sched: Don't use tasklist_lock for debug prints
[linux-2.6/linux-mips.git] / kernel / sched.c
blob24637c7820021eb24324bffbbdd328ade88a36fb
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
108 * Helpers for converting nanosecond timing to jiffy resolution
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
116 * These are the 'tuning knobs' of the scheduler:
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
121 #define DEF_TIMESLICE (100 * HZ / 1000)
124 * single value that denotes runtime == period, ie unlimited time.
126 #define RUNTIME_INF ((u64)~0ULL)
128 static inline int rt_policy(int policy)
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
135 static inline int task_has_rt_policy(struct task_struct *p)
137 return rt_policy(p->policy);
141 * This is the priority-queue data structure of the RT scheduling class:
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
156 static struct rt_bandwidth def_rt_bandwidth;
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172 if (!overrun)
173 break;
175 idle = do_sched_rt_period_timer(rt_b, overrun);
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
194 static inline int rt_bandwidth_enabled(void)
196 return sysctl_sched_rt_runtime >= 0;
199 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
201 unsigned long delta;
202 ktime_t soft, hard, now;
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
222 return;
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
227 raw_spin_lock(&rt_b->rt_runtime_lock);
228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
229 raw_spin_unlock(&rt_b->rt_runtime_lock);
232 #ifdef CONFIG_RT_GROUP_SCHED
233 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
235 hrtimer_cancel(&rt_b->rt_period_timer);
237 #endif
240 * sched_domains_mutex serializes calls to init_sched_domains,
241 * detach_destroy_domains and partition_sched_domains.
243 static DEFINE_MUTEX(sched_domains_mutex);
245 #ifdef CONFIG_CGROUP_SCHED
247 #include <linux/cgroup.h>
249 struct cfs_rq;
251 static LIST_HEAD(task_groups);
253 struct cfs_bandwidth {
254 #ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
257 u64 quota, runtime;
258 s64 hierarchal_quota;
259 u64 runtime_expires;
261 int idle, timer_active;
262 struct hrtimer period_timer, slack_timer;
263 struct list_head throttled_cfs_rq;
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
268 #endif
271 /* task group related information */
272 struct task_group {
273 struct cgroup_subsys_state css;
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
282 atomic_t load_weight;
283 #endif
285 #ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
289 struct rt_bandwidth rt_bandwidth;
290 #endif
292 struct rcu_head rcu;
293 struct list_head list;
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
299 #ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301 #endif
303 struct cfs_bandwidth cfs_bandwidth;
306 /* task_group_lock serializes the addition/removal of task groups */
307 static DEFINE_SPINLOCK(task_group_lock);
309 #ifdef CONFIG_FAIR_GROUP_SCHED
311 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
321 #define MIN_SHARES (1UL << 1)
322 #define MAX_SHARES (1UL << 18)
324 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
325 #endif
327 /* Default task group.
328 * Every task in system belong to this group at bootup.
330 struct task_group root_task_group;
332 #endif /* CONFIG_CGROUP_SCHED */
334 /* CFS-related fields in a runqueue */
335 struct cfs_rq {
336 struct load_weight load;
337 unsigned long nr_running, h_nr_running;
339 u64 exec_clock;
340 u64 min_vruntime;
341 #ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343 #endif
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
348 struct list_head tasks;
349 struct list_head *balance_iterator;
352 * 'curr' points to currently running entity on this cfs_rq.
353 * It is set to NULL otherwise (i.e when none are currently running).
355 struct sched_entity *curr, *next, *last, *skip;
357 #ifdef CONFIG_SCHED_DEBUG
358 unsigned int nr_spread_over;
359 #endif
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
376 #ifdef CONFIG_SMP
378 * the part of load.weight contributed by tasks
380 unsigned long task_weight;
383 * h_load = weight * f(tg)
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
388 unsigned long h_load;
391 * Maintaining per-cpu shares distribution for group scheduling
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
397 u64 load_avg;
398 u64 load_period;
399 u64 load_stamp, load_last, load_unacc_exec_time;
401 unsigned long load_contribution;
402 #endif
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
408 u64 throttled_timestamp;
409 int throttled, throttle_count;
410 struct list_head throttled_list;
411 #endif
412 #endif
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 #ifdef CONFIG_CFS_BANDWIDTH
417 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
419 return &tg->cfs_bandwidth;
422 static inline u64 default_cfs_period(void);
423 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
426 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
432 return HRTIMER_NORESTART;
435 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
447 if (!overrun)
448 break;
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
456 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
458 raw_spin_lock_init(&cfs_b->lock);
459 cfs_b->runtime = 0;
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
470 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
472 cfs_rq->runtime_enabled = 0;
473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
476 /* requires cfs_b->lock, may release to reprogram timer */
477 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
500 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
502 hrtimer_cancel(&cfs_b->period_timer);
503 hrtimer_cancel(&cfs_b->slack_timer);
505 #else
506 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
510 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
512 return NULL;
514 #endif /* CONFIG_CFS_BANDWIDTH */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
517 /* Real-Time classes' related field in a runqueue: */
518 struct rt_rq {
519 struct rt_prio_array active;
520 unsigned long rt_nr_running;
521 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
522 struct {
523 int curr; /* highest queued rt task prio */
524 #ifdef CONFIG_SMP
525 int next; /* next highest */
526 #endif
527 } highest_prio;
528 #endif
529 #ifdef CONFIG_SMP
530 unsigned long rt_nr_migratory;
531 unsigned long rt_nr_total;
532 int overloaded;
533 struct plist_head pushable_tasks;
534 #endif
535 int rt_throttled;
536 u64 rt_time;
537 u64 rt_runtime;
538 /* Nests inside the rq lock: */
539 raw_spinlock_t rt_runtime_lock;
541 #ifdef CONFIG_RT_GROUP_SCHED
542 unsigned long rt_nr_boosted;
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
547 #endif
550 #ifdef CONFIG_SMP
553 * We add the notion of a root-domain which will be used to define per-domain
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
560 struct root_domain {
561 atomic_t refcount;
562 atomic_t rto_count;
563 struct rcu_head rcu;
564 cpumask_var_t span;
565 cpumask_var_t online;
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
571 cpumask_var_t rto_mask;
572 struct cpupri cpupri;
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
579 static struct root_domain def_root_domain;
581 #endif /* CONFIG_SMP */
584 * This is the main, per-CPU runqueue data structure.
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
590 struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
598 unsigned long nr_running;
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
601 unsigned long last_load_update_tick;
602 #ifdef CONFIG_NO_HZ
603 u64 nohz_stamp;
604 unsigned char nohz_balance_kick;
605 #endif
606 int skip_clock_update;
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
610 unsigned long nr_load_updates;
611 u64 nr_switches;
613 struct cfs_rq cfs;
614 struct rt_rq rt;
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
619 #endif
620 #ifdef CONFIG_RT_GROUP_SCHED
621 struct list_head leaf_rt_rq_list;
622 #endif
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
630 unsigned long nr_uninterruptible;
632 struct task_struct *curr, *idle, *stop;
633 unsigned long next_balance;
634 struct mm_struct *prev_mm;
636 u64 clock;
637 u64 clock_task;
639 atomic_t nr_iowait;
641 #ifdef CONFIG_SMP
642 struct root_domain *rd;
643 struct sched_domain *sd;
645 unsigned long cpu_power;
647 unsigned char idle_balance;
648 /* For active balancing */
649 int post_schedule;
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
657 u64 rt_avg;
658 u64 age_stamp;
659 u64 idle_stamp;
660 u64 avg_idle;
661 #endif
663 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665 #endif
666 #ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671 #endif
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
677 #ifdef CONFIG_SCHED_HRTICK
678 #ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681 #endif
682 struct hrtimer hrtick_timer;
683 #endif
685 #ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
691 /* sys_sched_yield() stats */
692 unsigned int yld_count;
694 /* schedule() stats */
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
699 /* try_to_wake_up() stats */
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
702 #endif
704 #ifdef CONFIG_SMP
705 struct llist_head wake_list;
706 #endif
709 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
712 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
714 static inline int cpu_of(struct rq *rq)
716 #ifdef CONFIG_SMP
717 return rq->cpu;
718 #else
719 return 0;
720 #endif
723 #define rcu_dereference_check_sched_domain(p) \
724 rcu_dereference_check((p), \
725 lockdep_is_held(&sched_domains_mutex))
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729 * See detach_destroy_domains: synchronize_sched for details.
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
734 #define for_each_domain(cpu, __sd) \
735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
737 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738 #define this_rq() (&__get_cpu_var(runqueues))
739 #define task_rq(p) cpu_rq(task_cpu(p))
740 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
741 #define raw_rq() (&__raw_get_cpu_var(runqueues))
743 #ifdef CONFIG_CGROUP_SCHED
746 * Return the group to which this tasks belongs.
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
753 static inline struct task_group *task_group(struct task_struct *p)
755 struct task_group *tg;
756 struct cgroup_subsys_state *css;
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
761 tg = container_of(css, struct task_group, css);
763 return autogroup_task_group(p, tg);
766 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
769 #ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772 #endif
774 #ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777 #endif
780 #else /* CONFIG_CGROUP_SCHED */
782 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783 static inline struct task_group *task_group(struct task_struct *p)
785 return NULL;
788 #endif /* CONFIG_CGROUP_SCHED */
790 static void update_rq_clock_task(struct rq *rq, s64 delta);
792 static void update_rq_clock(struct rq *rq)
794 s64 delta;
796 if (rq->skip_clock_update > 0)
797 return;
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
807 #ifdef CONFIG_SCHED_DEBUG
808 # define const_debug __read_mostly
809 #else
810 # define const_debug static const
811 #endif
814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815 * @cpu: the processor in question.
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
820 int runqueue_is_locked(int cpu)
822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
826 * Debugging: various feature bits
829 #define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
832 enum {
833 #include "sched_features.h"
836 #undef SCHED_FEAT
838 #define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
841 const_debug unsigned int sysctl_sched_features =
842 #include "sched_features.h"
845 #undef SCHED_FEAT
847 #ifdef CONFIG_SCHED_DEBUG
848 #define SCHED_FEAT(name, enabled) \
849 #name ,
851 static __read_mostly char *sched_feat_names[] = {
852 #include "sched_features.h"
853 NULL
856 #undef SCHED_FEAT
858 static int sched_feat_show(struct seq_file *m, void *v)
860 int i;
862 for (i = 0; sched_feat_names[i]; i++) {
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
867 seq_puts(m, "\n");
869 return 0;
872 static ssize_t
873 sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
876 char buf[64];
877 char *cmp;
878 int neg = 0;
879 int i;
881 if (cnt > 63)
882 cnt = 63;
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
887 buf[cnt] = 0;
888 cmp = strstrip(buf);
890 if (strncmp(cmp, "NO_", 3) == 0) {
891 neg = 1;
892 cmp += 3;
895 for (i = 0; sched_feat_names[i]; i++) {
896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
905 if (!sched_feat_names[i])
906 return -EINVAL;
908 *ppos += cnt;
910 return cnt;
913 static int sched_feat_open(struct inode *inode, struct file *filp)
915 return single_open(filp, sched_feat_show, NULL);
918 static const struct file_operations sched_feat_fops = {
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
926 static __init int sched_init_debug(void)
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
931 return 0;
933 late_initcall(sched_init_debug);
935 #endif
937 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
943 const_debug unsigned int sysctl_sched_nr_migrate = 32;
946 * period over which we average the RT time consumption, measured
947 * in ms.
949 * default: 1s
951 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
954 * period over which we measure -rt task cpu usage in us.
955 * default: 1s
957 unsigned int sysctl_sched_rt_period = 1000000;
959 static __read_mostly int scheduler_running;
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
965 int sysctl_sched_rt_runtime = 950000;
967 static inline u64 global_rt_period(void)
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
972 static inline u64 global_rt_runtime(void)
974 if (sysctl_sched_rt_runtime < 0)
975 return RUNTIME_INF;
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
980 #ifndef prepare_arch_switch
981 # define prepare_arch_switch(next) do { } while (0)
982 #endif
983 #ifndef finish_arch_switch
984 # define finish_arch_switch(prev) do { } while (0)
985 #endif
987 static inline int task_current(struct rq *rq, struct task_struct *p)
989 return rq->curr == p;
992 static inline int task_running(struct rq *rq, struct task_struct *p)
994 #ifdef CONFIG_SMP
995 return p->on_cpu;
996 #else
997 return task_current(rq, p);
998 #endif
1001 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1004 #ifdef CONFIG_SMP
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1010 next->on_cpu = 1;
1011 #endif
1014 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1016 #ifdef CONFIG_SMP
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024 #endif
1025 #ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028 #endif
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1036 raw_spin_unlock_irq(&rq->lock);
1039 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1042 #ifdef CONFIG_SMP
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1048 next->on_cpu = 1;
1049 #endif
1050 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051 raw_spin_unlock_irq(&rq->lock);
1052 #else
1053 raw_spin_unlock(&rq->lock);
1054 #endif
1057 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1059 #ifdef CONFIG_SMP
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1065 smp_wmb();
1066 prev->on_cpu = 0;
1067 #endif
1068 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1070 #endif
1072 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1075 * __task_rq_lock - lock the rq @p resides on.
1077 static inline struct rq *__task_rq_lock(struct task_struct *p)
1078 __acquires(rq->lock)
1080 struct rq *rq;
1082 lockdep_assert_held(&p->pi_lock);
1084 for (;;) {
1085 rq = task_rq(p);
1086 raw_spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1088 return rq;
1089 raw_spin_unlock(&rq->lock);
1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1096 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1097 __acquires(p->pi_lock)
1098 __acquires(rq->lock)
1100 struct rq *rq;
1102 for (;;) {
1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1104 rq = task_rq(p);
1105 raw_spin_lock(&rq->lock);
1106 if (likely(rq == task_rq(p)))
1107 return rq;
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1113 static void __task_rq_unlock(struct rq *rq)
1114 __releases(rq->lock)
1116 raw_spin_unlock(&rq->lock);
1119 static inline void
1120 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1121 __releases(rq->lock)
1122 __releases(p->pi_lock)
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1129 * this_rq_lock - lock this runqueue and disable interrupts.
1131 static struct rq *this_rq_lock(void)
1132 __acquires(rq->lock)
1134 struct rq *rq;
1136 local_irq_disable();
1137 rq = this_rq();
1138 raw_spin_lock(&rq->lock);
1140 return rq;
1143 #ifdef CONFIG_SCHED_HRTICK
1145 * Use HR-timers to deliver accurate preemption points.
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1160 static inline int hrtick_enabled(struct rq *rq)
1162 if (!sched_feat(HRTICK))
1163 return 0;
1164 if (!cpu_active(cpu_of(rq)))
1165 return 0;
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1169 static void hrtick_clear(struct rq *rq)
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1179 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1185 raw_spin_lock(&rq->lock);
1186 update_rq_clock(rq);
1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1188 raw_spin_unlock(&rq->lock);
1190 return HRTIMER_NORESTART;
1193 #ifdef CONFIG_SMP
1195 * called from hardirq (IPI) context
1197 static void __hrtick_start(void *arg)
1199 struct rq *rq = arg;
1201 raw_spin_lock(&rq->lock);
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
1204 raw_spin_unlock(&rq->lock);
1208 * Called to set the hrtick timer state.
1210 * called with rq->lock held and irqs disabled
1212 static void hrtick_start(struct rq *rq, u64 delay)
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1217 hrtimer_set_expires(timer, time);
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1223 rq->hrtick_csd_pending = 1;
1227 static int
1228 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1230 int cpu = (int)(long)hcpu;
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
1239 hrtick_clear(cpu_rq(cpu));
1240 return NOTIFY_OK;
1243 return NOTIFY_DONE;
1246 static __init void init_hrtick(void)
1248 hotcpu_notifier(hotplug_hrtick, 0);
1250 #else
1252 * Called to set the hrtick timer state.
1254 * called with rq->lock held and irqs disabled
1256 static void hrtick_start(struct rq *rq, u64 delay)
1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1259 HRTIMER_MODE_REL_PINNED, 0);
1262 static inline void init_hrtick(void)
1265 #endif /* CONFIG_SMP */
1267 static void init_rq_hrtick(struct rq *rq)
1269 #ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275 #endif
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
1280 #else /* CONFIG_SCHED_HRTICK */
1281 static inline void hrtick_clear(struct rq *rq)
1285 static inline void init_rq_hrtick(struct rq *rq)
1289 static inline void init_hrtick(void)
1292 #endif /* CONFIG_SCHED_HRTICK */
1295 * resched_task - mark a task 'to be rescheduled now'.
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1301 #ifdef CONFIG_SMP
1303 #ifndef tsk_is_polling
1304 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 #endif
1307 static void resched_task(struct task_struct *p)
1309 int cpu;
1311 assert_raw_spin_locked(&task_rq(p)->lock);
1313 if (test_tsk_need_resched(p))
1314 return;
1316 set_tsk_need_resched(p);
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1328 static void resched_cpu(int cpu)
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1334 return;
1335 resched_task(cpu_curr(cpu));
1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
1339 #ifdef CONFIG_NO_HZ
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1348 int get_nohz_timer_target(void)
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1354 rcu_read_lock();
1355 for_each_domain(cpu, sd) {
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1363 unlock:
1364 rcu_read_unlock();
1365 return cpu;
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1377 void wake_up_idle_cpu(int cpu)
1379 struct rq *rq = cpu_rq(cpu);
1381 if (cpu == smp_processor_id())
1382 return;
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1391 if (rq->curr != rq->idle)
1392 return;
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1399 set_tsk_need_resched(rq->idle);
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1407 static inline bool got_nohz_idle_kick(void)
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1412 #else /* CONFIG_NO_HZ */
1414 static inline bool got_nohz_idle_kick(void)
1416 return false;
1419 #endif /* CONFIG_NO_HZ */
1421 static u64 sched_avg_period(void)
1423 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1426 static void sched_avg_update(struct rq *rq)
1428 s64 period = sched_avg_period();
1430 while ((s64)(rq->clock - rq->age_stamp) > period) {
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1436 asm("" : "+rm" (rq->age_stamp));
1437 rq->age_stamp += period;
1438 rq->rt_avg /= 2;
1442 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1444 rq->rt_avg += rt_delta;
1445 sched_avg_update(rq);
1448 #else /* !CONFIG_SMP */
1449 static void resched_task(struct task_struct *p)
1451 assert_raw_spin_locked(&task_rq(p)->lock);
1452 set_tsk_need_resched(p);
1455 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1459 static void sched_avg_update(struct rq *rq)
1462 #endif /* CONFIG_SMP */
1464 #if BITS_PER_LONG == 32
1465 # define WMULT_CONST (~0UL)
1466 #else
1467 # define WMULT_CONST (1UL << 32)
1468 #endif
1470 #define WMULT_SHIFT 32
1473 * Shift right and round:
1475 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1478 * delta *= weight / lw
1480 static unsigned long
1481 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1482 struct load_weight *lw)
1484 u64 tmp;
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1491 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1492 tmp = (u64)delta_exec * scale_load_down(weight);
1493 else
1494 tmp = (u64)delta_exec;
1496 if (!lw->inv_weight) {
1497 unsigned long w = scale_load_down(lw->weight);
1499 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1500 lw->inv_weight = 1;
1501 else if (unlikely(!w))
1502 lw->inv_weight = WMULT_CONST;
1503 else
1504 lw->inv_weight = WMULT_CONST / w;
1508 * Check whether we'd overflow the 64-bit multiplication:
1510 if (unlikely(tmp > WMULT_CONST))
1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1512 WMULT_SHIFT/2);
1513 else
1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1519 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1521 lw->weight += inc;
1522 lw->inv_weight = 0;
1525 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1527 lw->weight -= dec;
1528 lw->inv_weight = 0;
1531 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1533 lw->weight = w;
1534 lw->inv_weight = 0;
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1542 * scaled version of the new time slice allocation that they receive on time
1543 * slice expiry etc.
1546 #define WEIGHT_IDLEPRIO 3
1547 #define WMULT_IDLEPRIO 1431655765
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
1561 static const int prio_to_weight[40] = {
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1579 static const u32 prio_to_wmult[40] = {
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1590 /* Time spent by the tasks of the cpu accounting group executing in ... */
1591 enum cpuacct_stat_index {
1592 CPUACCT_STAT_USER, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1595 CPUACCT_STAT_NSTATS,
1598 #ifdef CONFIG_CGROUP_CPUACCT
1599 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1600 static void cpuacct_update_stats(struct task_struct *tsk,
1601 enum cpuacct_stat_index idx, cputime_t val);
1602 #else
1603 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1604 static inline void cpuacct_update_stats(struct task_struct *tsk,
1605 enum cpuacct_stat_index idx, cputime_t val) {}
1606 #endif
1608 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1610 update_load_add(&rq->load, load);
1613 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1615 update_load_sub(&rq->load, load);
1618 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1620 typedef int (*tg_visitor)(struct task_group *, void *);
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1626 * Caller must hold rcu_lock or sufficient equivalent.
1628 static int walk_tg_tree_from(struct task_group *from,
1629 tg_visitor down, tg_visitor up, void *data)
1631 struct task_group *parent, *child;
1632 int ret;
1634 parent = from;
1636 down:
1637 ret = (*down)(parent, data);
1638 if (ret)
1639 goto out;
1640 list_for_each_entry_rcu(child, &parent->children, siblings) {
1641 parent = child;
1642 goto down;
1645 continue;
1647 ret = (*up)(parent, data);
1648 if (ret || parent == from)
1649 goto out;
1651 child = parent;
1652 parent = parent->parent;
1653 if (parent)
1654 goto up;
1655 out:
1656 return ret;
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1663 * Caller must hold rcu_lock or sufficient equivalent.
1666 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1668 return walk_tg_tree_from(&root_task_group, down, up, data);
1671 static int tg_nop(struct task_group *tg, void *data)
1673 return 0;
1675 #endif
1677 #ifdef CONFIG_SMP
1678 /* Used instead of source_load when we know the type == 0 */
1679 static unsigned long weighted_cpuload(const int cpu)
1681 return cpu_rq(cpu)->load.weight;
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1691 static unsigned long source_load(int cpu, int type)
1693 struct rq *rq = cpu_rq(cpu);
1694 unsigned long total = weighted_cpuload(cpu);
1696 if (type == 0 || !sched_feat(LB_BIAS))
1697 return total;
1699 return min(rq->cpu_load[type-1], total);
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1706 static unsigned long target_load(int cpu, int type)
1708 struct rq *rq = cpu_rq(cpu);
1709 unsigned long total = weighted_cpuload(cpu);
1711 if (type == 0 || !sched_feat(LB_BIAS))
1712 return total;
1714 return max(rq->cpu_load[type-1], total);
1717 static unsigned long power_of(int cpu)
1719 return cpu_rq(cpu)->cpu_power;
1722 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1724 static unsigned long cpu_avg_load_per_task(int cpu)
1726 struct rq *rq = cpu_rq(cpu);
1727 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1729 if (nr_running)
1730 return rq->load.weight / nr_running;
1732 return 0;
1735 #ifdef CONFIG_PREEMPT
1737 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
1747 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(this_rq->lock)
1749 __acquires(busiest->lock)
1750 __acquires(this_rq->lock)
1752 raw_spin_unlock(&this_rq->lock);
1753 double_rq_lock(this_rq, busiest);
1755 return 1;
1758 #else
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1766 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(this_rq->lock)
1768 __acquires(busiest->lock)
1769 __acquires(this_rq->lock)
1771 int ret = 0;
1773 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1774 if (busiest < this_rq) {
1775 raw_spin_unlock(&this_rq->lock);
1776 raw_spin_lock(&busiest->lock);
1777 raw_spin_lock_nested(&this_rq->lock,
1778 SINGLE_DEPTH_NESTING);
1779 ret = 1;
1780 } else
1781 raw_spin_lock_nested(&busiest->lock,
1782 SINGLE_DEPTH_NESTING);
1784 return ret;
1787 #endif /* CONFIG_PREEMPT */
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 raw_spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1800 return _double_lock_balance(this_rq, busiest);
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1806 raw_spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1811 * double_rq_lock - safely lock two runqueues
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1816 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1817 __acquires(rq1->lock)
1818 __acquires(rq2->lock)
1820 BUG_ON(!irqs_disabled());
1821 if (rq1 == rq2) {
1822 raw_spin_lock(&rq1->lock);
1823 __acquire(rq2->lock); /* Fake it out ;) */
1824 } else {
1825 if (rq1 < rq2) {
1826 raw_spin_lock(&rq1->lock);
1827 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1828 } else {
1829 raw_spin_lock(&rq2->lock);
1830 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1836 * double_rq_unlock - safely unlock two runqueues
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1841 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1842 __releases(rq1->lock)
1843 __releases(rq2->lock)
1845 raw_spin_unlock(&rq1->lock);
1846 if (rq1 != rq2)
1847 raw_spin_unlock(&rq2->lock);
1848 else
1849 __release(rq2->lock);
1852 #else /* CONFIG_SMP */
1855 * double_rq_lock - safely lock two runqueues
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1860 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1861 __acquires(rq1->lock)
1862 __acquires(rq2->lock)
1864 BUG_ON(!irqs_disabled());
1865 BUG_ON(rq1 != rq2);
1866 raw_spin_lock(&rq1->lock);
1867 __acquire(rq2->lock); /* Fake it out ;) */
1871 * double_rq_unlock - safely unlock two runqueues
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1876 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 __releases(rq1->lock)
1878 __releases(rq2->lock)
1880 BUG_ON(rq1 != rq2);
1881 raw_spin_unlock(&rq1->lock);
1882 __release(rq2->lock);
1885 #endif
1887 static void calc_load_account_idle(struct rq *this_rq);
1888 static void update_sysctl(void);
1889 static int get_update_sysctl_factor(void);
1890 static void update_cpu_load(struct rq *this_rq);
1892 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1894 set_task_rq(p, cpu);
1895 #ifdef CONFIG_SMP
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfuly executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903 #endif
1906 static const struct sched_class rt_sched_class;
1908 #define sched_class_highest (&stop_sched_class)
1909 #define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
1912 #include "sched_stats.h"
1914 static void inc_nr_running(struct rq *rq)
1916 rq->nr_running++;
1919 static void dec_nr_running(struct rq *rq)
1921 rq->nr_running--;
1924 static void set_load_weight(struct task_struct *p)
1926 int prio = p->static_prio - MAX_RT_PRIO;
1927 struct load_weight *load = &p->se.load;
1930 * SCHED_IDLE tasks get minimal weight:
1932 if (p->policy == SCHED_IDLE) {
1933 load->weight = scale_load(WEIGHT_IDLEPRIO);
1934 load->inv_weight = WMULT_IDLEPRIO;
1935 return;
1938 load->weight = scale_load(prio_to_weight[prio]);
1939 load->inv_weight = prio_to_wmult[prio];
1942 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1944 update_rq_clock(rq);
1945 sched_info_queued(p);
1946 p->sched_class->enqueue_task(rq, p, flags);
1949 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1951 update_rq_clock(rq);
1952 sched_info_dequeued(p);
1953 p->sched_class->dequeue_task(rq, p, flags);
1957 * activate_task - move a task to the runqueue.
1959 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1961 if (task_contributes_to_load(p))
1962 rq->nr_uninterruptible--;
1964 enqueue_task(rq, p, flags);
1968 * deactivate_task - remove a task from the runqueue.
1970 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1972 if (task_contributes_to_load(p))
1973 rq->nr_uninterruptible++;
1975 dequeue_task(rq, p, flags);
1978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
1991 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1992 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1994 static DEFINE_PER_CPU(u64, irq_start_time);
1995 static int sched_clock_irqtime;
1997 void enable_sched_clock_irqtime(void)
1999 sched_clock_irqtime = 1;
2002 void disable_sched_clock_irqtime(void)
2004 sched_clock_irqtime = 0;
2007 #ifndef CONFIG_64BIT
2008 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2010 static inline void irq_time_write_begin(void)
2012 __this_cpu_inc(irq_time_seq.sequence);
2013 smp_wmb();
2016 static inline void irq_time_write_end(void)
2018 smp_wmb();
2019 __this_cpu_inc(irq_time_seq.sequence);
2022 static inline u64 irq_time_read(int cpu)
2024 u64 irq_time;
2025 unsigned seq;
2027 do {
2028 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2029 irq_time = per_cpu(cpu_softirq_time, cpu) +
2030 per_cpu(cpu_hardirq_time, cpu);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2033 return irq_time;
2035 #else /* CONFIG_64BIT */
2036 static inline void irq_time_write_begin(void)
2040 static inline void irq_time_write_end(void)
2044 static inline u64 irq_time_read(int cpu)
2046 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2048 #endif /* CONFIG_64BIT */
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2054 void account_system_vtime(struct task_struct *curr)
2056 unsigned long flags;
2057 s64 delta;
2058 int cpu;
2060 if (!sched_clock_irqtime)
2061 return;
2063 local_irq_save(flags);
2065 cpu = smp_processor_id();
2066 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2067 __this_cpu_add(irq_start_time, delta);
2069 irq_time_write_begin();
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2076 if (hardirq_count())
2077 __this_cpu_add(cpu_hardirq_time, delta);
2078 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2079 __this_cpu_add(cpu_softirq_time, delta);
2081 irq_time_write_end();
2082 local_irq_restore(flags);
2084 EXPORT_SYMBOL_GPL(account_system_vtime);
2086 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2088 #ifdef CONFIG_PARAVIRT
2089 static inline u64 steal_ticks(u64 steal)
2091 if (unlikely(steal > NSEC_PER_SEC))
2092 return div_u64(steal, TICK_NSEC);
2094 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2096 #endif
2098 static void update_rq_clock_task(struct rq *rq, s64 delta)
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2104 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal = 0, irq_delta = 0;
2106 #endif
2107 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2108 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2118 * monotonic.
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2123 * atomic ops.
2125 if (irq_delta > delta)
2126 irq_delta = delta;
2128 rq->prev_irq_time += irq_delta;
2129 delta -= irq_delta;
2130 #endif
2131 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((&paravirt_steal_rq_enabled))) {
2133 u64 st;
2135 steal = paravirt_steal_clock(cpu_of(rq));
2136 steal -= rq->prev_steal_time_rq;
2138 if (unlikely(steal > delta))
2139 steal = delta;
2141 st = steal_ticks(steal);
2142 steal = st * TICK_NSEC;
2144 rq->prev_steal_time_rq += steal;
2146 delta -= steal;
2148 #endif
2150 rq->clock_task += delta;
2152 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2154 sched_rt_avg_update(rq, irq_delta + steal);
2155 #endif
2158 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2159 static int irqtime_account_hi_update(void)
2161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2162 unsigned long flags;
2163 u64 latest_ns;
2164 int ret = 0;
2166 local_irq_save(flags);
2167 latest_ns = this_cpu_read(cpu_hardirq_time);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2169 ret = 1;
2170 local_irq_restore(flags);
2171 return ret;
2174 static int irqtime_account_si_update(void)
2176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2177 unsigned long flags;
2178 u64 latest_ns;
2179 int ret = 0;
2181 local_irq_save(flags);
2182 latest_ns = this_cpu_read(cpu_softirq_time);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2184 ret = 1;
2185 local_irq_restore(flags);
2186 return ret;
2189 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2191 #define sched_clock_irqtime (0)
2193 #endif
2195 #include "sched_idletask.c"
2196 #include "sched_fair.c"
2197 #include "sched_rt.c"
2198 #include "sched_autogroup.c"
2199 #include "sched_stoptask.c"
2200 #ifdef CONFIG_SCHED_DEBUG
2201 # include "sched_debug.c"
2202 #endif
2204 void sched_set_stop_task(int cpu, struct task_struct *stop)
2206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2207 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2209 if (stop) {
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2218 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2220 stop->sched_class = &stop_sched_class;
2223 cpu_rq(cpu)->stop = stop;
2225 if (old_stop) {
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2230 old_stop->sched_class = &rt_sched_class;
2235 * __normal_prio - return the priority that is based on the static prio
2237 static inline int __normal_prio(struct task_struct *p)
2239 return p->static_prio;
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2249 static inline int normal_prio(struct task_struct *p)
2251 int prio;
2253 if (task_has_rt_policy(p))
2254 prio = MAX_RT_PRIO-1 - p->rt_priority;
2255 else
2256 prio = __normal_prio(p);
2257 return prio;
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2267 static int effective_prio(struct task_struct *p)
2269 p->normal_prio = normal_prio(p);
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2275 if (!rt_prio(p->prio))
2276 return p->normal_prio;
2277 return p->prio;
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2284 inline int task_curr(const struct task_struct *p)
2286 return cpu_curr(task_cpu(p)) == p;
2289 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2290 const struct sched_class *prev_class,
2291 int oldprio)
2293 if (prev_class != p->sched_class) {
2294 if (prev_class->switched_from)
2295 prev_class->switched_from(rq, p);
2296 p->sched_class->switched_to(rq, p);
2297 } else if (oldprio != p->prio)
2298 p->sched_class->prio_changed(rq, p, oldprio);
2301 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2303 const struct sched_class *class;
2305 if (p->sched_class == rq->curr->sched_class) {
2306 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2307 } else {
2308 for_each_class(class) {
2309 if (class == rq->curr->sched_class)
2310 break;
2311 if (class == p->sched_class) {
2312 resched_task(rq->curr);
2313 break;
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2322 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2323 rq->skip_clock_update = 1;
2326 #ifdef CONFIG_SMP
2328 * Is this task likely cache-hot:
2330 static int
2331 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2333 s64 delta;
2335 if (p->sched_class != &fair_sched_class)
2336 return 0;
2338 if (unlikely(p->policy == SCHED_IDLE))
2339 return 0;
2342 * Buddy candidates are cache hot:
2344 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2345 (&p->se == cfs_rq_of(&p->se)->next ||
2346 &p->se == cfs_rq_of(&p->se)->last))
2347 return 1;
2349 if (sysctl_sched_migration_cost == -1)
2350 return 1;
2351 if (sysctl_sched_migration_cost == 0)
2352 return 0;
2354 delta = now - p->se.exec_start;
2356 return delta < (s64)sysctl_sched_migration_cost;
2359 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2361 #ifdef CONFIG_SCHED_DEBUG
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2366 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2367 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2369 #ifdef CONFIG_LOCKDEP
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2377 * Furthermore, all task_rq users should acquire both locks, see
2378 * task_rq_lock().
2380 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2381 lockdep_is_held(&task_rq(p)->lock)));
2382 #endif
2383 #endif
2385 trace_sched_migrate_task(p, new_cpu);
2387 if (task_cpu(p) != new_cpu) {
2388 p->se.nr_migrations++;
2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2392 __set_task_cpu(p, new_cpu);
2395 struct migration_arg {
2396 struct task_struct *task;
2397 int dest_cpu;
2400 static int migration_cpu_stop(void *data);
2403 * wait_task_inactive - wait for a thread to unschedule.
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2418 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2420 unsigned long flags;
2421 int running, on_rq;
2422 unsigned long ncsw;
2423 struct rq *rq;
2425 for (;;) {
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2430 * work out!
2432 rq = task_rq(p);
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2437 * any locks.
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2445 while (task_running(rq, p)) {
2446 if (match_state && unlikely(p->state != match_state))
2447 return 0;
2448 cpu_relax();
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2456 rq = task_rq_lock(p, &flags);
2457 trace_sched_wait_task(p);
2458 running = task_running(rq, p);
2459 on_rq = p->on_rq;
2460 ncsw = 0;
2461 if (!match_state || p->state == match_state)
2462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2463 task_rq_unlock(rq, p, &flags);
2466 * If it changed from the expected state, bail out now.
2468 if (unlikely(!ncsw))
2469 break;
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2475 * Oops. Go back and try again..
2477 if (unlikely(running)) {
2478 cpu_relax();
2479 continue;
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2485 * preempted!
2487 * So if it was still runnable (but just not actively
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2491 if (unlikely(on_rq)) {
2492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2494 set_current_state(TASK_UNINTERRUPTIBLE);
2495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2496 continue;
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2504 break;
2507 return ncsw;
2510 /***
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2517 * NOTE: this function doesn't have to take the runqueue lock,
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2521 * achieved as well.
2523 void kick_process(struct task_struct *p)
2525 int cpu;
2527 preempt_disable();
2528 cpu = task_cpu(p);
2529 if ((cpu != smp_processor_id()) && task_curr(p))
2530 smp_send_reschedule(cpu);
2531 preempt_enable();
2533 EXPORT_SYMBOL_GPL(kick_process);
2534 #endif /* CONFIG_SMP */
2536 #ifdef CONFIG_SMP
2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2540 static int select_fallback_rq(int cpu, struct task_struct *p)
2542 int dest_cpu;
2543 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2547 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2548 return dest_cpu;
2550 /* Any allowed, online CPU? */
2551 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2552 if (dest_cpu < nr_cpu_ids)
2553 return dest_cpu;
2555 /* No more Mr. Nice Guy. */
2556 dest_cpu = cpuset_cpus_allowed_fallback(p);
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2560 * leave kernel.
2562 if (p->mm && printk_ratelimit()) {
2563 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p), p->comm, cpu);
2567 return dest_cpu;
2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2573 static inline
2574 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2576 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2581 * cpu.
2583 * Since this is common to all placement strategies, this lives here.
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2588 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
2589 !cpu_online(cpu)))
2590 cpu = select_fallback_rq(task_cpu(p), p);
2592 return cpu;
2595 static void update_avg(u64 *avg, u64 sample)
2597 s64 diff = sample - *avg;
2598 *avg += diff >> 3;
2600 #endif
2602 static void
2603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2605 #ifdef CONFIG_SCHEDSTATS
2606 struct rq *rq = this_rq();
2608 #ifdef CONFIG_SMP
2609 int this_cpu = smp_processor_id();
2611 if (cpu == this_cpu) {
2612 schedstat_inc(rq, ttwu_local);
2613 schedstat_inc(p, se.statistics.nr_wakeups_local);
2614 } else {
2615 struct sched_domain *sd;
2617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2618 rcu_read_lock();
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2625 rcu_read_unlock();
2628 if (wake_flags & WF_MIGRATED)
2629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2631 #endif /* CONFIG_SMP */
2633 schedstat_inc(rq, ttwu_count);
2634 schedstat_inc(p, se.statistics.nr_wakeups);
2636 if (wake_flags & WF_SYNC)
2637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2639 #endif /* CONFIG_SCHEDSTATS */
2642 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2644 activate_task(rq, p, en_flags);
2645 p->on_rq = 1;
2647 /* if a worker is waking up, notify workqueue */
2648 if (p->flags & PF_WQ_WORKER)
2649 wq_worker_waking_up(p, cpu_of(rq));
2653 * Mark the task runnable and perform wakeup-preemption.
2655 static void
2656 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2658 trace_sched_wakeup(p, true);
2659 check_preempt_curr(rq, p, wake_flags);
2661 p->state = TASK_RUNNING;
2662 #ifdef CONFIG_SMP
2663 if (p->sched_class->task_woken)
2664 p->sched_class->task_woken(rq, p);
2666 if (rq->idle_stamp) {
2667 u64 delta = rq->clock - rq->idle_stamp;
2668 u64 max = 2*sysctl_sched_migration_cost;
2670 if (delta > max)
2671 rq->avg_idle = max;
2672 else
2673 update_avg(&rq->avg_idle, delta);
2674 rq->idle_stamp = 0;
2676 #endif
2679 static void
2680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2682 #ifdef CONFIG_SMP
2683 if (p->sched_contributes_to_load)
2684 rq->nr_uninterruptible--;
2685 #endif
2687 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2688 ttwu_do_wakeup(rq, p, wake_flags);
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2697 static int ttwu_remote(struct task_struct *p, int wake_flags)
2699 struct rq *rq;
2700 int ret = 0;
2702 rq = __task_rq_lock(p);
2703 if (p->on_rq) {
2704 ttwu_do_wakeup(rq, p, wake_flags);
2705 ret = 1;
2707 __task_rq_unlock(rq);
2709 return ret;
2712 #ifdef CONFIG_SMP
2713 static void sched_ttwu_pending(void)
2715 struct rq *rq = this_rq();
2716 struct llist_node *llist = llist_del_all(&rq->wake_list);
2717 struct task_struct *p;
2719 raw_spin_lock(&rq->lock);
2721 while (llist) {
2722 p = llist_entry(llist, struct task_struct, wake_entry);
2723 llist = llist_next(llist);
2724 ttwu_do_activate(rq, p, 0);
2727 raw_spin_unlock(&rq->lock);
2730 void scheduler_ipi(void)
2732 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2733 return;
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2739 * we do call them.
2741 * Some archs already do call them, luckily irq_enter/exit nest
2742 * properly.
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2748 irq_enter();
2749 sched_ttwu_pending();
2752 * Check if someone kicked us for doing the nohz idle load balance.
2754 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2755 this_rq()->idle_balance = 1;
2756 raise_softirq_irqoff(SCHED_SOFTIRQ);
2758 irq_exit();
2761 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2763 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2764 smp_send_reschedule(cpu);
2767 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2770 struct rq *rq;
2771 int ret = 0;
2773 rq = __task_rq_lock(p);
2774 if (p->on_cpu) {
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776 ttwu_do_wakeup(rq, p, wake_flags);
2777 ret = 1;
2779 __task_rq_unlock(rq);
2781 return ret;
2784 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2785 #endif /* CONFIG_SMP */
2787 static void ttwu_queue(struct task_struct *p, int cpu)
2789 struct rq *rq = cpu_rq(cpu);
2791 #if defined(CONFIG_SMP)
2792 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2793 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2794 ttwu_queue_remote(p, cpu);
2795 return;
2797 #endif
2799 raw_spin_lock(&rq->lock);
2800 ttwu_do_activate(rq, p, 0);
2801 raw_spin_unlock(&rq->lock);
2805 * try_to_wake_up - wake up a thread
2806 * @p: the thread to be awakened
2807 * @state: the mask of task states that can be woken
2808 * @wake_flags: wake modifier flags (WF_*)
2810 * Put it on the run-queue if it's not already there. The "current"
2811 * thread is always on the run-queue (except when the actual
2812 * re-schedule is in progress), and as such you're allowed to do
2813 * the simpler "current->state = TASK_RUNNING" to mark yourself
2814 * runnable without the overhead of this.
2816 * Returns %true if @p was woken up, %false if it was already running
2817 * or @state didn't match @p's state.
2819 static int
2820 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2822 unsigned long flags;
2823 int cpu, success = 0;
2825 smp_wmb();
2826 raw_spin_lock_irqsave(&p->pi_lock, flags);
2827 if (!(p->state & state))
2828 goto out;
2830 success = 1; /* we're going to change ->state */
2831 cpu = task_cpu(p);
2833 if (p->on_rq && ttwu_remote(p, wake_flags))
2834 goto stat;
2836 #ifdef CONFIG_SMP
2838 * If the owning (remote) cpu is still in the middle of schedule() with
2839 * this task as prev, wait until its done referencing the task.
2841 while (p->on_cpu) {
2842 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2844 * In case the architecture enables interrupts in
2845 * context_switch(), we cannot busy wait, since that
2846 * would lead to deadlocks when an interrupt hits and
2847 * tries to wake up @prev. So bail and do a complete
2848 * remote wakeup.
2850 if (ttwu_activate_remote(p, wake_flags))
2851 goto stat;
2852 #else
2853 cpu_relax();
2854 #endif
2857 * Pairs with the smp_wmb() in finish_lock_switch().
2859 smp_rmb();
2861 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2862 p->state = TASK_WAKING;
2864 if (p->sched_class->task_waking)
2865 p->sched_class->task_waking(p);
2867 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2868 if (task_cpu(p) != cpu) {
2869 wake_flags |= WF_MIGRATED;
2870 set_task_cpu(p, cpu);
2872 #endif /* CONFIG_SMP */
2874 ttwu_queue(p, cpu);
2875 stat:
2876 ttwu_stat(p, cpu, wake_flags);
2877 out:
2878 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2880 return success;
2884 * try_to_wake_up_local - try to wake up a local task with rq lock held
2885 * @p: the thread to be awakened
2887 * Put @p on the run-queue if it's not already there. The caller must
2888 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2889 * the current task.
2891 static void try_to_wake_up_local(struct task_struct *p)
2893 struct rq *rq = task_rq(p);
2895 BUG_ON(rq != this_rq());
2896 BUG_ON(p == current);
2897 lockdep_assert_held(&rq->lock);
2899 if (!raw_spin_trylock(&p->pi_lock)) {
2900 raw_spin_unlock(&rq->lock);
2901 raw_spin_lock(&p->pi_lock);
2902 raw_spin_lock(&rq->lock);
2905 if (!(p->state & TASK_NORMAL))
2906 goto out;
2908 if (!p->on_rq)
2909 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2911 ttwu_do_wakeup(rq, p, 0);
2912 ttwu_stat(p, smp_processor_id(), 0);
2913 out:
2914 raw_spin_unlock(&p->pi_lock);
2918 * wake_up_process - Wake up a specific process
2919 * @p: The process to be woken up.
2921 * Attempt to wake up the nominated process and move it to the set of runnable
2922 * processes. Returns 1 if the process was woken up, 0 if it was already
2923 * running.
2925 * It may be assumed that this function implies a write memory barrier before
2926 * changing the task state if and only if any tasks are woken up.
2928 int wake_up_process(struct task_struct *p)
2930 return try_to_wake_up(p, TASK_ALL, 0);
2932 EXPORT_SYMBOL(wake_up_process);
2934 int wake_up_state(struct task_struct *p, unsigned int state)
2936 return try_to_wake_up(p, state, 0);
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
2943 * __sched_fork() is basic setup used by init_idle() too:
2945 static void __sched_fork(struct task_struct *p)
2947 p->on_rq = 0;
2949 p->se.on_rq = 0;
2950 p->se.exec_start = 0;
2951 p->se.sum_exec_runtime = 0;
2952 p->se.prev_sum_exec_runtime = 0;
2953 p->se.nr_migrations = 0;
2954 p->se.vruntime = 0;
2955 INIT_LIST_HEAD(&p->se.group_node);
2957 #ifdef CONFIG_SCHEDSTATS
2958 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2959 #endif
2961 INIT_LIST_HEAD(&p->rt.run_list);
2963 #ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p->preempt_notifiers);
2965 #endif
2969 * fork()/clone()-time setup:
2971 void sched_fork(struct task_struct *p)
2973 unsigned long flags;
2974 int cpu = get_cpu();
2976 __sched_fork(p);
2978 * We mark the process as running here. This guarantees that
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2982 p->state = TASK_RUNNING;
2985 * Make sure we do not leak PI boosting priority to the child.
2987 p->prio = current->normal_prio;
2990 * Revert to default priority/policy on fork if requested.
2992 if (unlikely(p->sched_reset_on_fork)) {
2993 if (task_has_rt_policy(p)) {
2994 p->policy = SCHED_NORMAL;
2995 p->static_prio = NICE_TO_PRIO(0);
2996 p->rt_priority = 0;
2997 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2998 p->static_prio = NICE_TO_PRIO(0);
3000 p->prio = p->normal_prio = __normal_prio(p);
3001 set_load_weight(p);
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3007 p->sched_reset_on_fork = 0;
3010 if (!rt_prio(p->prio))
3011 p->sched_class = &fair_sched_class;
3013 if (p->sched_class->task_fork)
3014 p->sched_class->task_fork(p);
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3021 * Silence PROVE_RCU.
3023 raw_spin_lock_irqsave(&p->pi_lock, flags);
3024 set_task_cpu(p, cpu);
3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3027 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3028 if (likely(sched_info_on()))
3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
3030 #endif
3031 #if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
3033 #endif
3034 #ifdef CONFIG_PREEMPT_COUNT
3035 /* Want to start with kernel preemption disabled. */
3036 task_thread_info(p)->preempt_count = 1;
3037 #endif
3038 #ifdef CONFIG_SMP
3039 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3040 #endif
3042 put_cpu();
3046 * wake_up_new_task - wake up a newly created task for the first time.
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3052 void wake_up_new_task(struct task_struct *p)
3054 unsigned long flags;
3055 struct rq *rq;
3057 raw_spin_lock_irqsave(&p->pi_lock, flags);
3058 #ifdef CONFIG_SMP
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
3064 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3065 #endif
3067 rq = __task_rq_lock(p);
3068 activate_task(rq, p, 0);
3069 p->on_rq = 1;
3070 trace_sched_wakeup_new(p, true);
3071 check_preempt_curr(rq, p, WF_FORK);
3072 #ifdef CONFIG_SMP
3073 if (p->sched_class->task_woken)
3074 p->sched_class->task_woken(rq, p);
3075 #endif
3076 task_rq_unlock(rq, p, &flags);
3079 #ifdef CONFIG_PREEMPT_NOTIFIERS
3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3083 * @notifier: notifier struct to register
3085 void preempt_notifier_register(struct preempt_notifier *notifier)
3087 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3089 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
3093 * @notifier: notifier struct to unregister
3095 * This is safe to call from within a preemption notifier.
3097 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3099 hlist_del(&notifier->link);
3101 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3103 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3105 struct preempt_notifier *notifier;
3106 struct hlist_node *node;
3108 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3109 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3112 static void
3113 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 struct task_struct *next)
3116 struct preempt_notifier *notifier;
3117 struct hlist_node *node;
3119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3120 notifier->ops->sched_out(notifier, next);
3123 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3125 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3129 static void
3130 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3131 struct task_struct *next)
3135 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
3140 * @prev: the current task that is being switched out
3141 * @next: the task we are going to switch to.
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3145 * switch.
3147 * prepare_task_switch sets up locking and calls architecture specific
3148 * hooks.
3150 static inline void
3151 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 struct task_struct *next)
3154 sched_info_switch(prev, next);
3155 perf_event_task_sched_out(prev, next);
3156 fire_sched_out_preempt_notifiers(prev, next);
3157 prepare_lock_switch(rq, next);
3158 prepare_arch_switch(next);
3159 trace_sched_switch(prev, next);
3163 * finish_task_switch - clean up after a task-switch
3164 * @rq: runqueue associated with task-switch
3165 * @prev: the thread we just switched away from.
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
3172 * Note that we may have delayed dropping an mm in context_switch(). If
3173 * so, we finish that here outside of the runqueue lock. (Doing it
3174 * with the lock held can cause deadlocks; see schedule() for
3175 * details.)
3177 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3178 __releases(rq->lock)
3180 struct mm_struct *mm = rq->prev_mm;
3181 long prev_state;
3183 rq->prev_mm = NULL;
3186 * A task struct has one reference for the use as "current".
3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
3190 * The test for TASK_DEAD must occur while the runqueue locks are
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3193 * be dropped twice.
3194 * Manfred Spraul <manfred@colorfullife.com>
3196 prev_state = prev->state;
3197 finish_arch_switch(prev);
3198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201 perf_event_task_sched_in(prev, current);
3202 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3203 local_irq_enable();
3204 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205 finish_lock_switch(rq, prev);
3207 fire_sched_in_preempt_notifiers(current);
3208 if (mm)
3209 mmdrop(mm);
3210 if (unlikely(prev_state == TASK_DEAD)) {
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
3215 kprobe_flush_task(prev);
3216 put_task_struct(prev);
3220 #ifdef CONFIG_SMP
3222 /* assumes rq->lock is held */
3223 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3225 if (prev->sched_class->pre_schedule)
3226 prev->sched_class->pre_schedule(rq, prev);
3229 /* rq->lock is NOT held, but preemption is disabled */
3230 static inline void post_schedule(struct rq *rq)
3232 if (rq->post_schedule) {
3233 unsigned long flags;
3235 raw_spin_lock_irqsave(&rq->lock, flags);
3236 if (rq->curr->sched_class->post_schedule)
3237 rq->curr->sched_class->post_schedule(rq);
3238 raw_spin_unlock_irqrestore(&rq->lock, flags);
3240 rq->post_schedule = 0;
3244 #else
3246 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3250 static inline void post_schedule(struct rq *rq)
3254 #endif
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3260 asmlinkage void schedule_tail(struct task_struct *prev)
3261 __releases(rq->lock)
3263 struct rq *rq = this_rq();
3265 finish_task_switch(rq, prev);
3268 * FIXME: do we need to worry about rq being invalidated by the
3269 * task_switch?
3271 post_schedule(rq);
3273 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3275 preempt_enable();
3276 #endif
3277 if (current->set_child_tid)
3278 put_user(task_pid_vnr(current), current->set_child_tid);
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3285 static inline void
3286 context_switch(struct rq *rq, struct task_struct *prev,
3287 struct task_struct *next)
3289 struct mm_struct *mm, *oldmm;
3291 prepare_task_switch(rq, prev, next);
3293 mm = next->mm;
3294 oldmm = prev->active_mm;
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3298 * one hypercall.
3300 arch_start_context_switch(prev);
3302 if (!mm) {
3303 next->active_mm = oldmm;
3304 atomic_inc(&oldmm->mm_count);
3305 enter_lazy_tlb(oldmm, next);
3306 } else
3307 switch_mm(oldmm, mm, next);
3309 if (!prev->mm) {
3310 prev->active_mm = NULL;
3311 rq->prev_mm = oldmm;
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3319 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3321 #endif
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev, next, prev);
3326 barrier();
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3332 finish_task_switch(this_rq(), prev);
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3342 unsigned long nr_running(void)
3344 unsigned long i, sum = 0;
3346 for_each_online_cpu(i)
3347 sum += cpu_rq(i)->nr_running;
3349 return sum;
3352 unsigned long nr_uninterruptible(void)
3354 unsigned long i, sum = 0;
3356 for_each_possible_cpu(i)
3357 sum += cpu_rq(i)->nr_uninterruptible;
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
3363 if (unlikely((long)sum < 0))
3364 sum = 0;
3366 return sum;
3369 unsigned long long nr_context_switches(void)
3371 int i;
3372 unsigned long long sum = 0;
3374 for_each_possible_cpu(i)
3375 sum += cpu_rq(i)->nr_switches;
3377 return sum;
3380 unsigned long nr_iowait(void)
3382 unsigned long i, sum = 0;
3384 for_each_possible_cpu(i)
3385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3387 return sum;
3390 unsigned long nr_iowait_cpu(int cpu)
3392 struct rq *this = cpu_rq(cpu);
3393 return atomic_read(&this->nr_iowait);
3396 unsigned long this_cpu_load(void)
3398 struct rq *this = this_rq();
3399 return this->cpu_load[0];
3403 /* Variables and functions for calc_load */
3404 static atomic_long_t calc_load_tasks;
3405 static unsigned long calc_load_update;
3406 unsigned long avenrun[3];
3407 EXPORT_SYMBOL(avenrun);
3409 static long calc_load_fold_active(struct rq *this_rq)
3411 long nr_active, delta = 0;
3413 nr_active = this_rq->nr_running;
3414 nr_active += (long) this_rq->nr_uninterruptible;
3416 if (nr_active != this_rq->calc_load_active) {
3417 delta = nr_active - this_rq->calc_load_active;
3418 this_rq->calc_load_active = nr_active;
3421 return delta;
3424 static unsigned long
3425 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3427 load *= exp;
3428 load += active * (FIXED_1 - exp);
3429 load += 1UL << (FSHIFT - 1);
3430 return load >> FSHIFT;
3433 #ifdef CONFIG_NO_HZ
3435 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3437 * When making the ILB scale, we should try to pull this in as well.
3439 static atomic_long_t calc_load_tasks_idle;
3441 static void calc_load_account_idle(struct rq *this_rq)
3443 long delta;
3445 delta = calc_load_fold_active(this_rq);
3446 if (delta)
3447 atomic_long_add(delta, &calc_load_tasks_idle);
3450 static long calc_load_fold_idle(void)
3452 long delta = 0;
3455 * Its got a race, we don't care...
3457 if (atomic_long_read(&calc_load_tasks_idle))
3458 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3460 return delta;
3464 * fixed_power_int - compute: x^n, in O(log n) time
3466 * @x: base of the power
3467 * @frac_bits: fractional bits of @x
3468 * @n: power to raise @x to.
3470 * By exploiting the relation between the definition of the natural power
3471 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3472 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3473 * (where: n_i \elem {0, 1}, the binary vector representing n),
3474 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3475 * of course trivially computable in O(log_2 n), the length of our binary
3476 * vector.
3478 static unsigned long
3479 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3481 unsigned long result = 1UL << frac_bits;
3483 if (n) for (;;) {
3484 if (n & 1) {
3485 result *= x;
3486 result += 1UL << (frac_bits - 1);
3487 result >>= frac_bits;
3489 n >>= 1;
3490 if (!n)
3491 break;
3492 x *= x;
3493 x += 1UL << (frac_bits - 1);
3494 x >>= frac_bits;
3497 return result;
3501 * a1 = a0 * e + a * (1 - e)
3503 * a2 = a1 * e + a * (1 - e)
3504 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3505 * = a0 * e^2 + a * (1 - e) * (1 + e)
3507 * a3 = a2 * e + a * (1 - e)
3508 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3509 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3511 * ...
3513 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3514 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3515 * = a0 * e^n + a * (1 - e^n)
3517 * [1] application of the geometric series:
3519 * n 1 - x^(n+1)
3520 * S_n := \Sum x^i = -------------
3521 * i=0 1 - x
3523 static unsigned long
3524 calc_load_n(unsigned long load, unsigned long exp,
3525 unsigned long active, unsigned int n)
3528 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3532 * NO_HZ can leave us missing all per-cpu ticks calling
3533 * calc_load_account_active(), but since an idle CPU folds its delta into
3534 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3535 * in the pending idle delta if our idle period crossed a load cycle boundary.
3537 * Once we've updated the global active value, we need to apply the exponential
3538 * weights adjusted to the number of cycles missed.
3540 static void calc_global_nohz(unsigned long ticks)
3542 long delta, active, n;
3544 if (time_before(jiffies, calc_load_update))
3545 return;
3548 * If we crossed a calc_load_update boundary, make sure to fold
3549 * any pending idle changes, the respective CPUs might have
3550 * missed the tick driven calc_load_account_active() update
3551 * due to NO_HZ.
3553 delta = calc_load_fold_idle();
3554 if (delta)
3555 atomic_long_add(delta, &calc_load_tasks);
3558 * If we were idle for multiple load cycles, apply them.
3560 if (ticks >= LOAD_FREQ) {
3561 n = ticks / LOAD_FREQ;
3563 active = atomic_long_read(&calc_load_tasks);
3564 active = active > 0 ? active * FIXED_1 : 0;
3566 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3567 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3568 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3570 calc_load_update += n * LOAD_FREQ;
3574 * Its possible the remainder of the above division also crosses
3575 * a LOAD_FREQ period, the regular check in calc_global_load()
3576 * which comes after this will take care of that.
3578 * Consider us being 11 ticks before a cycle completion, and us
3579 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3580 * age us 4 cycles, and the test in calc_global_load() will
3581 * pick up the final one.
3584 #else
3585 static void calc_load_account_idle(struct rq *this_rq)
3589 static inline long calc_load_fold_idle(void)
3591 return 0;
3594 static void calc_global_nohz(unsigned long ticks)
3597 #endif
3600 * get_avenrun - get the load average array
3601 * @loads: pointer to dest load array
3602 * @offset: offset to add
3603 * @shift: shift count to shift the result left
3605 * These values are estimates at best, so no need for locking.
3607 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3609 loads[0] = (avenrun[0] + offset) << shift;
3610 loads[1] = (avenrun[1] + offset) << shift;
3611 loads[2] = (avenrun[2] + offset) << shift;
3615 * calc_load - update the avenrun load estimates 10 ticks after the
3616 * CPUs have updated calc_load_tasks.
3618 void calc_global_load(unsigned long ticks)
3620 long active;
3622 calc_global_nohz(ticks);
3624 if (time_before(jiffies, calc_load_update + 10))
3625 return;
3627 active = atomic_long_read(&calc_load_tasks);
3628 active = active > 0 ? active * FIXED_1 : 0;
3630 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3631 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3632 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3634 calc_load_update += LOAD_FREQ;
3638 * Called from update_cpu_load() to periodically update this CPU's
3639 * active count.
3641 static void calc_load_account_active(struct rq *this_rq)
3643 long delta;
3645 if (time_before(jiffies, this_rq->calc_load_update))
3646 return;
3648 delta = calc_load_fold_active(this_rq);
3649 delta += calc_load_fold_idle();
3650 if (delta)
3651 atomic_long_add(delta, &calc_load_tasks);
3653 this_rq->calc_load_update += LOAD_FREQ;
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3675 * Example:
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3683 #define DEGRADE_SHIFT 7
3684 static const unsigned char
3685 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3686 static const unsigned char
3687 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3699 static unsigned long
3700 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3702 int j = 0;
3704 if (!missed_updates)
3705 return load;
3707 if (missed_updates >= degrade_zero_ticks[idx])
3708 return 0;
3710 if (idx == 1)
3711 return load >> missed_updates;
3713 while (missed_updates) {
3714 if (missed_updates % 2)
3715 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3717 missed_updates >>= 1;
3718 j++;
3720 return load;
3724 * Update rq->cpu_load[] statistics. This function is usually called every
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
3728 static void update_cpu_load(struct rq *this_rq)
3730 unsigned long this_load = this_rq->load.weight;
3731 unsigned long curr_jiffies = jiffies;
3732 unsigned long pending_updates;
3733 int i, scale;
3735 this_rq->nr_load_updates++;
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies == this_rq->last_load_update_tick)
3739 return;
3741 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3742 this_rq->last_load_update_tick = curr_jiffies;
3744 /* Update our load: */
3745 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3746 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3747 unsigned long old_load, new_load;
3749 /* scale is effectively 1 << i now, and >> i divides by scale */
3751 old_load = this_rq->cpu_load[i];
3752 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3753 new_load = this_load;
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3757 * example.
3759 if (new_load > old_load)
3760 new_load += scale - 1;
3762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3765 sched_avg_update(this_rq);
3768 static void update_cpu_load_active(struct rq *this_rq)
3770 update_cpu_load(this_rq);
3772 calc_load_account_active(this_rq);
3775 #ifdef CONFIG_SMP
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
3781 void sched_exec(void)
3783 struct task_struct *p = current;
3784 unsigned long flags;
3785 int dest_cpu;
3787 raw_spin_lock_irqsave(&p->pi_lock, flags);
3788 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3789 if (dest_cpu == smp_processor_id())
3790 goto unlock;
3792 if (likely(cpu_active(dest_cpu))) {
3793 struct migration_arg arg = { p, dest_cpu };
3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3796 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3797 return;
3799 unlock:
3800 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3803 #endif
3805 DEFINE_PER_CPU(struct kernel_stat, kstat);
3807 EXPORT_PER_CPU_SYMBOL(kstat);
3810 * Return any ns on the sched_clock that have not yet been accounted in
3811 * @p in case that task is currently running.
3813 * Called with task_rq_lock() held on @rq.
3815 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3817 u64 ns = 0;
3819 if (task_current(rq, p)) {
3820 update_rq_clock(rq);
3821 ns = rq->clock_task - p->se.exec_start;
3822 if ((s64)ns < 0)
3823 ns = 0;
3826 return ns;
3829 unsigned long long task_delta_exec(struct task_struct *p)
3831 unsigned long flags;
3832 struct rq *rq;
3833 u64 ns = 0;
3835 rq = task_rq_lock(p, &flags);
3836 ns = do_task_delta_exec(p, rq);
3837 task_rq_unlock(rq, p, &flags);
3839 return ns;
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3847 unsigned long long task_sched_runtime(struct task_struct *p)
3849 unsigned long flags;
3850 struct rq *rq;
3851 u64 ns = 0;
3853 rq = task_rq_lock(p, &flags);
3854 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3855 task_rq_unlock(rq, p, &flags);
3857 return ns;
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
3863 * @cputime: the cpu time spent in user space since the last update
3864 * @cputime_scaled: cputime scaled by cpu frequency
3866 void account_user_time(struct task_struct *p, cputime_t cputime,
3867 cputime_t cputime_scaled)
3869 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3870 cputime64_t tmp;
3872 /* Add user time to process. */
3873 p->utime = cputime_add(p->utime, cputime);
3874 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3875 account_group_user_time(p, cputime);
3877 /* Add user time to cpustat. */
3878 tmp = cputime_to_cputime64(cputime);
3879 if (TASK_NICE(p) > 0)
3880 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3881 else
3882 cpustat->user = cputime64_add(cpustat->user, tmp);
3884 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3885 /* Account for user time used */
3886 acct_update_integrals(p);
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
3893 * @cputime_scaled: cputime scaled by cpu frequency
3895 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3896 cputime_t cputime_scaled)
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3901 tmp = cputime_to_cputime64(cputime);
3903 /* Add guest time to process. */
3904 p->utime = cputime_add(p->utime, cputime);
3905 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3906 account_group_user_time(p, cputime);
3907 p->gtime = cputime_add(p->gtime, cputime);
3909 /* Add guest time to cpustat. */
3910 if (TASK_NICE(p) > 0) {
3911 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3912 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3913 } else {
3914 cpustat->user = cputime64_add(cpustat->user, tmp);
3915 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3926 static inline
3927 void __account_system_time(struct task_struct *p, cputime_t cputime,
3928 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3930 cputime64_t tmp = cputime_to_cputime64(cputime);
3932 /* Add system time to process. */
3933 p->stime = cputime_add(p->stime, cputime);
3934 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3935 account_group_system_time(p, cputime);
3937 /* Add system time to cpustat. */
3938 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3939 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3941 /* Account for system time used */
3942 acct_update_integrals(p);
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
3950 * @cputime_scaled: cputime scaled by cpu frequency
3952 void account_system_time(struct task_struct *p, int hardirq_offset,
3953 cputime_t cputime, cputime_t cputime_scaled)
3955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3956 cputime64_t *target_cputime64;
3958 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3959 account_guest_time(p, cputime, cputime_scaled);
3960 return;
3963 if (hardirq_count() - hardirq_offset)
3964 target_cputime64 = &cpustat->irq;
3965 else if (in_serving_softirq())
3966 target_cputime64 = &cpustat->softirq;
3967 else
3968 target_cputime64 = &cpustat->system;
3970 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3974 * Account for involuntary wait time.
3975 * @cputime: the cpu time spent in involuntary wait
3977 void account_steal_time(cputime_t cputime)
3979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
3989 void account_idle_time(cputime_t cputime)
3991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3993 struct rq *rq = this_rq();
3995 if (atomic_read(&rq->nr_iowait) > 0)
3996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3997 else
3998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4001 static __always_inline bool steal_account_process_tick(void)
4003 #ifdef CONFIG_PARAVIRT
4004 if (static_branch(&paravirt_steal_enabled)) {
4005 u64 steal, st = 0;
4007 steal = paravirt_steal_clock(smp_processor_id());
4008 steal -= this_rq()->prev_steal_time;
4010 st = steal_ticks(steal);
4011 this_rq()->prev_steal_time += st * TICK_NSEC;
4013 account_steal_time(st);
4014 return st;
4016 #endif
4017 return false;
4020 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4022 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4032 * - user_time
4033 * - idle_time
4034 * - system time
4035 * - check for guest_time
4036 * - else account as system_time
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4044 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4045 struct rq *rq)
4047 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4048 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4051 if (steal_account_process_tick())
4052 return;
4054 if (irqtime_account_hi_update()) {
4055 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4058 } else if (this_cpu_ksoftirqd() == p) {
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->softirq);
4066 } else if (user_tick) {
4067 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4068 } else if (p == rq->idle) {
4069 account_idle_time(cputime_one_jiffy);
4070 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4071 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4072 } else {
4073 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4074 &cpustat->system);
4078 static void irqtime_account_idle_ticks(int ticks)
4080 int i;
4081 struct rq *rq = this_rq();
4083 for (i = 0; i < ticks; i++)
4084 irqtime_account_process_tick(current, 0, rq);
4086 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4087 static void irqtime_account_idle_ticks(int ticks) {}
4088 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4089 struct rq *rq) {}
4090 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4097 void account_process_tick(struct task_struct *p, int user_tick)
4099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4100 struct rq *rq = this_rq();
4102 if (sched_clock_irqtime) {
4103 irqtime_account_process_tick(p, user_tick, rq);
4104 return;
4107 if (steal_account_process_tick())
4108 return;
4110 if (user_tick)
4111 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4112 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4113 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4114 one_jiffy_scaled);
4115 else
4116 account_idle_time(cputime_one_jiffy);
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4124 void account_steal_ticks(unsigned long ticks)
4126 account_steal_time(jiffies_to_cputime(ticks));
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4133 void account_idle_ticks(unsigned long ticks)
4136 if (sched_clock_irqtime) {
4137 irqtime_account_idle_ticks(ticks);
4138 return;
4141 account_idle_time(jiffies_to_cputime(ticks));
4144 #endif
4147 * Use precise platform statistics if available:
4149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4150 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4152 *ut = p->utime;
4153 *st = p->stime;
4156 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4158 struct task_cputime cputime;
4160 thread_group_cputime(p, &cputime);
4162 *ut = cputime.utime;
4163 *st = cputime.stime;
4165 #else
4167 #ifndef nsecs_to_cputime
4168 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4169 #endif
4171 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4173 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4176 * Use CFS's precise accounting:
4178 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4180 if (total) {
4181 u64 temp = rtime;
4183 temp *= utime;
4184 do_div(temp, total);
4185 utime = (cputime_t)temp;
4186 } else
4187 utime = rtime;
4190 * Compare with previous values, to keep monotonicity:
4192 p->prev_utime = max(p->prev_utime, utime);
4193 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4195 *ut = p->prev_utime;
4196 *st = p->prev_stime;
4200 * Must be called with siglock held.
4202 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4204 struct signal_struct *sig = p->signal;
4205 struct task_cputime cputime;
4206 cputime_t rtime, utime, total;
4208 thread_group_cputime(p, &cputime);
4210 total = cputime_add(cputime.utime, cputime.stime);
4211 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4213 if (total) {
4214 u64 temp = rtime;
4216 temp *= cputime.utime;
4217 do_div(temp, total);
4218 utime = (cputime_t)temp;
4219 } else
4220 utime = rtime;
4222 sig->prev_utime = max(sig->prev_utime, utime);
4223 sig->prev_stime = max(sig->prev_stime,
4224 cputime_sub(rtime, sig->prev_utime));
4226 *ut = sig->prev_utime;
4227 *st = sig->prev_stime;
4229 #endif
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
4235 void scheduler_tick(void)
4237 int cpu = smp_processor_id();
4238 struct rq *rq = cpu_rq(cpu);
4239 struct task_struct *curr = rq->curr;
4241 sched_clock_tick();
4243 raw_spin_lock(&rq->lock);
4244 update_rq_clock(rq);
4245 update_cpu_load_active(rq);
4246 curr->sched_class->task_tick(rq, curr, 0);
4247 raw_spin_unlock(&rq->lock);
4249 perf_event_task_tick();
4251 #ifdef CONFIG_SMP
4252 rq->idle_balance = idle_cpu(cpu);
4253 trigger_load_balance(rq, cpu);
4254 #endif
4257 notrace unsigned long get_parent_ip(unsigned long addr)
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4264 return addr;
4267 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4270 void __kprobes add_preempt_count(int val)
4272 #ifdef CONFIG_DEBUG_PREEMPT
4274 * Underflow?
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4277 return;
4278 #endif
4279 preempt_count() += val;
4280 #ifdef CONFIG_DEBUG_PREEMPT
4282 * Spinlock count overflowing soon?
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4285 PREEMPT_MASK - 10);
4286 #endif
4287 if (preempt_count() == val)
4288 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4290 EXPORT_SYMBOL(add_preempt_count);
4292 void __kprobes sub_preempt_count(int val)
4294 #ifdef CONFIG_DEBUG_PREEMPT
4296 * Underflow?
4298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4299 return;
4301 * Is the spinlock portion underflowing?
4303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4304 !(preempt_count() & PREEMPT_MASK)))
4305 return;
4306 #endif
4308 if (preempt_count() == val)
4309 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4310 preempt_count() -= val;
4312 EXPORT_SYMBOL(sub_preempt_count);
4314 #endif
4317 * Print scheduling while atomic bug:
4319 static noinline void __schedule_bug(struct task_struct *prev)
4321 struct pt_regs *regs = get_irq_regs();
4323 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev->comm, prev->pid, preempt_count());
4326 debug_show_held_locks(prev);
4327 print_modules();
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev);
4331 if (regs)
4332 show_regs(regs);
4333 else
4334 dump_stack();
4338 * Various schedule()-time debugging checks and statistics:
4340 static inline void schedule_debug(struct task_struct *prev)
4343 * Test if we are atomic. Since do_exit() needs to call into
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4347 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4348 __schedule_bug(prev);
4350 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4352 schedstat_inc(this_rq(), sched_count);
4355 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4357 if (prev->on_rq || rq->skip_clock_update < 0)
4358 update_rq_clock(rq);
4359 prev->sched_class->put_prev_task(rq, prev);
4363 * Pick up the highest-prio task:
4365 static inline struct task_struct *
4366 pick_next_task(struct rq *rq)
4368 const struct sched_class *class;
4369 struct task_struct *p;
4372 * Optimization: we know that if all tasks are in
4373 * the fair class we can call that function directly:
4375 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4376 p = fair_sched_class.pick_next_task(rq);
4377 if (likely(p))
4378 return p;
4381 for_each_class(class) {
4382 p = class->pick_next_task(rq);
4383 if (p)
4384 return p;
4387 BUG(); /* the idle class will always have a runnable task */
4391 * __schedule() is the main scheduler function.
4393 static void __sched __schedule(void)
4395 struct task_struct *prev, *next;
4396 unsigned long *switch_count;
4397 struct rq *rq;
4398 int cpu;
4400 need_resched:
4401 preempt_disable();
4402 cpu = smp_processor_id();
4403 rq = cpu_rq(cpu);
4404 rcu_note_context_switch(cpu);
4405 prev = rq->curr;
4407 schedule_debug(prev);
4409 if (sched_feat(HRTICK))
4410 hrtick_clear(rq);
4412 raw_spin_lock_irq(&rq->lock);
4414 switch_count = &prev->nivcsw;
4415 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4416 if (unlikely(signal_pending_state(prev->state, prev))) {
4417 prev->state = TASK_RUNNING;
4418 } else {
4419 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4420 prev->on_rq = 0;
4423 * If a worker went to sleep, notify and ask workqueue
4424 * whether it wants to wake up a task to maintain
4425 * concurrency.
4427 if (prev->flags & PF_WQ_WORKER) {
4428 struct task_struct *to_wakeup;
4430 to_wakeup = wq_worker_sleeping(prev, cpu);
4431 if (to_wakeup)
4432 try_to_wake_up_local(to_wakeup);
4435 switch_count = &prev->nvcsw;
4438 pre_schedule(rq, prev);
4440 if (unlikely(!rq->nr_running))
4441 idle_balance(cpu, rq);
4443 put_prev_task(rq, prev);
4444 next = pick_next_task(rq);
4445 clear_tsk_need_resched(prev);
4446 rq->skip_clock_update = 0;
4448 if (likely(prev != next)) {
4449 rq->nr_switches++;
4450 rq->curr = next;
4451 ++*switch_count;
4453 context_switch(rq, prev, next); /* unlocks the rq */
4455 * The context switch have flipped the stack from under us
4456 * and restored the local variables which were saved when
4457 * this task called schedule() in the past. prev == current
4458 * is still correct, but it can be moved to another cpu/rq.
4460 cpu = smp_processor_id();
4461 rq = cpu_rq(cpu);
4462 } else
4463 raw_spin_unlock_irq(&rq->lock);
4465 post_schedule(rq);
4467 preempt_enable_no_resched();
4468 if (need_resched())
4469 goto need_resched;
4472 static inline void sched_submit_work(struct task_struct *tsk)
4474 if (!tsk->state)
4475 return;
4477 * If we are going to sleep and we have plugged IO queued,
4478 * make sure to submit it to avoid deadlocks.
4480 if (blk_needs_flush_plug(tsk))
4481 blk_schedule_flush_plug(tsk);
4484 asmlinkage void __sched schedule(void)
4486 struct task_struct *tsk = current;
4488 sched_submit_work(tsk);
4489 __schedule();
4491 EXPORT_SYMBOL(schedule);
4493 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4495 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4497 if (lock->owner != owner)
4498 return false;
4501 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4502 * lock->owner still matches owner, if that fails, owner might
4503 * point to free()d memory, if it still matches, the rcu_read_lock()
4504 * ensures the memory stays valid.
4506 barrier();
4508 return owner->on_cpu;
4512 * Look out! "owner" is an entirely speculative pointer
4513 * access and not reliable.
4515 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4517 if (!sched_feat(OWNER_SPIN))
4518 return 0;
4520 rcu_read_lock();
4521 while (owner_running(lock, owner)) {
4522 if (need_resched())
4523 break;
4525 arch_mutex_cpu_relax();
4527 rcu_read_unlock();
4530 * We break out the loop above on need_resched() and when the
4531 * owner changed, which is a sign for heavy contention. Return
4532 * success only when lock->owner is NULL.
4534 return lock->owner == NULL;
4536 #endif
4538 #ifdef CONFIG_PREEMPT
4540 * this is the entry point to schedule() from in-kernel preemption
4541 * off of preempt_enable. Kernel preemptions off return from interrupt
4542 * occur there and call schedule directly.
4544 asmlinkage void __sched notrace preempt_schedule(void)
4546 struct thread_info *ti = current_thread_info();
4549 * If there is a non-zero preempt_count or interrupts are disabled,
4550 * we do not want to preempt the current task. Just return..
4552 if (likely(ti->preempt_count || irqs_disabled()))
4553 return;
4555 do {
4556 add_preempt_count_notrace(PREEMPT_ACTIVE);
4557 __schedule();
4558 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4561 * Check again in case we missed a preemption opportunity
4562 * between schedule and now.
4564 barrier();
4565 } while (need_resched());
4567 EXPORT_SYMBOL(preempt_schedule);
4570 * this is the entry point to schedule() from kernel preemption
4571 * off of irq context.
4572 * Note, that this is called and return with irqs disabled. This will
4573 * protect us against recursive calling from irq.
4575 asmlinkage void __sched preempt_schedule_irq(void)
4577 struct thread_info *ti = current_thread_info();
4579 /* Catch callers which need to be fixed */
4580 BUG_ON(ti->preempt_count || !irqs_disabled());
4582 do {
4583 add_preempt_count(PREEMPT_ACTIVE);
4584 local_irq_enable();
4585 __schedule();
4586 local_irq_disable();
4587 sub_preempt_count(PREEMPT_ACTIVE);
4590 * Check again in case we missed a preemption opportunity
4591 * between schedule and now.
4593 barrier();
4594 } while (need_resched());
4597 #endif /* CONFIG_PREEMPT */
4599 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4600 void *key)
4602 return try_to_wake_up(curr->private, mode, wake_flags);
4604 EXPORT_SYMBOL(default_wake_function);
4607 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4608 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4609 * number) then we wake all the non-exclusive tasks and one exclusive task.
4611 * There are circumstances in which we can try to wake a task which has already
4612 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4613 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4615 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4616 int nr_exclusive, int wake_flags, void *key)
4618 wait_queue_t *curr, *next;
4620 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4621 unsigned flags = curr->flags;
4623 if (curr->func(curr, mode, wake_flags, key) &&
4624 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4625 break;
4630 * __wake_up - wake up threads blocked on a waitqueue.
4631 * @q: the waitqueue
4632 * @mode: which threads
4633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4634 * @key: is directly passed to the wakeup function
4636 * It may be assumed that this function implies a write memory barrier before
4637 * changing the task state if and only if any tasks are woken up.
4639 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4640 int nr_exclusive, void *key)
4642 unsigned long flags;
4644 spin_lock_irqsave(&q->lock, flags);
4645 __wake_up_common(q, mode, nr_exclusive, 0, key);
4646 spin_unlock_irqrestore(&q->lock, flags);
4648 EXPORT_SYMBOL(__wake_up);
4651 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4653 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4655 __wake_up_common(q, mode, 1, 0, NULL);
4657 EXPORT_SYMBOL_GPL(__wake_up_locked);
4659 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4661 __wake_up_common(q, mode, 1, 0, key);
4663 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4666 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4667 * @q: the waitqueue
4668 * @mode: which threads
4669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4670 * @key: opaque value to be passed to wakeup targets
4672 * The sync wakeup differs that the waker knows that it will schedule
4673 * away soon, so while the target thread will be woken up, it will not
4674 * be migrated to another CPU - ie. the two threads are 'synchronized'
4675 * with each other. This can prevent needless bouncing between CPUs.
4677 * On UP it can prevent extra preemption.
4679 * It may be assumed that this function implies a write memory barrier before
4680 * changing the task state if and only if any tasks are woken up.
4682 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4683 int nr_exclusive, void *key)
4685 unsigned long flags;
4686 int wake_flags = WF_SYNC;
4688 if (unlikely(!q))
4689 return;
4691 if (unlikely(!nr_exclusive))
4692 wake_flags = 0;
4694 spin_lock_irqsave(&q->lock, flags);
4695 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4696 spin_unlock_irqrestore(&q->lock, flags);
4698 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4701 * __wake_up_sync - see __wake_up_sync_key()
4703 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4705 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4707 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4710 * complete: - signals a single thread waiting on this completion
4711 * @x: holds the state of this particular completion
4713 * This will wake up a single thread waiting on this completion. Threads will be
4714 * awakened in the same order in which they were queued.
4716 * See also complete_all(), wait_for_completion() and related routines.
4718 * It may be assumed that this function implies a write memory barrier before
4719 * changing the task state if and only if any tasks are woken up.
4721 void complete(struct completion *x)
4723 unsigned long flags;
4725 spin_lock_irqsave(&x->wait.lock, flags);
4726 x->done++;
4727 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4728 spin_unlock_irqrestore(&x->wait.lock, flags);
4730 EXPORT_SYMBOL(complete);
4733 * complete_all: - signals all threads waiting on this completion
4734 * @x: holds the state of this particular completion
4736 * This will wake up all threads waiting on this particular completion event.
4738 * It may be assumed that this function implies a write memory barrier before
4739 * changing the task state if and only if any tasks are woken up.
4741 void complete_all(struct completion *x)
4743 unsigned long flags;
4745 spin_lock_irqsave(&x->wait.lock, flags);
4746 x->done += UINT_MAX/2;
4747 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4748 spin_unlock_irqrestore(&x->wait.lock, flags);
4750 EXPORT_SYMBOL(complete_all);
4752 static inline long __sched
4753 do_wait_for_common(struct completion *x, long timeout, int state)
4755 if (!x->done) {
4756 DECLARE_WAITQUEUE(wait, current);
4758 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4759 do {
4760 if (signal_pending_state(state, current)) {
4761 timeout = -ERESTARTSYS;
4762 break;
4764 __set_current_state(state);
4765 spin_unlock_irq(&x->wait.lock);
4766 timeout = schedule_timeout(timeout);
4767 spin_lock_irq(&x->wait.lock);
4768 } while (!x->done && timeout);
4769 __remove_wait_queue(&x->wait, &wait);
4770 if (!x->done)
4771 return timeout;
4773 x->done--;
4774 return timeout ?: 1;
4777 static long __sched
4778 wait_for_common(struct completion *x, long timeout, int state)
4780 might_sleep();
4782 spin_lock_irq(&x->wait.lock);
4783 timeout = do_wait_for_common(x, timeout, state);
4784 spin_unlock_irq(&x->wait.lock);
4785 return timeout;
4789 * wait_for_completion: - waits for completion of a task
4790 * @x: holds the state of this particular completion
4792 * This waits to be signaled for completion of a specific task. It is NOT
4793 * interruptible and there is no timeout.
4795 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4796 * and interrupt capability. Also see complete().
4798 void __sched wait_for_completion(struct completion *x)
4800 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4802 EXPORT_SYMBOL(wait_for_completion);
4805 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4806 * @x: holds the state of this particular completion
4807 * @timeout: timeout value in jiffies
4809 * This waits for either a completion of a specific task to be signaled or for a
4810 * specified timeout to expire. The timeout is in jiffies. It is not
4811 * interruptible.
4813 unsigned long __sched
4814 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4816 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4818 EXPORT_SYMBOL(wait_for_completion_timeout);
4821 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4822 * @x: holds the state of this particular completion
4824 * This waits for completion of a specific task to be signaled. It is
4825 * interruptible.
4827 int __sched wait_for_completion_interruptible(struct completion *x)
4829 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4830 if (t == -ERESTARTSYS)
4831 return t;
4832 return 0;
4834 EXPORT_SYMBOL(wait_for_completion_interruptible);
4837 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4838 * @x: holds the state of this particular completion
4839 * @timeout: timeout value in jiffies
4841 * This waits for either a completion of a specific task to be signaled or for a
4842 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4844 long __sched
4845 wait_for_completion_interruptible_timeout(struct completion *x,
4846 unsigned long timeout)
4848 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4850 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4853 * wait_for_completion_killable: - waits for completion of a task (killable)
4854 * @x: holds the state of this particular completion
4856 * This waits to be signaled for completion of a specific task. It can be
4857 * interrupted by a kill signal.
4859 int __sched wait_for_completion_killable(struct completion *x)
4861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4862 if (t == -ERESTARTSYS)
4863 return t;
4864 return 0;
4866 EXPORT_SYMBOL(wait_for_completion_killable);
4869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4870 * @x: holds the state of this particular completion
4871 * @timeout: timeout value in jiffies
4873 * This waits for either a completion of a specific task to be
4874 * signaled or for a specified timeout to expire. It can be
4875 * interrupted by a kill signal. The timeout is in jiffies.
4877 long __sched
4878 wait_for_completion_killable_timeout(struct completion *x,
4879 unsigned long timeout)
4881 return wait_for_common(x, timeout, TASK_KILLABLE);
4883 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4886 * try_wait_for_completion - try to decrement a completion without blocking
4887 * @x: completion structure
4889 * Returns: 0 if a decrement cannot be done without blocking
4890 * 1 if a decrement succeeded.
4892 * If a completion is being used as a counting completion,
4893 * attempt to decrement the counter without blocking. This
4894 * enables us to avoid waiting if the resource the completion
4895 * is protecting is not available.
4897 bool try_wait_for_completion(struct completion *x)
4899 unsigned long flags;
4900 int ret = 1;
4902 spin_lock_irqsave(&x->wait.lock, flags);
4903 if (!x->done)
4904 ret = 0;
4905 else
4906 x->done--;
4907 spin_unlock_irqrestore(&x->wait.lock, flags);
4908 return ret;
4910 EXPORT_SYMBOL(try_wait_for_completion);
4913 * completion_done - Test to see if a completion has any waiters
4914 * @x: completion structure
4916 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4917 * 1 if there are no waiters.
4920 bool completion_done(struct completion *x)
4922 unsigned long flags;
4923 int ret = 1;
4925 spin_lock_irqsave(&x->wait.lock, flags);
4926 if (!x->done)
4927 ret = 0;
4928 spin_unlock_irqrestore(&x->wait.lock, flags);
4929 return ret;
4931 EXPORT_SYMBOL(completion_done);
4933 static long __sched
4934 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4936 unsigned long flags;
4937 wait_queue_t wait;
4939 init_waitqueue_entry(&wait, current);
4941 __set_current_state(state);
4943 spin_lock_irqsave(&q->lock, flags);
4944 __add_wait_queue(q, &wait);
4945 spin_unlock(&q->lock);
4946 timeout = schedule_timeout(timeout);
4947 spin_lock_irq(&q->lock);
4948 __remove_wait_queue(q, &wait);
4949 spin_unlock_irqrestore(&q->lock, flags);
4951 return timeout;
4954 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4956 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4958 EXPORT_SYMBOL(interruptible_sleep_on);
4960 long __sched
4961 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4963 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4965 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4967 void __sched sleep_on(wait_queue_head_t *q)
4969 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4971 EXPORT_SYMBOL(sleep_on);
4973 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4975 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4977 EXPORT_SYMBOL(sleep_on_timeout);
4979 #ifdef CONFIG_RT_MUTEXES
4982 * rt_mutex_setprio - set the current priority of a task
4983 * @p: task
4984 * @prio: prio value (kernel-internal form)
4986 * This function changes the 'effective' priority of a task. It does
4987 * not touch ->normal_prio like __setscheduler().
4989 * Used by the rt_mutex code to implement priority inheritance logic.
4991 void rt_mutex_setprio(struct task_struct *p, int prio)
4993 int oldprio, on_rq, running;
4994 struct rq *rq;
4995 const struct sched_class *prev_class;
4997 BUG_ON(prio < 0 || prio > MAX_PRIO);
4999 rq = __task_rq_lock(p);
5001 trace_sched_pi_setprio(p, prio);
5002 oldprio = p->prio;
5003 prev_class = p->sched_class;
5004 on_rq = p->on_rq;
5005 running = task_current(rq, p);
5006 if (on_rq)
5007 dequeue_task(rq, p, 0);
5008 if (running)
5009 p->sched_class->put_prev_task(rq, p);
5011 if (rt_prio(prio))
5012 p->sched_class = &rt_sched_class;
5013 else
5014 p->sched_class = &fair_sched_class;
5016 p->prio = prio;
5018 if (running)
5019 p->sched_class->set_curr_task(rq);
5020 if (on_rq)
5021 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5023 check_class_changed(rq, p, prev_class, oldprio);
5024 __task_rq_unlock(rq);
5027 #endif
5029 void set_user_nice(struct task_struct *p, long nice)
5031 int old_prio, delta, on_rq;
5032 unsigned long flags;
5033 struct rq *rq;
5035 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5036 return;
5038 * We have to be careful, if called from sys_setpriority(),
5039 * the task might be in the middle of scheduling on another CPU.
5041 rq = task_rq_lock(p, &flags);
5043 * The RT priorities are set via sched_setscheduler(), but we still
5044 * allow the 'normal' nice value to be set - but as expected
5045 * it wont have any effect on scheduling until the task is
5046 * SCHED_FIFO/SCHED_RR:
5048 if (task_has_rt_policy(p)) {
5049 p->static_prio = NICE_TO_PRIO(nice);
5050 goto out_unlock;
5052 on_rq = p->on_rq;
5053 if (on_rq)
5054 dequeue_task(rq, p, 0);
5056 p->static_prio = NICE_TO_PRIO(nice);
5057 set_load_weight(p);
5058 old_prio = p->prio;
5059 p->prio = effective_prio(p);
5060 delta = p->prio - old_prio;
5062 if (on_rq) {
5063 enqueue_task(rq, p, 0);
5065 * If the task increased its priority or is running and
5066 * lowered its priority, then reschedule its CPU:
5068 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5069 resched_task(rq->curr);
5071 out_unlock:
5072 task_rq_unlock(rq, p, &flags);
5074 EXPORT_SYMBOL(set_user_nice);
5077 * can_nice - check if a task can reduce its nice value
5078 * @p: task
5079 * @nice: nice value
5081 int can_nice(const struct task_struct *p, const int nice)
5083 /* convert nice value [19,-20] to rlimit style value [1,40] */
5084 int nice_rlim = 20 - nice;
5086 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5087 capable(CAP_SYS_NICE));
5090 #ifdef __ARCH_WANT_SYS_NICE
5093 * sys_nice - change the priority of the current process.
5094 * @increment: priority increment
5096 * sys_setpriority is a more generic, but much slower function that
5097 * does similar things.
5099 SYSCALL_DEFINE1(nice, int, increment)
5101 long nice, retval;
5104 * Setpriority might change our priority at the same moment.
5105 * We don't have to worry. Conceptually one call occurs first
5106 * and we have a single winner.
5108 if (increment < -40)
5109 increment = -40;
5110 if (increment > 40)
5111 increment = 40;
5113 nice = TASK_NICE(current) + increment;
5114 if (nice < -20)
5115 nice = -20;
5116 if (nice > 19)
5117 nice = 19;
5119 if (increment < 0 && !can_nice(current, nice))
5120 return -EPERM;
5122 retval = security_task_setnice(current, nice);
5123 if (retval)
5124 return retval;
5126 set_user_nice(current, nice);
5127 return 0;
5130 #endif
5133 * task_prio - return the priority value of a given task.
5134 * @p: the task in question.
5136 * This is the priority value as seen by users in /proc.
5137 * RT tasks are offset by -200. Normal tasks are centered
5138 * around 0, value goes from -16 to +15.
5140 int task_prio(const struct task_struct *p)
5142 return p->prio - MAX_RT_PRIO;
5146 * task_nice - return the nice value of a given task.
5147 * @p: the task in question.
5149 int task_nice(const struct task_struct *p)
5151 return TASK_NICE(p);
5153 EXPORT_SYMBOL(task_nice);
5156 * idle_cpu - is a given cpu idle currently?
5157 * @cpu: the processor in question.
5159 int idle_cpu(int cpu)
5161 struct rq *rq = cpu_rq(cpu);
5163 if (rq->curr != rq->idle)
5164 return 0;
5166 if (rq->nr_running)
5167 return 0;
5169 #ifdef CONFIG_SMP
5170 if (!llist_empty(&rq->wake_list))
5171 return 0;
5172 #endif
5174 return 1;
5178 * idle_task - return the idle task for a given cpu.
5179 * @cpu: the processor in question.
5181 struct task_struct *idle_task(int cpu)
5183 return cpu_rq(cpu)->idle;
5187 * find_process_by_pid - find a process with a matching PID value.
5188 * @pid: the pid in question.
5190 static struct task_struct *find_process_by_pid(pid_t pid)
5192 return pid ? find_task_by_vpid(pid) : current;
5195 /* Actually do priority change: must hold rq lock. */
5196 static void
5197 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5199 p->policy = policy;
5200 p->rt_priority = prio;
5201 p->normal_prio = normal_prio(p);
5202 /* we are holding p->pi_lock already */
5203 p->prio = rt_mutex_getprio(p);
5204 if (rt_prio(p->prio))
5205 p->sched_class = &rt_sched_class;
5206 else
5207 p->sched_class = &fair_sched_class;
5208 set_load_weight(p);
5212 * check the target process has a UID that matches the current process's
5214 static bool check_same_owner(struct task_struct *p)
5216 const struct cred *cred = current_cred(), *pcred;
5217 bool match;
5219 rcu_read_lock();
5220 pcred = __task_cred(p);
5221 if (cred->user->user_ns == pcred->user->user_ns)
5222 match = (cred->euid == pcred->euid ||
5223 cred->euid == pcred->uid);
5224 else
5225 match = false;
5226 rcu_read_unlock();
5227 return match;
5230 static int __sched_setscheduler(struct task_struct *p, int policy,
5231 const struct sched_param *param, bool user)
5233 int retval, oldprio, oldpolicy = -1, on_rq, running;
5234 unsigned long flags;
5235 const struct sched_class *prev_class;
5236 struct rq *rq;
5237 int reset_on_fork;
5239 /* may grab non-irq protected spin_locks */
5240 BUG_ON(in_interrupt());
5241 recheck:
5242 /* double check policy once rq lock held */
5243 if (policy < 0) {
5244 reset_on_fork = p->sched_reset_on_fork;
5245 policy = oldpolicy = p->policy;
5246 } else {
5247 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5248 policy &= ~SCHED_RESET_ON_FORK;
5250 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5251 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5252 policy != SCHED_IDLE)
5253 return -EINVAL;
5257 * Valid priorities for SCHED_FIFO and SCHED_RR are
5258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5259 * SCHED_BATCH and SCHED_IDLE is 0.
5261 if (param->sched_priority < 0 ||
5262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5264 return -EINVAL;
5265 if (rt_policy(policy) != (param->sched_priority != 0))
5266 return -EINVAL;
5269 * Allow unprivileged RT tasks to decrease priority:
5271 if (user && !capable(CAP_SYS_NICE)) {
5272 if (rt_policy(policy)) {
5273 unsigned long rlim_rtprio =
5274 task_rlimit(p, RLIMIT_RTPRIO);
5276 /* can't set/change the rt policy */
5277 if (policy != p->policy && !rlim_rtprio)
5278 return -EPERM;
5280 /* can't increase priority */
5281 if (param->sched_priority > p->rt_priority &&
5282 param->sched_priority > rlim_rtprio)
5283 return -EPERM;
5287 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5288 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5290 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5291 if (!can_nice(p, TASK_NICE(p)))
5292 return -EPERM;
5295 /* can't change other user's priorities */
5296 if (!check_same_owner(p))
5297 return -EPERM;
5299 /* Normal users shall not reset the sched_reset_on_fork flag */
5300 if (p->sched_reset_on_fork && !reset_on_fork)
5301 return -EPERM;
5304 if (user) {
5305 retval = security_task_setscheduler(p);
5306 if (retval)
5307 return retval;
5311 * make sure no PI-waiters arrive (or leave) while we are
5312 * changing the priority of the task:
5314 * To be able to change p->policy safely, the appropriate
5315 * runqueue lock must be held.
5317 rq = task_rq_lock(p, &flags);
5320 * Changing the policy of the stop threads its a very bad idea
5322 if (p == rq->stop) {
5323 task_rq_unlock(rq, p, &flags);
5324 return -EINVAL;
5328 * If not changing anything there's no need to proceed further:
5330 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5331 param->sched_priority == p->rt_priority))) {
5333 __task_rq_unlock(rq);
5334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5335 return 0;
5338 #ifdef CONFIG_RT_GROUP_SCHED
5339 if (user) {
5341 * Do not allow realtime tasks into groups that have no runtime
5342 * assigned.
5344 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5345 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5346 !task_group_is_autogroup(task_group(p))) {
5347 task_rq_unlock(rq, p, &flags);
5348 return -EPERM;
5351 #endif
5353 /* recheck policy now with rq lock held */
5354 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5355 policy = oldpolicy = -1;
5356 task_rq_unlock(rq, p, &flags);
5357 goto recheck;
5359 on_rq = p->on_rq;
5360 running = task_current(rq, p);
5361 if (on_rq)
5362 deactivate_task(rq, p, 0);
5363 if (running)
5364 p->sched_class->put_prev_task(rq, p);
5366 p->sched_reset_on_fork = reset_on_fork;
5368 oldprio = p->prio;
5369 prev_class = p->sched_class;
5370 __setscheduler(rq, p, policy, param->sched_priority);
5372 if (running)
5373 p->sched_class->set_curr_task(rq);
5374 if (on_rq)
5375 activate_task(rq, p, 0);
5377 check_class_changed(rq, p, prev_class, oldprio);
5378 task_rq_unlock(rq, p, &flags);
5380 rt_mutex_adjust_pi(p);
5382 return 0;
5386 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5387 * @p: the task in question.
5388 * @policy: new policy.
5389 * @param: structure containing the new RT priority.
5391 * NOTE that the task may be already dead.
5393 int sched_setscheduler(struct task_struct *p, int policy,
5394 const struct sched_param *param)
5396 return __sched_setscheduler(p, policy, param, true);
5398 EXPORT_SYMBOL_GPL(sched_setscheduler);
5401 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5402 * @p: the task in question.
5403 * @policy: new policy.
5404 * @param: structure containing the new RT priority.
5406 * Just like sched_setscheduler, only don't bother checking if the
5407 * current context has permission. For example, this is needed in
5408 * stop_machine(): we create temporary high priority worker threads,
5409 * but our caller might not have that capability.
5411 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5412 const struct sched_param *param)
5414 return __sched_setscheduler(p, policy, param, false);
5417 static int
5418 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5420 struct sched_param lparam;
5421 struct task_struct *p;
5422 int retval;
5424 if (!param || pid < 0)
5425 return -EINVAL;
5426 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5427 return -EFAULT;
5429 rcu_read_lock();
5430 retval = -ESRCH;
5431 p = find_process_by_pid(pid);
5432 if (p != NULL)
5433 retval = sched_setscheduler(p, policy, &lparam);
5434 rcu_read_unlock();
5436 return retval;
5440 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5441 * @pid: the pid in question.
5442 * @policy: new policy.
5443 * @param: structure containing the new RT priority.
5445 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5446 struct sched_param __user *, param)
5448 /* negative values for policy are not valid */
5449 if (policy < 0)
5450 return -EINVAL;
5452 return do_sched_setscheduler(pid, policy, param);
5456 * sys_sched_setparam - set/change the RT priority of a thread
5457 * @pid: the pid in question.
5458 * @param: structure containing the new RT priority.
5460 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5462 return do_sched_setscheduler(pid, -1, param);
5466 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5467 * @pid: the pid in question.
5469 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5471 struct task_struct *p;
5472 int retval;
5474 if (pid < 0)
5475 return -EINVAL;
5477 retval = -ESRCH;
5478 rcu_read_lock();
5479 p = find_process_by_pid(pid);
5480 if (p) {
5481 retval = security_task_getscheduler(p);
5482 if (!retval)
5483 retval = p->policy
5484 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5486 rcu_read_unlock();
5487 return retval;
5491 * sys_sched_getparam - get the RT priority of a thread
5492 * @pid: the pid in question.
5493 * @param: structure containing the RT priority.
5495 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5497 struct sched_param lp;
5498 struct task_struct *p;
5499 int retval;
5501 if (!param || pid < 0)
5502 return -EINVAL;
5504 rcu_read_lock();
5505 p = find_process_by_pid(pid);
5506 retval = -ESRCH;
5507 if (!p)
5508 goto out_unlock;
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5514 lp.sched_priority = p->rt_priority;
5515 rcu_read_unlock();
5518 * This one might sleep, we cannot do it with a spinlock held ...
5520 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5522 return retval;
5524 out_unlock:
5525 rcu_read_unlock();
5526 return retval;
5529 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5531 cpumask_var_t cpus_allowed, new_mask;
5532 struct task_struct *p;
5533 int retval;
5535 get_online_cpus();
5536 rcu_read_lock();
5538 p = find_process_by_pid(pid);
5539 if (!p) {
5540 rcu_read_unlock();
5541 put_online_cpus();
5542 return -ESRCH;
5545 /* Prevent p going away */
5546 get_task_struct(p);
5547 rcu_read_unlock();
5549 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5550 retval = -ENOMEM;
5551 goto out_put_task;
5553 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5554 retval = -ENOMEM;
5555 goto out_free_cpus_allowed;
5557 retval = -EPERM;
5558 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5559 goto out_unlock;
5561 retval = security_task_setscheduler(p);
5562 if (retval)
5563 goto out_unlock;
5565 cpuset_cpus_allowed(p, cpus_allowed);
5566 cpumask_and(new_mask, in_mask, cpus_allowed);
5567 again:
5568 retval = set_cpus_allowed_ptr(p, new_mask);
5570 if (!retval) {
5571 cpuset_cpus_allowed(p, cpus_allowed);
5572 if (!cpumask_subset(new_mask, cpus_allowed)) {
5574 * We must have raced with a concurrent cpuset
5575 * update. Just reset the cpus_allowed to the
5576 * cpuset's cpus_allowed
5578 cpumask_copy(new_mask, cpus_allowed);
5579 goto again;
5582 out_unlock:
5583 free_cpumask_var(new_mask);
5584 out_free_cpus_allowed:
5585 free_cpumask_var(cpus_allowed);
5586 out_put_task:
5587 put_task_struct(p);
5588 put_online_cpus();
5589 return retval;
5592 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5593 struct cpumask *new_mask)
5595 if (len < cpumask_size())
5596 cpumask_clear(new_mask);
5597 else if (len > cpumask_size())
5598 len = cpumask_size();
5600 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5604 * sys_sched_setaffinity - set the cpu affinity of a process
5605 * @pid: pid of the process
5606 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5607 * @user_mask_ptr: user-space pointer to the new cpu mask
5609 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5610 unsigned long __user *, user_mask_ptr)
5612 cpumask_var_t new_mask;
5613 int retval;
5615 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5616 return -ENOMEM;
5618 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5619 if (retval == 0)
5620 retval = sched_setaffinity(pid, new_mask);
5621 free_cpumask_var(new_mask);
5622 return retval;
5625 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5627 struct task_struct *p;
5628 unsigned long flags;
5629 int retval;
5631 get_online_cpus();
5632 rcu_read_lock();
5634 retval = -ESRCH;
5635 p = find_process_by_pid(pid);
5636 if (!p)
5637 goto out_unlock;
5639 retval = security_task_getscheduler(p);
5640 if (retval)
5641 goto out_unlock;
5643 raw_spin_lock_irqsave(&p->pi_lock, flags);
5644 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5647 out_unlock:
5648 rcu_read_unlock();
5649 put_online_cpus();
5651 return retval;
5655 * sys_sched_getaffinity - get the cpu affinity of a process
5656 * @pid: pid of the process
5657 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5658 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5660 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5661 unsigned long __user *, user_mask_ptr)
5663 int ret;
5664 cpumask_var_t mask;
5666 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5667 return -EINVAL;
5668 if (len & (sizeof(unsigned long)-1))
5669 return -EINVAL;
5671 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5672 return -ENOMEM;
5674 ret = sched_getaffinity(pid, mask);
5675 if (ret == 0) {
5676 size_t retlen = min_t(size_t, len, cpumask_size());
5678 if (copy_to_user(user_mask_ptr, mask, retlen))
5679 ret = -EFAULT;
5680 else
5681 ret = retlen;
5683 free_cpumask_var(mask);
5685 return ret;
5689 * sys_sched_yield - yield the current processor to other threads.
5691 * This function yields the current CPU to other tasks. If there are no
5692 * other threads running on this CPU then this function will return.
5694 SYSCALL_DEFINE0(sched_yield)
5696 struct rq *rq = this_rq_lock();
5698 schedstat_inc(rq, yld_count);
5699 current->sched_class->yield_task(rq);
5702 * Since we are going to call schedule() anyway, there's
5703 * no need to preempt or enable interrupts:
5705 __release(rq->lock);
5706 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5707 do_raw_spin_unlock(&rq->lock);
5708 preempt_enable_no_resched();
5710 schedule();
5712 return 0;
5715 static inline int should_resched(void)
5717 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5720 static void __cond_resched(void)
5722 add_preempt_count(PREEMPT_ACTIVE);
5723 __schedule();
5724 sub_preempt_count(PREEMPT_ACTIVE);
5727 int __sched _cond_resched(void)
5729 if (should_resched()) {
5730 __cond_resched();
5731 return 1;
5733 return 0;
5735 EXPORT_SYMBOL(_cond_resched);
5738 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5739 * call schedule, and on return reacquire the lock.
5741 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5742 * operations here to prevent schedule() from being called twice (once via
5743 * spin_unlock(), once by hand).
5745 int __cond_resched_lock(spinlock_t *lock)
5747 int resched = should_resched();
5748 int ret = 0;
5750 lockdep_assert_held(lock);
5752 if (spin_needbreak(lock) || resched) {
5753 spin_unlock(lock);
5754 if (resched)
5755 __cond_resched();
5756 else
5757 cpu_relax();
5758 ret = 1;
5759 spin_lock(lock);
5761 return ret;
5763 EXPORT_SYMBOL(__cond_resched_lock);
5765 int __sched __cond_resched_softirq(void)
5767 BUG_ON(!in_softirq());
5769 if (should_resched()) {
5770 local_bh_enable();
5771 __cond_resched();
5772 local_bh_disable();
5773 return 1;
5775 return 0;
5777 EXPORT_SYMBOL(__cond_resched_softirq);
5780 * yield - yield the current processor to other threads.
5782 * This is a shortcut for kernel-space yielding - it marks the
5783 * thread runnable and calls sys_sched_yield().
5785 void __sched yield(void)
5787 set_current_state(TASK_RUNNING);
5788 sys_sched_yield();
5790 EXPORT_SYMBOL(yield);
5793 * yield_to - yield the current processor to another thread in
5794 * your thread group, or accelerate that thread toward the
5795 * processor it's on.
5796 * @p: target task
5797 * @preempt: whether task preemption is allowed or not
5799 * It's the caller's job to ensure that the target task struct
5800 * can't go away on us before we can do any checks.
5802 * Returns true if we indeed boosted the target task.
5804 bool __sched yield_to(struct task_struct *p, bool preempt)
5806 struct task_struct *curr = current;
5807 struct rq *rq, *p_rq;
5808 unsigned long flags;
5809 bool yielded = 0;
5811 local_irq_save(flags);
5812 rq = this_rq();
5814 again:
5815 p_rq = task_rq(p);
5816 double_rq_lock(rq, p_rq);
5817 while (task_rq(p) != p_rq) {
5818 double_rq_unlock(rq, p_rq);
5819 goto again;
5822 if (!curr->sched_class->yield_to_task)
5823 goto out;
5825 if (curr->sched_class != p->sched_class)
5826 goto out;
5828 if (task_running(p_rq, p) || p->state)
5829 goto out;
5831 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5832 if (yielded) {
5833 schedstat_inc(rq, yld_count);
5835 * Make p's CPU reschedule; pick_next_entity takes care of
5836 * fairness.
5838 if (preempt && rq != p_rq)
5839 resched_task(p_rq->curr);
5842 out:
5843 double_rq_unlock(rq, p_rq);
5844 local_irq_restore(flags);
5846 if (yielded)
5847 schedule();
5849 return yielded;
5851 EXPORT_SYMBOL_GPL(yield_to);
5854 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5855 * that process accounting knows that this is a task in IO wait state.
5857 void __sched io_schedule(void)
5859 struct rq *rq = raw_rq();
5861 delayacct_blkio_start();
5862 atomic_inc(&rq->nr_iowait);
5863 blk_flush_plug(current);
5864 current->in_iowait = 1;
5865 schedule();
5866 current->in_iowait = 0;
5867 atomic_dec(&rq->nr_iowait);
5868 delayacct_blkio_end();
5870 EXPORT_SYMBOL(io_schedule);
5872 long __sched io_schedule_timeout(long timeout)
5874 struct rq *rq = raw_rq();
5875 long ret;
5877 delayacct_blkio_start();
5878 atomic_inc(&rq->nr_iowait);
5879 blk_flush_plug(current);
5880 current->in_iowait = 1;
5881 ret = schedule_timeout(timeout);
5882 current->in_iowait = 0;
5883 atomic_dec(&rq->nr_iowait);
5884 delayacct_blkio_end();
5885 return ret;
5889 * sys_sched_get_priority_max - return maximum RT priority.
5890 * @policy: scheduling class.
5892 * this syscall returns the maximum rt_priority that can be used
5893 * by a given scheduling class.
5895 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5897 int ret = -EINVAL;
5899 switch (policy) {
5900 case SCHED_FIFO:
5901 case SCHED_RR:
5902 ret = MAX_USER_RT_PRIO-1;
5903 break;
5904 case SCHED_NORMAL:
5905 case SCHED_BATCH:
5906 case SCHED_IDLE:
5907 ret = 0;
5908 break;
5910 return ret;
5914 * sys_sched_get_priority_min - return minimum RT priority.
5915 * @policy: scheduling class.
5917 * this syscall returns the minimum rt_priority that can be used
5918 * by a given scheduling class.
5920 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5922 int ret = -EINVAL;
5924 switch (policy) {
5925 case SCHED_FIFO:
5926 case SCHED_RR:
5927 ret = 1;
5928 break;
5929 case SCHED_NORMAL:
5930 case SCHED_BATCH:
5931 case SCHED_IDLE:
5932 ret = 0;
5934 return ret;
5938 * sys_sched_rr_get_interval - return the default timeslice of a process.
5939 * @pid: pid of the process.
5940 * @interval: userspace pointer to the timeslice value.
5942 * this syscall writes the default timeslice value of a given process
5943 * into the user-space timespec buffer. A value of '0' means infinity.
5945 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5946 struct timespec __user *, interval)
5948 struct task_struct *p;
5949 unsigned int time_slice;
5950 unsigned long flags;
5951 struct rq *rq;
5952 int retval;
5953 struct timespec t;
5955 if (pid < 0)
5956 return -EINVAL;
5958 retval = -ESRCH;
5959 rcu_read_lock();
5960 p = find_process_by_pid(pid);
5961 if (!p)
5962 goto out_unlock;
5964 retval = security_task_getscheduler(p);
5965 if (retval)
5966 goto out_unlock;
5968 rq = task_rq_lock(p, &flags);
5969 time_slice = p->sched_class->get_rr_interval(rq, p);
5970 task_rq_unlock(rq, p, &flags);
5972 rcu_read_unlock();
5973 jiffies_to_timespec(time_slice, &t);
5974 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5975 return retval;
5977 out_unlock:
5978 rcu_read_unlock();
5979 return retval;
5982 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5984 void sched_show_task(struct task_struct *p)
5986 unsigned long free = 0;
5987 unsigned state;
5989 state = p->state ? __ffs(p->state) + 1 : 0;
5990 printk(KERN_INFO "%-15.15s %c", p->comm,
5991 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5992 #if BITS_PER_LONG == 32
5993 if (state == TASK_RUNNING)
5994 printk(KERN_CONT " running ");
5995 else
5996 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5997 #else
5998 if (state == TASK_RUNNING)
5999 printk(KERN_CONT " running task ");
6000 else
6001 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6002 #endif
6003 #ifdef CONFIG_DEBUG_STACK_USAGE
6004 free = stack_not_used(p);
6005 #endif
6006 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6007 task_pid_nr(p), task_pid_nr(p->real_parent),
6008 (unsigned long)task_thread_info(p)->flags);
6010 show_stack(p, NULL);
6013 void show_state_filter(unsigned long state_filter)
6015 struct task_struct *g, *p;
6017 #if BITS_PER_LONG == 32
6018 printk(KERN_INFO
6019 " task PC stack pid father\n");
6020 #else
6021 printk(KERN_INFO
6022 " task PC stack pid father\n");
6023 #endif
6024 rcu_read_lock();
6025 do_each_thread(g, p) {
6027 * reset the NMI-timeout, listing all files on a slow
6028 * console might take a lot of time:
6030 touch_nmi_watchdog();
6031 if (!state_filter || (p->state & state_filter))
6032 sched_show_task(p);
6033 } while_each_thread(g, p);
6035 touch_all_softlockup_watchdogs();
6037 #ifdef CONFIG_SCHED_DEBUG
6038 sysrq_sched_debug_show();
6039 #endif
6040 rcu_read_unlock();
6042 * Only show locks if all tasks are dumped:
6044 if (!state_filter)
6045 debug_show_all_locks();
6048 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6050 idle->sched_class = &idle_sched_class;
6054 * init_idle - set up an idle thread for a given CPU
6055 * @idle: task in question
6056 * @cpu: cpu the idle task belongs to
6058 * NOTE: this function does not set the idle thread's NEED_RESCHED
6059 * flag, to make booting more robust.
6061 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6063 struct rq *rq = cpu_rq(cpu);
6064 unsigned long flags;
6066 raw_spin_lock_irqsave(&rq->lock, flags);
6068 __sched_fork(idle);
6069 idle->state = TASK_RUNNING;
6070 idle->se.exec_start = sched_clock();
6072 do_set_cpus_allowed(idle, cpumask_of(cpu));
6074 * We're having a chicken and egg problem, even though we are
6075 * holding rq->lock, the cpu isn't yet set to this cpu so the
6076 * lockdep check in task_group() will fail.
6078 * Similar case to sched_fork(). / Alternatively we could
6079 * use task_rq_lock() here and obtain the other rq->lock.
6081 * Silence PROVE_RCU
6083 rcu_read_lock();
6084 __set_task_cpu(idle, cpu);
6085 rcu_read_unlock();
6087 rq->curr = rq->idle = idle;
6088 #if defined(CONFIG_SMP)
6089 idle->on_cpu = 1;
6090 #endif
6091 raw_spin_unlock_irqrestore(&rq->lock, flags);
6093 /* Set the preempt count _outside_ the spinlocks! */
6094 task_thread_info(idle)->preempt_count = 0;
6097 * The idle tasks have their own, simple scheduling class:
6099 idle->sched_class = &idle_sched_class;
6100 ftrace_graph_init_idle_task(idle, cpu);
6104 * In a system that switches off the HZ timer nohz_cpu_mask
6105 * indicates which cpus entered this state. This is used
6106 * in the rcu update to wait only for active cpus. For system
6107 * which do not switch off the HZ timer nohz_cpu_mask should
6108 * always be CPU_BITS_NONE.
6110 cpumask_var_t nohz_cpu_mask;
6113 * Increase the granularity value when there are more CPUs,
6114 * because with more CPUs the 'effective latency' as visible
6115 * to users decreases. But the relationship is not linear,
6116 * so pick a second-best guess by going with the log2 of the
6117 * number of CPUs.
6119 * This idea comes from the SD scheduler of Con Kolivas:
6121 static int get_update_sysctl_factor(void)
6123 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6124 unsigned int factor;
6126 switch (sysctl_sched_tunable_scaling) {
6127 case SCHED_TUNABLESCALING_NONE:
6128 factor = 1;
6129 break;
6130 case SCHED_TUNABLESCALING_LINEAR:
6131 factor = cpus;
6132 break;
6133 case SCHED_TUNABLESCALING_LOG:
6134 default:
6135 factor = 1 + ilog2(cpus);
6136 break;
6139 return factor;
6142 static void update_sysctl(void)
6144 unsigned int factor = get_update_sysctl_factor();
6146 #define SET_SYSCTL(name) \
6147 (sysctl_##name = (factor) * normalized_sysctl_##name)
6148 SET_SYSCTL(sched_min_granularity);
6149 SET_SYSCTL(sched_latency);
6150 SET_SYSCTL(sched_wakeup_granularity);
6151 #undef SET_SYSCTL
6154 static inline void sched_init_granularity(void)
6156 update_sysctl();
6159 #ifdef CONFIG_SMP
6160 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6162 if (p->sched_class && p->sched_class->set_cpus_allowed)
6163 p->sched_class->set_cpus_allowed(p, new_mask);
6165 cpumask_copy(&p->cpus_allowed, new_mask);
6166 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6170 * This is how migration works:
6172 * 1) we invoke migration_cpu_stop() on the target CPU using
6173 * stop_one_cpu().
6174 * 2) stopper starts to run (implicitly forcing the migrated thread
6175 * off the CPU)
6176 * 3) it checks whether the migrated task is still in the wrong runqueue.
6177 * 4) if it's in the wrong runqueue then the migration thread removes
6178 * it and puts it into the right queue.
6179 * 5) stopper completes and stop_one_cpu() returns and the migration
6180 * is done.
6184 * Change a given task's CPU affinity. Migrate the thread to a
6185 * proper CPU and schedule it away if the CPU it's executing on
6186 * is removed from the allowed bitmask.
6188 * NOTE: the caller must have a valid reference to the task, the
6189 * task must not exit() & deallocate itself prematurely. The
6190 * call is not atomic; no spinlocks may be held.
6192 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6194 unsigned long flags;
6195 struct rq *rq;
6196 unsigned int dest_cpu;
6197 int ret = 0;
6199 rq = task_rq_lock(p, &flags);
6201 if (cpumask_equal(&p->cpus_allowed, new_mask))
6202 goto out;
6204 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6205 ret = -EINVAL;
6206 goto out;
6209 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6210 ret = -EINVAL;
6211 goto out;
6214 do_set_cpus_allowed(p, new_mask);
6216 /* Can the task run on the task's current CPU? If so, we're done */
6217 if (cpumask_test_cpu(task_cpu(p), new_mask))
6218 goto out;
6220 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6221 if (p->on_rq) {
6222 struct migration_arg arg = { p, dest_cpu };
6223 /* Need help from migration thread: drop lock and wait. */
6224 task_rq_unlock(rq, p, &flags);
6225 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6226 tlb_migrate_finish(p->mm);
6227 return 0;
6229 out:
6230 task_rq_unlock(rq, p, &flags);
6232 return ret;
6234 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6237 * Move (not current) task off this cpu, onto dest cpu. We're doing
6238 * this because either it can't run here any more (set_cpus_allowed()
6239 * away from this CPU, or CPU going down), or because we're
6240 * attempting to rebalance this task on exec (sched_exec).
6242 * So we race with normal scheduler movements, but that's OK, as long
6243 * as the task is no longer on this CPU.
6245 * Returns non-zero if task was successfully migrated.
6247 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6249 struct rq *rq_dest, *rq_src;
6250 int ret = 0;
6252 if (unlikely(!cpu_active(dest_cpu)))
6253 return ret;
6255 rq_src = cpu_rq(src_cpu);
6256 rq_dest = cpu_rq(dest_cpu);
6258 raw_spin_lock(&p->pi_lock);
6259 double_rq_lock(rq_src, rq_dest);
6260 /* Already moved. */
6261 if (task_cpu(p) != src_cpu)
6262 goto done;
6263 /* Affinity changed (again). */
6264 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
6265 goto fail;
6268 * If we're not on a rq, the next wake-up will ensure we're
6269 * placed properly.
6271 if (p->on_rq) {
6272 deactivate_task(rq_src, p, 0);
6273 set_task_cpu(p, dest_cpu);
6274 activate_task(rq_dest, p, 0);
6275 check_preempt_curr(rq_dest, p, 0);
6277 done:
6278 ret = 1;
6279 fail:
6280 double_rq_unlock(rq_src, rq_dest);
6281 raw_spin_unlock(&p->pi_lock);
6282 return ret;
6286 * migration_cpu_stop - this will be executed by a highprio stopper thread
6287 * and performs thread migration by bumping thread off CPU then
6288 * 'pushing' onto another runqueue.
6290 static int migration_cpu_stop(void *data)
6292 struct migration_arg *arg = data;
6295 * The original target cpu might have gone down and we might
6296 * be on another cpu but it doesn't matter.
6298 local_irq_disable();
6299 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6300 local_irq_enable();
6301 return 0;
6304 #ifdef CONFIG_HOTPLUG_CPU
6307 * Ensures that the idle task is using init_mm right before its cpu goes
6308 * offline.
6310 void idle_task_exit(void)
6312 struct mm_struct *mm = current->active_mm;
6314 BUG_ON(cpu_online(smp_processor_id()));
6316 if (mm != &init_mm)
6317 switch_mm(mm, &init_mm, current);
6318 mmdrop(mm);
6322 * While a dead CPU has no uninterruptible tasks queued at this point,
6323 * it might still have a nonzero ->nr_uninterruptible counter, because
6324 * for performance reasons the counter is not stricly tracking tasks to
6325 * their home CPUs. So we just add the counter to another CPU's counter,
6326 * to keep the global sum constant after CPU-down:
6328 static void migrate_nr_uninterruptible(struct rq *rq_src)
6330 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6332 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6333 rq_src->nr_uninterruptible = 0;
6337 * remove the tasks which were accounted by rq from calc_load_tasks.
6339 static void calc_global_load_remove(struct rq *rq)
6341 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6342 rq->calc_load_active = 0;
6345 #ifdef CONFIG_CFS_BANDWIDTH
6346 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6348 struct cfs_rq *cfs_rq;
6350 for_each_leaf_cfs_rq(rq, cfs_rq) {
6351 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6353 if (!cfs_rq->runtime_enabled)
6354 continue;
6357 * clock_task is not advancing so we just need to make sure
6358 * there's some valid quota amount
6360 cfs_rq->runtime_remaining = cfs_b->quota;
6361 if (cfs_rq_throttled(cfs_rq))
6362 unthrottle_cfs_rq(cfs_rq);
6365 #else
6366 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6367 #endif
6370 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6371 * try_to_wake_up()->select_task_rq().
6373 * Called with rq->lock held even though we'er in stop_machine() and
6374 * there's no concurrency possible, we hold the required locks anyway
6375 * because of lock validation efforts.
6377 static void migrate_tasks(unsigned int dead_cpu)
6379 struct rq *rq = cpu_rq(dead_cpu);
6380 struct task_struct *next, *stop = rq->stop;
6381 int dest_cpu;
6384 * Fudge the rq selection such that the below task selection loop
6385 * doesn't get stuck on the currently eligible stop task.
6387 * We're currently inside stop_machine() and the rq is either stuck
6388 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6389 * either way we should never end up calling schedule() until we're
6390 * done here.
6392 rq->stop = NULL;
6394 /* Ensure any throttled groups are reachable by pick_next_task */
6395 unthrottle_offline_cfs_rqs(rq);
6397 for ( ; ; ) {
6399 * There's this thread running, bail when that's the only
6400 * remaining thread.
6402 if (rq->nr_running == 1)
6403 break;
6405 next = pick_next_task(rq);
6406 BUG_ON(!next);
6407 next->sched_class->put_prev_task(rq, next);
6409 /* Find suitable destination for @next, with force if needed. */
6410 dest_cpu = select_fallback_rq(dead_cpu, next);
6411 raw_spin_unlock(&rq->lock);
6413 __migrate_task(next, dead_cpu, dest_cpu);
6415 raw_spin_lock(&rq->lock);
6418 rq->stop = stop;
6421 #endif /* CONFIG_HOTPLUG_CPU */
6423 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6425 static struct ctl_table sd_ctl_dir[] = {
6427 .procname = "sched_domain",
6428 .mode = 0555,
6433 static struct ctl_table sd_ctl_root[] = {
6435 .procname = "kernel",
6436 .mode = 0555,
6437 .child = sd_ctl_dir,
6442 static struct ctl_table *sd_alloc_ctl_entry(int n)
6444 struct ctl_table *entry =
6445 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6447 return entry;
6450 static void sd_free_ctl_entry(struct ctl_table **tablep)
6452 struct ctl_table *entry;
6455 * In the intermediate directories, both the child directory and
6456 * procname are dynamically allocated and could fail but the mode
6457 * will always be set. In the lowest directory the names are
6458 * static strings and all have proc handlers.
6460 for (entry = *tablep; entry->mode; entry++) {
6461 if (entry->child)
6462 sd_free_ctl_entry(&entry->child);
6463 if (entry->proc_handler == NULL)
6464 kfree(entry->procname);
6467 kfree(*tablep);
6468 *tablep = NULL;
6471 static void
6472 set_table_entry(struct ctl_table *entry,
6473 const char *procname, void *data, int maxlen,
6474 mode_t mode, proc_handler *proc_handler)
6476 entry->procname = procname;
6477 entry->data = data;
6478 entry->maxlen = maxlen;
6479 entry->mode = mode;
6480 entry->proc_handler = proc_handler;
6483 static struct ctl_table *
6484 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6486 struct ctl_table *table = sd_alloc_ctl_entry(13);
6488 if (table == NULL)
6489 return NULL;
6491 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6492 sizeof(long), 0644, proc_doulongvec_minmax);
6493 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6494 sizeof(long), 0644, proc_doulongvec_minmax);
6495 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6496 sizeof(int), 0644, proc_dointvec_minmax);
6497 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6498 sizeof(int), 0644, proc_dointvec_minmax);
6499 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6500 sizeof(int), 0644, proc_dointvec_minmax);
6501 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6502 sizeof(int), 0644, proc_dointvec_minmax);
6503 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6504 sizeof(int), 0644, proc_dointvec_minmax);
6505 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6506 sizeof(int), 0644, proc_dointvec_minmax);
6507 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6508 sizeof(int), 0644, proc_dointvec_minmax);
6509 set_table_entry(&table[9], "cache_nice_tries",
6510 &sd->cache_nice_tries,
6511 sizeof(int), 0644, proc_dointvec_minmax);
6512 set_table_entry(&table[10], "flags", &sd->flags,
6513 sizeof(int), 0644, proc_dointvec_minmax);
6514 set_table_entry(&table[11], "name", sd->name,
6515 CORENAME_MAX_SIZE, 0444, proc_dostring);
6516 /* &table[12] is terminator */
6518 return table;
6521 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6523 struct ctl_table *entry, *table;
6524 struct sched_domain *sd;
6525 int domain_num = 0, i;
6526 char buf[32];
6528 for_each_domain(cpu, sd)
6529 domain_num++;
6530 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6531 if (table == NULL)
6532 return NULL;
6534 i = 0;
6535 for_each_domain(cpu, sd) {
6536 snprintf(buf, 32, "domain%d", i);
6537 entry->procname = kstrdup(buf, GFP_KERNEL);
6538 entry->mode = 0555;
6539 entry->child = sd_alloc_ctl_domain_table(sd);
6540 entry++;
6541 i++;
6543 return table;
6546 static struct ctl_table_header *sd_sysctl_header;
6547 static void register_sched_domain_sysctl(void)
6549 int i, cpu_num = num_possible_cpus();
6550 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6551 char buf[32];
6553 WARN_ON(sd_ctl_dir[0].child);
6554 sd_ctl_dir[0].child = entry;
6556 if (entry == NULL)
6557 return;
6559 for_each_possible_cpu(i) {
6560 snprintf(buf, 32, "cpu%d", i);
6561 entry->procname = kstrdup(buf, GFP_KERNEL);
6562 entry->mode = 0555;
6563 entry->child = sd_alloc_ctl_cpu_table(i);
6564 entry++;
6567 WARN_ON(sd_sysctl_header);
6568 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6571 /* may be called multiple times per register */
6572 static void unregister_sched_domain_sysctl(void)
6574 if (sd_sysctl_header)
6575 unregister_sysctl_table(sd_sysctl_header);
6576 sd_sysctl_header = NULL;
6577 if (sd_ctl_dir[0].child)
6578 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6580 #else
6581 static void register_sched_domain_sysctl(void)
6584 static void unregister_sched_domain_sysctl(void)
6587 #endif
6589 static void set_rq_online(struct rq *rq)
6591 if (!rq->online) {
6592 const struct sched_class *class;
6594 cpumask_set_cpu(rq->cpu, rq->rd->online);
6595 rq->online = 1;
6597 for_each_class(class) {
6598 if (class->rq_online)
6599 class->rq_online(rq);
6604 static void set_rq_offline(struct rq *rq)
6606 if (rq->online) {
6607 const struct sched_class *class;
6609 for_each_class(class) {
6610 if (class->rq_offline)
6611 class->rq_offline(rq);
6614 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6615 rq->online = 0;
6620 * migration_call - callback that gets triggered when a CPU is added.
6621 * Here we can start up the necessary migration thread for the new CPU.
6623 static int __cpuinit
6624 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6626 int cpu = (long)hcpu;
6627 unsigned long flags;
6628 struct rq *rq = cpu_rq(cpu);
6630 switch (action & ~CPU_TASKS_FROZEN) {
6632 case CPU_UP_PREPARE:
6633 rq->calc_load_update = calc_load_update;
6634 break;
6636 case CPU_ONLINE:
6637 /* Update our root-domain */
6638 raw_spin_lock_irqsave(&rq->lock, flags);
6639 if (rq->rd) {
6640 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6642 set_rq_online(rq);
6644 raw_spin_unlock_irqrestore(&rq->lock, flags);
6645 break;
6647 #ifdef CONFIG_HOTPLUG_CPU
6648 case CPU_DYING:
6649 sched_ttwu_pending();
6650 /* Update our root-domain */
6651 raw_spin_lock_irqsave(&rq->lock, flags);
6652 if (rq->rd) {
6653 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6654 set_rq_offline(rq);
6656 migrate_tasks(cpu);
6657 BUG_ON(rq->nr_running != 1); /* the migration thread */
6658 raw_spin_unlock_irqrestore(&rq->lock, flags);
6660 migrate_nr_uninterruptible(rq);
6661 calc_global_load_remove(rq);
6662 break;
6663 #endif
6666 update_max_interval();
6668 return NOTIFY_OK;
6672 * Register at high priority so that task migration (migrate_all_tasks)
6673 * happens before everything else. This has to be lower priority than
6674 * the notifier in the perf_event subsystem, though.
6676 static struct notifier_block __cpuinitdata migration_notifier = {
6677 .notifier_call = migration_call,
6678 .priority = CPU_PRI_MIGRATION,
6681 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6682 unsigned long action, void *hcpu)
6684 switch (action & ~CPU_TASKS_FROZEN) {
6685 case CPU_ONLINE:
6686 case CPU_DOWN_FAILED:
6687 set_cpu_active((long)hcpu, true);
6688 return NOTIFY_OK;
6689 default:
6690 return NOTIFY_DONE;
6694 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6695 unsigned long action, void *hcpu)
6697 switch (action & ~CPU_TASKS_FROZEN) {
6698 case CPU_DOWN_PREPARE:
6699 set_cpu_active((long)hcpu, false);
6700 return NOTIFY_OK;
6701 default:
6702 return NOTIFY_DONE;
6706 static int __init migration_init(void)
6708 void *cpu = (void *)(long)smp_processor_id();
6709 int err;
6711 /* Initialize migration for the boot CPU */
6712 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6713 BUG_ON(err == NOTIFY_BAD);
6714 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6715 register_cpu_notifier(&migration_notifier);
6717 /* Register cpu active notifiers */
6718 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6719 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6721 return 0;
6723 early_initcall(migration_init);
6724 #endif
6726 #ifdef CONFIG_SMP
6728 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6730 #ifdef CONFIG_SCHED_DEBUG
6732 static __read_mostly int sched_domain_debug_enabled;
6734 static int __init sched_domain_debug_setup(char *str)
6736 sched_domain_debug_enabled = 1;
6738 return 0;
6740 early_param("sched_debug", sched_domain_debug_setup);
6742 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6743 struct cpumask *groupmask)
6745 struct sched_group *group = sd->groups;
6746 char str[256];
6748 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6749 cpumask_clear(groupmask);
6751 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6753 if (!(sd->flags & SD_LOAD_BALANCE)) {
6754 printk("does not load-balance\n");
6755 if (sd->parent)
6756 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6757 " has parent");
6758 return -1;
6761 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6763 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6764 printk(KERN_ERR "ERROR: domain->span does not contain "
6765 "CPU%d\n", cpu);
6767 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6768 printk(KERN_ERR "ERROR: domain->groups does not contain"
6769 " CPU%d\n", cpu);
6772 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6773 do {
6774 if (!group) {
6775 printk("\n");
6776 printk(KERN_ERR "ERROR: group is NULL\n");
6777 break;
6780 if (!group->sgp->power) {
6781 printk(KERN_CONT "\n");
6782 printk(KERN_ERR "ERROR: domain->cpu_power not "
6783 "set\n");
6784 break;
6787 if (!cpumask_weight(sched_group_cpus(group))) {
6788 printk(KERN_CONT "\n");
6789 printk(KERN_ERR "ERROR: empty group\n");
6790 break;
6793 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6794 printk(KERN_CONT "\n");
6795 printk(KERN_ERR "ERROR: repeated CPUs\n");
6796 break;
6799 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6801 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6803 printk(KERN_CONT " %s", str);
6804 if (group->sgp->power != SCHED_POWER_SCALE) {
6805 printk(KERN_CONT " (cpu_power = %d)",
6806 group->sgp->power);
6809 group = group->next;
6810 } while (group != sd->groups);
6811 printk(KERN_CONT "\n");
6813 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6814 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6816 if (sd->parent &&
6817 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6818 printk(KERN_ERR "ERROR: parent span is not a superset "
6819 "of domain->span\n");
6820 return 0;
6823 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6825 int level = 0;
6827 if (!sched_domain_debug_enabled)
6828 return;
6830 if (!sd) {
6831 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6832 return;
6835 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6837 for (;;) {
6838 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6839 break;
6840 level++;
6841 sd = sd->parent;
6842 if (!sd)
6843 break;
6846 #else /* !CONFIG_SCHED_DEBUG */
6847 # define sched_domain_debug(sd, cpu) do { } while (0)
6848 #endif /* CONFIG_SCHED_DEBUG */
6850 static int sd_degenerate(struct sched_domain *sd)
6852 if (cpumask_weight(sched_domain_span(sd)) == 1)
6853 return 1;
6855 /* Following flags need at least 2 groups */
6856 if (sd->flags & (SD_LOAD_BALANCE |
6857 SD_BALANCE_NEWIDLE |
6858 SD_BALANCE_FORK |
6859 SD_BALANCE_EXEC |
6860 SD_SHARE_CPUPOWER |
6861 SD_SHARE_PKG_RESOURCES)) {
6862 if (sd->groups != sd->groups->next)
6863 return 0;
6866 /* Following flags don't use groups */
6867 if (sd->flags & (SD_WAKE_AFFINE))
6868 return 0;
6870 return 1;
6873 static int
6874 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6876 unsigned long cflags = sd->flags, pflags = parent->flags;
6878 if (sd_degenerate(parent))
6879 return 1;
6881 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6882 return 0;
6884 /* Flags needing groups don't count if only 1 group in parent */
6885 if (parent->groups == parent->groups->next) {
6886 pflags &= ~(SD_LOAD_BALANCE |
6887 SD_BALANCE_NEWIDLE |
6888 SD_BALANCE_FORK |
6889 SD_BALANCE_EXEC |
6890 SD_SHARE_CPUPOWER |
6891 SD_SHARE_PKG_RESOURCES);
6892 if (nr_node_ids == 1)
6893 pflags &= ~SD_SERIALIZE;
6895 if (~cflags & pflags)
6896 return 0;
6898 return 1;
6901 static void free_rootdomain(struct rcu_head *rcu)
6903 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6905 cpupri_cleanup(&rd->cpupri);
6906 free_cpumask_var(rd->rto_mask);
6907 free_cpumask_var(rd->online);
6908 free_cpumask_var(rd->span);
6909 kfree(rd);
6912 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6914 struct root_domain *old_rd = NULL;
6915 unsigned long flags;
6917 raw_spin_lock_irqsave(&rq->lock, flags);
6919 if (rq->rd) {
6920 old_rd = rq->rd;
6922 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6923 set_rq_offline(rq);
6925 cpumask_clear_cpu(rq->cpu, old_rd->span);
6928 * If we dont want to free the old_rt yet then
6929 * set old_rd to NULL to skip the freeing later
6930 * in this function:
6932 if (!atomic_dec_and_test(&old_rd->refcount))
6933 old_rd = NULL;
6936 atomic_inc(&rd->refcount);
6937 rq->rd = rd;
6939 cpumask_set_cpu(rq->cpu, rd->span);
6940 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6941 set_rq_online(rq);
6943 raw_spin_unlock_irqrestore(&rq->lock, flags);
6945 if (old_rd)
6946 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6949 static int init_rootdomain(struct root_domain *rd)
6951 memset(rd, 0, sizeof(*rd));
6953 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6954 goto out;
6955 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6956 goto free_span;
6957 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6958 goto free_online;
6960 if (cpupri_init(&rd->cpupri) != 0)
6961 goto free_rto_mask;
6962 return 0;
6964 free_rto_mask:
6965 free_cpumask_var(rd->rto_mask);
6966 free_online:
6967 free_cpumask_var(rd->online);
6968 free_span:
6969 free_cpumask_var(rd->span);
6970 out:
6971 return -ENOMEM;
6974 static void init_defrootdomain(void)
6976 init_rootdomain(&def_root_domain);
6978 atomic_set(&def_root_domain.refcount, 1);
6981 static struct root_domain *alloc_rootdomain(void)
6983 struct root_domain *rd;
6985 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6986 if (!rd)
6987 return NULL;
6989 if (init_rootdomain(rd) != 0) {
6990 kfree(rd);
6991 return NULL;
6994 return rd;
6997 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6999 struct sched_group *tmp, *first;
7001 if (!sg)
7002 return;
7004 first = sg;
7005 do {
7006 tmp = sg->next;
7008 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7009 kfree(sg->sgp);
7011 kfree(sg);
7012 sg = tmp;
7013 } while (sg != first);
7016 static void free_sched_domain(struct rcu_head *rcu)
7018 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7021 * If its an overlapping domain it has private groups, iterate and
7022 * nuke them all.
7024 if (sd->flags & SD_OVERLAP) {
7025 free_sched_groups(sd->groups, 1);
7026 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7027 kfree(sd->groups->sgp);
7028 kfree(sd->groups);
7030 kfree(sd);
7033 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7035 call_rcu(&sd->rcu, free_sched_domain);
7038 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7040 for (; sd; sd = sd->parent)
7041 destroy_sched_domain(sd, cpu);
7045 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7046 * hold the hotplug lock.
7048 static void
7049 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7051 struct rq *rq = cpu_rq(cpu);
7052 struct sched_domain *tmp;
7054 /* Remove the sched domains which do not contribute to scheduling. */
7055 for (tmp = sd; tmp; ) {
7056 struct sched_domain *parent = tmp->parent;
7057 if (!parent)
7058 break;
7060 if (sd_parent_degenerate(tmp, parent)) {
7061 tmp->parent = parent->parent;
7062 if (parent->parent)
7063 parent->parent->child = tmp;
7064 destroy_sched_domain(parent, cpu);
7065 } else
7066 tmp = tmp->parent;
7069 if (sd && sd_degenerate(sd)) {
7070 tmp = sd;
7071 sd = sd->parent;
7072 destroy_sched_domain(tmp, cpu);
7073 if (sd)
7074 sd->child = NULL;
7077 sched_domain_debug(sd, cpu);
7079 rq_attach_root(rq, rd);
7080 tmp = rq->sd;
7081 rcu_assign_pointer(rq->sd, sd);
7082 destroy_sched_domains(tmp, cpu);
7085 /* cpus with isolated domains */
7086 static cpumask_var_t cpu_isolated_map;
7088 /* Setup the mask of cpus configured for isolated domains */
7089 static int __init isolated_cpu_setup(char *str)
7091 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7092 cpulist_parse(str, cpu_isolated_map);
7093 return 1;
7096 __setup("isolcpus=", isolated_cpu_setup);
7098 #define SD_NODES_PER_DOMAIN 16
7100 #ifdef CONFIG_NUMA
7103 * find_next_best_node - find the next node to include in a sched_domain
7104 * @node: node whose sched_domain we're building
7105 * @used_nodes: nodes already in the sched_domain
7107 * Find the next node to include in a given scheduling domain. Simply
7108 * finds the closest node not already in the @used_nodes map.
7110 * Should use nodemask_t.
7112 static int find_next_best_node(int node, nodemask_t *used_nodes)
7114 int i, n, val, min_val, best_node = -1;
7116 min_val = INT_MAX;
7118 for (i = 0; i < nr_node_ids; i++) {
7119 /* Start at @node */
7120 n = (node + i) % nr_node_ids;
7122 if (!nr_cpus_node(n))
7123 continue;
7125 /* Skip already used nodes */
7126 if (node_isset(n, *used_nodes))
7127 continue;
7129 /* Simple min distance search */
7130 val = node_distance(node, n);
7132 if (val < min_val) {
7133 min_val = val;
7134 best_node = n;
7138 if (best_node != -1)
7139 node_set(best_node, *used_nodes);
7140 return best_node;
7144 * sched_domain_node_span - get a cpumask for a node's sched_domain
7145 * @node: node whose cpumask we're constructing
7146 * @span: resulting cpumask
7148 * Given a node, construct a good cpumask for its sched_domain to span. It
7149 * should be one that prevents unnecessary balancing, but also spreads tasks
7150 * out optimally.
7152 static void sched_domain_node_span(int node, struct cpumask *span)
7154 nodemask_t used_nodes;
7155 int i;
7157 cpumask_clear(span);
7158 nodes_clear(used_nodes);
7160 cpumask_or(span, span, cpumask_of_node(node));
7161 node_set(node, used_nodes);
7163 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7164 int next_node = find_next_best_node(node, &used_nodes);
7165 if (next_node < 0)
7166 break;
7167 cpumask_or(span, span, cpumask_of_node(next_node));
7171 static const struct cpumask *cpu_node_mask(int cpu)
7173 lockdep_assert_held(&sched_domains_mutex);
7175 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7177 return sched_domains_tmpmask;
7180 static const struct cpumask *cpu_allnodes_mask(int cpu)
7182 return cpu_possible_mask;
7184 #endif /* CONFIG_NUMA */
7186 static const struct cpumask *cpu_cpu_mask(int cpu)
7188 return cpumask_of_node(cpu_to_node(cpu));
7191 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7193 struct sd_data {
7194 struct sched_domain **__percpu sd;
7195 struct sched_group **__percpu sg;
7196 struct sched_group_power **__percpu sgp;
7199 struct s_data {
7200 struct sched_domain ** __percpu sd;
7201 struct root_domain *rd;
7204 enum s_alloc {
7205 sa_rootdomain,
7206 sa_sd,
7207 sa_sd_storage,
7208 sa_none,
7211 struct sched_domain_topology_level;
7213 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7214 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7216 #define SDTL_OVERLAP 0x01
7218 struct sched_domain_topology_level {
7219 sched_domain_init_f init;
7220 sched_domain_mask_f mask;
7221 int flags;
7222 struct sd_data data;
7225 static int
7226 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7228 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7229 const struct cpumask *span = sched_domain_span(sd);
7230 struct cpumask *covered = sched_domains_tmpmask;
7231 struct sd_data *sdd = sd->private;
7232 struct sched_domain *child;
7233 int i;
7235 cpumask_clear(covered);
7237 for_each_cpu(i, span) {
7238 struct cpumask *sg_span;
7240 if (cpumask_test_cpu(i, covered))
7241 continue;
7243 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7244 GFP_KERNEL, cpu_to_node(i));
7246 if (!sg)
7247 goto fail;
7249 sg_span = sched_group_cpus(sg);
7251 child = *per_cpu_ptr(sdd->sd, i);
7252 if (child->child) {
7253 child = child->child;
7254 cpumask_copy(sg_span, sched_domain_span(child));
7255 } else
7256 cpumask_set_cpu(i, sg_span);
7258 cpumask_or(covered, covered, sg_span);
7260 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7261 atomic_inc(&sg->sgp->ref);
7263 if (cpumask_test_cpu(cpu, sg_span))
7264 groups = sg;
7266 if (!first)
7267 first = sg;
7268 if (last)
7269 last->next = sg;
7270 last = sg;
7271 last->next = first;
7273 sd->groups = groups;
7275 return 0;
7277 fail:
7278 free_sched_groups(first, 0);
7280 return -ENOMEM;
7283 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7285 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7286 struct sched_domain *child = sd->child;
7288 if (child)
7289 cpu = cpumask_first(sched_domain_span(child));
7291 if (sg) {
7292 *sg = *per_cpu_ptr(sdd->sg, cpu);
7293 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7294 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7297 return cpu;
7301 * build_sched_groups will build a circular linked list of the groups
7302 * covered by the given span, and will set each group's ->cpumask correctly,
7303 * and ->cpu_power to 0.
7305 * Assumes the sched_domain tree is fully constructed
7307 static int
7308 build_sched_groups(struct sched_domain *sd, int cpu)
7310 struct sched_group *first = NULL, *last = NULL;
7311 struct sd_data *sdd = sd->private;
7312 const struct cpumask *span = sched_domain_span(sd);
7313 struct cpumask *covered;
7314 int i;
7316 get_group(cpu, sdd, &sd->groups);
7317 atomic_inc(&sd->groups->ref);
7319 if (cpu != cpumask_first(sched_domain_span(sd)))
7320 return 0;
7322 lockdep_assert_held(&sched_domains_mutex);
7323 covered = sched_domains_tmpmask;
7325 cpumask_clear(covered);
7327 for_each_cpu(i, span) {
7328 struct sched_group *sg;
7329 int group = get_group(i, sdd, &sg);
7330 int j;
7332 if (cpumask_test_cpu(i, covered))
7333 continue;
7335 cpumask_clear(sched_group_cpus(sg));
7336 sg->sgp->power = 0;
7338 for_each_cpu(j, span) {
7339 if (get_group(j, sdd, NULL) != group)
7340 continue;
7342 cpumask_set_cpu(j, covered);
7343 cpumask_set_cpu(j, sched_group_cpus(sg));
7346 if (!first)
7347 first = sg;
7348 if (last)
7349 last->next = sg;
7350 last = sg;
7352 last->next = first;
7354 return 0;
7358 * Initialize sched groups cpu_power.
7360 * cpu_power indicates the capacity of sched group, which is used while
7361 * distributing the load between different sched groups in a sched domain.
7362 * Typically cpu_power for all the groups in a sched domain will be same unless
7363 * there are asymmetries in the topology. If there are asymmetries, group
7364 * having more cpu_power will pickup more load compared to the group having
7365 * less cpu_power.
7367 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7369 struct sched_group *sg = sd->groups;
7371 WARN_ON(!sd || !sg);
7373 do {
7374 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7375 sg = sg->next;
7376 } while (sg != sd->groups);
7378 if (cpu != group_first_cpu(sg))
7379 return;
7381 update_group_power(sd, cpu);
7385 * Initializers for schedule domains
7386 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7389 #ifdef CONFIG_SCHED_DEBUG
7390 # define SD_INIT_NAME(sd, type) sd->name = #type
7391 #else
7392 # define SD_INIT_NAME(sd, type) do { } while (0)
7393 #endif
7395 #define SD_INIT_FUNC(type) \
7396 static noinline struct sched_domain * \
7397 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7399 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7400 *sd = SD_##type##_INIT; \
7401 SD_INIT_NAME(sd, type); \
7402 sd->private = &tl->data; \
7403 return sd; \
7406 SD_INIT_FUNC(CPU)
7407 #ifdef CONFIG_NUMA
7408 SD_INIT_FUNC(ALLNODES)
7409 SD_INIT_FUNC(NODE)
7410 #endif
7411 #ifdef CONFIG_SCHED_SMT
7412 SD_INIT_FUNC(SIBLING)
7413 #endif
7414 #ifdef CONFIG_SCHED_MC
7415 SD_INIT_FUNC(MC)
7416 #endif
7417 #ifdef CONFIG_SCHED_BOOK
7418 SD_INIT_FUNC(BOOK)
7419 #endif
7421 static int default_relax_domain_level = -1;
7422 int sched_domain_level_max;
7424 static int __init setup_relax_domain_level(char *str)
7426 unsigned long val;
7428 val = simple_strtoul(str, NULL, 0);
7429 if (val < sched_domain_level_max)
7430 default_relax_domain_level = val;
7432 return 1;
7434 __setup("relax_domain_level=", setup_relax_domain_level);
7436 static void set_domain_attribute(struct sched_domain *sd,
7437 struct sched_domain_attr *attr)
7439 int request;
7441 if (!attr || attr->relax_domain_level < 0) {
7442 if (default_relax_domain_level < 0)
7443 return;
7444 else
7445 request = default_relax_domain_level;
7446 } else
7447 request = attr->relax_domain_level;
7448 if (request < sd->level) {
7449 /* turn off idle balance on this domain */
7450 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7451 } else {
7452 /* turn on idle balance on this domain */
7453 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7457 static void __sdt_free(const struct cpumask *cpu_map);
7458 static int __sdt_alloc(const struct cpumask *cpu_map);
7460 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7461 const struct cpumask *cpu_map)
7463 switch (what) {
7464 case sa_rootdomain:
7465 if (!atomic_read(&d->rd->refcount))
7466 free_rootdomain(&d->rd->rcu); /* fall through */
7467 case sa_sd:
7468 free_percpu(d->sd); /* fall through */
7469 case sa_sd_storage:
7470 __sdt_free(cpu_map); /* fall through */
7471 case sa_none:
7472 break;
7476 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7477 const struct cpumask *cpu_map)
7479 memset(d, 0, sizeof(*d));
7481 if (__sdt_alloc(cpu_map))
7482 return sa_sd_storage;
7483 d->sd = alloc_percpu(struct sched_domain *);
7484 if (!d->sd)
7485 return sa_sd_storage;
7486 d->rd = alloc_rootdomain();
7487 if (!d->rd)
7488 return sa_sd;
7489 return sa_rootdomain;
7493 * NULL the sd_data elements we've used to build the sched_domain and
7494 * sched_group structure so that the subsequent __free_domain_allocs()
7495 * will not free the data we're using.
7497 static void claim_allocations(int cpu, struct sched_domain *sd)
7499 struct sd_data *sdd = sd->private;
7501 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7502 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7504 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7505 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7507 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7508 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7511 #ifdef CONFIG_SCHED_SMT
7512 static const struct cpumask *cpu_smt_mask(int cpu)
7514 return topology_thread_cpumask(cpu);
7516 #endif
7519 * Topology list, bottom-up.
7521 static struct sched_domain_topology_level default_topology[] = {
7522 #ifdef CONFIG_SCHED_SMT
7523 { sd_init_SIBLING, cpu_smt_mask, },
7524 #endif
7525 #ifdef CONFIG_SCHED_MC
7526 { sd_init_MC, cpu_coregroup_mask, },
7527 #endif
7528 #ifdef CONFIG_SCHED_BOOK
7529 { sd_init_BOOK, cpu_book_mask, },
7530 #endif
7531 { sd_init_CPU, cpu_cpu_mask, },
7532 #ifdef CONFIG_NUMA
7533 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7534 { sd_init_ALLNODES, cpu_allnodes_mask, },
7535 #endif
7536 { NULL, },
7539 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7541 static int __sdt_alloc(const struct cpumask *cpu_map)
7543 struct sched_domain_topology_level *tl;
7544 int j;
7546 for (tl = sched_domain_topology; tl->init; tl++) {
7547 struct sd_data *sdd = &tl->data;
7549 sdd->sd = alloc_percpu(struct sched_domain *);
7550 if (!sdd->sd)
7551 return -ENOMEM;
7553 sdd->sg = alloc_percpu(struct sched_group *);
7554 if (!sdd->sg)
7555 return -ENOMEM;
7557 sdd->sgp = alloc_percpu(struct sched_group_power *);
7558 if (!sdd->sgp)
7559 return -ENOMEM;
7561 for_each_cpu(j, cpu_map) {
7562 struct sched_domain *sd;
7563 struct sched_group *sg;
7564 struct sched_group_power *sgp;
7566 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7567 GFP_KERNEL, cpu_to_node(j));
7568 if (!sd)
7569 return -ENOMEM;
7571 *per_cpu_ptr(sdd->sd, j) = sd;
7573 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7574 GFP_KERNEL, cpu_to_node(j));
7575 if (!sg)
7576 return -ENOMEM;
7578 *per_cpu_ptr(sdd->sg, j) = sg;
7580 sgp = kzalloc_node(sizeof(struct sched_group_power),
7581 GFP_KERNEL, cpu_to_node(j));
7582 if (!sgp)
7583 return -ENOMEM;
7585 *per_cpu_ptr(sdd->sgp, j) = sgp;
7589 return 0;
7592 static void __sdt_free(const struct cpumask *cpu_map)
7594 struct sched_domain_topology_level *tl;
7595 int j;
7597 for (tl = sched_domain_topology; tl->init; tl++) {
7598 struct sd_data *sdd = &tl->data;
7600 for_each_cpu(j, cpu_map) {
7601 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7602 if (sd && (sd->flags & SD_OVERLAP))
7603 free_sched_groups(sd->groups, 0);
7604 kfree(*per_cpu_ptr(sdd->sd, j));
7605 kfree(*per_cpu_ptr(sdd->sg, j));
7606 kfree(*per_cpu_ptr(sdd->sgp, j));
7608 free_percpu(sdd->sd);
7609 free_percpu(sdd->sg);
7610 free_percpu(sdd->sgp);
7614 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7615 struct s_data *d, const struct cpumask *cpu_map,
7616 struct sched_domain_attr *attr, struct sched_domain *child,
7617 int cpu)
7619 struct sched_domain *sd = tl->init(tl, cpu);
7620 if (!sd)
7621 return child;
7623 set_domain_attribute(sd, attr);
7624 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7625 if (child) {
7626 sd->level = child->level + 1;
7627 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7628 child->parent = sd;
7630 sd->child = child;
7632 return sd;
7636 * Build sched domains for a given set of cpus and attach the sched domains
7637 * to the individual cpus
7639 static int build_sched_domains(const struct cpumask *cpu_map,
7640 struct sched_domain_attr *attr)
7642 enum s_alloc alloc_state = sa_none;
7643 struct sched_domain *sd;
7644 struct s_data d;
7645 int i, ret = -ENOMEM;
7647 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7648 if (alloc_state != sa_rootdomain)
7649 goto error;
7651 /* Set up domains for cpus specified by the cpu_map. */
7652 for_each_cpu(i, cpu_map) {
7653 struct sched_domain_topology_level *tl;
7655 sd = NULL;
7656 for (tl = sched_domain_topology; tl->init; tl++) {
7657 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7658 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7659 sd->flags |= SD_OVERLAP;
7660 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7661 break;
7664 while (sd->child)
7665 sd = sd->child;
7667 *per_cpu_ptr(d.sd, i) = sd;
7670 /* Build the groups for the domains */
7671 for_each_cpu(i, cpu_map) {
7672 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7673 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7674 if (sd->flags & SD_OVERLAP) {
7675 if (build_overlap_sched_groups(sd, i))
7676 goto error;
7677 } else {
7678 if (build_sched_groups(sd, i))
7679 goto error;
7684 /* Calculate CPU power for physical packages and nodes */
7685 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7686 if (!cpumask_test_cpu(i, cpu_map))
7687 continue;
7689 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7690 claim_allocations(i, sd);
7691 init_sched_groups_power(i, sd);
7695 /* Attach the domains */
7696 rcu_read_lock();
7697 for_each_cpu(i, cpu_map) {
7698 sd = *per_cpu_ptr(d.sd, i);
7699 cpu_attach_domain(sd, d.rd, i);
7701 rcu_read_unlock();
7703 ret = 0;
7704 error:
7705 __free_domain_allocs(&d, alloc_state, cpu_map);
7706 return ret;
7709 static cpumask_var_t *doms_cur; /* current sched domains */
7710 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7711 static struct sched_domain_attr *dattr_cur;
7712 /* attribues of custom domains in 'doms_cur' */
7715 * Special case: If a kmalloc of a doms_cur partition (array of
7716 * cpumask) fails, then fallback to a single sched domain,
7717 * as determined by the single cpumask fallback_doms.
7719 static cpumask_var_t fallback_doms;
7722 * arch_update_cpu_topology lets virtualized architectures update the
7723 * cpu core maps. It is supposed to return 1 if the topology changed
7724 * or 0 if it stayed the same.
7726 int __attribute__((weak)) arch_update_cpu_topology(void)
7728 return 0;
7731 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7733 int i;
7734 cpumask_var_t *doms;
7736 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7737 if (!doms)
7738 return NULL;
7739 for (i = 0; i < ndoms; i++) {
7740 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7741 free_sched_domains(doms, i);
7742 return NULL;
7745 return doms;
7748 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7750 unsigned int i;
7751 for (i = 0; i < ndoms; i++)
7752 free_cpumask_var(doms[i]);
7753 kfree(doms);
7757 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7758 * For now this just excludes isolated cpus, but could be used to
7759 * exclude other special cases in the future.
7761 static int init_sched_domains(const struct cpumask *cpu_map)
7763 int err;
7765 arch_update_cpu_topology();
7766 ndoms_cur = 1;
7767 doms_cur = alloc_sched_domains(ndoms_cur);
7768 if (!doms_cur)
7769 doms_cur = &fallback_doms;
7770 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7771 dattr_cur = NULL;
7772 err = build_sched_domains(doms_cur[0], NULL);
7773 register_sched_domain_sysctl();
7775 return err;
7779 * Detach sched domains from a group of cpus specified in cpu_map
7780 * These cpus will now be attached to the NULL domain
7782 static void detach_destroy_domains(const struct cpumask *cpu_map)
7784 int i;
7786 rcu_read_lock();
7787 for_each_cpu(i, cpu_map)
7788 cpu_attach_domain(NULL, &def_root_domain, i);
7789 rcu_read_unlock();
7792 /* handle null as "default" */
7793 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7794 struct sched_domain_attr *new, int idx_new)
7796 struct sched_domain_attr tmp;
7798 /* fast path */
7799 if (!new && !cur)
7800 return 1;
7802 tmp = SD_ATTR_INIT;
7803 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7804 new ? (new + idx_new) : &tmp,
7805 sizeof(struct sched_domain_attr));
7809 * Partition sched domains as specified by the 'ndoms_new'
7810 * cpumasks in the array doms_new[] of cpumasks. This compares
7811 * doms_new[] to the current sched domain partitioning, doms_cur[].
7812 * It destroys each deleted domain and builds each new domain.
7814 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7815 * The masks don't intersect (don't overlap.) We should setup one
7816 * sched domain for each mask. CPUs not in any of the cpumasks will
7817 * not be load balanced. If the same cpumask appears both in the
7818 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7819 * it as it is.
7821 * The passed in 'doms_new' should be allocated using
7822 * alloc_sched_domains. This routine takes ownership of it and will
7823 * free_sched_domains it when done with it. If the caller failed the
7824 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7825 * and partition_sched_domains() will fallback to the single partition
7826 * 'fallback_doms', it also forces the domains to be rebuilt.
7828 * If doms_new == NULL it will be replaced with cpu_online_mask.
7829 * ndoms_new == 0 is a special case for destroying existing domains,
7830 * and it will not create the default domain.
7832 * Call with hotplug lock held
7834 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7835 struct sched_domain_attr *dattr_new)
7837 int i, j, n;
7838 int new_topology;
7840 mutex_lock(&sched_domains_mutex);
7842 /* always unregister in case we don't destroy any domains */
7843 unregister_sched_domain_sysctl();
7845 /* Let architecture update cpu core mappings. */
7846 new_topology = arch_update_cpu_topology();
7848 n = doms_new ? ndoms_new : 0;
7850 /* Destroy deleted domains */
7851 for (i = 0; i < ndoms_cur; i++) {
7852 for (j = 0; j < n && !new_topology; j++) {
7853 if (cpumask_equal(doms_cur[i], doms_new[j])
7854 && dattrs_equal(dattr_cur, i, dattr_new, j))
7855 goto match1;
7857 /* no match - a current sched domain not in new doms_new[] */
7858 detach_destroy_domains(doms_cur[i]);
7859 match1:
7863 if (doms_new == NULL) {
7864 ndoms_cur = 0;
7865 doms_new = &fallback_doms;
7866 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7867 WARN_ON_ONCE(dattr_new);
7870 /* Build new domains */
7871 for (i = 0; i < ndoms_new; i++) {
7872 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7873 if (cpumask_equal(doms_new[i], doms_cur[j])
7874 && dattrs_equal(dattr_new, i, dattr_cur, j))
7875 goto match2;
7877 /* no match - add a new doms_new */
7878 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7879 match2:
7883 /* Remember the new sched domains */
7884 if (doms_cur != &fallback_doms)
7885 free_sched_domains(doms_cur, ndoms_cur);
7886 kfree(dattr_cur); /* kfree(NULL) is safe */
7887 doms_cur = doms_new;
7888 dattr_cur = dattr_new;
7889 ndoms_cur = ndoms_new;
7891 register_sched_domain_sysctl();
7893 mutex_unlock(&sched_domains_mutex);
7896 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7897 static void reinit_sched_domains(void)
7899 get_online_cpus();
7901 /* Destroy domains first to force the rebuild */
7902 partition_sched_domains(0, NULL, NULL);
7904 rebuild_sched_domains();
7905 put_online_cpus();
7908 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7910 unsigned int level = 0;
7912 if (sscanf(buf, "%u", &level) != 1)
7913 return -EINVAL;
7916 * level is always be positive so don't check for
7917 * level < POWERSAVINGS_BALANCE_NONE which is 0
7918 * What happens on 0 or 1 byte write,
7919 * need to check for count as well?
7922 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7923 return -EINVAL;
7925 if (smt)
7926 sched_smt_power_savings = level;
7927 else
7928 sched_mc_power_savings = level;
7930 reinit_sched_domains();
7932 return count;
7935 #ifdef CONFIG_SCHED_MC
7936 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7937 struct sysdev_class_attribute *attr,
7938 char *page)
7940 return sprintf(page, "%u\n", sched_mc_power_savings);
7942 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7943 struct sysdev_class_attribute *attr,
7944 const char *buf, size_t count)
7946 return sched_power_savings_store(buf, count, 0);
7948 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7949 sched_mc_power_savings_show,
7950 sched_mc_power_savings_store);
7951 #endif
7953 #ifdef CONFIG_SCHED_SMT
7954 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7955 struct sysdev_class_attribute *attr,
7956 char *page)
7958 return sprintf(page, "%u\n", sched_smt_power_savings);
7960 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7961 struct sysdev_class_attribute *attr,
7962 const char *buf, size_t count)
7964 return sched_power_savings_store(buf, count, 1);
7966 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7967 sched_smt_power_savings_show,
7968 sched_smt_power_savings_store);
7969 #endif
7971 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7973 int err = 0;
7975 #ifdef CONFIG_SCHED_SMT
7976 if (smt_capable())
7977 err = sysfs_create_file(&cls->kset.kobj,
7978 &attr_sched_smt_power_savings.attr);
7979 #endif
7980 #ifdef CONFIG_SCHED_MC
7981 if (!err && mc_capable())
7982 err = sysfs_create_file(&cls->kset.kobj,
7983 &attr_sched_mc_power_savings.attr);
7984 #endif
7985 return err;
7987 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7990 * Update cpusets according to cpu_active mask. If cpusets are
7991 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7992 * around partition_sched_domains().
7994 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7995 void *hcpu)
7997 switch (action & ~CPU_TASKS_FROZEN) {
7998 case CPU_ONLINE:
7999 case CPU_DOWN_FAILED:
8000 cpuset_update_active_cpus();
8001 return NOTIFY_OK;
8002 default:
8003 return NOTIFY_DONE;
8007 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8008 void *hcpu)
8010 switch (action & ~CPU_TASKS_FROZEN) {
8011 case CPU_DOWN_PREPARE:
8012 cpuset_update_active_cpus();
8013 return NOTIFY_OK;
8014 default:
8015 return NOTIFY_DONE;
8019 static int update_runtime(struct notifier_block *nfb,
8020 unsigned long action, void *hcpu)
8022 int cpu = (int)(long)hcpu;
8024 switch (action) {
8025 case CPU_DOWN_PREPARE:
8026 case CPU_DOWN_PREPARE_FROZEN:
8027 disable_runtime(cpu_rq(cpu));
8028 return NOTIFY_OK;
8030 case CPU_DOWN_FAILED:
8031 case CPU_DOWN_FAILED_FROZEN:
8032 case CPU_ONLINE:
8033 case CPU_ONLINE_FROZEN:
8034 enable_runtime(cpu_rq(cpu));
8035 return NOTIFY_OK;
8037 default:
8038 return NOTIFY_DONE;
8042 void __init sched_init_smp(void)
8044 cpumask_var_t non_isolated_cpus;
8046 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8047 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8049 get_online_cpus();
8050 mutex_lock(&sched_domains_mutex);
8051 init_sched_domains(cpu_active_mask);
8052 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8053 if (cpumask_empty(non_isolated_cpus))
8054 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8055 mutex_unlock(&sched_domains_mutex);
8056 put_online_cpus();
8058 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8059 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8061 /* RT runtime code needs to handle some hotplug events */
8062 hotcpu_notifier(update_runtime, 0);
8064 init_hrtick();
8066 /* Move init over to a non-isolated CPU */
8067 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8068 BUG();
8069 sched_init_granularity();
8070 free_cpumask_var(non_isolated_cpus);
8072 init_sched_rt_class();
8074 #else
8075 void __init sched_init_smp(void)
8077 sched_init_granularity();
8079 #endif /* CONFIG_SMP */
8081 const_debug unsigned int sysctl_timer_migration = 1;
8083 int in_sched_functions(unsigned long addr)
8085 return in_lock_functions(addr) ||
8086 (addr >= (unsigned long)__sched_text_start
8087 && addr < (unsigned long)__sched_text_end);
8090 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8092 cfs_rq->tasks_timeline = RB_ROOT;
8093 INIT_LIST_HEAD(&cfs_rq->tasks);
8094 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8095 #ifndef CONFIG_64BIT
8096 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8097 #endif
8100 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8102 struct rt_prio_array *array;
8103 int i;
8105 array = &rt_rq->active;
8106 for (i = 0; i < MAX_RT_PRIO; i++) {
8107 INIT_LIST_HEAD(array->queue + i);
8108 __clear_bit(i, array->bitmap);
8110 /* delimiter for bitsearch: */
8111 __set_bit(MAX_RT_PRIO, array->bitmap);
8113 #if defined CONFIG_SMP
8114 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8115 rt_rq->highest_prio.next = MAX_RT_PRIO;
8116 rt_rq->rt_nr_migratory = 0;
8117 rt_rq->overloaded = 0;
8118 plist_head_init(&rt_rq->pushable_tasks);
8119 #endif
8121 rt_rq->rt_time = 0;
8122 rt_rq->rt_throttled = 0;
8123 rt_rq->rt_runtime = 0;
8124 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8129 struct sched_entity *se, int cpu,
8130 struct sched_entity *parent)
8132 struct rq *rq = cpu_rq(cpu);
8134 cfs_rq->tg = tg;
8135 cfs_rq->rq = rq;
8136 #ifdef CONFIG_SMP
8137 /* allow initial update_cfs_load() to truncate */
8138 cfs_rq->load_stamp = 1;
8139 #endif
8140 init_cfs_rq_runtime(cfs_rq);
8142 tg->cfs_rq[cpu] = cfs_rq;
8143 tg->se[cpu] = se;
8145 /* se could be NULL for root_task_group */
8146 if (!se)
8147 return;
8149 if (!parent)
8150 se->cfs_rq = &rq->cfs;
8151 else
8152 se->cfs_rq = parent->my_q;
8154 se->my_q = cfs_rq;
8155 update_load_set(&se->load, 0);
8156 se->parent = parent;
8158 #endif
8160 #ifdef CONFIG_RT_GROUP_SCHED
8161 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8162 struct sched_rt_entity *rt_se, int cpu,
8163 struct sched_rt_entity *parent)
8165 struct rq *rq = cpu_rq(cpu);
8167 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8168 rt_rq->rt_nr_boosted = 0;
8169 rt_rq->rq = rq;
8170 rt_rq->tg = tg;
8172 tg->rt_rq[cpu] = rt_rq;
8173 tg->rt_se[cpu] = rt_se;
8175 if (!rt_se)
8176 return;
8178 if (!parent)
8179 rt_se->rt_rq = &rq->rt;
8180 else
8181 rt_se->rt_rq = parent->my_q;
8183 rt_se->my_q = rt_rq;
8184 rt_se->parent = parent;
8185 INIT_LIST_HEAD(&rt_se->run_list);
8187 #endif
8189 void __init sched_init(void)
8191 int i, j;
8192 unsigned long alloc_size = 0, ptr;
8194 #ifdef CONFIG_FAIR_GROUP_SCHED
8195 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8196 #endif
8197 #ifdef CONFIG_RT_GROUP_SCHED
8198 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8199 #endif
8200 #ifdef CONFIG_CPUMASK_OFFSTACK
8201 alloc_size += num_possible_cpus() * cpumask_size();
8202 #endif
8203 if (alloc_size) {
8204 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8206 #ifdef CONFIG_FAIR_GROUP_SCHED
8207 root_task_group.se = (struct sched_entity **)ptr;
8208 ptr += nr_cpu_ids * sizeof(void **);
8210 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8211 ptr += nr_cpu_ids * sizeof(void **);
8213 #endif /* CONFIG_FAIR_GROUP_SCHED */
8214 #ifdef CONFIG_RT_GROUP_SCHED
8215 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8216 ptr += nr_cpu_ids * sizeof(void **);
8218 root_task_group.rt_rq = (struct rt_rq **)ptr;
8219 ptr += nr_cpu_ids * sizeof(void **);
8221 #endif /* CONFIG_RT_GROUP_SCHED */
8222 #ifdef CONFIG_CPUMASK_OFFSTACK
8223 for_each_possible_cpu(i) {
8224 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8225 ptr += cpumask_size();
8227 #endif /* CONFIG_CPUMASK_OFFSTACK */
8230 #ifdef CONFIG_SMP
8231 init_defrootdomain();
8232 #endif
8234 init_rt_bandwidth(&def_rt_bandwidth,
8235 global_rt_period(), global_rt_runtime());
8237 #ifdef CONFIG_RT_GROUP_SCHED
8238 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8239 global_rt_period(), global_rt_runtime());
8240 #endif /* CONFIG_RT_GROUP_SCHED */
8242 #ifdef CONFIG_CGROUP_SCHED
8243 list_add(&root_task_group.list, &task_groups);
8244 INIT_LIST_HEAD(&root_task_group.children);
8245 autogroup_init(&init_task);
8246 #endif /* CONFIG_CGROUP_SCHED */
8248 for_each_possible_cpu(i) {
8249 struct rq *rq;
8251 rq = cpu_rq(i);
8252 raw_spin_lock_init(&rq->lock);
8253 rq->nr_running = 0;
8254 rq->calc_load_active = 0;
8255 rq->calc_load_update = jiffies + LOAD_FREQ;
8256 init_cfs_rq(&rq->cfs);
8257 init_rt_rq(&rq->rt, rq);
8258 #ifdef CONFIG_FAIR_GROUP_SCHED
8259 root_task_group.shares = root_task_group_load;
8260 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8262 * How much cpu bandwidth does root_task_group get?
8264 * In case of task-groups formed thr' the cgroup filesystem, it
8265 * gets 100% of the cpu resources in the system. This overall
8266 * system cpu resource is divided among the tasks of
8267 * root_task_group and its child task-groups in a fair manner,
8268 * based on each entity's (task or task-group's) weight
8269 * (se->load.weight).
8271 * In other words, if root_task_group has 10 tasks of weight
8272 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8273 * then A0's share of the cpu resource is:
8275 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8277 * We achieve this by letting root_task_group's tasks sit
8278 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8280 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8281 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8282 #endif /* CONFIG_FAIR_GROUP_SCHED */
8284 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8285 #ifdef CONFIG_RT_GROUP_SCHED
8286 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8287 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8288 #endif
8290 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8291 rq->cpu_load[j] = 0;
8293 rq->last_load_update_tick = jiffies;
8295 #ifdef CONFIG_SMP
8296 rq->sd = NULL;
8297 rq->rd = NULL;
8298 rq->cpu_power = SCHED_POWER_SCALE;
8299 rq->post_schedule = 0;
8300 rq->active_balance = 0;
8301 rq->next_balance = jiffies;
8302 rq->push_cpu = 0;
8303 rq->cpu = i;
8304 rq->online = 0;
8305 rq->idle_stamp = 0;
8306 rq->avg_idle = 2*sysctl_sched_migration_cost;
8307 rq_attach_root(rq, &def_root_domain);
8308 #ifdef CONFIG_NO_HZ
8309 rq->nohz_balance_kick = 0;
8310 #endif
8311 #endif
8312 init_rq_hrtick(rq);
8313 atomic_set(&rq->nr_iowait, 0);
8316 set_load_weight(&init_task);
8318 #ifdef CONFIG_PREEMPT_NOTIFIERS
8319 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8320 #endif
8322 #ifdef CONFIG_SMP
8323 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8324 #endif
8326 #ifdef CONFIG_RT_MUTEXES
8327 plist_head_init(&init_task.pi_waiters);
8328 #endif
8331 * The boot idle thread does lazy MMU switching as well:
8333 atomic_inc(&init_mm.mm_count);
8334 enter_lazy_tlb(&init_mm, current);
8337 * Make us the idle thread. Technically, schedule() should not be
8338 * called from this thread, however somewhere below it might be,
8339 * but because we are the idle thread, we just pick up running again
8340 * when this runqueue becomes "idle".
8342 init_idle(current, smp_processor_id());
8344 calc_load_update = jiffies + LOAD_FREQ;
8347 * During early bootup we pretend to be a normal task:
8349 current->sched_class = &fair_sched_class;
8351 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8352 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8353 #ifdef CONFIG_SMP
8354 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8355 #ifdef CONFIG_NO_HZ
8356 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8357 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8358 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8359 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8360 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8361 #endif
8362 /* May be allocated at isolcpus cmdline parse time */
8363 if (cpu_isolated_map == NULL)
8364 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8365 #endif /* SMP */
8367 scheduler_running = 1;
8370 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8371 static inline int preempt_count_equals(int preempt_offset)
8373 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8375 return (nested == preempt_offset);
8378 void __might_sleep(const char *file, int line, int preempt_offset)
8380 static unsigned long prev_jiffy; /* ratelimiting */
8382 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8383 system_state != SYSTEM_RUNNING || oops_in_progress)
8384 return;
8385 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8386 return;
8387 prev_jiffy = jiffies;
8389 printk(KERN_ERR
8390 "BUG: sleeping function called from invalid context at %s:%d\n",
8391 file, line);
8392 printk(KERN_ERR
8393 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8394 in_atomic(), irqs_disabled(),
8395 current->pid, current->comm);
8397 debug_show_held_locks(current);
8398 if (irqs_disabled())
8399 print_irqtrace_events(current);
8400 dump_stack();
8402 EXPORT_SYMBOL(__might_sleep);
8403 #endif
8405 #ifdef CONFIG_MAGIC_SYSRQ
8406 static void normalize_task(struct rq *rq, struct task_struct *p)
8408 const struct sched_class *prev_class = p->sched_class;
8409 int old_prio = p->prio;
8410 int on_rq;
8412 on_rq = p->on_rq;
8413 if (on_rq)
8414 deactivate_task(rq, p, 0);
8415 __setscheduler(rq, p, SCHED_NORMAL, 0);
8416 if (on_rq) {
8417 activate_task(rq, p, 0);
8418 resched_task(rq->curr);
8421 check_class_changed(rq, p, prev_class, old_prio);
8424 void normalize_rt_tasks(void)
8426 struct task_struct *g, *p;
8427 unsigned long flags;
8428 struct rq *rq;
8430 read_lock_irqsave(&tasklist_lock, flags);
8431 do_each_thread(g, p) {
8433 * Only normalize user tasks:
8435 if (!p->mm)
8436 continue;
8438 p->se.exec_start = 0;
8439 #ifdef CONFIG_SCHEDSTATS
8440 p->se.statistics.wait_start = 0;
8441 p->se.statistics.sleep_start = 0;
8442 p->se.statistics.block_start = 0;
8443 #endif
8445 if (!rt_task(p)) {
8447 * Renice negative nice level userspace
8448 * tasks back to 0:
8450 if (TASK_NICE(p) < 0 && p->mm)
8451 set_user_nice(p, 0);
8452 continue;
8455 raw_spin_lock(&p->pi_lock);
8456 rq = __task_rq_lock(p);
8458 normalize_task(rq, p);
8460 __task_rq_unlock(rq);
8461 raw_spin_unlock(&p->pi_lock);
8462 } while_each_thread(g, p);
8464 read_unlock_irqrestore(&tasklist_lock, flags);
8467 #endif /* CONFIG_MAGIC_SYSRQ */
8469 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8471 * These functions are only useful for the IA64 MCA handling, or kdb.
8473 * They can only be called when the whole system has been
8474 * stopped - every CPU needs to be quiescent, and no scheduling
8475 * activity can take place. Using them for anything else would
8476 * be a serious bug, and as a result, they aren't even visible
8477 * under any other configuration.
8481 * curr_task - return the current task for a given cpu.
8482 * @cpu: the processor in question.
8484 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8486 struct task_struct *curr_task(int cpu)
8488 return cpu_curr(cpu);
8491 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8493 #ifdef CONFIG_IA64
8495 * set_curr_task - set the current task for a given cpu.
8496 * @cpu: the processor in question.
8497 * @p: the task pointer to set.
8499 * Description: This function must only be used when non-maskable interrupts
8500 * are serviced on a separate stack. It allows the architecture to switch the
8501 * notion of the current task on a cpu in a non-blocking manner. This function
8502 * must be called with all CPU's synchronized, and interrupts disabled, the
8503 * and caller must save the original value of the current task (see
8504 * curr_task() above) and restore that value before reenabling interrupts and
8505 * re-starting the system.
8507 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8509 void set_curr_task(int cpu, struct task_struct *p)
8511 cpu_curr(cpu) = p;
8514 #endif
8516 #ifdef CONFIG_FAIR_GROUP_SCHED
8517 static void free_fair_sched_group(struct task_group *tg)
8519 int i;
8521 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8523 for_each_possible_cpu(i) {
8524 if (tg->cfs_rq)
8525 kfree(tg->cfs_rq[i]);
8526 if (tg->se)
8527 kfree(tg->se[i]);
8530 kfree(tg->cfs_rq);
8531 kfree(tg->se);
8534 static
8535 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8537 struct cfs_rq *cfs_rq;
8538 struct sched_entity *se;
8539 int i;
8541 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8542 if (!tg->cfs_rq)
8543 goto err;
8544 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8545 if (!tg->se)
8546 goto err;
8548 tg->shares = NICE_0_LOAD;
8550 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8552 for_each_possible_cpu(i) {
8553 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8554 GFP_KERNEL, cpu_to_node(i));
8555 if (!cfs_rq)
8556 goto err;
8558 se = kzalloc_node(sizeof(struct sched_entity),
8559 GFP_KERNEL, cpu_to_node(i));
8560 if (!se)
8561 goto err_free_rq;
8563 init_cfs_rq(cfs_rq);
8564 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8567 return 1;
8569 err_free_rq:
8570 kfree(cfs_rq);
8571 err:
8572 return 0;
8575 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8577 struct rq *rq = cpu_rq(cpu);
8578 unsigned long flags;
8581 * Only empty task groups can be destroyed; so we can speculatively
8582 * check on_list without danger of it being re-added.
8584 if (!tg->cfs_rq[cpu]->on_list)
8585 return;
8587 raw_spin_lock_irqsave(&rq->lock, flags);
8588 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8589 raw_spin_unlock_irqrestore(&rq->lock, flags);
8591 #else /* !CONFIG_FAIR_GROUP_SCHED */
8592 static inline void free_fair_sched_group(struct task_group *tg)
8596 static inline
8597 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8599 return 1;
8602 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8605 #endif /* CONFIG_FAIR_GROUP_SCHED */
8607 #ifdef CONFIG_RT_GROUP_SCHED
8608 static void free_rt_sched_group(struct task_group *tg)
8610 int i;
8612 if (tg->rt_se)
8613 destroy_rt_bandwidth(&tg->rt_bandwidth);
8615 for_each_possible_cpu(i) {
8616 if (tg->rt_rq)
8617 kfree(tg->rt_rq[i]);
8618 if (tg->rt_se)
8619 kfree(tg->rt_se[i]);
8622 kfree(tg->rt_rq);
8623 kfree(tg->rt_se);
8626 static
8627 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8629 struct rt_rq *rt_rq;
8630 struct sched_rt_entity *rt_se;
8631 int i;
8633 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8634 if (!tg->rt_rq)
8635 goto err;
8636 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8637 if (!tg->rt_se)
8638 goto err;
8640 init_rt_bandwidth(&tg->rt_bandwidth,
8641 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8643 for_each_possible_cpu(i) {
8644 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8645 GFP_KERNEL, cpu_to_node(i));
8646 if (!rt_rq)
8647 goto err;
8649 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8650 GFP_KERNEL, cpu_to_node(i));
8651 if (!rt_se)
8652 goto err_free_rq;
8654 init_rt_rq(rt_rq, cpu_rq(i));
8655 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8656 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8659 return 1;
8661 err_free_rq:
8662 kfree(rt_rq);
8663 err:
8664 return 0;
8666 #else /* !CONFIG_RT_GROUP_SCHED */
8667 static inline void free_rt_sched_group(struct task_group *tg)
8671 static inline
8672 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8674 return 1;
8676 #endif /* CONFIG_RT_GROUP_SCHED */
8678 #ifdef CONFIG_CGROUP_SCHED
8679 static void free_sched_group(struct task_group *tg)
8681 free_fair_sched_group(tg);
8682 free_rt_sched_group(tg);
8683 autogroup_free(tg);
8684 kfree(tg);
8687 /* allocate runqueue etc for a new task group */
8688 struct task_group *sched_create_group(struct task_group *parent)
8690 struct task_group *tg;
8691 unsigned long flags;
8693 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8694 if (!tg)
8695 return ERR_PTR(-ENOMEM);
8697 if (!alloc_fair_sched_group(tg, parent))
8698 goto err;
8700 if (!alloc_rt_sched_group(tg, parent))
8701 goto err;
8703 spin_lock_irqsave(&task_group_lock, flags);
8704 list_add_rcu(&tg->list, &task_groups);
8706 WARN_ON(!parent); /* root should already exist */
8708 tg->parent = parent;
8709 INIT_LIST_HEAD(&tg->children);
8710 list_add_rcu(&tg->siblings, &parent->children);
8711 spin_unlock_irqrestore(&task_group_lock, flags);
8713 return tg;
8715 err:
8716 free_sched_group(tg);
8717 return ERR_PTR(-ENOMEM);
8720 /* rcu callback to free various structures associated with a task group */
8721 static void free_sched_group_rcu(struct rcu_head *rhp)
8723 /* now it should be safe to free those cfs_rqs */
8724 free_sched_group(container_of(rhp, struct task_group, rcu));
8727 /* Destroy runqueue etc associated with a task group */
8728 void sched_destroy_group(struct task_group *tg)
8730 unsigned long flags;
8731 int i;
8733 /* end participation in shares distribution */
8734 for_each_possible_cpu(i)
8735 unregister_fair_sched_group(tg, i);
8737 spin_lock_irqsave(&task_group_lock, flags);
8738 list_del_rcu(&tg->list);
8739 list_del_rcu(&tg->siblings);
8740 spin_unlock_irqrestore(&task_group_lock, flags);
8742 /* wait for possible concurrent references to cfs_rqs complete */
8743 call_rcu(&tg->rcu, free_sched_group_rcu);
8746 /* change task's runqueue when it moves between groups.
8747 * The caller of this function should have put the task in its new group
8748 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8749 * reflect its new group.
8751 void sched_move_task(struct task_struct *tsk)
8753 int on_rq, running;
8754 unsigned long flags;
8755 struct rq *rq;
8757 rq = task_rq_lock(tsk, &flags);
8759 running = task_current(rq, tsk);
8760 on_rq = tsk->on_rq;
8762 if (on_rq)
8763 dequeue_task(rq, tsk, 0);
8764 if (unlikely(running))
8765 tsk->sched_class->put_prev_task(rq, tsk);
8767 #ifdef CONFIG_FAIR_GROUP_SCHED
8768 if (tsk->sched_class->task_move_group)
8769 tsk->sched_class->task_move_group(tsk, on_rq);
8770 else
8771 #endif
8772 set_task_rq(tsk, task_cpu(tsk));
8774 if (unlikely(running))
8775 tsk->sched_class->set_curr_task(rq);
8776 if (on_rq)
8777 enqueue_task(rq, tsk, 0);
8779 task_rq_unlock(rq, tsk, &flags);
8781 #endif /* CONFIG_CGROUP_SCHED */
8783 #ifdef CONFIG_FAIR_GROUP_SCHED
8784 static DEFINE_MUTEX(shares_mutex);
8786 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8788 int i;
8789 unsigned long flags;
8792 * We can't change the weight of the root cgroup.
8794 if (!tg->se[0])
8795 return -EINVAL;
8797 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8799 mutex_lock(&shares_mutex);
8800 if (tg->shares == shares)
8801 goto done;
8803 tg->shares = shares;
8804 for_each_possible_cpu(i) {
8805 struct rq *rq = cpu_rq(i);
8806 struct sched_entity *se;
8808 se = tg->se[i];
8809 /* Propagate contribution to hierarchy */
8810 raw_spin_lock_irqsave(&rq->lock, flags);
8811 for_each_sched_entity(se)
8812 update_cfs_shares(group_cfs_rq(se));
8813 raw_spin_unlock_irqrestore(&rq->lock, flags);
8816 done:
8817 mutex_unlock(&shares_mutex);
8818 return 0;
8821 unsigned long sched_group_shares(struct task_group *tg)
8823 return tg->shares;
8825 #endif
8827 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8828 static unsigned long to_ratio(u64 period, u64 runtime)
8830 if (runtime == RUNTIME_INF)
8831 return 1ULL << 20;
8833 return div64_u64(runtime << 20, period);
8835 #endif
8837 #ifdef CONFIG_RT_GROUP_SCHED
8839 * Ensure that the real time constraints are schedulable.
8841 static DEFINE_MUTEX(rt_constraints_mutex);
8843 /* Must be called with tasklist_lock held */
8844 static inline int tg_has_rt_tasks(struct task_group *tg)
8846 struct task_struct *g, *p;
8848 do_each_thread(g, p) {
8849 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8850 return 1;
8851 } while_each_thread(g, p);
8853 return 0;
8856 struct rt_schedulable_data {
8857 struct task_group *tg;
8858 u64 rt_period;
8859 u64 rt_runtime;
8862 static int tg_rt_schedulable(struct task_group *tg, void *data)
8864 struct rt_schedulable_data *d = data;
8865 struct task_group *child;
8866 unsigned long total, sum = 0;
8867 u64 period, runtime;
8869 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8870 runtime = tg->rt_bandwidth.rt_runtime;
8872 if (tg == d->tg) {
8873 period = d->rt_period;
8874 runtime = d->rt_runtime;
8878 * Cannot have more runtime than the period.
8880 if (runtime > period && runtime != RUNTIME_INF)
8881 return -EINVAL;
8884 * Ensure we don't starve existing RT tasks.
8886 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8887 return -EBUSY;
8889 total = to_ratio(period, runtime);
8892 * Nobody can have more than the global setting allows.
8894 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8895 return -EINVAL;
8898 * The sum of our children's runtime should not exceed our own.
8900 list_for_each_entry_rcu(child, &tg->children, siblings) {
8901 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8902 runtime = child->rt_bandwidth.rt_runtime;
8904 if (child == d->tg) {
8905 period = d->rt_period;
8906 runtime = d->rt_runtime;
8909 sum += to_ratio(period, runtime);
8912 if (sum > total)
8913 return -EINVAL;
8915 return 0;
8918 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8920 int ret;
8922 struct rt_schedulable_data data = {
8923 .tg = tg,
8924 .rt_period = period,
8925 .rt_runtime = runtime,
8928 rcu_read_lock();
8929 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8930 rcu_read_unlock();
8932 return ret;
8935 static int tg_set_rt_bandwidth(struct task_group *tg,
8936 u64 rt_period, u64 rt_runtime)
8938 int i, err = 0;
8940 mutex_lock(&rt_constraints_mutex);
8941 read_lock(&tasklist_lock);
8942 err = __rt_schedulable(tg, rt_period, rt_runtime);
8943 if (err)
8944 goto unlock;
8946 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8947 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8948 tg->rt_bandwidth.rt_runtime = rt_runtime;
8950 for_each_possible_cpu(i) {
8951 struct rt_rq *rt_rq = tg->rt_rq[i];
8953 raw_spin_lock(&rt_rq->rt_runtime_lock);
8954 rt_rq->rt_runtime = rt_runtime;
8955 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8957 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8958 unlock:
8959 read_unlock(&tasklist_lock);
8960 mutex_unlock(&rt_constraints_mutex);
8962 return err;
8965 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8967 u64 rt_runtime, rt_period;
8969 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8970 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8971 if (rt_runtime_us < 0)
8972 rt_runtime = RUNTIME_INF;
8974 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8977 long sched_group_rt_runtime(struct task_group *tg)
8979 u64 rt_runtime_us;
8981 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8982 return -1;
8984 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8985 do_div(rt_runtime_us, NSEC_PER_USEC);
8986 return rt_runtime_us;
8989 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8991 u64 rt_runtime, rt_period;
8993 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8994 rt_runtime = tg->rt_bandwidth.rt_runtime;
8996 if (rt_period == 0)
8997 return -EINVAL;
8999 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9002 long sched_group_rt_period(struct task_group *tg)
9004 u64 rt_period_us;
9006 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9007 do_div(rt_period_us, NSEC_PER_USEC);
9008 return rt_period_us;
9011 static int sched_rt_global_constraints(void)
9013 u64 runtime, period;
9014 int ret = 0;
9016 if (sysctl_sched_rt_period <= 0)
9017 return -EINVAL;
9019 runtime = global_rt_runtime();
9020 period = global_rt_period();
9023 * Sanity check on the sysctl variables.
9025 if (runtime > period && runtime != RUNTIME_INF)
9026 return -EINVAL;
9028 mutex_lock(&rt_constraints_mutex);
9029 read_lock(&tasklist_lock);
9030 ret = __rt_schedulable(NULL, 0, 0);
9031 read_unlock(&tasklist_lock);
9032 mutex_unlock(&rt_constraints_mutex);
9034 return ret;
9037 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9039 /* Don't accept realtime tasks when there is no way for them to run */
9040 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9041 return 0;
9043 return 1;
9046 #else /* !CONFIG_RT_GROUP_SCHED */
9047 static int sched_rt_global_constraints(void)
9049 unsigned long flags;
9050 int i;
9052 if (sysctl_sched_rt_period <= 0)
9053 return -EINVAL;
9056 * There's always some RT tasks in the root group
9057 * -- migration, kstopmachine etc..
9059 if (sysctl_sched_rt_runtime == 0)
9060 return -EBUSY;
9062 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9063 for_each_possible_cpu(i) {
9064 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9066 raw_spin_lock(&rt_rq->rt_runtime_lock);
9067 rt_rq->rt_runtime = global_rt_runtime();
9068 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9070 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9072 return 0;
9074 #endif /* CONFIG_RT_GROUP_SCHED */
9076 int sched_rt_handler(struct ctl_table *table, int write,
9077 void __user *buffer, size_t *lenp,
9078 loff_t *ppos)
9080 int ret;
9081 int old_period, old_runtime;
9082 static DEFINE_MUTEX(mutex);
9084 mutex_lock(&mutex);
9085 old_period = sysctl_sched_rt_period;
9086 old_runtime = sysctl_sched_rt_runtime;
9088 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9090 if (!ret && write) {
9091 ret = sched_rt_global_constraints();
9092 if (ret) {
9093 sysctl_sched_rt_period = old_period;
9094 sysctl_sched_rt_runtime = old_runtime;
9095 } else {
9096 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9097 def_rt_bandwidth.rt_period =
9098 ns_to_ktime(global_rt_period());
9101 mutex_unlock(&mutex);
9103 return ret;
9106 #ifdef CONFIG_CGROUP_SCHED
9108 /* return corresponding task_group object of a cgroup */
9109 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9111 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9112 struct task_group, css);
9115 static struct cgroup_subsys_state *
9116 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9118 struct task_group *tg, *parent;
9120 if (!cgrp->parent) {
9121 /* This is early initialization for the top cgroup */
9122 return &root_task_group.css;
9125 parent = cgroup_tg(cgrp->parent);
9126 tg = sched_create_group(parent);
9127 if (IS_ERR(tg))
9128 return ERR_PTR(-ENOMEM);
9130 return &tg->css;
9133 static void
9134 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9136 struct task_group *tg = cgroup_tg(cgrp);
9138 sched_destroy_group(tg);
9141 static int
9142 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9144 #ifdef CONFIG_RT_GROUP_SCHED
9145 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9146 return -EINVAL;
9147 #else
9148 /* We don't support RT-tasks being in separate groups */
9149 if (tsk->sched_class != &fair_sched_class)
9150 return -EINVAL;
9151 #endif
9152 return 0;
9155 static void
9156 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9158 sched_move_task(tsk);
9161 static void
9162 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9163 struct cgroup *old_cgrp, struct task_struct *task)
9166 * cgroup_exit() is called in the copy_process() failure path.
9167 * Ignore this case since the task hasn't ran yet, this avoids
9168 * trying to poke a half freed task state from generic code.
9170 if (!(task->flags & PF_EXITING))
9171 return;
9173 sched_move_task(task);
9176 #ifdef CONFIG_FAIR_GROUP_SCHED
9177 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9178 u64 shareval)
9180 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9183 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9185 struct task_group *tg = cgroup_tg(cgrp);
9187 return (u64) scale_load_down(tg->shares);
9190 #ifdef CONFIG_CFS_BANDWIDTH
9191 static DEFINE_MUTEX(cfs_constraints_mutex);
9193 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9194 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9196 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9198 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9200 int i, ret = 0, runtime_enabled;
9201 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9203 if (tg == &root_task_group)
9204 return -EINVAL;
9207 * Ensure we have at some amount of bandwidth every period. This is
9208 * to prevent reaching a state of large arrears when throttled via
9209 * entity_tick() resulting in prolonged exit starvation.
9211 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9212 return -EINVAL;
9215 * Likewise, bound things on the otherside by preventing insane quota
9216 * periods. This also allows us to normalize in computing quota
9217 * feasibility.
9219 if (period > max_cfs_quota_period)
9220 return -EINVAL;
9222 mutex_lock(&cfs_constraints_mutex);
9223 ret = __cfs_schedulable(tg, period, quota);
9224 if (ret)
9225 goto out_unlock;
9227 runtime_enabled = quota != RUNTIME_INF;
9228 raw_spin_lock_irq(&cfs_b->lock);
9229 cfs_b->period = ns_to_ktime(period);
9230 cfs_b->quota = quota;
9232 __refill_cfs_bandwidth_runtime(cfs_b);
9233 /* restart the period timer (if active) to handle new period expiry */
9234 if (runtime_enabled && cfs_b->timer_active) {
9235 /* force a reprogram */
9236 cfs_b->timer_active = 0;
9237 __start_cfs_bandwidth(cfs_b);
9239 raw_spin_unlock_irq(&cfs_b->lock);
9241 for_each_possible_cpu(i) {
9242 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9243 struct rq *rq = rq_of(cfs_rq);
9245 raw_spin_lock_irq(&rq->lock);
9246 cfs_rq->runtime_enabled = runtime_enabled;
9247 cfs_rq->runtime_remaining = 0;
9249 if (cfs_rq_throttled(cfs_rq))
9250 unthrottle_cfs_rq(cfs_rq);
9251 raw_spin_unlock_irq(&rq->lock);
9253 out_unlock:
9254 mutex_unlock(&cfs_constraints_mutex);
9256 return ret;
9259 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9261 u64 quota, period;
9263 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9264 if (cfs_quota_us < 0)
9265 quota = RUNTIME_INF;
9266 else
9267 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9269 return tg_set_cfs_bandwidth(tg, period, quota);
9272 long tg_get_cfs_quota(struct task_group *tg)
9274 u64 quota_us;
9276 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9277 return -1;
9279 quota_us = tg_cfs_bandwidth(tg)->quota;
9280 do_div(quota_us, NSEC_PER_USEC);
9282 return quota_us;
9285 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9287 u64 quota, period;
9289 period = (u64)cfs_period_us * NSEC_PER_USEC;
9290 quota = tg_cfs_bandwidth(tg)->quota;
9292 if (period <= 0)
9293 return -EINVAL;
9295 return tg_set_cfs_bandwidth(tg, period, quota);
9298 long tg_get_cfs_period(struct task_group *tg)
9300 u64 cfs_period_us;
9302 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9303 do_div(cfs_period_us, NSEC_PER_USEC);
9305 return cfs_period_us;
9308 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9310 return tg_get_cfs_quota(cgroup_tg(cgrp));
9313 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9314 s64 cfs_quota_us)
9316 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9319 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9321 return tg_get_cfs_period(cgroup_tg(cgrp));
9324 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9325 u64 cfs_period_us)
9327 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9330 struct cfs_schedulable_data {
9331 struct task_group *tg;
9332 u64 period, quota;
9336 * normalize group quota/period to be quota/max_period
9337 * note: units are usecs
9339 static u64 normalize_cfs_quota(struct task_group *tg,
9340 struct cfs_schedulable_data *d)
9342 u64 quota, period;
9344 if (tg == d->tg) {
9345 period = d->period;
9346 quota = d->quota;
9347 } else {
9348 period = tg_get_cfs_period(tg);
9349 quota = tg_get_cfs_quota(tg);
9352 /* note: these should typically be equivalent */
9353 if (quota == RUNTIME_INF || quota == -1)
9354 return RUNTIME_INF;
9356 return to_ratio(period, quota);
9359 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9361 struct cfs_schedulable_data *d = data;
9362 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9363 s64 quota = 0, parent_quota = -1;
9365 if (!tg->parent) {
9366 quota = RUNTIME_INF;
9367 } else {
9368 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9370 quota = normalize_cfs_quota(tg, d);
9371 parent_quota = parent_b->hierarchal_quota;
9374 * ensure max(child_quota) <= parent_quota, inherit when no
9375 * limit is set
9377 if (quota == RUNTIME_INF)
9378 quota = parent_quota;
9379 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9380 return -EINVAL;
9382 cfs_b->hierarchal_quota = quota;
9384 return 0;
9387 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9389 int ret;
9390 struct cfs_schedulable_data data = {
9391 .tg = tg,
9392 .period = period,
9393 .quota = quota,
9396 if (quota != RUNTIME_INF) {
9397 do_div(data.period, NSEC_PER_USEC);
9398 do_div(data.quota, NSEC_PER_USEC);
9401 rcu_read_lock();
9402 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9403 rcu_read_unlock();
9405 return ret;
9408 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9409 struct cgroup_map_cb *cb)
9411 struct task_group *tg = cgroup_tg(cgrp);
9412 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9414 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9415 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9416 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9418 return 0;
9420 #endif /* CONFIG_CFS_BANDWIDTH */
9421 #endif /* CONFIG_FAIR_GROUP_SCHED */
9423 #ifdef CONFIG_RT_GROUP_SCHED
9424 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9425 s64 val)
9427 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9430 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9432 return sched_group_rt_runtime(cgroup_tg(cgrp));
9435 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9436 u64 rt_period_us)
9438 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9441 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9443 return sched_group_rt_period(cgroup_tg(cgrp));
9445 #endif /* CONFIG_RT_GROUP_SCHED */
9447 static struct cftype cpu_files[] = {
9448 #ifdef CONFIG_FAIR_GROUP_SCHED
9450 .name = "shares",
9451 .read_u64 = cpu_shares_read_u64,
9452 .write_u64 = cpu_shares_write_u64,
9454 #endif
9455 #ifdef CONFIG_CFS_BANDWIDTH
9457 .name = "cfs_quota_us",
9458 .read_s64 = cpu_cfs_quota_read_s64,
9459 .write_s64 = cpu_cfs_quota_write_s64,
9462 .name = "cfs_period_us",
9463 .read_u64 = cpu_cfs_period_read_u64,
9464 .write_u64 = cpu_cfs_period_write_u64,
9467 .name = "stat",
9468 .read_map = cpu_stats_show,
9470 #endif
9471 #ifdef CONFIG_RT_GROUP_SCHED
9473 .name = "rt_runtime_us",
9474 .read_s64 = cpu_rt_runtime_read,
9475 .write_s64 = cpu_rt_runtime_write,
9478 .name = "rt_period_us",
9479 .read_u64 = cpu_rt_period_read_uint,
9480 .write_u64 = cpu_rt_period_write_uint,
9482 #endif
9485 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9487 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9490 struct cgroup_subsys cpu_cgroup_subsys = {
9491 .name = "cpu",
9492 .create = cpu_cgroup_create,
9493 .destroy = cpu_cgroup_destroy,
9494 .can_attach_task = cpu_cgroup_can_attach_task,
9495 .attach_task = cpu_cgroup_attach_task,
9496 .exit = cpu_cgroup_exit,
9497 .populate = cpu_cgroup_populate,
9498 .subsys_id = cpu_cgroup_subsys_id,
9499 .early_init = 1,
9502 #endif /* CONFIG_CGROUP_SCHED */
9504 #ifdef CONFIG_CGROUP_CPUACCT
9507 * CPU accounting code for task groups.
9509 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9510 * (balbir@in.ibm.com).
9513 /* track cpu usage of a group of tasks and its child groups */
9514 struct cpuacct {
9515 struct cgroup_subsys_state css;
9516 /* cpuusage holds pointer to a u64-type object on every cpu */
9517 u64 __percpu *cpuusage;
9518 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9519 struct cpuacct *parent;
9522 struct cgroup_subsys cpuacct_subsys;
9524 /* return cpu accounting group corresponding to this container */
9525 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9527 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9528 struct cpuacct, css);
9531 /* return cpu accounting group to which this task belongs */
9532 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9534 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9535 struct cpuacct, css);
9538 /* create a new cpu accounting group */
9539 static struct cgroup_subsys_state *cpuacct_create(
9540 struct cgroup_subsys *ss, struct cgroup *cgrp)
9542 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9543 int i;
9545 if (!ca)
9546 goto out;
9548 ca->cpuusage = alloc_percpu(u64);
9549 if (!ca->cpuusage)
9550 goto out_free_ca;
9552 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9553 if (percpu_counter_init(&ca->cpustat[i], 0))
9554 goto out_free_counters;
9556 if (cgrp->parent)
9557 ca->parent = cgroup_ca(cgrp->parent);
9559 return &ca->css;
9561 out_free_counters:
9562 while (--i >= 0)
9563 percpu_counter_destroy(&ca->cpustat[i]);
9564 free_percpu(ca->cpuusage);
9565 out_free_ca:
9566 kfree(ca);
9567 out:
9568 return ERR_PTR(-ENOMEM);
9571 /* destroy an existing cpu accounting group */
9572 static void
9573 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9575 struct cpuacct *ca = cgroup_ca(cgrp);
9576 int i;
9578 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9579 percpu_counter_destroy(&ca->cpustat[i]);
9580 free_percpu(ca->cpuusage);
9581 kfree(ca);
9584 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9586 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9587 u64 data;
9589 #ifndef CONFIG_64BIT
9591 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9593 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9594 data = *cpuusage;
9595 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9596 #else
9597 data = *cpuusage;
9598 #endif
9600 return data;
9603 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9605 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9607 #ifndef CONFIG_64BIT
9609 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9611 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9612 *cpuusage = val;
9613 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9614 #else
9615 *cpuusage = val;
9616 #endif
9619 /* return total cpu usage (in nanoseconds) of a group */
9620 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9622 struct cpuacct *ca = cgroup_ca(cgrp);
9623 u64 totalcpuusage = 0;
9624 int i;
9626 for_each_present_cpu(i)
9627 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9629 return totalcpuusage;
9632 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9633 u64 reset)
9635 struct cpuacct *ca = cgroup_ca(cgrp);
9636 int err = 0;
9637 int i;
9639 if (reset) {
9640 err = -EINVAL;
9641 goto out;
9644 for_each_present_cpu(i)
9645 cpuacct_cpuusage_write(ca, i, 0);
9647 out:
9648 return err;
9651 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9652 struct seq_file *m)
9654 struct cpuacct *ca = cgroup_ca(cgroup);
9655 u64 percpu;
9656 int i;
9658 for_each_present_cpu(i) {
9659 percpu = cpuacct_cpuusage_read(ca, i);
9660 seq_printf(m, "%llu ", (unsigned long long) percpu);
9662 seq_printf(m, "\n");
9663 return 0;
9666 static const char *cpuacct_stat_desc[] = {
9667 [CPUACCT_STAT_USER] = "user",
9668 [CPUACCT_STAT_SYSTEM] = "system",
9671 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9672 struct cgroup_map_cb *cb)
9674 struct cpuacct *ca = cgroup_ca(cgrp);
9675 int i;
9677 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9678 s64 val = percpu_counter_read(&ca->cpustat[i]);
9679 val = cputime64_to_clock_t(val);
9680 cb->fill(cb, cpuacct_stat_desc[i], val);
9682 return 0;
9685 static struct cftype files[] = {
9687 .name = "usage",
9688 .read_u64 = cpuusage_read,
9689 .write_u64 = cpuusage_write,
9692 .name = "usage_percpu",
9693 .read_seq_string = cpuacct_percpu_seq_read,
9696 .name = "stat",
9697 .read_map = cpuacct_stats_show,
9701 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9703 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9707 * charge this task's execution time to its accounting group.
9709 * called with rq->lock held.
9711 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9713 struct cpuacct *ca;
9714 int cpu;
9716 if (unlikely(!cpuacct_subsys.active))
9717 return;
9719 cpu = task_cpu(tsk);
9721 rcu_read_lock();
9723 ca = task_ca(tsk);
9725 for (; ca; ca = ca->parent) {
9726 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9727 *cpuusage += cputime;
9730 rcu_read_unlock();
9734 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9735 * in cputime_t units. As a result, cpuacct_update_stats calls
9736 * percpu_counter_add with values large enough to always overflow the
9737 * per cpu batch limit causing bad SMP scalability.
9739 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9740 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9741 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9743 #ifdef CONFIG_SMP
9744 #define CPUACCT_BATCH \
9745 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9746 #else
9747 #define CPUACCT_BATCH 0
9748 #endif
9751 * Charge the system/user time to the task's accounting group.
9753 static void cpuacct_update_stats(struct task_struct *tsk,
9754 enum cpuacct_stat_index idx, cputime_t val)
9756 struct cpuacct *ca;
9757 int batch = CPUACCT_BATCH;
9759 if (unlikely(!cpuacct_subsys.active))
9760 return;
9762 rcu_read_lock();
9763 ca = task_ca(tsk);
9765 do {
9766 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9767 ca = ca->parent;
9768 } while (ca);
9769 rcu_read_unlock();
9772 struct cgroup_subsys cpuacct_subsys = {
9773 .name = "cpuacct",
9774 .create = cpuacct_create,
9775 .destroy = cpuacct_destroy,
9776 .populate = cpuacct_populate,
9777 .subsys_id = cpuacct_subsys_id,
9779 #endif /* CONFIG_CGROUP_CPUACCT */