1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
21 #include <asm/stacktrace.h>
22 #include <asm/cpudata.h>
23 #include <asm/uaccess.h>
24 #include <asm/atomic.h>
30 /* Sparc64 chips have two performance counters, 32-bits each, with
31 * overflow interrupts generated on transition from 0xffffffff to 0.
32 * The counters are accessed in one go using a 64-bit register.
34 * Both counters are controlled using a single control register. The
35 * only way to stop all sampling is to clear all of the context (user,
36 * supervisor, hypervisor) sampling enable bits. But these bits apply
37 * to both counters, thus the two counters can't be enabled/disabled
40 * The control register has two event fields, one for each of the two
41 * counters. It's thus nearly impossible to have one counter going
42 * while keeping the other one stopped. Therefore it is possible to
43 * get overflow interrupts for counters not currently "in use" and
44 * that condition must be checked in the overflow interrupt handler.
46 * So we use a hack, in that we program inactive counters with the
47 * "sw_count0" and "sw_count1" events. These count how many times
48 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
49 * unusual way to encode a NOP and therefore will not trigger in
53 #define MAX_HWEVENTS 2
54 #define MAX_PERIOD ((1UL << 32) - 1)
56 #define PIC_UPPER_INDEX 0
57 #define PIC_LOWER_INDEX 1
58 #define PIC_NO_INDEX -1
60 struct cpu_hw_events
{
61 /* Number of events currently scheduled onto this cpu.
62 * This tells how many entries in the arrays below
67 /* Number of new events added since the last hw_perf_disable().
68 * This works because the perf event layer always adds new
69 * events inside of a perf_{disable,enable}() sequence.
73 /* Array of events current scheduled on this cpu. */
74 struct perf_event
*event
[MAX_HWEVENTS
];
76 /* Array of encoded longs, specifying the %pcr register
77 * encoding and the mask of PIC counters this even can
78 * be scheduled on. See perf_event_encode() et al.
80 unsigned long events
[MAX_HWEVENTS
];
82 /* The current counter index assigned to an event. When the
83 * event hasn't been programmed into the cpu yet, this will
84 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
85 * we ought to schedule the event.
87 int current_idx
[MAX_HWEVENTS
];
89 /* Software copy of %pcr register on this cpu. */
92 /* Enabled/disable state. */
95 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = { .enabled
= 1, };
97 /* An event map describes the characteristics of a performance
98 * counter event. In particular it gives the encoding as well as
99 * a mask telling which counters the event can be measured on.
101 struct perf_event_map
{
104 #define PIC_NONE 0x00
105 #define PIC_UPPER 0x01
106 #define PIC_LOWER 0x02
109 /* Encode a perf_event_map entry into a long. */
110 static unsigned long perf_event_encode(const struct perf_event_map
*pmap
)
112 return ((unsigned long) pmap
->encoding
<< 16) | pmap
->pic_mask
;
115 static u8
perf_event_get_msk(unsigned long val
)
120 static u64
perf_event_get_enc(unsigned long val
)
125 #define C(x) PERF_COUNT_HW_CACHE_##x
127 #define CACHE_OP_UNSUPPORTED 0xfffe
128 #define CACHE_OP_NONSENSE 0xffff
130 typedef struct perf_event_map cache_map_t
131 [PERF_COUNT_HW_CACHE_MAX
]
132 [PERF_COUNT_HW_CACHE_OP_MAX
]
133 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
136 const struct perf_event_map
*(*event_map
)(int);
137 const cache_map_t
*cache_map
;
148 static const struct perf_event_map ultra3_perfmon_event_map
[] = {
149 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x0000, PIC_UPPER
| PIC_LOWER
},
150 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x0001, PIC_UPPER
| PIC_LOWER
},
151 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0009, PIC_LOWER
},
152 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0009, PIC_UPPER
},
155 static const struct perf_event_map
*ultra3_event_map(int event_id
)
157 return &ultra3_perfmon_event_map
[event_id
];
160 static const cache_map_t ultra3_cache_map
= {
163 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
164 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
167 [C(RESULT_ACCESS
)] = { 0x0a, PIC_LOWER
},
168 [C(RESULT_MISS
)] = { 0x0a, PIC_UPPER
},
171 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
172 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
177 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
178 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
181 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
182 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
184 [ C(OP_PREFETCH
) ] = {
185 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
186 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
191 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
, },
192 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
, },
195 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
},
196 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
},
199 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
200 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
205 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
206 [C(RESULT_MISS
)] = { 0x12, PIC_UPPER
, },
209 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
210 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
212 [ C(OP_PREFETCH
) ] = {
213 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
214 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
219 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
220 [C(RESULT_MISS
)] = { 0x11, PIC_UPPER
, },
223 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
224 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
226 [ C(OP_PREFETCH
) ] = {
227 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
228 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
233 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
234 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
237 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
238 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
240 [ C(OP_PREFETCH
) ] = {
241 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
242 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
247 static const struct sparc_pmu ultra3_pmu
= {
248 .event_map
= ultra3_event_map
,
249 .cache_map
= &ultra3_cache_map
,
250 .max_events
= ARRAY_SIZE(ultra3_perfmon_event_map
),
258 /* Niagara1 is very limited. The upper PIC is hard-locked to count
259 * only instructions, so it is free running which creates all kinds of
260 * problems. Some hardware designs make one wonder if the creator
261 * even looked at how this stuff gets used by software.
263 static const struct perf_event_map niagara1_perfmon_event_map
[] = {
264 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, PIC_UPPER
},
265 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, PIC_UPPER
},
266 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0, PIC_NONE
},
267 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x03, PIC_LOWER
},
270 static const struct perf_event_map
*niagara1_event_map(int event_id
)
272 return &niagara1_perfmon_event_map
[event_id
];
275 static const cache_map_t niagara1_cache_map
= {
278 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
279 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
282 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
283 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
286 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
287 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
292 [C(RESULT_ACCESS
)] = { 0x00, PIC_UPPER
},
293 [C(RESULT_MISS
)] = { 0x02, PIC_LOWER
, },
296 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
297 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
299 [ C(OP_PREFETCH
) ] = {
300 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
301 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
306 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
307 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
310 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
311 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
314 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
315 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
320 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
321 [C(RESULT_MISS
)] = { 0x05, PIC_LOWER
, },
324 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
325 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
327 [ C(OP_PREFETCH
) ] = {
328 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
329 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
334 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
335 [C(RESULT_MISS
)] = { 0x04, PIC_LOWER
, },
338 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
339 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
341 [ C(OP_PREFETCH
) ] = {
342 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
343 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
348 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
349 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
352 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
353 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
355 [ C(OP_PREFETCH
) ] = {
356 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
357 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
362 static const struct sparc_pmu niagara1_pmu
= {
363 .event_map
= niagara1_event_map
,
364 .cache_map
= &niagara1_cache_map
,
365 .max_events
= ARRAY_SIZE(niagara1_perfmon_event_map
),
373 static const struct perf_event_map niagara2_perfmon_event_map
[] = {
374 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
375 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
376 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0208, PIC_UPPER
| PIC_LOWER
},
377 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0302, PIC_UPPER
| PIC_LOWER
},
378 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x0201, PIC_UPPER
| PIC_LOWER
},
379 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x0202, PIC_UPPER
| PIC_LOWER
},
382 static const struct perf_event_map
*niagara2_event_map(int event_id
)
384 return &niagara2_perfmon_event_map
[event_id
];
387 static const cache_map_t niagara2_cache_map
= {
390 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
391 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
394 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
395 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
398 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
399 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
404 [C(RESULT_ACCESS
)] = { 0x02ff, PIC_UPPER
| PIC_LOWER
, },
405 [C(RESULT_MISS
)] = { 0x0301, PIC_UPPER
| PIC_LOWER
, },
408 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
409 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
411 [ C(OP_PREFETCH
) ] = {
412 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
413 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
418 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
419 [C(RESULT_MISS
)] = { 0x0330, PIC_UPPER
| PIC_LOWER
, },
422 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
423 [C(RESULT_MISS
)] = { 0x0320, PIC_UPPER
| PIC_LOWER
, },
426 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
427 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
432 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
433 [C(RESULT_MISS
)] = { 0x0b08, PIC_UPPER
| PIC_LOWER
, },
436 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
437 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
439 [ C(OP_PREFETCH
) ] = {
440 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
441 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
446 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
447 [C(RESULT_MISS
)] = { 0xb04, PIC_UPPER
| PIC_LOWER
, },
450 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
451 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
453 [ C(OP_PREFETCH
) ] = {
454 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
455 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
460 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
461 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
464 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
465 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
467 [ C(OP_PREFETCH
) ] = {
468 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
469 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
474 static const struct sparc_pmu niagara2_pmu
= {
475 .event_map
= niagara2_event_map
,
476 .cache_map
= &niagara2_cache_map
,
477 .max_events
= ARRAY_SIZE(niagara2_perfmon_event_map
),
487 static const struct sparc_pmu
*sparc_pmu __read_mostly
;
489 static u64
event_encoding(u64 event_id
, int idx
)
491 if (idx
== PIC_UPPER_INDEX
)
492 event_id
<<= sparc_pmu
->upper_shift
;
494 event_id
<<= sparc_pmu
->lower_shift
;
498 static u64
mask_for_index(int idx
)
500 return event_encoding(sparc_pmu
->event_mask
, idx
);
503 static u64
nop_for_index(int idx
)
505 return event_encoding(idx
== PIC_UPPER_INDEX
?
506 sparc_pmu
->upper_nop
:
507 sparc_pmu
->lower_nop
, idx
);
510 static inline void sparc_pmu_enable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
512 u64 val
, mask
= mask_for_index(idx
);
519 pcr_ops
->write(cpuc
->pcr
);
522 static inline void sparc_pmu_disable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
524 u64 mask
= mask_for_index(idx
);
525 u64 nop
= nop_for_index(idx
);
533 pcr_ops
->write(cpuc
->pcr
);
536 static u32
read_pmc(int idx
)
541 if (idx
== PIC_UPPER_INDEX
)
544 return val
& 0xffffffff;
547 static void write_pmc(int idx
, u64 val
)
549 u64 shift
, mask
, pic
;
552 if (idx
== PIC_UPPER_INDEX
)
555 mask
= ((u64
) 0xffffffff) << shift
;
564 static u64
sparc_perf_event_update(struct perf_event
*event
,
565 struct hw_perf_event
*hwc
, int idx
)
568 u64 prev_raw_count
, new_raw_count
;
572 prev_raw_count
= atomic64_read(&hwc
->prev_count
);
573 new_raw_count
= read_pmc(idx
);
575 if (atomic64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
576 new_raw_count
) != prev_raw_count
)
579 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
582 atomic64_add(delta
, &event
->count
);
583 atomic64_sub(delta
, &hwc
->period_left
);
585 return new_raw_count
;
588 static int sparc_perf_event_set_period(struct perf_event
*event
,
589 struct hw_perf_event
*hwc
, int idx
)
591 s64 left
= atomic64_read(&hwc
->period_left
);
592 s64 period
= hwc
->sample_period
;
595 if (unlikely(left
<= -period
)) {
597 atomic64_set(&hwc
->period_left
, left
);
598 hwc
->last_period
= period
;
602 if (unlikely(left
<= 0)) {
604 atomic64_set(&hwc
->period_left
, left
);
605 hwc
->last_period
= period
;
608 if (left
> MAX_PERIOD
)
611 atomic64_set(&hwc
->prev_count
, (u64
)-left
);
613 write_pmc(idx
, (u64
)(-left
) & 0xffffffff);
615 perf_event_update_userpage(event
);
620 /* If performance event entries have been added, move existing
621 * events around (if necessary) and then assign new entries to
624 static u64
maybe_change_configuration(struct cpu_hw_events
*cpuc
, u64 pcr
)
631 /* Read in the counters which are moving. */
632 for (i
= 0; i
< cpuc
->n_events
; i
++) {
633 struct perf_event
*cp
= cpuc
->event
[i
];
635 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
&&
636 cpuc
->current_idx
[i
] != cp
->hw
.idx
) {
637 sparc_perf_event_update(cp
, &cp
->hw
,
638 cpuc
->current_idx
[i
]);
639 cpuc
->current_idx
[i
] = PIC_NO_INDEX
;
643 /* Assign to counters all unassigned events. */
644 for (i
= 0; i
< cpuc
->n_events
; i
++) {
645 struct perf_event
*cp
= cpuc
->event
[i
];
646 struct hw_perf_event
*hwc
= &cp
->hw
;
650 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
653 sparc_perf_event_set_period(cp
, hwc
, idx
);
654 cpuc
->current_idx
[i
] = idx
;
656 enc
= perf_event_get_enc(cpuc
->events
[i
]);
657 pcr
|= event_encoding(enc
, idx
);
663 void hw_perf_enable(void)
665 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
675 if (!cpuc
->n_events
) {
678 pcr
= maybe_change_configuration(cpuc
, pcr
);
680 /* We require that all of the events have the same
681 * configuration, so just fetch the settings from the
684 cpuc
->pcr
= pcr
| cpuc
->event
[0]->hw
.config_base
;
687 pcr_ops
->write(cpuc
->pcr
);
690 void hw_perf_disable(void)
692 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
702 val
&= ~(PCR_UTRACE
| PCR_STRACE
|
703 sparc_pmu
->hv_bit
| sparc_pmu
->irq_bit
);
706 pcr_ops
->write(cpuc
->pcr
);
709 static void sparc_pmu_disable(struct perf_event
*event
)
711 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
712 struct hw_perf_event
*hwc
= &event
->hw
;
716 local_irq_save(flags
);
719 for (i
= 0; i
< cpuc
->n_events
; i
++) {
720 if (event
== cpuc
->event
[i
]) {
721 int idx
= cpuc
->current_idx
[i
];
723 /* Shift remaining entries down into
726 while (++i
< cpuc
->n_events
) {
727 cpuc
->event
[i
- 1] = cpuc
->event
[i
];
728 cpuc
->events
[i
- 1] = cpuc
->events
[i
];
729 cpuc
->current_idx
[i
- 1] =
730 cpuc
->current_idx
[i
];
733 /* Absorb the final count and turn off the
736 sparc_pmu_disable_event(cpuc
, hwc
, idx
);
738 sparc_perf_event_update(event
, hwc
, idx
);
740 perf_event_update_userpage(event
);
748 local_irq_restore(flags
);
751 static int active_event_index(struct cpu_hw_events
*cpuc
,
752 struct perf_event
*event
)
756 for (i
= 0; i
< cpuc
->n_events
; i
++) {
757 if (cpuc
->event
[i
] == event
)
760 BUG_ON(i
== cpuc
->n_events
);
761 return cpuc
->current_idx
[i
];
764 static void sparc_pmu_read(struct perf_event
*event
)
766 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
767 int idx
= active_event_index(cpuc
, event
);
768 struct hw_perf_event
*hwc
= &event
->hw
;
770 sparc_perf_event_update(event
, hwc
, idx
);
773 static void sparc_pmu_unthrottle(struct perf_event
*event
)
775 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
776 int idx
= active_event_index(cpuc
, event
);
777 struct hw_perf_event
*hwc
= &event
->hw
;
779 sparc_pmu_enable_event(cpuc
, hwc
, idx
);
782 static atomic_t active_events
= ATOMIC_INIT(0);
783 static DEFINE_MUTEX(pmc_grab_mutex
);
785 static void perf_stop_nmi_watchdog(void *unused
)
787 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
789 stop_nmi_watchdog(NULL
);
790 cpuc
->pcr
= pcr_ops
->read();
793 void perf_event_grab_pmc(void)
795 if (atomic_inc_not_zero(&active_events
))
798 mutex_lock(&pmc_grab_mutex
);
799 if (atomic_read(&active_events
) == 0) {
800 if (atomic_read(&nmi_active
) > 0) {
801 on_each_cpu(perf_stop_nmi_watchdog
, NULL
, 1);
802 BUG_ON(atomic_read(&nmi_active
) != 0);
804 atomic_inc(&active_events
);
806 mutex_unlock(&pmc_grab_mutex
);
809 void perf_event_release_pmc(void)
811 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_grab_mutex
)) {
812 if (atomic_read(&nmi_active
) == 0)
813 on_each_cpu(start_nmi_watchdog
, NULL
, 1);
814 mutex_unlock(&pmc_grab_mutex
);
818 static const struct perf_event_map
*sparc_map_cache_event(u64 config
)
820 unsigned int cache_type
, cache_op
, cache_result
;
821 const struct perf_event_map
*pmap
;
823 if (!sparc_pmu
->cache_map
)
824 return ERR_PTR(-ENOENT
);
826 cache_type
= (config
>> 0) & 0xff;
827 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
828 return ERR_PTR(-EINVAL
);
830 cache_op
= (config
>> 8) & 0xff;
831 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
832 return ERR_PTR(-EINVAL
);
834 cache_result
= (config
>> 16) & 0xff;
835 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
836 return ERR_PTR(-EINVAL
);
838 pmap
= &((*sparc_pmu
->cache_map
)[cache_type
][cache_op
][cache_result
]);
840 if (pmap
->encoding
== CACHE_OP_UNSUPPORTED
)
841 return ERR_PTR(-ENOENT
);
843 if (pmap
->encoding
== CACHE_OP_NONSENSE
)
844 return ERR_PTR(-EINVAL
);
849 static void hw_perf_event_destroy(struct perf_event
*event
)
851 perf_event_release_pmc();
854 /* Make sure all events can be scheduled into the hardware at
855 * the same time. This is simplified by the fact that we only
856 * need to support 2 simultaneous HW events.
858 * As a side effect, the evts[]->hw.idx values will be assigned
859 * on success. These are pending indexes. When the events are
860 * actually programmed into the chip, these values will propagate
861 * to the per-cpu cpuc->current_idx[] slots, see the code in
862 * maybe_change_configuration() for details.
864 static int sparc_check_constraints(struct perf_event
**evts
,
865 unsigned long *events
, int n_ev
)
867 u8 msk0
= 0, msk1
= 0;
870 /* This case is possible when we are invoked from
871 * hw_perf_group_sched_in().
876 if (n_ev
> perf_max_events
)
879 msk0
= perf_event_get_msk(events
[0]);
881 if (msk0
& PIC_LOWER
)
886 msk1
= perf_event_get_msk(events
[1]);
888 /* If both events can go on any counter, OK. */
889 if (msk0
== (PIC_UPPER
| PIC_LOWER
) &&
890 msk1
== (PIC_UPPER
| PIC_LOWER
))
893 /* If one event is limited to a specific counter,
894 * and the other can go on both, OK.
896 if ((msk0
== PIC_UPPER
|| msk0
== PIC_LOWER
) &&
897 msk1
== (PIC_UPPER
| PIC_LOWER
)) {
898 if (msk0
& PIC_LOWER
)
903 if ((msk1
== PIC_UPPER
|| msk1
== PIC_LOWER
) &&
904 msk0
== (PIC_UPPER
| PIC_LOWER
)) {
905 if (msk1
& PIC_UPPER
)
910 /* If the events are fixed to different counters, OK. */
911 if ((msk0
== PIC_UPPER
&& msk1
== PIC_LOWER
) ||
912 (msk0
== PIC_LOWER
&& msk1
== PIC_UPPER
)) {
913 if (msk0
& PIC_LOWER
)
918 /* Otherwise, there is a conflict. */
922 evts
[0]->hw
.idx
= idx0
;
924 evts
[1]->hw
.idx
= idx0
^ 1;
928 static int check_excludes(struct perf_event
**evts
, int n_prev
, int n_new
)
930 int eu
= 0, ek
= 0, eh
= 0;
931 struct perf_event
*event
;
939 for (i
= 0; i
< n
; i
++) {
942 eu
= event
->attr
.exclude_user
;
943 ek
= event
->attr
.exclude_kernel
;
944 eh
= event
->attr
.exclude_hv
;
946 } else if (event
->attr
.exclude_user
!= eu
||
947 event
->attr
.exclude_kernel
!= ek
||
948 event
->attr
.exclude_hv
!= eh
) {
956 static int collect_events(struct perf_event
*group
, int max_count
,
957 struct perf_event
*evts
[], unsigned long *events
,
960 struct perf_event
*event
;
963 if (!is_software_event(group
)) {
967 events
[n
] = group
->hw
.event_base
;
968 current_idx
[n
++] = PIC_NO_INDEX
;
970 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
971 if (!is_software_event(event
) &&
972 event
->state
!= PERF_EVENT_STATE_OFF
) {
976 events
[n
] = event
->hw
.event_base
;
977 current_idx
[n
++] = PIC_NO_INDEX
;
983 static void event_sched_in(struct perf_event
*event
, int cpu
)
985 event
->state
= PERF_EVENT_STATE_ACTIVE
;
987 event
->tstamp_running
+= event
->ctx
->time
- event
->tstamp_stopped
;
988 if (is_software_event(event
))
989 event
->pmu
->enable(event
);
992 int hw_perf_group_sched_in(struct perf_event
*group_leader
,
993 struct perf_cpu_context
*cpuctx
,
994 struct perf_event_context
*ctx
, int cpu
)
996 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
997 struct perf_event
*sub
;
1003 n0
= cpuc
->n_events
;
1004 n
= collect_events(group_leader
, perf_max_events
- n0
,
1005 &cpuc
->event
[n0
], &cpuc
->events
[n0
],
1006 &cpuc
->current_idx
[n0
]);
1009 if (check_excludes(cpuc
->event
, n0
, n
))
1011 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n
+ n0
))
1013 cpuc
->n_events
= n0
+ n
;
1016 cpuctx
->active_oncpu
+= n
;
1018 event_sched_in(group_leader
, cpu
);
1019 list_for_each_entry(sub
, &group_leader
->sibling_list
, group_entry
) {
1020 if (sub
->state
!= PERF_EVENT_STATE_OFF
) {
1021 event_sched_in(sub
, cpu
);
1025 ctx
->nr_active
+= n
;
1030 static int sparc_pmu_enable(struct perf_event
*event
)
1032 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1033 int n0
, ret
= -EAGAIN
;
1034 unsigned long flags
;
1036 local_irq_save(flags
);
1039 n0
= cpuc
->n_events
;
1040 if (n0
>= perf_max_events
)
1043 cpuc
->event
[n0
] = event
;
1044 cpuc
->events
[n0
] = event
->hw
.event_base
;
1045 cpuc
->current_idx
[n0
] = PIC_NO_INDEX
;
1047 if (check_excludes(cpuc
->event
, n0
, 1))
1049 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n0
+ 1))
1058 local_irq_restore(flags
);
1062 static int __hw_perf_event_init(struct perf_event
*event
)
1064 struct perf_event_attr
*attr
= &event
->attr
;
1065 struct perf_event
*evts
[MAX_HWEVENTS
];
1066 struct hw_perf_event
*hwc
= &event
->hw
;
1067 unsigned long events
[MAX_HWEVENTS
];
1068 int current_idx_dmy
[MAX_HWEVENTS
];
1069 const struct perf_event_map
*pmap
;
1072 if (atomic_read(&nmi_active
) < 0)
1075 if (attr
->type
== PERF_TYPE_HARDWARE
) {
1076 if (attr
->config
>= sparc_pmu
->max_events
)
1078 pmap
= sparc_pmu
->event_map(attr
->config
);
1079 } else if (attr
->type
== PERF_TYPE_HW_CACHE
) {
1080 pmap
= sparc_map_cache_event(attr
->config
);
1082 return PTR_ERR(pmap
);
1086 /* We save the enable bits in the config_base. */
1087 hwc
->config_base
= sparc_pmu
->irq_bit
;
1088 if (!attr
->exclude_user
)
1089 hwc
->config_base
|= PCR_UTRACE
;
1090 if (!attr
->exclude_kernel
)
1091 hwc
->config_base
|= PCR_STRACE
;
1092 if (!attr
->exclude_hv
)
1093 hwc
->config_base
|= sparc_pmu
->hv_bit
;
1095 hwc
->event_base
= perf_event_encode(pmap
);
1098 if (event
->group_leader
!= event
) {
1099 n
= collect_events(event
->group_leader
,
1100 perf_max_events
- 1,
1101 evts
, events
, current_idx_dmy
);
1105 events
[n
] = hwc
->event_base
;
1108 if (check_excludes(evts
, n
, 1))
1111 if (sparc_check_constraints(evts
, events
, n
+ 1))
1114 hwc
->idx
= PIC_NO_INDEX
;
1116 /* Try to do all error checking before this point, as unwinding
1117 * state after grabbing the PMC is difficult.
1119 perf_event_grab_pmc();
1120 event
->destroy
= hw_perf_event_destroy
;
1122 if (!hwc
->sample_period
) {
1123 hwc
->sample_period
= MAX_PERIOD
;
1124 hwc
->last_period
= hwc
->sample_period
;
1125 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
1131 static const struct pmu pmu
= {
1132 .enable
= sparc_pmu_enable
,
1133 .disable
= sparc_pmu_disable
,
1134 .read
= sparc_pmu_read
,
1135 .unthrottle
= sparc_pmu_unthrottle
,
1138 const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
1140 int err
= __hw_perf_event_init(event
);
1143 return ERR_PTR(err
);
1147 void perf_event_print_debug(void)
1149 unsigned long flags
;
1156 local_irq_save(flags
);
1158 cpu
= smp_processor_id();
1160 pcr
= pcr_ops
->read();
1164 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1167 local_irq_restore(flags
);
1170 static int __kprobes
perf_event_nmi_handler(struct notifier_block
*self
,
1171 unsigned long cmd
, void *__args
)
1173 struct die_args
*args
= __args
;
1174 struct perf_sample_data data
;
1175 struct cpu_hw_events
*cpuc
;
1176 struct pt_regs
*regs
;
1179 if (!atomic_read(&active_events
))
1194 cpuc
= &__get_cpu_var(cpu_hw_events
);
1196 /* If the PMU has the TOE IRQ enable bits, we need to do a
1197 * dummy write to the %pcr to clear the overflow bits and thus
1200 * Do this before we peek at the counters to determine
1201 * overflow so we don't lose any events.
1203 if (sparc_pmu
->irq_bit
)
1204 pcr_ops
->write(cpuc
->pcr
);
1206 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1207 struct perf_event
*event
= cpuc
->event
[i
];
1208 int idx
= cpuc
->current_idx
[i
];
1209 struct hw_perf_event
*hwc
;
1213 val
= sparc_perf_event_update(event
, hwc
, idx
);
1214 if (val
& (1ULL << 31))
1217 data
.period
= event
->hw
.last_period
;
1218 if (!sparc_perf_event_set_period(event
, hwc
, idx
))
1221 if (perf_event_overflow(event
, 1, &data
, regs
))
1222 sparc_pmu_disable_event(cpuc
, hwc
, idx
);
1228 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1229 .notifier_call
= perf_event_nmi_handler
,
1232 static bool __init
supported_pmu(void)
1234 if (!strcmp(sparc_pmu_type
, "ultra3") ||
1235 !strcmp(sparc_pmu_type
, "ultra3+") ||
1236 !strcmp(sparc_pmu_type
, "ultra3i") ||
1237 !strcmp(sparc_pmu_type
, "ultra4+")) {
1238 sparc_pmu
= &ultra3_pmu
;
1241 if (!strcmp(sparc_pmu_type
, "niagara")) {
1242 sparc_pmu
= &niagara1_pmu
;
1245 if (!strcmp(sparc_pmu_type
, "niagara2")) {
1246 sparc_pmu
= &niagara2_pmu
;
1252 void __init
init_hw_perf_events(void)
1254 pr_info("Performance events: ");
1256 if (!supported_pmu()) {
1257 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type
);
1261 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type
);
1263 /* All sparc64 PMUs currently have 2 events. */
1264 perf_max_events
= 2;
1266 register_die_notifier(&perf_event_nmi_notifier
);
1269 static inline void callchain_store(struct perf_callchain_entry
*entry
, u64 ip
)
1271 if (entry
->nr
< PERF_MAX_STACK_DEPTH
)
1272 entry
->ip
[entry
->nr
++] = ip
;
1275 static void perf_callchain_kernel(struct pt_regs
*regs
,
1276 struct perf_callchain_entry
*entry
)
1278 unsigned long ksp
, fp
;
1280 callchain_store(entry
, PERF_CONTEXT_KERNEL
);
1281 callchain_store(entry
, regs
->tpc
);
1283 ksp
= regs
->u_regs
[UREG_I6
];
1284 fp
= ksp
+ STACK_BIAS
;
1286 struct sparc_stackf
*sf
;
1287 struct pt_regs
*regs
;
1290 if (!kstack_valid(current_thread_info(), fp
))
1293 sf
= (struct sparc_stackf
*) fp
;
1294 regs
= (struct pt_regs
*) (sf
+ 1);
1296 if (kstack_is_trap_frame(current_thread_info(), regs
)) {
1297 if (user_mode(regs
))
1300 fp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1302 pc
= sf
->callers_pc
;
1303 fp
= (unsigned long)sf
->fp
+ STACK_BIAS
;
1305 callchain_store(entry
, pc
);
1306 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1309 static void perf_callchain_user_64(struct pt_regs
*regs
,
1310 struct perf_callchain_entry
*entry
)
1314 callchain_store(entry
, PERF_CONTEXT_USER
);
1315 callchain_store(entry
, regs
->tpc
);
1317 ufp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1319 struct sparc_stackf
*usf
, sf
;
1322 usf
= (struct sparc_stackf
*) ufp
;
1323 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1327 ufp
= (unsigned long)sf
.fp
+ STACK_BIAS
;
1328 callchain_store(entry
, pc
);
1329 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1332 static void perf_callchain_user_32(struct pt_regs
*regs
,
1333 struct perf_callchain_entry
*entry
)
1337 callchain_store(entry
, PERF_CONTEXT_USER
);
1338 callchain_store(entry
, regs
->tpc
);
1340 ufp
= regs
->u_regs
[UREG_I6
];
1342 struct sparc_stackf32
*usf
, sf
;
1345 usf
= (struct sparc_stackf32
*) ufp
;
1346 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1350 ufp
= (unsigned long)sf
.fp
;
1351 callchain_store(entry
, pc
);
1352 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1355 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1356 * so no need for seperate NMI and IRQ chains as on x86.
1358 static DEFINE_PER_CPU(struct perf_callchain_entry
, callchain
);
1360 struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
1362 struct perf_callchain_entry
*entry
= &__get_cpu_var(callchain
);
1365 if (!user_mode(regs
)) {
1366 stack_trace_flush();
1367 perf_callchain_kernel(regs
, entry
);
1369 regs
= task_pt_regs(current
);
1375 if (test_thread_flag(TIF_32BIT
))
1376 perf_callchain_user_32(regs
, entry
);
1378 perf_callchain_user_64(regs
, entry
);