MIPS: Alchemy: prom_putchar is board dependent
[linux-2.6/linux-mips.git] / arch / sparc / kernel / pci.c
blob37b66c60abe32f7d76471bbcca7fbe49f7530749
1 /* pci.c: UltraSparc PCI controller support.
3 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
4 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
7 * OF tree based PCI bus probing taken from the PowerPC port
8 * with minor modifications, see there for credits.
9 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/capability.h>
16 #include <linux/errno.h>
17 #include <linux/pci.h>
18 #include <linux/msi.h>
19 #include <linux/irq.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
24 #include <asm/uaccess.h>
25 #include <asm/pgtable.h>
26 #include <asm/irq.h>
27 #include <asm/prom.h>
28 #include <asm/apb.h>
30 #include "pci_impl.h"
32 /* List of all PCI controllers found in the system. */
33 struct pci_pbm_info *pci_pbm_root = NULL;
35 /* Each PBM found gets a unique index. */
36 int pci_num_pbms = 0;
38 volatile int pci_poke_in_progress;
39 volatile int pci_poke_cpu = -1;
40 volatile int pci_poke_faulted;
42 static DEFINE_SPINLOCK(pci_poke_lock);
44 void pci_config_read8(u8 *addr, u8 *ret)
46 unsigned long flags;
47 u8 byte;
49 spin_lock_irqsave(&pci_poke_lock, flags);
50 pci_poke_cpu = smp_processor_id();
51 pci_poke_in_progress = 1;
52 pci_poke_faulted = 0;
53 __asm__ __volatile__("membar #Sync\n\t"
54 "lduba [%1] %2, %0\n\t"
55 "membar #Sync"
56 : "=r" (byte)
57 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
58 : "memory");
59 pci_poke_in_progress = 0;
60 pci_poke_cpu = -1;
61 if (!pci_poke_faulted)
62 *ret = byte;
63 spin_unlock_irqrestore(&pci_poke_lock, flags);
66 void pci_config_read16(u16 *addr, u16 *ret)
68 unsigned long flags;
69 u16 word;
71 spin_lock_irqsave(&pci_poke_lock, flags);
72 pci_poke_cpu = smp_processor_id();
73 pci_poke_in_progress = 1;
74 pci_poke_faulted = 0;
75 __asm__ __volatile__("membar #Sync\n\t"
76 "lduha [%1] %2, %0\n\t"
77 "membar #Sync"
78 : "=r" (word)
79 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
80 : "memory");
81 pci_poke_in_progress = 0;
82 pci_poke_cpu = -1;
83 if (!pci_poke_faulted)
84 *ret = word;
85 spin_unlock_irqrestore(&pci_poke_lock, flags);
88 void pci_config_read32(u32 *addr, u32 *ret)
90 unsigned long flags;
91 u32 dword;
93 spin_lock_irqsave(&pci_poke_lock, flags);
94 pci_poke_cpu = smp_processor_id();
95 pci_poke_in_progress = 1;
96 pci_poke_faulted = 0;
97 __asm__ __volatile__("membar #Sync\n\t"
98 "lduwa [%1] %2, %0\n\t"
99 "membar #Sync"
100 : "=r" (dword)
101 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
102 : "memory");
103 pci_poke_in_progress = 0;
104 pci_poke_cpu = -1;
105 if (!pci_poke_faulted)
106 *ret = dword;
107 spin_unlock_irqrestore(&pci_poke_lock, flags);
110 void pci_config_write8(u8 *addr, u8 val)
112 unsigned long flags;
114 spin_lock_irqsave(&pci_poke_lock, flags);
115 pci_poke_cpu = smp_processor_id();
116 pci_poke_in_progress = 1;
117 pci_poke_faulted = 0;
118 __asm__ __volatile__("membar #Sync\n\t"
119 "stba %0, [%1] %2\n\t"
120 "membar #Sync"
121 : /* no outputs */
122 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
123 : "memory");
124 pci_poke_in_progress = 0;
125 pci_poke_cpu = -1;
126 spin_unlock_irqrestore(&pci_poke_lock, flags);
129 void pci_config_write16(u16 *addr, u16 val)
131 unsigned long flags;
133 spin_lock_irqsave(&pci_poke_lock, flags);
134 pci_poke_cpu = smp_processor_id();
135 pci_poke_in_progress = 1;
136 pci_poke_faulted = 0;
137 __asm__ __volatile__("membar #Sync\n\t"
138 "stha %0, [%1] %2\n\t"
139 "membar #Sync"
140 : /* no outputs */
141 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
142 : "memory");
143 pci_poke_in_progress = 0;
144 pci_poke_cpu = -1;
145 spin_unlock_irqrestore(&pci_poke_lock, flags);
148 void pci_config_write32(u32 *addr, u32 val)
150 unsigned long flags;
152 spin_lock_irqsave(&pci_poke_lock, flags);
153 pci_poke_cpu = smp_processor_id();
154 pci_poke_in_progress = 1;
155 pci_poke_faulted = 0;
156 __asm__ __volatile__("membar #Sync\n\t"
157 "stwa %0, [%1] %2\n\t"
158 "membar #Sync"
159 : /* no outputs */
160 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
161 : "memory");
162 pci_poke_in_progress = 0;
163 pci_poke_cpu = -1;
164 spin_unlock_irqrestore(&pci_poke_lock, flags);
167 static int ofpci_verbose;
169 static int __init ofpci_debug(char *str)
171 int val = 0;
173 get_option(&str, &val);
174 if (val)
175 ofpci_verbose = 1;
176 return 1;
179 __setup("ofpci_debug=", ofpci_debug);
181 static unsigned long pci_parse_of_flags(u32 addr0)
183 unsigned long flags = 0;
185 if (addr0 & 0x02000000) {
186 flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
187 flags |= (addr0 >> 22) & PCI_BASE_ADDRESS_MEM_TYPE_64;
188 flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
189 if (addr0 & 0x40000000)
190 flags |= IORESOURCE_PREFETCH
191 | PCI_BASE_ADDRESS_MEM_PREFETCH;
192 } else if (addr0 & 0x01000000)
193 flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
194 return flags;
197 /* The of_device layer has translated all of the assigned-address properties
198 * into physical address resources, we only have to figure out the register
199 * mapping.
201 static void pci_parse_of_addrs(struct of_device *op,
202 struct device_node *node,
203 struct pci_dev *dev)
205 struct resource *op_res;
206 const u32 *addrs;
207 int proplen;
209 addrs = of_get_property(node, "assigned-addresses", &proplen);
210 if (!addrs)
211 return;
212 if (ofpci_verbose)
213 printk(" parse addresses (%d bytes) @ %p\n",
214 proplen, addrs);
215 op_res = &op->resource[0];
216 for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
217 struct resource *res;
218 unsigned long flags;
219 int i;
221 flags = pci_parse_of_flags(addrs[0]);
222 if (!flags)
223 continue;
224 i = addrs[0] & 0xff;
225 if (ofpci_verbose)
226 printk(" start: %llx, end: %llx, i: %x\n",
227 op_res->start, op_res->end, i);
229 if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
230 res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
231 } else if (i == dev->rom_base_reg) {
232 res = &dev->resource[PCI_ROM_RESOURCE];
233 flags |= IORESOURCE_READONLY | IORESOURCE_CACHEABLE;
234 } else {
235 printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
236 continue;
238 res->start = op_res->start;
239 res->end = op_res->end;
240 res->flags = flags;
241 res->name = pci_name(dev);
245 static struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
246 struct device_node *node,
247 struct pci_bus *bus, int devfn)
249 struct dev_archdata *sd;
250 struct pci_slot *slot;
251 struct of_device *op;
252 struct pci_dev *dev;
253 const char *type;
254 u32 class;
256 dev = alloc_pci_dev();
257 if (!dev)
258 return NULL;
260 sd = &dev->dev.archdata;
261 sd->iommu = pbm->iommu;
262 sd->stc = &pbm->stc;
263 sd->host_controller = pbm;
264 sd->prom_node = node;
265 sd->op = op = of_find_device_by_node(node);
266 sd->numa_node = pbm->numa_node;
268 sd = &op->dev.archdata;
269 sd->iommu = pbm->iommu;
270 sd->stc = &pbm->stc;
271 sd->numa_node = pbm->numa_node;
273 if (!strcmp(node->name, "ebus"))
274 of_propagate_archdata(op);
276 type = of_get_property(node, "device_type", NULL);
277 if (type == NULL)
278 type = "";
280 if (ofpci_verbose)
281 printk(" create device, devfn: %x, type: %s\n",
282 devfn, type);
284 dev->bus = bus;
285 dev->sysdata = node;
286 dev->dev.parent = bus->bridge;
287 dev->dev.bus = &pci_bus_type;
288 dev->devfn = devfn;
289 dev->multifunction = 0; /* maybe a lie? */
290 set_pcie_port_type(dev);
292 list_for_each_entry(slot, &dev->bus->slots, list)
293 if (PCI_SLOT(dev->devfn) == slot->number)
294 dev->slot = slot;
296 dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
297 dev->device = of_getintprop_default(node, "device-id", 0xffff);
298 dev->subsystem_vendor =
299 of_getintprop_default(node, "subsystem-vendor-id", 0);
300 dev->subsystem_device =
301 of_getintprop_default(node, "subsystem-id", 0);
303 dev->cfg_size = pci_cfg_space_size(dev);
305 /* We can't actually use the firmware value, we have
306 * to read what is in the register right now. One
307 * reason is that in the case of IDE interfaces the
308 * firmware can sample the value before the the IDE
309 * interface is programmed into native mode.
311 pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
312 dev->class = class >> 8;
313 dev->revision = class & 0xff;
315 dev_set_name(&dev->dev, "%04x:%02x:%02x.%d", pci_domain_nr(bus),
316 dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
318 if (ofpci_verbose)
319 printk(" class: 0x%x device name: %s\n",
320 dev->class, pci_name(dev));
322 /* I have seen IDE devices which will not respond to
323 * the bmdma simplex check reads if bus mastering is
324 * disabled.
326 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
327 pci_set_master(dev);
329 dev->current_state = 4; /* unknown power state */
330 dev->error_state = pci_channel_io_normal;
331 dev->dma_mask = 0xffffffff;
333 if (!strcmp(node->name, "pci")) {
334 /* a PCI-PCI bridge */
335 dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
336 dev->rom_base_reg = PCI_ROM_ADDRESS1;
337 } else if (!strcmp(type, "cardbus")) {
338 dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
339 } else {
340 dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
341 dev->rom_base_reg = PCI_ROM_ADDRESS;
343 dev->irq = sd->op->irqs[0];
344 if (dev->irq == 0xffffffff)
345 dev->irq = PCI_IRQ_NONE;
348 pci_parse_of_addrs(sd->op, node, dev);
350 if (ofpci_verbose)
351 printk(" adding to system ...\n");
353 pci_device_add(dev, bus);
355 return dev;
358 static void __devinit apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
360 u32 idx, first, last;
362 first = 8;
363 last = 0;
364 for (idx = 0; idx < 8; idx++) {
365 if ((map & (1 << idx)) != 0) {
366 if (first > idx)
367 first = idx;
368 if (last < idx)
369 last = idx;
373 *first_p = first;
374 *last_p = last;
377 static void pci_resource_adjust(struct resource *res,
378 struct resource *root)
380 res->start += root->start;
381 res->end += root->start;
384 /* For PCI bus devices which lack a 'ranges' property we interrogate
385 * the config space values to set the resources, just like the generic
386 * Linux PCI probing code does.
388 static void __devinit pci_cfg_fake_ranges(struct pci_dev *dev,
389 struct pci_bus *bus,
390 struct pci_pbm_info *pbm)
392 struct resource *res;
393 u8 io_base_lo, io_limit_lo;
394 u16 mem_base_lo, mem_limit_lo;
395 unsigned long base, limit;
397 pci_read_config_byte(dev, PCI_IO_BASE, &io_base_lo);
398 pci_read_config_byte(dev, PCI_IO_LIMIT, &io_limit_lo);
399 base = (io_base_lo & PCI_IO_RANGE_MASK) << 8;
400 limit = (io_limit_lo & PCI_IO_RANGE_MASK) << 8;
402 if ((io_base_lo & PCI_IO_RANGE_TYPE_MASK) == PCI_IO_RANGE_TYPE_32) {
403 u16 io_base_hi, io_limit_hi;
405 pci_read_config_word(dev, PCI_IO_BASE_UPPER16, &io_base_hi);
406 pci_read_config_word(dev, PCI_IO_LIMIT_UPPER16, &io_limit_hi);
407 base |= (io_base_hi << 16);
408 limit |= (io_limit_hi << 16);
411 res = bus->resource[0];
412 if (base <= limit) {
413 res->flags = (io_base_lo & PCI_IO_RANGE_TYPE_MASK) | IORESOURCE_IO;
414 if (!res->start)
415 res->start = base;
416 if (!res->end)
417 res->end = limit + 0xfff;
418 pci_resource_adjust(res, &pbm->io_space);
421 pci_read_config_word(dev, PCI_MEMORY_BASE, &mem_base_lo);
422 pci_read_config_word(dev, PCI_MEMORY_LIMIT, &mem_limit_lo);
423 base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16;
424 limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16;
426 res = bus->resource[1];
427 if (base <= limit) {
428 res->flags = ((mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) |
429 IORESOURCE_MEM);
430 res->start = base;
431 res->end = limit + 0xfffff;
432 pci_resource_adjust(res, &pbm->mem_space);
435 pci_read_config_word(dev, PCI_PREF_MEMORY_BASE, &mem_base_lo);
436 pci_read_config_word(dev, PCI_PREF_MEMORY_LIMIT, &mem_limit_lo);
437 base = (mem_base_lo & PCI_PREF_RANGE_MASK) << 16;
438 limit = (mem_limit_lo & PCI_PREF_RANGE_MASK) << 16;
440 if ((mem_base_lo & PCI_PREF_RANGE_TYPE_MASK) == PCI_PREF_RANGE_TYPE_64) {
441 u32 mem_base_hi, mem_limit_hi;
443 pci_read_config_dword(dev, PCI_PREF_BASE_UPPER32, &mem_base_hi);
444 pci_read_config_dword(dev, PCI_PREF_LIMIT_UPPER32, &mem_limit_hi);
447 * Some bridges set the base > limit by default, and some
448 * (broken) BIOSes do not initialize them. If we find
449 * this, just assume they are not being used.
451 if (mem_base_hi <= mem_limit_hi) {
452 base |= ((long) mem_base_hi) << 32;
453 limit |= ((long) mem_limit_hi) << 32;
457 res = bus->resource[2];
458 if (base <= limit) {
459 res->flags = ((mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) |
460 IORESOURCE_MEM | IORESOURCE_PREFETCH);
461 res->start = base;
462 res->end = limit + 0xfffff;
463 pci_resource_adjust(res, &pbm->mem_space);
467 /* Cook up fake bus resources for SUNW,simba PCI bridges which lack
468 * a proper 'ranges' property.
470 static void __devinit apb_fake_ranges(struct pci_dev *dev,
471 struct pci_bus *bus,
472 struct pci_pbm_info *pbm)
474 struct resource *res;
475 u32 first, last;
476 u8 map;
478 pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
479 apb_calc_first_last(map, &first, &last);
480 res = bus->resource[0];
481 res->start = (first << 21);
482 res->end = (last << 21) + ((1 << 21) - 1);
483 res->flags = IORESOURCE_IO;
484 pci_resource_adjust(res, &pbm->io_space);
486 pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
487 apb_calc_first_last(map, &first, &last);
488 res = bus->resource[1];
489 res->start = (first << 21);
490 res->end = (last << 21) + ((1 << 21) - 1);
491 res->flags = IORESOURCE_MEM;
492 pci_resource_adjust(res, &pbm->mem_space);
495 static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
496 struct device_node *node,
497 struct pci_bus *bus);
499 #define GET_64BIT(prop, i) ((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
501 static void __devinit of_scan_pci_bridge(struct pci_pbm_info *pbm,
502 struct device_node *node,
503 struct pci_dev *dev)
505 struct pci_bus *bus;
506 const u32 *busrange, *ranges;
507 int len, i, simba;
508 struct resource *res;
509 unsigned int flags;
510 u64 size;
512 if (ofpci_verbose)
513 printk("of_scan_pci_bridge(%s)\n", node->full_name);
515 /* parse bus-range property */
516 busrange = of_get_property(node, "bus-range", &len);
517 if (busrange == NULL || len != 8) {
518 printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
519 node->full_name);
520 return;
522 ranges = of_get_property(node, "ranges", &len);
523 simba = 0;
524 if (ranges == NULL) {
525 const char *model = of_get_property(node, "model", NULL);
526 if (model && !strcmp(model, "SUNW,simba"))
527 simba = 1;
530 bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
531 if (!bus) {
532 printk(KERN_ERR "Failed to create pci bus for %s\n",
533 node->full_name);
534 return;
537 bus->primary = dev->bus->number;
538 bus->subordinate = busrange[1];
539 bus->bridge_ctl = 0;
541 /* parse ranges property, or cook one up by hand for Simba */
542 /* PCI #address-cells == 3 and #size-cells == 2 always */
543 res = &dev->resource[PCI_BRIDGE_RESOURCES];
544 for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
545 res->flags = 0;
546 bus->resource[i] = res;
547 ++res;
549 if (simba) {
550 apb_fake_ranges(dev, bus, pbm);
551 goto after_ranges;
552 } else if (ranges == NULL) {
553 pci_cfg_fake_ranges(dev, bus, pbm);
554 goto after_ranges;
556 i = 1;
557 for (; len >= 32; len -= 32, ranges += 8) {
558 struct resource *root;
560 flags = pci_parse_of_flags(ranges[0]);
561 size = GET_64BIT(ranges, 6);
562 if (flags == 0 || size == 0)
563 continue;
564 if (flags & IORESOURCE_IO) {
565 res = bus->resource[0];
566 if (res->flags) {
567 printk(KERN_ERR "PCI: ignoring extra I/O range"
568 " for bridge %s\n", node->full_name);
569 continue;
571 root = &pbm->io_space;
572 } else {
573 if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
574 printk(KERN_ERR "PCI: too many memory ranges"
575 " for bridge %s\n", node->full_name);
576 continue;
578 res = bus->resource[i];
579 ++i;
580 root = &pbm->mem_space;
583 res->start = GET_64BIT(ranges, 1);
584 res->end = res->start + size - 1;
585 res->flags = flags;
587 /* Another way to implement this would be to add an of_device
588 * layer routine that can calculate a resource for a given
589 * range property value in a PCI device.
591 pci_resource_adjust(res, root);
593 after_ranges:
594 sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
595 bus->number);
596 if (ofpci_verbose)
597 printk(" bus name: %s\n", bus->name);
599 pci_of_scan_bus(pbm, node, bus);
602 static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
603 struct device_node *node,
604 struct pci_bus *bus)
606 struct device_node *child;
607 const u32 *reg;
608 int reglen, devfn, prev_devfn;
609 struct pci_dev *dev;
611 if (ofpci_verbose)
612 printk("PCI: scan_bus[%s] bus no %d\n",
613 node->full_name, bus->number);
615 child = NULL;
616 prev_devfn = -1;
617 while ((child = of_get_next_child(node, child)) != NULL) {
618 if (ofpci_verbose)
619 printk(" * %s\n", child->full_name);
620 reg = of_get_property(child, "reg", &reglen);
621 if (reg == NULL || reglen < 20)
622 continue;
624 devfn = (reg[0] >> 8) & 0xff;
626 /* This is a workaround for some device trees
627 * which list PCI devices twice. On the V100
628 * for example, device number 3 is listed twice.
629 * Once as "pm" and once again as "lomp".
631 if (devfn == prev_devfn)
632 continue;
633 prev_devfn = devfn;
635 /* create a new pci_dev for this device */
636 dev = of_create_pci_dev(pbm, child, bus, devfn);
637 if (!dev)
638 continue;
639 if (ofpci_verbose)
640 printk("PCI: dev header type: %x\n",
641 dev->hdr_type);
643 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE ||
644 dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)
645 of_scan_pci_bridge(pbm, child, dev);
649 static ssize_t
650 show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
652 struct pci_dev *pdev;
653 struct device_node *dp;
655 pdev = to_pci_dev(dev);
656 dp = pdev->dev.archdata.prom_node;
658 return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
661 static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
663 static void __devinit pci_bus_register_of_sysfs(struct pci_bus *bus)
665 struct pci_dev *dev;
666 struct pci_bus *child_bus;
667 int err;
669 list_for_each_entry(dev, &bus->devices, bus_list) {
670 /* we don't really care if we can create this file or
671 * not, but we need to assign the result of the call
672 * or the world will fall under alien invasion and
673 * everybody will be frozen on a spaceship ready to be
674 * eaten on alpha centauri by some green and jelly
675 * humanoid.
677 err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
679 list_for_each_entry(child_bus, &bus->children, node)
680 pci_bus_register_of_sysfs(child_bus);
683 struct pci_bus * __devinit pci_scan_one_pbm(struct pci_pbm_info *pbm,
684 struct device *parent)
686 struct device_node *node = pbm->op->node;
687 struct pci_bus *bus;
689 printk("PCI: Scanning PBM %s\n", node->full_name);
691 bus = pci_create_bus(parent, pbm->pci_first_busno, pbm->pci_ops, pbm);
692 if (!bus) {
693 printk(KERN_ERR "Failed to create bus for %s\n",
694 node->full_name);
695 return NULL;
697 bus->secondary = pbm->pci_first_busno;
698 bus->subordinate = pbm->pci_last_busno;
700 bus->resource[0] = &pbm->io_space;
701 bus->resource[1] = &pbm->mem_space;
703 pci_of_scan_bus(pbm, node, bus);
704 pci_bus_add_devices(bus);
705 pci_bus_register_of_sysfs(bus);
707 return bus;
710 void __devinit pcibios_fixup_bus(struct pci_bus *pbus)
712 struct pci_pbm_info *pbm = pbus->sysdata;
714 /* Generic PCI bus probing sets these to point at
715 * &io{port,mem}_resouce which is wrong for us.
717 pbus->resource[0] = &pbm->io_space;
718 pbus->resource[1] = &pbm->mem_space;
721 void pcibios_update_irq(struct pci_dev *pdev, int irq)
725 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
726 resource_size_t size, resource_size_t align)
728 return res->start;
731 int pcibios_enable_device(struct pci_dev *dev, int mask)
733 u16 cmd, oldcmd;
734 int i;
736 pci_read_config_word(dev, PCI_COMMAND, &cmd);
737 oldcmd = cmd;
739 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
740 struct resource *res = &dev->resource[i];
742 /* Only set up the requested stuff */
743 if (!(mask & (1<<i)))
744 continue;
746 if (res->flags & IORESOURCE_IO)
747 cmd |= PCI_COMMAND_IO;
748 if (res->flags & IORESOURCE_MEM)
749 cmd |= PCI_COMMAND_MEMORY;
752 if (cmd != oldcmd) {
753 printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
754 pci_name(dev), cmd);
755 /* Enable the appropriate bits in the PCI command register. */
756 pci_write_config_word(dev, PCI_COMMAND, cmd);
758 return 0;
761 void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
762 struct resource *res)
764 struct pci_pbm_info *pbm = pdev->bus->sysdata;
765 struct resource zero_res, *root;
767 zero_res.start = 0;
768 zero_res.end = 0;
769 zero_res.flags = res->flags;
771 if (res->flags & IORESOURCE_IO)
772 root = &pbm->io_space;
773 else
774 root = &pbm->mem_space;
776 pci_resource_adjust(&zero_res, root);
778 region->start = res->start - zero_res.start;
779 region->end = res->end - zero_res.start;
781 EXPORT_SYMBOL(pcibios_resource_to_bus);
783 void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
784 struct pci_bus_region *region)
786 struct pci_pbm_info *pbm = pdev->bus->sysdata;
787 struct resource *root;
789 res->start = region->start;
790 res->end = region->end;
792 if (res->flags & IORESOURCE_IO)
793 root = &pbm->io_space;
794 else
795 root = &pbm->mem_space;
797 pci_resource_adjust(res, root);
799 EXPORT_SYMBOL(pcibios_bus_to_resource);
801 char * __devinit pcibios_setup(char *str)
803 return str;
806 /* Platform support for /proc/bus/pci/X/Y mmap()s. */
808 /* If the user uses a host-bridge as the PCI device, he may use
809 * this to perform a raw mmap() of the I/O or MEM space behind
810 * that controller.
812 * This can be useful for execution of x86 PCI bios initialization code
813 * on a PCI card, like the xfree86 int10 stuff does.
815 static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
816 enum pci_mmap_state mmap_state)
818 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
819 unsigned long space_size, user_offset, user_size;
821 if (mmap_state == pci_mmap_io) {
822 space_size = (pbm->io_space.end -
823 pbm->io_space.start) + 1;
824 } else {
825 space_size = (pbm->mem_space.end -
826 pbm->mem_space.start) + 1;
829 /* Make sure the request is in range. */
830 user_offset = vma->vm_pgoff << PAGE_SHIFT;
831 user_size = vma->vm_end - vma->vm_start;
833 if (user_offset >= space_size ||
834 (user_offset + user_size) > space_size)
835 return -EINVAL;
837 if (mmap_state == pci_mmap_io) {
838 vma->vm_pgoff = (pbm->io_space.start +
839 user_offset) >> PAGE_SHIFT;
840 } else {
841 vma->vm_pgoff = (pbm->mem_space.start +
842 user_offset) >> PAGE_SHIFT;
845 return 0;
848 /* Adjust vm_pgoff of VMA such that it is the physical page offset
849 * corresponding to the 32-bit pci bus offset for DEV requested by the user.
851 * Basically, the user finds the base address for his device which he wishes
852 * to mmap. They read the 32-bit value from the config space base register,
853 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
854 * offset parameter of mmap on /proc/bus/pci/XXX for that device.
856 * Returns negative error code on failure, zero on success.
858 static int __pci_mmap_make_offset(struct pci_dev *pdev,
859 struct vm_area_struct *vma,
860 enum pci_mmap_state mmap_state)
862 unsigned long user_paddr, user_size;
863 int i, err;
865 /* First compute the physical address in vma->vm_pgoff,
866 * making sure the user offset is within range in the
867 * appropriate PCI space.
869 err = __pci_mmap_make_offset_bus(pdev, vma, mmap_state);
870 if (err)
871 return err;
873 /* If this is a mapping on a host bridge, any address
874 * is OK.
876 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
877 return err;
879 /* Otherwise make sure it's in the range for one of the
880 * device's resources.
882 user_paddr = vma->vm_pgoff << PAGE_SHIFT;
883 user_size = vma->vm_end - vma->vm_start;
885 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
886 struct resource *rp = &pdev->resource[i];
887 resource_size_t aligned_end;
889 /* Active? */
890 if (!rp->flags)
891 continue;
893 /* Same type? */
894 if (i == PCI_ROM_RESOURCE) {
895 if (mmap_state != pci_mmap_mem)
896 continue;
897 } else {
898 if ((mmap_state == pci_mmap_io &&
899 (rp->flags & IORESOURCE_IO) == 0) ||
900 (mmap_state == pci_mmap_mem &&
901 (rp->flags & IORESOURCE_MEM) == 0))
902 continue;
905 /* Align the resource end to the next page address.
906 * PAGE_SIZE intentionally added instead of (PAGE_SIZE - 1),
907 * because actually we need the address of the next byte
908 * after rp->end.
910 aligned_end = (rp->end + PAGE_SIZE) & PAGE_MASK;
912 if ((rp->start <= user_paddr) &&
913 (user_paddr + user_size) <= aligned_end)
914 break;
917 if (i > PCI_ROM_RESOURCE)
918 return -EINVAL;
920 return 0;
923 /* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
924 * mapping.
926 static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
927 enum pci_mmap_state mmap_state)
929 vma->vm_flags |= (VM_IO | VM_RESERVED);
932 /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
933 * device mapping.
935 static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
936 enum pci_mmap_state mmap_state)
938 /* Our io_remap_pfn_range takes care of this, do nothing. */
941 /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
942 * for this architecture. The region in the process to map is described by vm_start
943 * and vm_end members of VMA, the base physical address is found in vm_pgoff.
944 * The pci device structure is provided so that architectures may make mapping
945 * decisions on a per-device or per-bus basis.
947 * Returns a negative error code on failure, zero on success.
949 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
950 enum pci_mmap_state mmap_state,
951 int write_combine)
953 int ret;
955 ret = __pci_mmap_make_offset(dev, vma, mmap_state);
956 if (ret < 0)
957 return ret;
959 __pci_mmap_set_flags(dev, vma, mmap_state);
960 __pci_mmap_set_pgprot(dev, vma, mmap_state);
962 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
963 ret = io_remap_pfn_range(vma, vma->vm_start,
964 vma->vm_pgoff,
965 vma->vm_end - vma->vm_start,
966 vma->vm_page_prot);
967 if (ret)
968 return ret;
970 return 0;
973 #ifdef CONFIG_NUMA
974 int pcibus_to_node(struct pci_bus *pbus)
976 struct pci_pbm_info *pbm = pbus->sysdata;
978 return pbm->numa_node;
980 EXPORT_SYMBOL(pcibus_to_node);
981 #endif
983 /* Return the domain number for this pci bus */
985 int pci_domain_nr(struct pci_bus *pbus)
987 struct pci_pbm_info *pbm = pbus->sysdata;
988 int ret;
990 if (!pbm) {
991 ret = -ENXIO;
992 } else {
993 ret = pbm->index;
996 return ret;
998 EXPORT_SYMBOL(pci_domain_nr);
1000 #ifdef CONFIG_PCI_MSI
1001 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
1003 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
1004 unsigned int virt_irq;
1006 if (!pbm->setup_msi_irq)
1007 return -EINVAL;
1009 return pbm->setup_msi_irq(&virt_irq, pdev, desc);
1012 void arch_teardown_msi_irq(unsigned int virt_irq)
1014 struct msi_desc *entry = get_irq_msi(virt_irq);
1015 struct pci_dev *pdev = entry->dev;
1016 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
1018 if (pbm->teardown_msi_irq)
1019 pbm->teardown_msi_irq(virt_irq, pdev);
1021 #endif /* !(CONFIG_PCI_MSI) */
1023 struct device_node *pci_device_to_OF_node(struct pci_dev *pdev)
1025 return pdev->dev.archdata.prom_node;
1027 EXPORT_SYMBOL(pci_device_to_OF_node);
1029 static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
1031 struct pci_dev *ali_isa_bridge;
1032 u8 val;
1034 /* ALI sound chips generate 31-bits of DMA, a special register
1035 * determines what bit 31 is emitted as.
1037 ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
1038 PCI_DEVICE_ID_AL_M1533,
1039 NULL);
1041 pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
1042 if (set_bit)
1043 val |= 0x01;
1044 else
1045 val &= ~0x01;
1046 pci_write_config_byte(ali_isa_bridge, 0x7e, val);
1047 pci_dev_put(ali_isa_bridge);
1050 int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
1052 u64 dma_addr_mask;
1054 if (pdev == NULL) {
1055 dma_addr_mask = 0xffffffff;
1056 } else {
1057 struct iommu *iommu = pdev->dev.archdata.iommu;
1059 dma_addr_mask = iommu->dma_addr_mask;
1061 if (pdev->vendor == PCI_VENDOR_ID_AL &&
1062 pdev->device == PCI_DEVICE_ID_AL_M5451 &&
1063 device_mask == 0x7fffffff) {
1064 ali_sound_dma_hack(pdev,
1065 (dma_addr_mask & 0x80000000) != 0);
1066 return 1;
1070 if (device_mask >= (1UL << 32UL))
1071 return 0;
1073 return (device_mask & dma_addr_mask) == dma_addr_mask;
1076 void pci_resource_to_user(const struct pci_dev *pdev, int bar,
1077 const struct resource *rp, resource_size_t *start,
1078 resource_size_t *end)
1080 struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
1081 unsigned long offset;
1083 if (rp->flags & IORESOURCE_IO)
1084 offset = pbm->io_space.start;
1085 else
1086 offset = pbm->mem_space.start;
1088 *start = rp->start - offset;
1089 *end = rp->end - offset;
1092 static int __init pcibios_init(void)
1094 pci_dfl_cache_line_size = 64 >> 2;
1095 return 0;
1097 subsys_initcall(pcibios_init);