 cur_freq
= extract_freq(get_cur_val(mask
), data
);
318 if (cur_freq
== freq
)
325 static int acpi_cpufreq_target(struct cpufreq_policy
*policy
,
326 unsigned int target_freq
, unsigned int relation
)
328 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
329 struct acpi_processor_performance
*perf
;
330 struct cpufreq_freqs freqs
;
332 unsigned int next_state
= 0; /* Index into freq_table */
333 unsigned int next_perf_state
= 0; /* Index into perf table */
337 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq
, policy
->cpu
);
339 if (unlikely(data
== NULL
||
340 data
->acpi_data
== NULL
|| data
->freq_table
== NULL
)) {
344 perf
= data
->acpi_data
;
345 result
= cpufreq_frequency_table_target(policy
,
348 relation
, &next_state
);
349 if (unlikely(result
)) {
354 next_perf_state
= data
->freq_table
[next_state
].index
;
355 if (perf
->state
== next_perf_state
) {
356 if (unlikely(data
->resume
)) {
357 dprintk("Called after resume, resetting to P%d\n",
361 dprintk("Already at target state (P%d)\n",
367 trace_power_frequency(POWER_PSTATE
, data
->freq_table
[next_state
].frequency
);
369 switch (data
->cpu_feature
) {
370 case SYSTEM_INTEL_MSR_CAPABLE
:
371 cmd
.type
= SYSTEM_INTEL_MSR_CAPABLE
;
372 cmd
.addr
.msr
.reg
= MSR_IA32_PERF_CTL
;
373 cmd
.val
= (u32
) perf
->states
[next_perf_state
].control
;
375 case SYSTEM_IO_CAPABLE
:
376 cmd
.type
= SYSTEM_IO_CAPABLE
;
377 cmd
.addr
.io
.port
= perf
->control_register
.address
;
378 cmd
.addr
.io
.bit_width
= perf
->control_register
.bit_width
;
379 cmd
.val
= (u32
) perf
->states
[next_perf_state
].control
;
386 /* cpufreq holds the hotplug lock, so we are safe from here on */
387 if (policy
->shared_type
!= CPUFREQ_SHARED_TYPE_ANY
)
388 cmd
.mask
= policy
->cpus
;
390 cmd
.mask
= cpumask_of(policy
->cpu
);
392 freqs
.old
= perf
->states
[perf
->state
].core_frequency
* 1000;
393 freqs
.new = data
->freq_table
[next_state
].frequency
;
394 for_each_cpu(i
, cmd
.mask
) {
396 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
401 if (acpi_pstate_strict
) {
402 if (!check_freqs(cmd
.mask
, freqs
.new, data
)) {
403 dprintk("acpi_cpufreq_target failed (%d)\n",
410 for_each_cpu(i
, cmd
.mask
) {
412 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
414 perf
->state
= next_perf_state
;
420 static int acpi_cpufreq_verify(struct cpufreq_policy
*policy
)
422 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
424 dprintk("acpi_cpufreq_verify\n");
426 return cpufreq_frequency_table_verify(policy
, data
->freq_table
);
430 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data
*data
, unsigned int cpu
)
432 struct acpi_processor_performance
*perf
= data
->acpi_data
;
435 /* search the closest match to cpu_khz */
438 unsigned long freqn
= perf
->states
[0].core_frequency
* 1000;
440 for (i
= 0; i
< (perf
->state_count
-1); i
++) {
442 freqn
= perf
->states
[i
+1].core_frequency
* 1000;
443 if ((2 * cpu_khz
) > (freqn
+ freq
)) {
448 perf
->state
= perf
->state_count
-1;
451 /* assume CPU is at P0... */
453 return perf
->states
[0].core_frequency
* 1000;
457 static void free_acpi_perf_data(void)
461 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
462 for_each_possible_cpu(i
)
463 free_cpumask_var(per_cpu_ptr(acpi_perf_data
, i
)
465 free_percpu(acpi_perf_data
);
469 * acpi_cpufreq_early_init - initialize ACPI P-States library
471 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
472 * in order to determine correct frequency and voltage pairings. We can
473 * do _PDC and _PSD and find out the processor dependency for the
474 * actual init that will happen later...
476 static int __init
acpi_cpufreq_early_init(void)
479 dprintk("acpi_cpufreq_early_init\n");
481 acpi_perf_data
= alloc_percpu(struct acpi_processor_performance
);
482 if (!acpi_perf_data
) {
483 dprintk("Memory allocation error for acpi_perf_data.\n");
486 for_each_possible_cpu(i
) {
487 if (!zalloc_cpumask_var_node(
488 &per_cpu_ptr(acpi_perf_data
, i
)->shared_cpu_map
,
489 GFP_KERNEL
, cpu_to_node(i
))) {
491 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
492 free_acpi_perf_data();
497 /* Do initialization in ACPI core */
498 acpi_processor_preregister_performance(acpi_perf_data
);
504 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
505 * or do it in BIOS firmware and won't inform about it to OS. If not
506 * detected, this has a side effect of making CPU run at a different speed
507 * than OS intended it to run at. Detect it and handle it cleanly.
509 static int bios_with_sw_any_bug
;
511 static int sw_any_bug_found(const struct dmi_system_id
*d
)
513 bios_with_sw_any_bug
= 1;
517 static const struct dmi_system_id sw_any_bug_dmi_table
[] = {
519 .callback
= sw_any_bug_found
,
520 .ident
= "Supermicro Server X6DLP",
522 DMI_MATCH(DMI_SYS_VENDOR
, "Supermicro"),
523 DMI_MATCH(DMI_BIOS_VERSION
, "080010"),
524 DMI_MATCH(DMI_PRODUCT_NAME
, "X6DLP"),
530 static int acpi_cpufreq_blacklist(struct cpuinfo_x86
*c
)
532 /* Intel Xeon Processor 7100 Series Specification Update
533 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
534 * AL30: A Machine Check Exception (MCE) Occurring during an
535 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
536 * Both Processor Cores to Lock Up. */
537 if (c
->x86_vendor
== X86_VENDOR_INTEL
) {
538 if ((c
->x86
== 15) &&
539 (c
->x86_model
== 6) &&
540 (c
->x86_mask
== 8)) {
541 printk(KERN_INFO
"acpi-cpufreq: Intel(R) "
542 "Xeon(R) 7100 Errata AL30, processors may "
543 "lock up on frequency changes: disabling "
552 static int acpi_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
555 unsigned int valid_states
= 0;
556 unsigned int cpu
= policy
->cpu
;
557 struct acpi_cpufreq_data
*data
;
558 unsigned int result
= 0;
559 struct cpuinfo_x86
*c
= &cpu_data(policy
->cpu
);
560 struct acpi_processor_performance
*perf
;
562 static int blacklisted
;
565 dprintk("acpi_cpufreq_cpu_init\n");
570 blacklisted
= acpi_cpufreq_blacklist(c
);
575 data
= kzalloc(sizeof(struct acpi_cpufreq_data
), GFP_KERNEL
);
579 data
->acpi_data
= per_cpu_ptr(acpi_perf_data
, cpu
);
580 per_cpu(acfreq_data
, cpu
) = data
;
582 if (cpu_has(c
, X86_FEATURE_CONSTANT_TSC
))
583 acpi_cpufreq_driver
.flags
|= CPUFREQ_CONST_LOOPS
;
585 result
= acpi_processor_register_performance(data
->acpi_data
, cpu
);
589 perf
= data
->acpi_data
;
590 policy
->shared_type
= perf
->shared_type
;
593 * Will let policy->cpus know about dependency only when software
594 * coordination is required.
596 if (policy
->shared_type
== CPUFREQ_SHARED_TYPE_ALL
||
597 policy
->shared_type
== CPUFREQ_SHARED_TYPE_ANY
) {
598 cpumask_copy(policy
->cpus
, perf
->shared_cpu_map
);
600 cpumask_copy(policy
->related_cpus
, perf
->shared_cpu_map
);
603 dmi_check_system(sw_any_bug_dmi_table
);
604 if (bios_with_sw_any_bug
&& cpumask_weight(policy
->cpus
) == 1) {
605 policy
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
606 cpumask_copy(policy
->cpus
, cpu_core_mask(cpu
));
610 /* capability check */
611 if (perf
->state_count
<= 1) {
612 dprintk("No P-States\n");
617 if (perf
->control_register
.space_id
!= perf
->status_register
.space_id
) {
622 switch (perf
->control_register
.space_id
) {
623 case ACPI_ADR_SPACE_SYSTEM_IO
:
624 dprintk("SYSTEM IO addr space\n");
625 data
->cpu_feature
= SYSTEM_IO_CAPABLE
;
627 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
628 dprintk("HARDWARE addr space\n");
629 if (!check_est_cpu(cpu
)) {
633 data
->cpu_feature
= SYSTEM_INTEL_MSR_CAPABLE
;
636 dprintk("Unknown addr space %d\n",
637 (u32
) (perf
->control_register
.space_id
));
642 data
->freq_table
= kmalloc(sizeof(struct cpufreq_frequency_table
) *
643 (perf
->state_count
+1), GFP_KERNEL
);
644 if (!data
->freq_table
) {
649 /* detect transition latency */
650 policy
->cpuinfo
.transition_latency
= 0;
651 for (i
= 0; i
< perf
->state_count
; i
++) {
652 if ((perf
->states
[i
].transition_latency
* 1000) >
653 policy
->cpuinfo
.transition_latency
)
654 policy
->cpuinfo
.transition_latency
=
655 perf
->states
[i
].transition_latency
* 1000;
658 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
659 if (perf
->control_register
.space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
&&
660 policy
->cpuinfo
.transition_latency
> 20 * 1000) {
661 policy
->cpuinfo
.transition_latency
= 20 * 1000;
662 printk_once(KERN_INFO
663 "P-state transition latency capped at 20 uS\n");
667 for (i
= 0; i
< perf
->state_count
; i
++) {
668 if (i
> 0 && perf
->states
[i
].core_frequency
>=
669 data
->freq_table
[valid_states
-1].frequency
/ 1000)
672 data
->freq_table
[valid_states
].index
= i
;
673 data
->freq_table
[valid_states
].frequency
=
674 perf
->states
[i
].core_frequency
* 1000;
677 data
->freq_table
[valid_states
].frequency
= CPUFREQ_TABLE_END
;
680 result
= cpufreq_frequency_table_cpuinfo(policy
, data
->freq_table
);
684 if (perf
->states
[0].core_frequency
* 1000 != policy
->cpuinfo
.max_freq
)
685 printk(KERN_WARNING FW_WARN
"P-state 0 is not max freq\n");
687 switch (perf
->control_register
.space_id
) {
688 case ACPI_ADR_SPACE_SYSTEM_IO
:
689 /* Current speed is unknown and not detectable by IO port */
690 policy
->cur
= acpi_cpufreq_guess_freq(data
, policy
->cpu
);
692 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
693 acpi_cpufreq_driver
.get
= get_cur_freq_on_cpu
;
694 policy
->cur
= get_cur_freq_on_cpu(cpu
);
700 /* notify BIOS that we exist */
701 acpi_processor_notify_smm(THIS_MODULE
);
703 /* Check for APERF/MPERF support in hardware */
704 if (cpu_has(c
, X86_FEATURE_APERFMPERF
))
705 acpi_cpufreq_driver
.getavg
= get_measured_perf
;
707 dprintk("CPU%u - ACPI performance management activated.\n", cpu
);
708 for (i
= 0; i
< perf
->state_count
; i
++)
709 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
710 (i
== perf
->state
? '*' : ' '), i
,
711 (u32
) perf
->states
[i
].core_frequency
,
712 (u32
) perf
->states
[i
].power
,
713 (u32
) perf
->states
[i
].transition_latency
);
715 cpufreq_frequency_table_get_attr(data
->freq_table
, policy
->cpu
);
718 * the first call to ->target() should result in us actually
719 * writing something to the appropriate registers.
726 kfree(data
->freq_table
);
728 acpi_processor_unregister_performance(perf
, cpu
);
731 per_cpu(acfreq_data
, cpu
) = NULL
;
736 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
738 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
740 dprintk("acpi_cpufreq_cpu_exit\n");
743 cpufreq_frequency_table_put_attr(policy
->cpu
);
744 per_cpu(acfreq_data
, policy
->cpu
) = NULL
;
745 acpi_processor_unregister_performance(data
->acpi_data
,
753 static int acpi_cpufreq_resume(struct cpufreq_policy
*policy
)
755 struct acpi_cpufreq_data
*data
= per_cpu(acfreq_data
, policy
->cpu
);
757 dprintk("acpi_cpufreq_resume\n");
764 static struct freq_attr
*acpi_cpufreq_attr
[] = {
765 &cpufreq_freq_attr_scaling_available_freqs
,
769 static struct cpufreq_driver acpi_cpufreq_driver
= {
770 .verify
= acpi_cpufreq_verify
,
771 .target
= acpi_cpufreq_target
,
772 .bios_limit
= acpi_processor_get_bios_limit
,
773 .init
= acpi_cpufreq_cpu_init
,
774 .exit
= acpi_cpufreq_cpu_exit
,
775 .resume
= acpi_cpufreq_resume
,
776 .name
= "acpi-cpufreq",
777 .owner
= THIS_MODULE
,
778 .attr
= acpi_cpufreq_attr
,
781 static int __init
acpi_cpufreq_init(void)
788 dprintk("acpi_cpufreq_init\n");
790 ret
= acpi_cpufreq_early_init();
794 ret
= cpufreq_register_driver(&acpi_cpufreq_driver
);
796 free_acpi_perf_data();
801 static void __exit
acpi_cpufreq_exit(void)
803 dprintk("acpi_cpufreq_exit\n");
805 cpufreq_unregister_driver(&acpi_cpufreq_driver
);
807 free_percpu(acpi_perf_data
);
810 module_param(acpi_pstate_strict
, uint
, 0644);
811 MODULE_PARM_DESC(acpi_pstate_strict
,
812 "value 0 or non-zero. non-zero -> strict ACPI checks are "
813 "performed during frequency changes.");
815 late_initcall(acpi_cpufreq_init
);
816 module_exit(acpi_cpufreq_exit
);
818 MODULE_ALIAS("acpi");