MIPS: Alchemy: prom_putchar is board dependent
[linux-2.6/linux-mips.git] / arch / sparc / kernel / kprobes.c
blob6716584e48ab4c052a3d7cf941a1781949f885e6
1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4 */
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12 #include <asm/uaccess.h>
14 /* We do not have hardware single-stepping on sparc64.
15 * So we implement software single-stepping with breakpoint
16 * traps. The top-level scheme is similar to that used
17 * in the x86 kprobes implementation.
19 * In the kprobe->ainsn.insn[] array we store the original
20 * instruction at index zero and a break instruction at
21 * index one.
23 * When we hit a kprobe we:
24 * - Run the pre-handler
25 * - Remember "regs->tnpc" and interrupt level stored in
26 * "regs->tstate" so we can restore them later
27 * - Disable PIL interrupts
28 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
29 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
30 * - Mark that we are actively in a kprobe
32 * At this point we wait for the second breakpoint at
33 * kprobe->ainsn.insn[1] to hit. When it does we:
34 * - Run the post-handler
35 * - Set regs->tpc to "remembered" regs->tnpc stored above,
36 * restore the PIL interrupt level in "regs->tstate" as well
37 * - Make any adjustments necessary to regs->tnpc in order
38 * to handle relative branches correctly. See below.
39 * - Mark that we are no longer actively in a kprobe.
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
47 int __kprobes arch_prepare_kprobe(struct kprobe *p)
49 if ((unsigned long) p->addr & 0x3UL)
50 return -EILSEQ;
52 p->ainsn.insn[0] = *p->addr;
53 flushi(&p->ainsn.insn[0]);
55 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
56 flushi(&p->ainsn.insn[1]);
58 p->opcode = *p->addr;
59 return 0;
62 void __kprobes arch_arm_kprobe(struct kprobe *p)
64 *p->addr = BREAKPOINT_INSTRUCTION;
65 flushi(p->addr);
68 void __kprobes arch_disarm_kprobe(struct kprobe *p)
70 *p->addr = p->opcode;
71 flushi(p->addr);
74 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
76 kcb->prev_kprobe.kp = kprobe_running();
77 kcb->prev_kprobe.status = kcb->kprobe_status;
78 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
79 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
82 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
84 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
85 kcb->kprobe_status = kcb->prev_kprobe.status;
86 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
87 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
90 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
91 struct kprobe_ctlblk *kcb)
93 __get_cpu_var(current_kprobe) = p;
94 kcb->kprobe_orig_tnpc = regs->tnpc;
95 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
98 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
99 struct kprobe_ctlblk *kcb)
101 regs->tstate |= TSTATE_PIL;
103 /*single step inline, if it a breakpoint instruction*/
104 if (p->opcode == BREAKPOINT_INSTRUCTION) {
105 regs->tpc = (unsigned long) p->addr;
106 regs->tnpc = kcb->kprobe_orig_tnpc;
107 } else {
108 regs->tpc = (unsigned long) &p->ainsn.insn[0];
109 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
113 static int __kprobes kprobe_handler(struct pt_regs *regs)
115 struct kprobe *p;
116 void *addr = (void *) regs->tpc;
117 int ret = 0;
118 struct kprobe_ctlblk *kcb;
121 * We don't want to be preempted for the entire
122 * duration of kprobe processing
124 preempt_disable();
125 kcb = get_kprobe_ctlblk();
127 if (kprobe_running()) {
128 p = get_kprobe(addr);
129 if (p) {
130 if (kcb->kprobe_status == KPROBE_HIT_SS) {
131 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
132 kcb->kprobe_orig_tstate_pil);
133 goto no_kprobe;
135 /* We have reentered the kprobe_handler(), since
136 * another probe was hit while within the handler.
137 * We here save the original kprobes variables and
138 * just single step on the instruction of the new probe
139 * without calling any user handlers.
141 save_previous_kprobe(kcb);
142 set_current_kprobe(p, regs, kcb);
143 kprobes_inc_nmissed_count(p);
144 kcb->kprobe_status = KPROBE_REENTER;
145 prepare_singlestep(p, regs, kcb);
146 return 1;
147 } else {
148 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
149 /* The breakpoint instruction was removed by
150 * another cpu right after we hit, no further
151 * handling of this interrupt is appropriate
153 ret = 1;
154 goto no_kprobe;
156 p = __get_cpu_var(current_kprobe);
157 if (p->break_handler && p->break_handler(p, regs))
158 goto ss_probe;
160 goto no_kprobe;
163 p = get_kprobe(addr);
164 if (!p) {
165 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
167 * The breakpoint instruction was removed right
168 * after we hit it. Another cpu has removed
169 * either a probepoint or a debugger breakpoint
170 * at this address. In either case, no further
171 * handling of this interrupt is appropriate.
173 ret = 1;
175 /* Not one of ours: let kernel handle it */
176 goto no_kprobe;
179 set_current_kprobe(p, regs, kcb);
180 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
181 if (p->pre_handler && p->pre_handler(p, regs))
182 return 1;
184 ss_probe:
185 prepare_singlestep(p, regs, kcb);
186 kcb->kprobe_status = KPROBE_HIT_SS;
187 return 1;
189 no_kprobe:
190 preempt_enable_no_resched();
191 return ret;
194 /* If INSN is a relative control transfer instruction,
195 * return the corrected branch destination value.
197 * regs->tpc and regs->tnpc still hold the values of the
198 * program counters at the time of trap due to the execution
199 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
202 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
203 struct pt_regs *regs)
205 unsigned long real_pc = (unsigned long) p->addr;
207 /* Branch not taken, no mods necessary. */
208 if (regs->tnpc == regs->tpc + 0x4UL)
209 return real_pc + 0x8UL;
211 /* The three cases are call, branch w/prediction,
212 * and traditional branch.
214 if ((insn & 0xc0000000) == 0x40000000 ||
215 (insn & 0xc1c00000) == 0x00400000 ||
216 (insn & 0xc1c00000) == 0x00800000) {
217 unsigned long ainsn_addr;
219 ainsn_addr = (unsigned long) &p->ainsn.insn[0];
221 /* The instruction did all the work for us
222 * already, just apply the offset to the correct
223 * instruction location.
225 return (real_pc + (regs->tnpc - ainsn_addr));
228 /* It is jmpl or some other absolute PC modification instruction,
229 * leave NPC as-is.
231 return regs->tnpc;
234 /* If INSN is an instruction which writes it's PC location
235 * into a destination register, fix that up.
237 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
238 unsigned long real_pc)
240 unsigned long *slot = NULL;
242 /* Simplest case is 'call', which always uses %o7 */
243 if ((insn & 0xc0000000) == 0x40000000) {
244 slot = &regs->u_regs[UREG_I7];
247 /* 'jmpl' encodes the register inside of the opcode */
248 if ((insn & 0xc1f80000) == 0x81c00000) {
249 unsigned long rd = ((insn >> 25) & 0x1f);
251 if (rd <= 15) {
252 slot = &regs->u_regs[rd];
253 } else {
254 /* Hard case, it goes onto the stack. */
255 flushw_all();
257 rd -= 16;
258 slot = (unsigned long *)
259 (regs->u_regs[UREG_FP] + STACK_BIAS);
260 slot += rd;
263 if (slot != NULL)
264 *slot = real_pc;
268 * Called after single-stepping. p->addr is the address of the
269 * instruction which has been replaced by the breakpoint
270 * instruction. To avoid the SMP problems that can occur when we
271 * temporarily put back the original opcode to single-step, we
272 * single-stepped a copy of the instruction. The address of this
273 * copy is &p->ainsn.insn[0].
275 * This function prepares to return from the post-single-step
276 * breakpoint trap.
278 static void __kprobes resume_execution(struct kprobe *p,
279 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
281 u32 insn = p->ainsn.insn[0];
283 regs->tnpc = relbranch_fixup(insn, p, regs);
285 /* This assignment must occur after relbranch_fixup() */
286 regs->tpc = kcb->kprobe_orig_tnpc;
288 retpc_fixup(regs, insn, (unsigned long) p->addr);
290 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
291 kcb->kprobe_orig_tstate_pil);
294 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
296 struct kprobe *cur = kprobe_running();
297 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
299 if (!cur)
300 return 0;
302 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
303 kcb->kprobe_status = KPROBE_HIT_SSDONE;
304 cur->post_handler(cur, regs, 0);
307 resume_execution(cur, regs, kcb);
309 /*Restore back the original saved kprobes variables and continue. */
310 if (kcb->kprobe_status == KPROBE_REENTER) {
311 restore_previous_kprobe(kcb);
312 goto out;
314 reset_current_kprobe();
315 out:
316 preempt_enable_no_resched();
318 return 1;
321 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
323 struct kprobe *cur = kprobe_running();
324 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
325 const struct exception_table_entry *entry;
327 switch(kcb->kprobe_status) {
328 case KPROBE_HIT_SS:
329 case KPROBE_REENTER:
331 * We are here because the instruction being single
332 * stepped caused a page fault. We reset the current
333 * kprobe and the tpc points back to the probe address
334 * and allow the page fault handler to continue as a
335 * normal page fault.
337 regs->tpc = (unsigned long)cur->addr;
338 regs->tnpc = kcb->kprobe_orig_tnpc;
339 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
340 kcb->kprobe_orig_tstate_pil);
341 if (kcb->kprobe_status == KPROBE_REENTER)
342 restore_previous_kprobe(kcb);
343 else
344 reset_current_kprobe();
345 preempt_enable_no_resched();
346 break;
347 case KPROBE_HIT_ACTIVE:
348 case KPROBE_HIT_SSDONE:
350 * We increment the nmissed count for accounting,
351 * we can also use npre/npostfault count for accouting
352 * these specific fault cases.
354 kprobes_inc_nmissed_count(cur);
357 * We come here because instructions in the pre/post
358 * handler caused the page_fault, this could happen
359 * if handler tries to access user space by
360 * copy_from_user(), get_user() etc. Let the
361 * user-specified handler try to fix it first.
363 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
364 return 1;
367 * In case the user-specified fault handler returned
368 * zero, try to fix up.
371 entry = search_exception_tables(regs->tpc);
372 if (entry) {
373 regs->tpc = entry->fixup;
374 regs->tnpc = regs->tpc + 4;
375 return 1;
379 * fixup_exception() could not handle it,
380 * Let do_page_fault() fix it.
382 break;
383 default:
384 break;
387 return 0;
391 * Wrapper routine to for handling exceptions.
393 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
394 unsigned long val, void *data)
396 struct die_args *args = (struct die_args *)data;
397 int ret = NOTIFY_DONE;
399 if (args->regs && user_mode(args->regs))
400 return ret;
402 switch (val) {
403 case DIE_DEBUG:
404 if (kprobe_handler(args->regs))
405 ret = NOTIFY_STOP;
406 break;
407 case DIE_DEBUG_2:
408 if (post_kprobe_handler(args->regs))
409 ret = NOTIFY_STOP;
410 break;
411 default:
412 break;
414 return ret;
417 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
418 struct pt_regs *regs)
420 BUG_ON(trap_level != 0x170 && trap_level != 0x171);
422 if (user_mode(regs)) {
423 local_irq_enable();
424 bad_trap(regs, trap_level);
425 return;
428 /* trap_level == 0x170 --> ta 0x70
429 * trap_level == 0x171 --> ta 0x71
431 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
432 (trap_level == 0x170) ? "debug" : "debug_2",
433 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
434 bad_trap(regs, trap_level);
437 /* Jprobes support. */
438 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
440 struct jprobe *jp = container_of(p, struct jprobe, kp);
441 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443 memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
445 regs->tpc = (unsigned long) jp->entry;
446 regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
447 regs->tstate |= TSTATE_PIL;
449 return 1;
452 void __kprobes jprobe_return(void)
454 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
455 register unsigned long orig_fp asm("g1");
457 orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
458 __asm__ __volatile__("\n"
459 "1: cmp %%sp, %0\n\t"
460 "blu,a,pt %%xcc, 1b\n\t"
461 " restore\n\t"
462 ".globl jprobe_return_trap_instruction\n"
463 "jprobe_return_trap_instruction:\n\t"
464 "ta 0x70"
465 : /* no outputs */
466 : "r" (orig_fp));
469 extern void jprobe_return_trap_instruction(void);
471 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
473 u32 *addr = (u32 *) regs->tpc;
474 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476 if (addr == (u32 *) jprobe_return_trap_instruction) {
477 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
478 preempt_enable_no_resched();
479 return 1;
481 return 0;
484 /* The value stored in the return address register is actually 2
485 * instructions before where the callee will return to.
486 * Sequences usually look something like this
488 * call some_function <--- return register points here
489 * nop <--- call delay slot
490 * whatever <--- where callee returns to
492 * To keep trampoline_probe_handler logic simpler, we normalize the
493 * value kept in ri->ret_addr so we don't need to keep adjusting it
494 * back and forth.
496 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
497 struct pt_regs *regs)
499 ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
501 /* Replace the return addr with trampoline addr */
502 regs->u_regs[UREG_RETPC] =
503 ((unsigned long)kretprobe_trampoline) - 8;
507 * Called when the probe at kretprobe trampoline is hit
509 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
511 struct kretprobe_instance *ri = NULL;
512 struct hlist_head *head, empty_rp;
513 struct hlist_node *node, *tmp;
514 unsigned long flags, orig_ret_address = 0;
515 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
517 INIT_HLIST_HEAD(&empty_rp);
518 kretprobe_hash_lock(current, &head, &flags);
521 * It is possible to have multiple instances associated with a given
522 * task either because an multiple functions in the call path
523 * have a return probe installed on them, and/or more than one return
524 * return probe was registered for a target function.
526 * We can handle this because:
527 * - instances are always inserted at the head of the list
528 * - when multiple return probes are registered for the same
529 * function, the first instance's ret_addr will point to the
530 * real return address, and all the rest will point to
531 * kretprobe_trampoline
533 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
534 if (ri->task != current)
535 /* another task is sharing our hash bucket */
536 continue;
538 if (ri->rp && ri->rp->handler)
539 ri->rp->handler(ri, regs);
541 orig_ret_address = (unsigned long)ri->ret_addr;
542 recycle_rp_inst(ri, &empty_rp);
544 if (orig_ret_address != trampoline_address)
546 * This is the real return address. Any other
547 * instances associated with this task are for
548 * other calls deeper on the call stack
550 break;
553 kretprobe_assert(ri, orig_ret_address, trampoline_address);
554 regs->tpc = orig_ret_address;
555 regs->tnpc = orig_ret_address + 4;
557 reset_current_kprobe();
558 kretprobe_hash_unlock(current, &flags);
559 preempt_enable_no_resched();
561 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
562 hlist_del(&ri->hlist);
563 kfree(ri);
566 * By returning a non-zero value, we are telling
567 * kprobe_handler() that we don't want the post_handler
568 * to run (and have re-enabled preemption)
570 return 1;
573 void kretprobe_trampoline_holder(void)
575 asm volatile(".global kretprobe_trampoline\n"
576 "kretprobe_trampoline:\n"
577 "\tnop\n"
578 "\tnop\n");
580 static struct kprobe trampoline_p = {
581 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
582 .pre_handler = trampoline_probe_handler
585 int __init arch_init_kprobes(void)
587 return register_kprobe(&trampoline_p);
590 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
592 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
593 return 1;
595 return 0;