MIPS: SB1250: Include correct header and fix a warning
[linux-2.6/linux-mips.git] / arch / x86 / kernel / tlb_uv.c
blob17b03dd3a6b50f45cb87e7f4cfb1312414a35274
1 /*
2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
14 #include <asm/mmu_context.h>
15 #include <asm/uv/uv.h>
16 #include <asm/uv/uv_mmrs.h>
17 #include <asm/uv/uv_hub.h>
18 #include <asm/uv/uv_bau.h>
19 #include <asm/apic.h>
20 #include <asm/idle.h>
21 #include <asm/tsc.h>
22 #include <asm/irq_vectors.h>
24 static struct bau_control **uv_bau_table_bases __read_mostly;
25 static int uv_bau_retry_limit __read_mostly;
27 /* base pnode in this partition */
28 static int uv_partition_base_pnode __read_mostly;
30 static unsigned long uv_mmask __read_mostly;
32 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
33 static DEFINE_PER_CPU(struct bau_control, bau_control);
36 * Determine the first node on a blade.
38 static int __init blade_to_first_node(int blade)
40 int node, b;
42 for_each_online_node(node) {
43 b = uv_node_to_blade_id(node);
44 if (blade == b)
45 return node;
47 return -1; /* shouldn't happen */
51 * Determine the apicid of the first cpu on a blade.
53 static int __init blade_to_first_apicid(int blade)
55 int cpu;
57 for_each_present_cpu(cpu)
58 if (blade == uv_cpu_to_blade_id(cpu))
59 return per_cpu(x86_cpu_to_apicid, cpu);
60 return -1;
64 * Free a software acknowledge hardware resource by clearing its Pending
65 * bit. This will return a reply to the sender.
66 * If the message has timed out, a reply has already been sent by the
67 * hardware but the resource has not been released. In that case our
68 * clear of the Timeout bit (as well) will free the resource. No reply will
69 * be sent (the hardware will only do one reply per message).
71 static void uv_reply_to_message(int resource,
72 struct bau_payload_queue_entry *msg,
73 struct bau_msg_status *msp)
75 unsigned long dw;
77 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
78 msg->replied_to = 1;
79 msg->sw_ack_vector = 0;
80 if (msp)
81 msp->seen_by.bits = 0;
82 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
86 * Do all the things a cpu should do for a TLB shootdown message.
87 * Other cpu's may come here at the same time for this message.
89 static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
90 int msg_slot, int sw_ack_slot)
92 unsigned long this_cpu_mask;
93 struct bau_msg_status *msp;
94 int cpu;
96 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
97 cpu = uv_blade_processor_id();
98 msg->number_of_cpus =
99 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
100 this_cpu_mask = 1UL << cpu;
101 if (msp->seen_by.bits & this_cpu_mask)
102 return;
103 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
105 if (msg->replied_to == 1)
106 return;
108 if (msg->address == TLB_FLUSH_ALL) {
109 local_flush_tlb();
110 __get_cpu_var(ptcstats).alltlb++;
111 } else {
112 __flush_tlb_one(msg->address);
113 __get_cpu_var(ptcstats).onetlb++;
116 __get_cpu_var(ptcstats).requestee++;
118 atomic_inc_short(&msg->acknowledge_count);
119 if (msg->number_of_cpus == msg->acknowledge_count)
120 uv_reply_to_message(sw_ack_slot, msg, msp);
124 * Examine the payload queue on one distribution node to see
125 * which messages have not been seen, and which cpu(s) have not seen them.
127 * Returns the number of cpu's that have not responded.
129 static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
131 struct bau_payload_queue_entry *msg;
132 struct bau_msg_status *msp;
133 int count = 0;
134 int i;
135 int j;
137 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
138 msg++, i++) {
139 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
140 msp = bau_tablesp->msg_statuses + i;
141 printk(KERN_DEBUG
142 "blade %d: address:%#lx %d of %d, not cpu(s): ",
143 i, msg->address, msg->acknowledge_count,
144 msg->number_of_cpus);
145 for (j = 0; j < msg->number_of_cpus; j++) {
146 if (!((1L << j) & msp->seen_by.bits)) {
147 count++;
148 printk("%d ", j);
151 printk("\n");
154 return count;
158 * Examine the payload queue on all the distribution nodes to see
159 * which messages have not been seen, and which cpu(s) have not seen them.
161 * Returns the number of cpu's that have not responded.
163 static int uv_examine_destinations(struct bau_target_nodemask *distribution)
165 int sender;
166 int i;
167 int count = 0;
169 sender = smp_processor_id();
170 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
171 if (!bau_node_isset(i, distribution))
172 continue;
173 count += uv_examine_destination(uv_bau_table_bases[i], sender);
175 return count;
179 * wait for completion of a broadcast message
181 * return COMPLETE, RETRY or GIVEUP
183 static int uv_wait_completion(struct bau_desc *bau_desc,
184 unsigned long mmr_offset, int right_shift)
186 int exams = 0;
187 long destination_timeouts = 0;
188 long source_timeouts = 0;
189 unsigned long descriptor_status;
191 while ((descriptor_status = (((unsigned long)
192 uv_read_local_mmr(mmr_offset) >>
193 right_shift) & UV_ACT_STATUS_MASK)) !=
194 DESC_STATUS_IDLE) {
195 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
196 source_timeouts++;
197 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
198 source_timeouts = 0;
199 __get_cpu_var(ptcstats).s_retry++;
200 return FLUSH_RETRY;
203 * spin here looking for progress at the destinations
205 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
206 destination_timeouts++;
207 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
209 * returns number of cpus not responding
211 if (uv_examine_destinations
212 (&bau_desc->distribution) == 0) {
213 __get_cpu_var(ptcstats).d_retry++;
214 return FLUSH_RETRY;
216 exams++;
217 if (exams >= uv_bau_retry_limit) {
218 printk(KERN_DEBUG
219 "uv_flush_tlb_others");
220 printk("giving up on cpu %d\n",
221 smp_processor_id());
222 return FLUSH_GIVEUP;
225 * delays can hang the simulator
226 udelay(1000);
228 destination_timeouts = 0;
231 cpu_relax();
233 return FLUSH_COMPLETE;
237 * uv_flush_send_and_wait
239 * Send a broadcast and wait for a broadcast message to complete.
241 * The flush_mask contains the cpus the broadcast was sent to.
243 * Returns NULL if all remote flushing was done. The mask is zeroed.
244 * Returns @flush_mask if some remote flushing remains to be done. The
245 * mask will have some bits still set.
247 const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
248 struct bau_desc *bau_desc,
249 struct cpumask *flush_mask)
251 int completion_status = 0;
252 int right_shift;
253 int tries = 0;
254 int pnode;
255 int bit;
256 unsigned long mmr_offset;
257 unsigned long index;
258 cycles_t time1;
259 cycles_t time2;
261 if (cpu < UV_CPUS_PER_ACT_STATUS) {
262 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
263 right_shift = cpu * UV_ACT_STATUS_SIZE;
264 } else {
265 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
266 right_shift =
267 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
269 time1 = get_cycles();
270 do {
271 tries++;
272 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
273 cpu;
274 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
275 completion_status = uv_wait_completion(bau_desc, mmr_offset,
276 right_shift);
277 } while (completion_status == FLUSH_RETRY);
278 time2 = get_cycles();
279 __get_cpu_var(ptcstats).sflush += (time2 - time1);
280 if (tries > 1)
281 __get_cpu_var(ptcstats).retriesok++;
283 if (completion_status == FLUSH_GIVEUP) {
285 * Cause the caller to do an IPI-style TLB shootdown on
286 * the cpu's, all of which are still in the mask.
288 __get_cpu_var(ptcstats).ptc_i++;
289 return flush_mask;
293 * Success, so clear the remote cpu's from the mask so we don't
294 * use the IPI method of shootdown on them.
296 for_each_cpu(bit, flush_mask) {
297 pnode = uv_cpu_to_pnode(bit);
298 if (pnode == this_pnode)
299 continue;
300 cpumask_clear_cpu(bit, flush_mask);
302 if (!cpumask_empty(flush_mask))
303 return flush_mask;
304 return NULL;
307 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
310 * uv_flush_tlb_others - globally purge translation cache of a virtual
311 * address or all TLB's
312 * @cpumask: mask of all cpu's in which the address is to be removed
313 * @mm: mm_struct containing virtual address range
314 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
315 * @cpu: the current cpu
317 * This is the entry point for initiating any UV global TLB shootdown.
319 * Purges the translation caches of all specified processors of the given
320 * virtual address, or purges all TLB's on specified processors.
322 * The caller has derived the cpumask from the mm_struct. This function
323 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
325 * The cpumask is converted into a nodemask of the nodes containing
326 * the cpus.
328 * Note that this function should be called with preemption disabled.
330 * Returns NULL if all remote flushing was done.
331 * Returns pointer to cpumask if some remote flushing remains to be
332 * done. The returned pointer is valid till preemption is re-enabled.
334 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
335 struct mm_struct *mm,
336 unsigned long va, unsigned int cpu)
338 struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
339 int i;
340 int bit;
341 int pnode;
342 int uv_cpu;
343 int this_pnode;
344 int locals = 0;
345 struct bau_desc *bau_desc;
347 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
349 uv_cpu = uv_blade_processor_id();
350 this_pnode = uv_hub_info->pnode;
351 bau_desc = __get_cpu_var(bau_control).descriptor_base;
352 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
354 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
356 i = 0;
357 for_each_cpu(bit, flush_mask) {
358 pnode = uv_cpu_to_pnode(bit);
359 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
360 if (pnode == this_pnode) {
361 locals++;
362 continue;
364 bau_node_set(pnode - uv_partition_base_pnode,
365 &bau_desc->distribution);
366 i++;
368 if (i == 0) {
370 * no off_node flushing; return status for local node
372 if (locals)
373 return flush_mask;
374 else
375 return NULL;
377 __get_cpu_var(ptcstats).requestor++;
378 __get_cpu_var(ptcstats).ntargeted += i;
380 bau_desc->payload.address = va;
381 bau_desc->payload.sending_cpu = cpu;
383 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
387 * The BAU message interrupt comes here. (registered by set_intr_gate)
388 * See entry_64.S
390 * We received a broadcast assist message.
392 * Interrupts may have been disabled; this interrupt could represent
393 * the receipt of several messages.
395 * All cores/threads on this node get this interrupt.
396 * The last one to see it does the s/w ack.
397 * (the resource will not be freed until noninterruptable cpus see this
398 * interrupt; hardware will timeout the s/w ack and reply ERROR)
400 void uv_bau_message_interrupt(struct pt_regs *regs)
402 struct bau_payload_queue_entry *va_queue_first;
403 struct bau_payload_queue_entry *va_queue_last;
404 struct bau_payload_queue_entry *msg;
405 struct pt_regs *old_regs = set_irq_regs(regs);
406 cycles_t time1;
407 cycles_t time2;
408 int msg_slot;
409 int sw_ack_slot;
410 int fw;
411 int count = 0;
412 unsigned long local_pnode;
414 ack_APIC_irq();
415 exit_idle();
416 irq_enter();
418 time1 = get_cycles();
420 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
422 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
423 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
425 msg = __get_cpu_var(bau_control).bau_msg_head;
426 while (msg->sw_ack_vector) {
427 count++;
428 fw = msg->sw_ack_vector;
429 msg_slot = msg - va_queue_first;
430 sw_ack_slot = ffs(fw) - 1;
432 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
434 msg++;
435 if (msg > va_queue_last)
436 msg = va_queue_first;
437 __get_cpu_var(bau_control).bau_msg_head = msg;
439 if (!count)
440 __get_cpu_var(ptcstats).nomsg++;
441 else if (count > 1)
442 __get_cpu_var(ptcstats).multmsg++;
444 time2 = get_cycles();
445 __get_cpu_var(ptcstats).dflush += (time2 - time1);
447 irq_exit();
448 set_irq_regs(old_regs);
452 * uv_enable_timeouts
454 * Each target blade (i.e. blades that have cpu's) needs to have
455 * shootdown message timeouts enabled. The timeout does not cause
456 * an interrupt, but causes an error message to be returned to
457 * the sender.
459 static void uv_enable_timeouts(void)
461 int blade;
462 int nblades;
463 int pnode;
464 unsigned long mmr_image;
466 nblades = uv_num_possible_blades();
468 for (blade = 0; blade < nblades; blade++) {
469 if (!uv_blade_nr_possible_cpus(blade))
470 continue;
472 pnode = uv_blade_to_pnode(blade);
473 mmr_image =
474 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
476 * Set the timeout period and then lock it in, in three
477 * steps; captures and locks in the period.
479 * To program the period, the SOFT_ACK_MODE must be off.
481 mmr_image &= ~((unsigned long)1 <<
482 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
483 uv_write_global_mmr64
484 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
486 * Set the 4-bit period.
488 mmr_image &= ~((unsigned long)0xf <<
489 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
490 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
491 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
492 uv_write_global_mmr64
493 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
495 * Subsequent reversals of the timebase bit (3) cause an
496 * immediate timeout of one or all INTD resources as
497 * indicated in bits 2:0 (7 causes all of them to timeout).
499 mmr_image |= ((unsigned long)1 <<
500 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
501 uv_write_global_mmr64
502 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
506 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
508 if (*offset < num_possible_cpus())
509 return offset;
510 return NULL;
513 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
515 (*offset)++;
516 if (*offset < num_possible_cpus())
517 return offset;
518 return NULL;
521 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
526 * Display the statistics thru /proc
527 * data points to the cpu number
529 static int uv_ptc_seq_show(struct seq_file *file, void *data)
531 struct ptc_stats *stat;
532 int cpu;
534 cpu = *(loff_t *)data;
536 if (!cpu) {
537 seq_printf(file,
538 "# cpu requestor requestee one all sretry dretry ptc_i ");
539 seq_printf(file,
540 "sw_ack sflush dflush sok dnomsg dmult starget\n");
542 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
543 stat = &per_cpu(ptcstats, cpu);
544 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
545 cpu, stat->requestor,
546 stat->requestee, stat->onetlb, stat->alltlb,
547 stat->s_retry, stat->d_retry, stat->ptc_i);
548 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
549 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
550 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
551 stat->sflush, stat->dflush,
552 stat->retriesok, stat->nomsg,
553 stat->multmsg, stat->ntargeted);
556 return 0;
560 * 0: display meaning of the statistics
561 * >0: retry limit
563 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
564 size_t count, loff_t *data)
566 long newmode;
567 char optstr[64];
569 if (count == 0 || count > sizeof(optstr))
570 return -EINVAL;
571 if (copy_from_user(optstr, user, count))
572 return -EFAULT;
573 optstr[count - 1] = '\0';
574 if (strict_strtoul(optstr, 10, &newmode) < 0) {
575 printk(KERN_DEBUG "%s is invalid\n", optstr);
576 return -EINVAL;
579 if (newmode == 0) {
580 printk(KERN_DEBUG "# cpu: cpu number\n");
581 printk(KERN_DEBUG
582 "requestor: times this cpu was the flush requestor\n");
583 printk(KERN_DEBUG
584 "requestee: times this cpu was requested to flush its TLBs\n");
585 printk(KERN_DEBUG
586 "one: times requested to flush a single address\n");
587 printk(KERN_DEBUG
588 "all: times requested to flush all TLB's\n");
589 printk(KERN_DEBUG
590 "sretry: number of retries of source-side timeouts\n");
591 printk(KERN_DEBUG
592 "dretry: number of retries of destination-side timeouts\n");
593 printk(KERN_DEBUG
594 "ptc_i: times UV fell through to IPI-style flushes\n");
595 printk(KERN_DEBUG
596 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
597 printk(KERN_DEBUG
598 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
599 printk(KERN_DEBUG
600 "dflush_us: cycles spent in handling flush requests\n");
601 printk(KERN_DEBUG "sok: successes on retry\n");
602 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
603 printk(KERN_DEBUG
604 "dmult: interrupts with multiple messages\n");
605 printk(KERN_DEBUG "starget: nodes targeted\n");
606 } else {
607 uv_bau_retry_limit = newmode;
608 printk(KERN_DEBUG "timeout retry limit:%d\n",
609 uv_bau_retry_limit);
612 return count;
615 static const struct seq_operations uv_ptc_seq_ops = {
616 .start = uv_ptc_seq_start,
617 .next = uv_ptc_seq_next,
618 .stop = uv_ptc_seq_stop,
619 .show = uv_ptc_seq_show
622 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
624 return seq_open(file, &uv_ptc_seq_ops);
627 static const struct file_operations proc_uv_ptc_operations = {
628 .open = uv_ptc_proc_open,
629 .read = seq_read,
630 .write = uv_ptc_proc_write,
631 .llseek = seq_lseek,
632 .release = seq_release,
635 static int __init uv_ptc_init(void)
637 struct proc_dir_entry *proc_uv_ptc;
639 if (!is_uv_system())
640 return 0;
642 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
643 &proc_uv_ptc_operations);
644 if (!proc_uv_ptc) {
645 printk(KERN_ERR "unable to create %s proc entry\n",
646 UV_PTC_BASENAME);
647 return -EINVAL;
649 return 0;
653 * begin the initialization of the per-blade control structures
655 static struct bau_control * __init uv_table_bases_init(int blade, int node)
657 int i;
658 struct bau_msg_status *msp;
659 struct bau_control *bau_tabp;
661 bau_tabp =
662 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
663 BUG_ON(!bau_tabp);
665 bau_tabp->msg_statuses =
666 kmalloc_node(sizeof(struct bau_msg_status) *
667 DEST_Q_SIZE, GFP_KERNEL, node);
668 BUG_ON(!bau_tabp->msg_statuses);
670 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
671 bau_cpubits_clear(&msp->seen_by, (int)
672 uv_blade_nr_possible_cpus(blade));
674 uv_bau_table_bases[blade] = bau_tabp;
676 return bau_tabp;
680 * finish the initialization of the per-blade control structures
682 static void __init
683 uv_table_bases_finish(int blade,
684 struct bau_control *bau_tablesp,
685 struct bau_desc *adp)
687 struct bau_control *bcp;
688 int cpu;
690 for_each_present_cpu(cpu) {
691 if (blade != uv_cpu_to_blade_id(cpu))
692 continue;
694 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
695 bcp->bau_msg_head = bau_tablesp->va_queue_first;
696 bcp->va_queue_first = bau_tablesp->va_queue_first;
697 bcp->va_queue_last = bau_tablesp->va_queue_last;
698 bcp->msg_statuses = bau_tablesp->msg_statuses;
699 bcp->descriptor_base = adp;
704 * initialize the sending side's sending buffers
706 static struct bau_desc * __init
707 uv_activation_descriptor_init(int node, int pnode)
709 int i;
710 unsigned long pa;
711 unsigned long m;
712 unsigned long n;
713 struct bau_desc *adp;
714 struct bau_desc *ad2;
717 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
718 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
720 adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
721 UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
722 BUG_ON(!adp);
724 pa = uv_gpa(adp); /* need the real nasid*/
725 n = uv_gpa_to_pnode(pa);
726 m = pa & uv_mmask;
728 uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
729 (n << UV_DESC_BASE_PNODE_SHIFT | m));
732 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
733 * cpu even though we only use the first one; one descriptor can
734 * describe a broadcast to 256 nodes.
736 for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
737 i++, ad2++) {
738 memset(ad2, 0, sizeof(struct bau_desc));
739 ad2->header.sw_ack_flag = 1;
741 * base_dest_nodeid is the first node in the partition, so
742 * the bit map will indicate partition-relative node numbers.
743 * note that base_dest_nodeid is actually a nasid.
745 ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
746 ad2->header.dest_subnodeid = 0x10; /* the LB */
747 ad2->header.command = UV_NET_ENDPOINT_INTD;
748 ad2->header.int_both = 1;
750 * all others need to be set to zero:
751 * fairness chaining multilevel count replied_to
754 return adp;
758 * initialize the destination side's receiving buffers
760 static struct bau_payload_queue_entry * __init
761 uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
763 struct bau_payload_queue_entry *pqp;
764 unsigned long pa;
765 int pn;
766 char *cp;
768 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
769 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
770 GFP_KERNEL, node);
771 BUG_ON(!pqp);
773 cp = (char *)pqp + 31;
774 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
775 bau_tablesp->va_queue_first = pqp;
777 * need the pnode of where the memory was really allocated
779 pa = uv_gpa(pqp);
780 pn = uv_gpa_to_pnode(pa);
781 uv_write_global_mmr64(pnode,
782 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
783 ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
784 uv_physnodeaddr(pqp));
785 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
786 uv_physnodeaddr(pqp));
787 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
788 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
789 (unsigned long)
790 uv_physnodeaddr(bau_tablesp->va_queue_last));
791 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
793 return pqp;
797 * Initialization of each UV blade's structures
799 static int __init uv_init_blade(int blade)
801 int node;
802 int pnode;
803 unsigned long pa;
804 unsigned long apicid;
805 struct bau_desc *adp;
806 struct bau_payload_queue_entry *pqp;
807 struct bau_control *bau_tablesp;
809 node = blade_to_first_node(blade);
810 bau_tablesp = uv_table_bases_init(blade, node);
811 pnode = uv_blade_to_pnode(blade);
812 adp = uv_activation_descriptor_init(node, pnode);
813 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
814 uv_table_bases_finish(blade, bau_tablesp, adp);
816 * the below initialization can't be in firmware because the
817 * messaging IRQ will be determined by the OS
819 apicid = blade_to_first_apicid(blade);
820 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
821 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
822 ((apicid << 32) | UV_BAU_MESSAGE));
823 return 0;
827 * Initialization of BAU-related structures
829 static int __init uv_bau_init(void)
831 int blade;
832 int nblades;
833 int cur_cpu;
835 if (!is_uv_system())
836 return 0;
838 for_each_possible_cpu(cur_cpu)
839 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
840 GFP_KERNEL, cpu_to_node(cur_cpu));
842 uv_bau_retry_limit = 1;
843 uv_mmask = (1UL << uv_hub_info->m_val) - 1;
844 nblades = uv_num_possible_blades();
846 uv_bau_table_bases = (struct bau_control **)
847 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
848 BUG_ON(!uv_bau_table_bases);
850 uv_partition_base_pnode = 0x7fffffff;
851 for (blade = 0; blade < nblades; blade++)
852 if (uv_blade_nr_possible_cpus(blade) &&
853 (uv_blade_to_pnode(blade) < uv_partition_base_pnode))
854 uv_partition_base_pnode = uv_blade_to_pnode(blade);
855 for (blade = 0; blade < nblades; blade++)
856 if (uv_blade_nr_possible_cpus(blade))
857 uv_init_blade(blade);
859 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
860 uv_enable_timeouts();
862 return 0;
864 __initcall(uv_bau_init);
865 __initcall(uv_ptc_init);