MIPS: Alchemy: prom_putchar is board dependent
[linux-2.6/linux-mips.git] / arch / sparc / kernel / unaligned_64.c
blob378ca82b9cccd4532d66b92e63b57676fa8672a5
1 /*
2 * unaligned.c: Unaligned load/store trap handling with special
3 * cases for the kernel to do them more quickly.
5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/system.h>
20 #include <asm/uaccess.h>
21 #include <linux/smp.h>
22 #include <linux/bitops.h>
23 #include <linux/perf_event.h>
24 #include <asm/fpumacro.h>
26 enum direction {
27 load, /* ld, ldd, ldh, ldsh */
28 store, /* st, std, sth, stsh */
29 both, /* Swap, ldstub, cas, ... */
30 fpld,
31 fpst,
32 invalid,
35 static inline enum direction decode_direction(unsigned int insn)
37 unsigned long tmp = (insn >> 21) & 1;
39 if (!tmp)
40 return load;
41 else {
42 switch ((insn>>19)&0xf) {
43 case 15: /* swap* */
44 return both;
45 default:
46 return store;
51 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
52 static inline int decode_access_size(unsigned int insn)
54 unsigned int tmp;
56 tmp = ((insn >> 19) & 0xf);
57 if (tmp == 11 || tmp == 14) /* ldx/stx */
58 return 8;
59 tmp &= 3;
60 if (!tmp)
61 return 4;
62 else if (tmp == 3)
63 return 16; /* ldd/std - Although it is actually 8 */
64 else if (tmp == 2)
65 return 2;
66 else {
67 printk("Impossible unaligned trap. insn=%08x\n", insn);
68 die_if_kernel("Byte sized unaligned access?!?!", current_thread_info()->kregs);
70 /* GCC should never warn that control reaches the end
71 * of this function without returning a value because
72 * die_if_kernel() is marked with attribute 'noreturn'.
73 * Alas, some versions do...
76 return 0;
80 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
82 if (insn & 0x800000) {
83 if (insn & 0x2000)
84 return (unsigned char)(regs->tstate >> 24); /* %asi */
85 else
86 return (unsigned char)(insn >> 5); /* imm_asi */
87 } else
88 return ASI_P;
91 /* 0x400000 = signed, 0 = unsigned */
92 static inline int decode_signedness(unsigned int insn)
94 return (insn & 0x400000);
97 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
98 unsigned int rd, int from_kernel)
100 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
101 if (from_kernel != 0)
102 __asm__ __volatile__("flushw");
103 else
104 flushw_user();
108 static inline long sign_extend_imm13(long imm)
110 return imm << 51 >> 51;
113 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
115 unsigned long value;
117 if (reg < 16)
118 return (!reg ? 0 : regs->u_regs[reg]);
119 if (regs->tstate & TSTATE_PRIV) {
120 struct reg_window *win;
121 win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
122 value = win->locals[reg - 16];
123 } else if (test_thread_flag(TIF_32BIT)) {
124 struct reg_window32 __user *win32;
125 win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
126 get_user(value, &win32->locals[reg - 16]);
127 } else {
128 struct reg_window __user *win;
129 win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
130 get_user(value, &win->locals[reg - 16]);
132 return value;
135 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
137 if (reg < 16)
138 return &regs->u_regs[reg];
139 if (regs->tstate & TSTATE_PRIV) {
140 struct reg_window *win;
141 win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
142 return &win->locals[reg - 16];
143 } else if (test_thread_flag(TIF_32BIT)) {
144 struct reg_window32 *win32;
145 win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
146 return (unsigned long *)&win32->locals[reg - 16];
147 } else {
148 struct reg_window *win;
149 win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
150 return &win->locals[reg - 16];
154 unsigned long compute_effective_address(struct pt_regs *regs,
155 unsigned int insn, unsigned int rd)
157 unsigned int rs1 = (insn >> 14) & 0x1f;
158 unsigned int rs2 = insn & 0x1f;
159 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
161 if (insn & 0x2000) {
162 maybe_flush_windows(rs1, 0, rd, from_kernel);
163 return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
164 } else {
165 maybe_flush_windows(rs1, rs2, rd, from_kernel);
166 return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
170 /* This is just to make gcc think die_if_kernel does return... */
171 static void __used unaligned_panic(char *str, struct pt_regs *regs)
173 die_if_kernel(str, regs);
176 extern int do_int_load(unsigned long *dest_reg, int size,
177 unsigned long *saddr, int is_signed, int asi);
179 extern int __do_int_store(unsigned long *dst_addr, int size,
180 unsigned long src_val, int asi);
182 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
183 struct pt_regs *regs, int asi, int orig_asi)
185 unsigned long zero = 0;
186 unsigned long *src_val_p = &zero;
187 unsigned long src_val;
189 if (size == 16) {
190 size = 8;
191 zero = (((long)(reg_num ?
192 (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
193 (unsigned)fetch_reg(reg_num + 1, regs);
194 } else if (reg_num) {
195 src_val_p = fetch_reg_addr(reg_num, regs);
197 src_val = *src_val_p;
198 if (unlikely(asi != orig_asi)) {
199 switch (size) {
200 case 2:
201 src_val = swab16(src_val);
202 break;
203 case 4:
204 src_val = swab32(src_val);
205 break;
206 case 8:
207 src_val = swab64(src_val);
208 break;
209 case 16:
210 default:
211 BUG();
212 break;
215 return __do_int_store(dst_addr, size, src_val, asi);
218 static inline void advance(struct pt_regs *regs)
220 regs->tpc = regs->tnpc;
221 regs->tnpc += 4;
222 if (test_thread_flag(TIF_32BIT)) {
223 regs->tpc &= 0xffffffff;
224 regs->tnpc &= 0xffffffff;
228 static inline int floating_point_load_or_store_p(unsigned int insn)
230 return (insn >> 24) & 1;
233 static inline int ok_for_kernel(unsigned int insn)
235 return !floating_point_load_or_store_p(insn);
238 static void kernel_mna_trap_fault(int fixup_tstate_asi)
240 struct pt_regs *regs = current_thread_info()->kern_una_regs;
241 unsigned int insn = current_thread_info()->kern_una_insn;
242 const struct exception_table_entry *entry;
244 entry = search_exception_tables(regs->tpc);
245 if (!entry) {
246 unsigned long address;
248 address = compute_effective_address(regs, insn,
249 ((insn >> 25) & 0x1f));
250 if (address < PAGE_SIZE) {
251 printk(KERN_ALERT "Unable to handle kernel NULL "
252 "pointer dereference in mna handler");
253 } else
254 printk(KERN_ALERT "Unable to handle kernel paging "
255 "request in mna handler");
256 printk(KERN_ALERT " at virtual address %016lx\n",address);
257 printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
258 (current->mm ? CTX_HWBITS(current->mm->context) :
259 CTX_HWBITS(current->active_mm->context)));
260 printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
261 (current->mm ? (unsigned long) current->mm->pgd :
262 (unsigned long) current->active_mm->pgd));
263 die_if_kernel("Oops", regs);
264 /* Not reached */
266 regs->tpc = entry->fixup;
267 regs->tnpc = regs->tpc + 4;
269 if (fixup_tstate_asi) {
270 regs->tstate &= ~TSTATE_ASI;
271 regs->tstate |= (ASI_AIUS << 24UL);
275 static void log_unaligned(struct pt_regs *regs)
277 static unsigned long count, last_time;
279 if (time_after(jiffies, last_time + 5 * HZ))
280 count = 0;
281 if (count < 5) {
282 last_time = jiffies;
283 count++;
284 printk("Kernel unaligned access at TPC[%lx] %pS\n",
285 regs->tpc, (void *) regs->tpc);
289 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
291 enum direction dir = decode_direction(insn);
292 int size = decode_access_size(insn);
293 int orig_asi, asi;
295 current_thread_info()->kern_una_regs = regs;
296 current_thread_info()->kern_una_insn = insn;
298 orig_asi = asi = decode_asi(insn, regs);
300 /* If this is a {get,put}_user() on an unaligned userspace pointer,
301 * just signal a fault and do not log the event.
303 if (asi == ASI_AIUS) {
304 kernel_mna_trap_fault(0);
305 return;
308 log_unaligned(regs);
310 if (!ok_for_kernel(insn) || dir == both) {
311 printk("Unsupported unaligned load/store trap for kernel "
312 "at <%016lx>.\n", regs->tpc);
313 unaligned_panic("Kernel does fpu/atomic "
314 "unaligned load/store.", regs);
316 kernel_mna_trap_fault(0);
317 } else {
318 unsigned long addr, *reg_addr;
319 int err;
321 addr = compute_effective_address(regs, insn,
322 ((insn >> 25) & 0x1f));
323 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, addr);
324 switch (asi) {
325 case ASI_NL:
326 case ASI_AIUPL:
327 case ASI_AIUSL:
328 case ASI_PL:
329 case ASI_SL:
330 case ASI_PNFL:
331 case ASI_SNFL:
332 asi &= ~0x08;
333 break;
335 switch (dir) {
336 case load:
337 reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
338 err = do_int_load(reg_addr, size,
339 (unsigned long *) addr,
340 decode_signedness(insn), asi);
341 if (likely(!err) && unlikely(asi != orig_asi)) {
342 unsigned long val_in = *reg_addr;
343 switch (size) {
344 case 2:
345 val_in = swab16(val_in);
346 break;
347 case 4:
348 val_in = swab32(val_in);
349 break;
350 case 8:
351 val_in = swab64(val_in);
352 break;
353 case 16:
354 default:
355 BUG();
356 break;
358 *reg_addr = val_in;
360 break;
362 case store:
363 err = do_int_store(((insn>>25)&0x1f), size,
364 (unsigned long *) addr, regs,
365 asi, orig_asi);
366 break;
368 default:
369 panic("Impossible kernel unaligned trap.");
370 /* Not reached... */
372 if (unlikely(err))
373 kernel_mna_trap_fault(1);
374 else
375 advance(regs);
379 static char popc_helper[] = {
380 0, 1, 1, 2, 1, 2, 2, 3,
381 1, 2, 2, 3, 2, 3, 3, 4,
384 int handle_popc(u32 insn, struct pt_regs *regs)
386 u64 value;
387 int ret, i, rd = ((insn >> 25) & 0x1f);
388 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
390 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
391 if (insn & 0x2000) {
392 maybe_flush_windows(0, 0, rd, from_kernel);
393 value = sign_extend_imm13(insn);
394 } else {
395 maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
396 value = fetch_reg(insn & 0x1f, regs);
398 for (ret = 0, i = 0; i < 16; i++) {
399 ret += popc_helper[value & 0xf];
400 value >>= 4;
402 if (rd < 16) {
403 if (rd)
404 regs->u_regs[rd] = ret;
405 } else {
406 if (test_thread_flag(TIF_32BIT)) {
407 struct reg_window32 __user *win32;
408 win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
409 put_user(ret, &win32->locals[rd - 16]);
410 } else {
411 struct reg_window __user *win;
412 win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
413 put_user(ret, &win->locals[rd - 16]);
416 advance(regs);
417 return 1;
420 extern void do_fpother(struct pt_regs *regs);
421 extern void do_privact(struct pt_regs *regs);
422 extern void spitfire_data_access_exception(struct pt_regs *regs,
423 unsigned long sfsr,
424 unsigned long sfar);
425 extern void sun4v_data_access_exception(struct pt_regs *regs,
426 unsigned long addr,
427 unsigned long type_ctx);
429 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
431 unsigned long addr = compute_effective_address(regs, insn, 0);
432 int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
433 struct fpustate *f = FPUSTATE;
434 int asi = decode_asi(insn, regs);
435 int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
437 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
439 save_and_clear_fpu();
440 current_thread_info()->xfsr[0] &= ~0x1c000;
441 if (freg & 3) {
442 current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
443 do_fpother(regs);
444 return 0;
446 if (insn & 0x200000) {
447 /* STQ */
448 u64 first = 0, second = 0;
450 if (current_thread_info()->fpsaved[0] & flag) {
451 first = *(u64 *)&f->regs[freg];
452 second = *(u64 *)&f->regs[freg+2];
454 if (asi < 0x80) {
455 do_privact(regs);
456 return 1;
458 switch (asi) {
459 case ASI_P:
460 case ASI_S: break;
461 case ASI_PL:
462 case ASI_SL:
464 /* Need to convert endians */
465 u64 tmp = __swab64p(&first);
467 first = __swab64p(&second);
468 second = tmp;
469 break;
471 default:
472 if (tlb_type == hypervisor)
473 sun4v_data_access_exception(regs, addr, 0);
474 else
475 spitfire_data_access_exception(regs, 0, addr);
476 return 1;
478 if (put_user (first >> 32, (u32 __user *)addr) ||
479 __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
480 __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
481 __put_user ((u32)second, (u32 __user *)(addr + 12))) {
482 if (tlb_type == hypervisor)
483 sun4v_data_access_exception(regs, addr, 0);
484 else
485 spitfire_data_access_exception(regs, 0, addr);
486 return 1;
488 } else {
489 /* LDF, LDDF, LDQF */
490 u32 data[4] __attribute__ ((aligned(8)));
491 int size, i;
492 int err;
494 if (asi < 0x80) {
495 do_privact(regs);
496 return 1;
497 } else if (asi > ASI_SNFL) {
498 if (tlb_type == hypervisor)
499 sun4v_data_access_exception(regs, addr, 0);
500 else
501 spitfire_data_access_exception(regs, 0, addr);
502 return 1;
504 switch (insn & 0x180000) {
505 case 0x000000: size = 1; break;
506 case 0x100000: size = 4; break;
507 default: size = 2; break;
509 for (i = 0; i < size; i++)
510 data[i] = 0;
512 err = get_user (data[0], (u32 __user *) addr);
513 if (!err) {
514 for (i = 1; i < size; i++)
515 err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
517 if (err && !(asi & 0x2 /* NF */)) {
518 if (tlb_type == hypervisor)
519 sun4v_data_access_exception(regs, addr, 0);
520 else
521 spitfire_data_access_exception(regs, 0, addr);
522 return 1;
524 if (asi & 0x8) /* Little */ {
525 u64 tmp;
527 switch (size) {
528 case 1: data[0] = le32_to_cpup(data + 0); break;
529 default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
530 break;
531 case 4: tmp = le64_to_cpup((u64 *)(data + 0));
532 *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
533 *(u64 *)(data + 2) = tmp;
534 break;
537 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
538 current_thread_info()->fpsaved[0] = FPRS_FEF;
539 current_thread_info()->gsr[0] = 0;
541 if (!(current_thread_info()->fpsaved[0] & flag)) {
542 if (freg < 32)
543 memset(f->regs, 0, 32*sizeof(u32));
544 else
545 memset(f->regs+32, 0, 32*sizeof(u32));
547 memcpy(f->regs + freg, data, size * 4);
548 current_thread_info()->fpsaved[0] |= flag;
550 advance(regs);
551 return 1;
554 void handle_ld_nf(u32 insn, struct pt_regs *regs)
556 int rd = ((insn >> 25) & 0x1f);
557 int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
558 unsigned long *reg;
560 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
562 maybe_flush_windows(0, 0, rd, from_kernel);
563 reg = fetch_reg_addr(rd, regs);
564 if (from_kernel || rd < 16) {
565 reg[0] = 0;
566 if ((insn & 0x780000) == 0x180000)
567 reg[1] = 0;
568 } else if (test_thread_flag(TIF_32BIT)) {
569 put_user(0, (int __user *) reg);
570 if ((insn & 0x780000) == 0x180000)
571 put_user(0, ((int __user *) reg) + 1);
572 } else {
573 put_user(0, (unsigned long __user *) reg);
574 if ((insn & 0x780000) == 0x180000)
575 put_user(0, (unsigned long __user *) reg + 1);
577 advance(regs);
580 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
582 unsigned long pc = regs->tpc;
583 unsigned long tstate = regs->tstate;
584 u32 insn;
585 u64 value;
586 u8 freg;
587 int flag;
588 struct fpustate *f = FPUSTATE;
590 if (tstate & TSTATE_PRIV)
591 die_if_kernel("lddfmna from kernel", regs);
592 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
593 if (test_thread_flag(TIF_32BIT))
594 pc = (u32)pc;
595 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
596 int asi = decode_asi(insn, regs);
597 u32 first, second;
598 int err;
600 if ((asi > ASI_SNFL) ||
601 (asi < ASI_P))
602 goto daex;
603 first = second = 0;
604 err = get_user(first, (u32 __user *)sfar);
605 if (!err)
606 err = get_user(second, (u32 __user *)(sfar + 4));
607 if (err) {
608 if (!(asi & 0x2))
609 goto daex;
610 first = second = 0;
612 save_and_clear_fpu();
613 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
614 value = (((u64)first) << 32) | second;
615 if (asi & 0x8) /* Little */
616 value = __swab64p(&value);
617 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
618 if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
619 current_thread_info()->fpsaved[0] = FPRS_FEF;
620 current_thread_info()->gsr[0] = 0;
622 if (!(current_thread_info()->fpsaved[0] & flag)) {
623 if (freg < 32)
624 memset(f->regs, 0, 32*sizeof(u32));
625 else
626 memset(f->regs+32, 0, 32*sizeof(u32));
628 *(u64 *)(f->regs + freg) = value;
629 current_thread_info()->fpsaved[0] |= flag;
630 } else {
631 daex:
632 if (tlb_type == hypervisor)
633 sun4v_data_access_exception(regs, sfar, sfsr);
634 else
635 spitfire_data_access_exception(regs, sfsr, sfar);
636 return;
638 advance(regs);
639 return;
642 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
644 unsigned long pc = regs->tpc;
645 unsigned long tstate = regs->tstate;
646 u32 insn;
647 u64 value;
648 u8 freg;
649 int flag;
650 struct fpustate *f = FPUSTATE;
652 if (tstate & TSTATE_PRIV)
653 die_if_kernel("stdfmna from kernel", regs);
654 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
655 if (test_thread_flag(TIF_32BIT))
656 pc = (u32)pc;
657 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
658 int asi = decode_asi(insn, regs);
659 freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
660 value = 0;
661 flag = (freg < 32) ? FPRS_DL : FPRS_DU;
662 if ((asi > ASI_SNFL) ||
663 (asi < ASI_P))
664 goto daex;
665 save_and_clear_fpu();
666 if (current_thread_info()->fpsaved[0] & flag)
667 value = *(u64 *)&f->regs[freg];
668 switch (asi) {
669 case ASI_P:
670 case ASI_S: break;
671 case ASI_PL:
672 case ASI_SL:
673 value = __swab64p(&value); break;
674 default: goto daex;
676 if (put_user (value >> 32, (u32 __user *) sfar) ||
677 __put_user ((u32)value, (u32 __user *)(sfar + 4)))
678 goto daex;
679 } else {
680 daex:
681 if (tlb_type == hypervisor)
682 sun4v_data_access_exception(regs, sfar, sfsr);
683 else
684 spitfire_data_access_exception(regs, sfsr, sfar);
685 return;
687 advance(regs);
688 return;