2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22 #include <linux/log2.h>
24 #include <asm/bitext.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
51 #include <asm/btfixup.h>
53 enum mbus_module srmmu_modtype
;
54 static unsigned int hwbug_bitmask
;
58 extern struct resource sparc_iomap
;
60 extern unsigned long last_valid_pfn
;
62 extern unsigned long page_kernel
;
64 static pgd_t
*srmmu_swapper_pg_dir
;
67 #define FLUSH_BEGIN(mm)
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
74 BTFIXUPDEF_CALL(void, flush_page_for_dma
, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
77 int flush_page_for_dma_global
= 1;
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma
, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
86 ctxd_t
*srmmu_ctx_table_phys
;
87 static ctxd_t
*srmmu_context_table
;
89 int viking_mxcc_present
;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
92 static int is_hypersparc
;
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction. This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
99 static inline unsigned long srmmu_swap(unsigned long *addr
, unsigned long value
)
101 __asm__
__volatile__("swap [%2], %0" : "=&r" (value
) : "0" (value
), "r" (addr
));
105 static inline void srmmu_set_pte(pte_t
*ptep
, pte_t pteval
)
107 srmmu_swap((unsigned long *)ptep
, pte_val(pteval
));
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x
)
113 return ((x
& 0xF0000000) != 0);
116 static int srmmu_cache_pagetables
;
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 static unsigned long srmmu_nocache_size
;
120 static unsigned long srmmu_nocache_end
;
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
128 void *srmmu_nocache_pool
;
129 void *srmmu_nocache_bitmap
;
130 static struct bit_map srmmu_nocache_map
;
132 static unsigned long srmmu_pte_pfn(pte_t pte
)
134 if (srmmu_device_memory(pte_val(pte
))) {
135 /* Just return something that will cause
136 * pfn_valid() to return false. This makes
137 * copy_one_pte() to just directly copy to
142 return (pte_val(pte
) & SRMMU_PTE_PMASK
) >> (PAGE_SHIFT
-4);
145 static struct page
*srmmu_pmd_page(pmd_t pmd
)
148 if (srmmu_device_memory(pmd_val(pmd
)))
150 return pfn_to_page((pmd_val(pmd
) & SRMMU_PTD_PMASK
) >> (PAGE_SHIFT
-4));
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd
)
154 { return srmmu_device_memory(pgd_val(pgd
))?~0:(unsigned long)__nocache_va((pgd_val(pgd
) & SRMMU_PTD_PMASK
) << 4); }
157 static inline int srmmu_pte_none(pte_t pte
)
158 { return !(pte_val(pte
) & 0xFFFFFFF); }
160 static inline int srmmu_pte_present(pte_t pte
)
161 { return ((pte_val(pte
) & SRMMU_ET_MASK
) == SRMMU_ET_PTE
); }
163 static inline void srmmu_pte_clear(pte_t
*ptep
)
164 { srmmu_set_pte(ptep
, __pte(0)); }
166 static inline int srmmu_pmd_none(pmd_t pmd
)
167 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
169 static inline int srmmu_pmd_bad(pmd_t pmd
)
170 { return (pmd_val(pmd
) & SRMMU_ET_MASK
) != SRMMU_ET_PTD
; }
172 static inline int srmmu_pmd_present(pmd_t pmd
)
173 { return ((pmd_val(pmd
) & SRMMU_ET_MASK
) == SRMMU_ET_PTD
); }
175 static inline void srmmu_pmd_clear(pmd_t
*pmdp
) {
177 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++)
178 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(0));
181 static inline int srmmu_pgd_none(pgd_t pgd
)
182 { return !(pgd_val(pgd
) & 0xFFFFFFF); }
184 static inline int srmmu_pgd_bad(pgd_t pgd
)
185 { return (pgd_val(pgd
) & SRMMU_ET_MASK
) != SRMMU_ET_PTD
; }
187 static inline int srmmu_pgd_present(pgd_t pgd
)
188 { return ((pgd_val(pgd
) & SRMMU_ET_MASK
) == SRMMU_ET_PTD
); }
190 static inline void srmmu_pgd_clear(pgd_t
* pgdp
)
191 { srmmu_set_pte((pte_t
*)pgdp
, __pte(0)); }
193 static inline pte_t
srmmu_pte_wrprotect(pte_t pte
)
194 { return __pte(pte_val(pte
) & ~SRMMU_WRITE
);}
196 static inline pte_t
srmmu_pte_mkclean(pte_t pte
)
197 { return __pte(pte_val(pte
) & ~SRMMU_DIRTY
);}
199 static inline pte_t
srmmu_pte_mkold(pte_t pte
)
200 { return __pte(pte_val(pte
) & ~SRMMU_REF
);}
202 static inline pte_t
srmmu_pte_mkwrite(pte_t pte
)
203 { return __pte(pte_val(pte
) | SRMMU_WRITE
);}
205 static inline pte_t
srmmu_pte_mkdirty(pte_t pte
)
206 { return __pte(pte_val(pte
) | SRMMU_DIRTY
);}
208 static inline pte_t
srmmu_pte_mkyoung(pte_t pte
)
209 { return __pte(pte_val(pte
) | SRMMU_REF
);}
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
215 static pte_t
srmmu_mk_pte(struct page
*page
, pgprot_t pgprot
)
216 { return __pte((page_to_pfn(page
) << (PAGE_SHIFT
-4)) | pgprot_val(pgprot
)); }
218 static pte_t
srmmu_mk_pte_phys(unsigned long page
, pgprot_t pgprot
)
219 { return __pte(((page
) >> 4) | pgprot_val(pgprot
)); }
221 static pte_t
srmmu_mk_pte_io(unsigned long page
, pgprot_t pgprot
, int space
)
222 { return __pte(((page
) >> 4) | (space
<< 28) | pgprot_val(pgprot
)); }
224 /* XXX should we hyper_flush_whole_icache here - Anton */
225 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
226 { srmmu_set_pte((pte_t
*)ctxp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pgdp
) >> 4))); }
228 static inline void srmmu_pgd_set(pgd_t
* pgdp
, pmd_t
* pmdp
)
229 { srmmu_set_pte((pte_t
*)pgdp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pmdp
) >> 4))); }
231 static void srmmu_pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
233 unsigned long ptp
; /* Physical address, shifted right by 4 */
236 ptp
= __nocache_pa((unsigned long) ptep
) >> 4;
237 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
238 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
239 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
243 static void srmmu_pmd_populate(pmd_t
*pmdp
, struct page
*ptep
)
245 unsigned long ptp
; /* Physical address, shifted right by 4 */
248 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
249 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
250 srmmu_set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
251 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
255 static inline pte_t
srmmu_pte_modify(pte_t pte
, pgprot_t newprot
)
256 { return __pte((pte_val(pte
) & SRMMU_CHG_MASK
) | pgprot_val(newprot
)); }
258 /* to find an entry in a top-level page table... */
259 static inline pgd_t
*srmmu_pgd_offset(struct mm_struct
* mm
, unsigned long address
)
260 { return mm
->pgd
+ (address
>> SRMMU_PGDIR_SHIFT
); }
262 /* Find an entry in the second-level page table.. */
263 static inline pmd_t
*srmmu_pmd_offset(pgd_t
* dir
, unsigned long address
)
265 return (pmd_t
*) srmmu_pgd_page(*dir
) +
266 ((address
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1));
269 /* Find an entry in the third-level page table.. */
270 static inline pte_t
*srmmu_pte_offset(pmd_t
* dir
, unsigned long address
)
274 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
275 return (pte_t
*) pte
+
276 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
279 static unsigned long srmmu_swp_type(swp_entry_t entry
)
281 return (entry
.val
>> SRMMU_SWP_TYPE_SHIFT
) & SRMMU_SWP_TYPE_MASK
;
284 static unsigned long srmmu_swp_offset(swp_entry_t entry
)
286 return (entry
.val
>> SRMMU_SWP_OFF_SHIFT
) & SRMMU_SWP_OFF_MASK
;
289 static swp_entry_t
srmmu_swp_entry(unsigned long type
, unsigned long offset
)
291 return (swp_entry_t
) {
292 (type
& SRMMU_SWP_TYPE_MASK
) << SRMMU_SWP_TYPE_SHIFT
293 | (offset
& SRMMU_SWP_OFF_MASK
) << SRMMU_SWP_OFF_SHIFT
};
297 * size: bytes to allocate in the nocache area.
298 * align: bytes, number to align at.
299 * Returns the virtual address of the allocated area.
301 static unsigned long __srmmu_get_nocache(int size
, int align
)
305 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
306 printk("Size 0x%x too small for nocache request\n", size
);
307 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
309 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
-1)) {
310 printk("Size 0x%x unaligned int nocache request\n", size
);
311 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
-1;
313 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
315 offset
= bit_map_string_get(&srmmu_nocache_map
,
316 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
317 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
319 printk("srmmu: out of nocache %d: %d/%d\n",
320 size
, (int) srmmu_nocache_size
,
321 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
325 return (SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
));
328 static unsigned long srmmu_get_nocache(int size
, int align
)
332 tmp
= __srmmu_get_nocache(size
, align
);
335 memset((void *)tmp
, 0, size
);
340 static void srmmu_free_nocache(unsigned long vaddr
, int size
)
344 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
345 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
346 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
349 if (vaddr
+size
> srmmu_nocache_end
) {
350 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
351 vaddr
, srmmu_nocache_end
);
354 if (!is_power_of_2(size
)) {
355 printk("Size 0x%x is not a power of 2\n", size
);
358 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
359 printk("Size 0x%x is too small\n", size
);
362 if (vaddr
& (size
-1)) {
363 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
367 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
368 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
370 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
373 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
376 extern unsigned long probe_memory(void); /* in fault.c */
379 * Reserve nocache dynamically proportionally to the amount of
380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
382 static void srmmu_nocache_calcsize(void)
384 unsigned long sysmemavail
= probe_memory() / 1024;
385 int srmmu_nocache_npages
;
387 srmmu_nocache_npages
=
388 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
391 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
392 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
393 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
395 /* anything above 1280 blows up */
396 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
397 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
399 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
400 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
403 static void __init
srmmu_nocache_init(void)
405 unsigned int bitmap_bits
;
409 unsigned long paddr
, vaddr
;
410 unsigned long pteval
;
412 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
414 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
415 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
416 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
418 srmmu_nocache_bitmap
= __alloc_bootmem(bitmap_bits
>> 3, SMP_CACHE_BYTES
, 0UL);
419 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
421 srmmu_swapper_pg_dir
= (pgd_t
*)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
422 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
423 init_mm
.pgd
= srmmu_swapper_pg_dir
;
425 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
427 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
428 vaddr
= SRMMU_NOCACHE_VADDR
;
430 while (vaddr
< srmmu_nocache_end
) {
431 pgd
= pgd_offset_k(vaddr
);
432 pmd
= srmmu_pmd_offset(__nocache_fix(pgd
), vaddr
);
433 pte
= srmmu_pte_offset(__nocache_fix(pmd
), vaddr
);
435 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
437 if (srmmu_cache_pagetables
)
438 pteval
|= SRMMU_CACHE
;
440 srmmu_set_pte(__nocache_fix(pte
), __pte(pteval
));
450 static inline pgd_t
*srmmu_get_pgd_fast(void)
454 pgd
= (pgd_t
*)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
456 pgd_t
*init
= pgd_offset_k(0);
457 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
458 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
459 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
465 static void srmmu_free_pgd_fast(pgd_t
*pgd
)
467 srmmu_free_nocache((unsigned long)pgd
, SRMMU_PGD_TABLE_SIZE
);
470 static pmd_t
*srmmu_pmd_alloc_one(struct mm_struct
*mm
, unsigned long address
)
472 return (pmd_t
*)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
475 static void srmmu_pmd_free(pmd_t
* pmd
)
477 srmmu_free_nocache((unsigned long)pmd
, SRMMU_PMD_TABLE_SIZE
);
481 * Hardware needs alignment to 256 only, but we align to whole page size
482 * to reduce fragmentation problems due to the buddy principle.
483 * XXX Provide actual fragmentation statistics in /proc.
485 * Alignments up to the page size are the same for physical and virtual
486 * addresses of the nocache area.
489 srmmu_pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
491 return (pte_t
*)srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
495 srmmu_pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
500 if ((pte
= (unsigned long)srmmu_pte_alloc_one_kernel(mm
, address
)) == 0)
502 page
= pfn_to_page( __nocache_pa(pte
) >> PAGE_SHIFT
);
503 pgtable_page_ctor(page
);
507 static void srmmu_free_pte_fast(pte_t
*pte
)
509 srmmu_free_nocache((unsigned long)pte
, PTE_SIZE
);
512 static void srmmu_pte_free(pgtable_t pte
)
516 pgtable_page_dtor(pte
);
517 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
520 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
521 p
= (unsigned long) __nocache_va(p
); /* Nocached virtual */
522 srmmu_free_nocache(p
, PTE_SIZE
);
527 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
529 struct ctx_list
*ctxp
;
531 ctxp
= ctx_free
.next
;
532 if(ctxp
!= &ctx_free
) {
533 remove_from_ctx_list(ctxp
);
534 add_to_used_ctxlist(ctxp
);
535 mm
->context
= ctxp
->ctx_number
;
539 ctxp
= ctx_used
.next
;
540 if(ctxp
->ctx_mm
== old_mm
)
542 if(ctxp
== &ctx_used
)
543 panic("out of mmu contexts");
544 flush_cache_mm(ctxp
->ctx_mm
);
545 flush_tlb_mm(ctxp
->ctx_mm
);
546 remove_from_ctx_list(ctxp
);
547 add_to_used_ctxlist(ctxp
);
548 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
550 mm
->context
= ctxp
->ctx_number
;
553 static inline void free_context(int context
)
555 struct ctx_list
*ctx_old
;
557 ctx_old
= ctx_list_pool
+ context
;
558 remove_from_ctx_list(ctx_old
);
559 add_to_free_ctxlist(ctx_old
);
563 static void srmmu_switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
564 struct task_struct
*tsk
, int cpu
)
566 if(mm
->context
== NO_CONTEXT
) {
567 spin_lock(&srmmu_context_spinlock
);
568 alloc_context(old_mm
, mm
);
569 spin_unlock(&srmmu_context_spinlock
);
570 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
573 if (sparc_cpu_model
== sparc_leon
)
577 hyper_flush_whole_icache();
579 srmmu_set_context(mm
->context
);
582 /* Low level IO area allocation on the SRMMU. */
583 static inline void srmmu_mapioaddr(unsigned long physaddr
,
584 unsigned long virt_addr
, int bus_type
)
591 physaddr
&= PAGE_MASK
;
592 pgdp
= pgd_offset_k(virt_addr
);
593 pmdp
= srmmu_pmd_offset(pgdp
, virt_addr
);
594 ptep
= srmmu_pte_offset(pmdp
, virt_addr
);
595 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
598 * I need to test whether this is consistent over all
599 * sun4m's. The bus_type represents the upper 4 bits of
600 * 36-bit physical address on the I/O space lines...
602 tmp
|= (bus_type
<< 28);
604 __flush_page_to_ram(virt_addr
);
605 srmmu_set_pte(ptep
, __pte(tmp
));
608 static void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
609 unsigned long xva
, unsigned int len
)
613 srmmu_mapioaddr(xpa
, xva
, bus
);
620 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
626 pgdp
= pgd_offset_k(virt_addr
);
627 pmdp
= srmmu_pmd_offset(pgdp
, virt_addr
);
628 ptep
= srmmu_pte_offset(pmdp
, virt_addr
);
630 /* No need to flush uncacheable page. */
631 srmmu_pte_clear(ptep
);
634 static void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
638 srmmu_unmapioaddr(virt_addr
);
639 virt_addr
+= PAGE_SIZE
;
645 * On the SRMMU we do not have the problems with limited tlb entries
646 * for mapping kernel pages, so we just take things from the free page
647 * pool. As a side effect we are putting a little too much pressure
648 * on the gfp() subsystem. This setup also makes the logic of the
649 * iommu mapping code a lot easier as we can transparently handle
650 * mappings on the kernel stack without any special code as we did
653 static struct thread_info
*srmmu_alloc_thread_info(void)
655 struct thread_info
*ret
;
657 ret
= (struct thread_info
*)__get_free_pages(GFP_KERNEL
,
659 #ifdef CONFIG_DEBUG_STACK_USAGE
661 memset(ret
, 0, PAGE_SIZE
<< THREAD_INFO_ORDER
);
662 #endif /* DEBUG_STACK_USAGE */
667 static void srmmu_free_thread_info(struct thread_info
*ti
)
669 free_pages((unsigned long)ti
, THREAD_INFO_ORDER
);
673 extern void tsunami_flush_cache_all(void);
674 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
675 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
676 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
677 extern void tsunami_flush_page_to_ram(unsigned long page
);
678 extern void tsunami_flush_page_for_dma(unsigned long page
);
679 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
680 extern void tsunami_flush_tlb_all(void);
681 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
682 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
683 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
684 extern void tsunami_setup_blockops(void);
687 * Workaround, until we find what's going on with Swift. When low on memory,
688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
689 * out it is already in page tables/ fault again on the same instruction.
690 * I really don't understand it, have checked it and contexts
691 * are right, flush_tlb_all is done as well, and it faults again...
694 * The following code is a deadwood that may be necessary when
695 * we start to make precise page flushes again. --zaitcev
697 static void swift_update_mmu_cache(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
700 static unsigned long last
;
702 /* unsigned int n; */
704 if (address
== last
) {
705 val
= srmmu_hwprobe(address
);
706 if (val
!= 0 && pte_val(pte
) != val
) {
707 printk("swift_update_mmu_cache: "
708 "addr %lx put %08x probed %08x from %p\n",
709 address
, pte_val(pte
), val
,
710 __builtin_return_address(0));
711 srmmu_flush_whole_tlb();
719 extern void swift_flush_cache_all(void);
720 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
721 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
722 unsigned long start
, unsigned long end
);
723 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
724 extern void swift_flush_page_to_ram(unsigned long page
);
725 extern void swift_flush_page_for_dma(unsigned long page
);
726 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
727 extern void swift_flush_tlb_all(void);
728 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
729 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
730 unsigned long start
, unsigned long end
);
731 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
733 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
734 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
739 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
740 cctx
= srmmu_get_context();
741 /* Is context # ever different from current context? P3 */
743 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
744 srmmu_set_context(ctx1
);
745 swift_flush_page(page
);
746 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
747 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
748 srmmu_set_context(cctx
);
750 /* Rm. prot. bits from virt. c. */
751 /* swift_flush_cache_all(); */
752 /* swift_flush_cache_page(vma, page); */
753 swift_flush_page(page
);
755 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
756 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
757 /* same as above: srmmu_flush_tlb_page() */
764 * The following are all MBUS based SRMMU modules, and therefore could
765 * be found in a multiprocessor configuration. On the whole, these
766 * chips seems to be much more touchy about DVMA and page tables
767 * with respect to cache coherency.
770 /* Cypress flushes. */
771 static void cypress_flush_cache_all(void)
773 volatile unsigned long cypress_sucks
;
774 unsigned long faddr
, tagval
;
776 flush_user_windows();
777 for(faddr
= 0; faddr
< 0x10000; faddr
+= 0x20) {
778 __asm__
__volatile__("lda [%1 + %2] %3, %0\n\t" :
780 "r" (faddr
), "r" (0x40000),
781 "i" (ASI_M_DATAC_TAG
));
783 /* If modified and valid, kick it. */
784 if((tagval
& 0x60) == 0x60)
785 cypress_sucks
= *(unsigned long *)(0xf0020000 + faddr
);
789 static void cypress_flush_cache_mm(struct mm_struct
*mm
)
791 register unsigned long a
, b
, c
, d
, e
, f
, g
;
792 unsigned long flags
, faddr
;
796 flush_user_windows();
797 local_irq_save(flags
);
798 octx
= srmmu_get_context();
799 srmmu_set_context(mm
->context
);
800 a
= 0x20; b
= 0x40; c
= 0x60;
801 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
803 faddr
= (0x10000 - 0x100);
808 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
809 "sta %%g0, [%0 + %2] %1\n\t"
810 "sta %%g0, [%0 + %3] %1\n\t"
811 "sta %%g0, [%0 + %4] %1\n\t"
812 "sta %%g0, [%0 + %5] %1\n\t"
813 "sta %%g0, [%0 + %6] %1\n\t"
814 "sta %%g0, [%0 + %7] %1\n\t"
815 "sta %%g0, [%0 + %8] %1\n\t" : :
816 "r" (faddr
), "i" (ASI_M_FLUSH_CTX
),
817 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
818 "r" (e
), "r" (f
), "r" (g
));
820 srmmu_set_context(octx
);
821 local_irq_restore(flags
);
825 static void cypress_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
827 struct mm_struct
*mm
= vma
->vm_mm
;
828 register unsigned long a
, b
, c
, d
, e
, f
, g
;
829 unsigned long flags
, faddr
;
833 flush_user_windows();
834 local_irq_save(flags
);
835 octx
= srmmu_get_context();
836 srmmu_set_context(mm
->context
);
837 a
= 0x20; b
= 0x40; c
= 0x60;
838 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
840 start
&= SRMMU_REAL_PMD_MASK
;
842 faddr
= (start
+ (0x10000 - 0x100));
847 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
848 "sta %%g0, [%0 + %2] %1\n\t"
849 "sta %%g0, [%0 + %3] %1\n\t"
850 "sta %%g0, [%0 + %4] %1\n\t"
851 "sta %%g0, [%0 + %5] %1\n\t"
852 "sta %%g0, [%0 + %6] %1\n\t"
853 "sta %%g0, [%0 + %7] %1\n\t"
854 "sta %%g0, [%0 + %8] %1\n\t" : :
856 "i" (ASI_M_FLUSH_SEG
),
857 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
858 "r" (e
), "r" (f
), "r" (g
));
859 } while (faddr
!= start
);
860 start
+= SRMMU_REAL_PMD_SIZE
;
862 srmmu_set_context(octx
);
863 local_irq_restore(flags
);
867 static void cypress_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
869 register unsigned long a
, b
, c
, d
, e
, f
, g
;
870 struct mm_struct
*mm
= vma
->vm_mm
;
871 unsigned long flags
, line
;
875 flush_user_windows();
876 local_irq_save(flags
);
877 octx
= srmmu_get_context();
878 srmmu_set_context(mm
->context
);
879 a
= 0x20; b
= 0x40; c
= 0x60;
880 d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
883 line
= (page
+ PAGE_SIZE
) - 0x100;
888 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
889 "sta %%g0, [%0 + %2] %1\n\t"
890 "sta %%g0, [%0 + %3] %1\n\t"
891 "sta %%g0, [%0 + %4] %1\n\t"
892 "sta %%g0, [%0 + %5] %1\n\t"
893 "sta %%g0, [%0 + %6] %1\n\t"
894 "sta %%g0, [%0 + %7] %1\n\t"
895 "sta %%g0, [%0 + %8] %1\n\t" : :
897 "i" (ASI_M_FLUSH_PAGE
),
898 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
899 "r" (e
), "r" (f
), "r" (g
));
900 } while(line
!= page
);
901 srmmu_set_context(octx
);
902 local_irq_restore(flags
);
906 /* Cypress is copy-back, at least that is how we configure it. */
907 static void cypress_flush_page_to_ram(unsigned long page
)
909 register unsigned long a
, b
, c
, d
, e
, f
, g
;
912 a
= 0x20; b
= 0x40; c
= 0x60; d
= 0x80; e
= 0xa0; f
= 0xc0; g
= 0xe0;
914 line
= (page
+ PAGE_SIZE
) - 0x100;
919 __asm__
__volatile__("sta %%g0, [%0] %1\n\t"
920 "sta %%g0, [%0 + %2] %1\n\t"
921 "sta %%g0, [%0 + %3] %1\n\t"
922 "sta %%g0, [%0 + %4] %1\n\t"
923 "sta %%g0, [%0 + %5] %1\n\t"
924 "sta %%g0, [%0 + %6] %1\n\t"
925 "sta %%g0, [%0 + %7] %1\n\t"
926 "sta %%g0, [%0 + %8] %1\n\t" : :
928 "i" (ASI_M_FLUSH_PAGE
),
929 "r" (a
), "r" (b
), "r" (c
), "r" (d
),
930 "r" (e
), "r" (f
), "r" (g
));
931 } while(line
!= page
);
934 /* Cypress is also IO cache coherent. */
935 static void cypress_flush_page_for_dma(unsigned long page
)
939 /* Cypress has unified L2 VIPT, from which both instructions and data
940 * are stored. It does not have an onboard icache of any sort, therefore
941 * no flush is necessary.
943 static void cypress_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
947 static void cypress_flush_tlb_all(void)
949 srmmu_flush_whole_tlb();
952 static void cypress_flush_tlb_mm(struct mm_struct
*mm
)
955 __asm__
__volatile__(
956 "lda [%0] %3, %%g5\n\t"
957 "sta %2, [%0] %3\n\t"
958 "sta %%g0, [%1] %4\n\t"
959 "sta %%g5, [%0] %3\n"
961 : "r" (SRMMU_CTX_REG
), "r" (0x300), "r" (mm
->context
),
962 "i" (ASI_M_MMUREGS
), "i" (ASI_M_FLUSH_PROBE
)
967 static void cypress_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
969 struct mm_struct
*mm
= vma
->vm_mm
;
973 start
&= SRMMU_PGDIR_MASK
;
974 size
= SRMMU_PGDIR_ALIGN(end
) - start
;
975 __asm__
__volatile__(
976 "lda [%0] %5, %%g5\n\t"
979 "subcc %3, %4, %3\n\t"
981 " sta %%g0, [%2 + %3] %6\n\t"
982 "sta %%g5, [%0] %5\n"
984 : "r" (SRMMU_CTX_REG
), "r" (mm
->context
), "r" (start
| 0x200),
985 "r" (size
), "r" (SRMMU_PGDIR_SIZE
), "i" (ASI_M_MMUREGS
),
986 "i" (ASI_M_FLUSH_PROBE
)
991 static void cypress_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
993 struct mm_struct
*mm
= vma
->vm_mm
;
996 __asm__
__volatile__(
997 "lda [%0] %3, %%g5\n\t"
998 "sta %1, [%0] %3\n\t"
999 "sta %%g0, [%2] %4\n\t"
1000 "sta %%g5, [%0] %3\n"
1002 : "r" (SRMMU_CTX_REG
), "r" (mm
->context
), "r" (page
& PAGE_MASK
),
1003 "i" (ASI_M_MMUREGS
), "i" (ASI_M_FLUSH_PROBE
)
1009 extern void viking_flush_cache_all(void);
1010 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
1011 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
1013 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
1014 extern void viking_flush_page_to_ram(unsigned long page
);
1015 extern void viking_flush_page_for_dma(unsigned long page
);
1016 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
1017 extern void viking_flush_page(unsigned long page
);
1018 extern void viking_mxcc_flush_page(unsigned long page
);
1019 extern void viking_flush_tlb_all(void);
1020 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
1021 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
1023 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
1024 unsigned long page
);
1025 extern void sun4dsmp_flush_tlb_all(void);
1026 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
1027 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
1029 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
1030 unsigned long page
);
1033 extern void hypersparc_flush_cache_all(void);
1034 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
1035 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
1036 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
1037 extern void hypersparc_flush_page_to_ram(unsigned long page
);
1038 extern void hypersparc_flush_page_for_dma(unsigned long page
);
1039 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
1040 extern void hypersparc_flush_tlb_all(void);
1041 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
1042 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
1043 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
1044 extern void hypersparc_setup_blockops(void);
1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048 * kernel mappings are done with one single contiguous chunk of
1049 * ram. On small ram machines (classics mainly) we only get
1050 * around 8mb mapped for us.
1053 static void __init
early_pgtable_allocfail(char *type
)
1055 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
1059 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
1066 while(start
< end
) {
1067 pgdp
= pgd_offset_k(start
);
1068 if(srmmu_pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
1069 pmdp
= (pmd_t
*) __srmmu_get_nocache(
1070 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1072 early_pgtable_allocfail("pmd");
1073 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
1074 srmmu_pgd_set(__nocache_fix(pgdp
), pmdp
);
1076 pmdp
= srmmu_pmd_offset(__nocache_fix(pgdp
), start
);
1077 if(srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
1078 ptep
= (pte_t
*)__srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
1080 early_pgtable_allocfail("pte");
1081 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
1082 srmmu_pmd_set(__nocache_fix(pmdp
), ptep
);
1084 if (start
> (0xffffffffUL
- PMD_SIZE
))
1086 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
1090 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
1097 while(start
< end
) {
1098 pgdp
= pgd_offset_k(start
);
1099 if(srmmu_pgd_none(*pgdp
)) {
1100 pmdp
= (pmd_t
*)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1102 early_pgtable_allocfail("pmd");
1103 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
1104 srmmu_pgd_set(pgdp
, pmdp
);
1106 pmdp
= srmmu_pmd_offset(pgdp
, start
);
1107 if(srmmu_pmd_none(*pmdp
)) {
1108 ptep
= (pte_t
*) __srmmu_get_nocache(PTE_SIZE
,
1111 early_pgtable_allocfail("pte");
1112 memset(ptep
, 0, PTE_SIZE
);
1113 srmmu_pmd_set(pmdp
, ptep
);
1115 if (start
> (0xffffffffUL
- PMD_SIZE
))
1117 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
1122 * This is much cleaner than poking around physical address space
1123 * looking at the prom's page table directly which is what most
1124 * other OS's do. Yuck... this is much better.
1126 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
1132 int what
= 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133 unsigned long prompte
;
1135 while(start
<= end
) {
1137 break; /* probably wrap around */
1138 if(start
== 0xfef00000)
1139 start
= KADB_DEBUGGER_BEGVM
;
1140 if(!(prompte
= srmmu_hwprobe(start
))) {
1145 /* A red snapper, see what it really is. */
1148 if(!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
1149 if(srmmu_hwprobe((start
-PAGE_SIZE
) + SRMMU_REAL_PMD_SIZE
) == prompte
)
1153 if(!(start
& ~(SRMMU_PGDIR_MASK
))) {
1154 if(srmmu_hwprobe((start
-PAGE_SIZE
) + SRMMU_PGDIR_SIZE
) ==
1159 pgdp
= pgd_offset_k(start
);
1161 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(prompte
);
1162 start
+= SRMMU_PGDIR_SIZE
;
1165 if(srmmu_pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
1166 pmdp
= (pmd_t
*)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
1168 early_pgtable_allocfail("pmd");
1169 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
1170 srmmu_pgd_set(__nocache_fix(pgdp
), pmdp
);
1172 pmdp
= srmmu_pmd_offset(__nocache_fix(pgdp
), start
);
1173 if(srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
1174 ptep
= (pte_t
*) __srmmu_get_nocache(PTE_SIZE
,
1177 early_pgtable_allocfail("pte");
1178 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
1179 srmmu_pmd_set(__nocache_fix(pmdp
), ptep
);
1183 * We bend the rule where all 16 PTPs in a pmd_t point
1184 * inside the same PTE page, and we leak a perfectly
1185 * good hardware PTE piece. Alternatives seem worse.
1187 unsigned int x
; /* Index of HW PMD in soft cluster */
1188 x
= (start
>> PMD_SHIFT
) & 15;
1189 *(unsigned long *)__nocache_fix(&pmdp
->pmdv
[x
]) = prompte
;
1190 start
+= SRMMU_REAL_PMD_SIZE
;
1193 ptep
= srmmu_pte_offset(__nocache_fix(pmdp
), start
);
1194 *(pte_t
*)__nocache_fix(ptep
) = __pte(prompte
);
1199 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1201 /* Create a third-level SRMMU 16MB page mapping. */
1202 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
1204 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
1205 unsigned long big_pte
;
1207 big_pte
= KERNEL_PTE(phys_base
>> 4);
1208 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
1211 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
1214 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
1215 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
1216 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
1217 /* Map "low" memory only */
1218 const unsigned long min_vaddr
= PAGE_OFFSET
;
1219 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
1221 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
1224 if (vend
> max_vaddr
|| vend
< min_vaddr
)
1227 while(vstart
< vend
) {
1228 do_large_mapping(vstart
, pstart
);
1229 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
1234 static inline void memprobe_error(char *msg
)
1237 prom_printf("Halting now...\n");
1241 static inline void map_kernel(void)
1245 if (phys_base
> 0) {
1246 do_large_mapping(PAGE_OFFSET
, phys_base
);
1249 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
1250 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
1253 BTFIXUPSET_SIMM13(user_ptrs_per_pgd
, PAGE_OFFSET
/ SRMMU_PGDIR_SIZE
);
1256 /* Paging initialization on the Sparc Reference MMU. */
1257 extern void sparc_context_init(int);
1259 void (*poke_srmmu
)(void) __cpuinitdata
= NULL
;
1261 extern unsigned long bootmem_init(unsigned long *pages_avail
);
1263 void __init
srmmu_paging_init(void)
1270 unsigned long pages_avail
;
1272 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
1274 if (sparc_cpu_model
== sun4d
)
1275 num_contexts
= 65536; /* We know it is Viking */
1277 /* Find the number of contexts on the srmmu. */
1278 cpunode
= prom_getchild(prom_root_node
);
1280 while(cpunode
!= 0) {
1281 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1282 if(!strcmp(node_str
, "cpu")) {
1283 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
1286 cpunode
= prom_getsibling(cpunode
);
1291 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1296 last_valid_pfn
= bootmem_init(&pages_avail
);
1298 srmmu_nocache_calcsize();
1299 srmmu_nocache_init();
1300 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM
-PAGE_SIZE
));
1303 /* ctx table has to be physically aligned to its size */
1304 srmmu_context_table
= (ctxd_t
*)__srmmu_get_nocache(num_contexts
*sizeof(ctxd_t
), num_contexts
*sizeof(ctxd_t
));
1305 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa((unsigned long)srmmu_context_table
);
1307 for(i
= 0; i
< num_contexts
; i
++)
1308 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
1311 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
1313 /* Stop from hanging here... */
1314 local_flush_tlb_all();
1320 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
1321 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
1323 srmmu_allocate_ptable_skeleton(
1324 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
1325 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
1327 pgd
= pgd_offset_k(PKMAP_BASE
);
1328 pmd
= srmmu_pmd_offset(pgd
, PKMAP_BASE
);
1329 pte
= srmmu_pte_offset(pmd
, PKMAP_BASE
);
1330 pkmap_page_table
= pte
;
1335 sparc_context_init(num_contexts
);
1340 unsigned long zones_size
[MAX_NR_ZONES
];
1341 unsigned long zholes_size
[MAX_NR_ZONES
];
1342 unsigned long npages
;
1345 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1346 zones_size
[znum
] = zholes_size
[znum
] = 0;
1348 npages
= max_low_pfn
- pfn_base
;
1350 zones_size
[ZONE_DMA
] = npages
;
1351 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
1353 npages
= highend_pfn
- max_low_pfn
;
1354 zones_size
[ZONE_HIGHMEM
] = npages
;
1355 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
1357 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
1361 static void srmmu_mmu_info(struct seq_file
*m
)
1366 "nocache total\t: %ld\n"
1367 "nocache used\t: %d\n",
1371 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
1374 static void srmmu_update_mmu_cache(struct vm_area_struct
* vma
, unsigned long address
, pte_t pte
)
1378 static void srmmu_destroy_context(struct mm_struct
*mm
)
1381 if(mm
->context
!= NO_CONTEXT
) {
1383 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1385 spin_lock(&srmmu_context_spinlock
);
1386 free_context(mm
->context
);
1387 spin_unlock(&srmmu_context_spinlock
);
1388 mm
->context
= NO_CONTEXT
;
1392 /* Init various srmmu chip types. */
1393 static void __init
srmmu_is_bad(void)
1395 prom_printf("Could not determine SRMMU chip type.\n");
1399 static void __init
init_vac_layout(void)
1401 int nd
, cache_lines
;
1405 unsigned long max_size
= 0;
1406 unsigned long min_line_size
= 0x10000000;
1409 nd
= prom_getchild(prom_root_node
);
1410 while((nd
= prom_getsibling(nd
)) != 0) {
1411 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1412 if(!strcmp(node_str
, "cpu")) {
1413 vac_line_size
= prom_getint(nd
, "cache-line-size");
1414 if (vac_line_size
== -1) {
1415 prom_printf("can't determine cache-line-size, "
1419 cache_lines
= prom_getint(nd
, "cache-nlines");
1420 if (cache_lines
== -1) {
1421 prom_printf("can't determine cache-nlines, halting.\n");
1425 vac_cache_size
= cache_lines
* vac_line_size
;
1427 if(vac_cache_size
> max_size
)
1428 max_size
= vac_cache_size
;
1429 if(vac_line_size
< min_line_size
)
1430 min_line_size
= vac_line_size
;
1431 //FIXME: cpus not contiguous!!
1433 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1441 prom_printf("No CPU nodes found, halting.\n");
1445 vac_cache_size
= max_size
;
1446 vac_line_size
= min_line_size
;
1448 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1449 (int)vac_cache_size
, (int)vac_line_size
);
1452 static void __cpuinit
poke_hypersparc(void)
1454 volatile unsigned long clear
;
1455 unsigned long mreg
= srmmu_get_mmureg();
1457 hyper_flush_unconditional_combined();
1459 mreg
&= ~(HYPERSPARC_CWENABLE
);
1460 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1461 mreg
|= (HYPERSPARC_CMODE
);
1463 srmmu_set_mmureg(mreg
);
1465 #if 0 /* XXX I think this is bad news... -DaveM */
1466 hyper_clear_all_tags();
1469 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1470 hyper_flush_whole_icache();
1471 clear
= srmmu_get_faddr();
1472 clear
= srmmu_get_fstatus();
1475 static void __init
init_hypersparc(void)
1477 srmmu_name
= "ROSS HyperSparc";
1478 srmmu_modtype
= HyperSparc
;
1484 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1485 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1486 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1487 BTFIXUPSET_CALL(flush_cache_all
, hypersparc_flush_cache_all
, BTFIXUPCALL_NORM
);
1488 BTFIXUPSET_CALL(flush_cache_mm
, hypersparc_flush_cache_mm
, BTFIXUPCALL_NORM
);
1489 BTFIXUPSET_CALL(flush_cache_range
, hypersparc_flush_cache_range
, BTFIXUPCALL_NORM
);
1490 BTFIXUPSET_CALL(flush_cache_page
, hypersparc_flush_cache_page
, BTFIXUPCALL_NORM
);
1492 BTFIXUPSET_CALL(flush_tlb_all
, hypersparc_flush_tlb_all
, BTFIXUPCALL_NORM
);
1493 BTFIXUPSET_CALL(flush_tlb_mm
, hypersparc_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1494 BTFIXUPSET_CALL(flush_tlb_range
, hypersparc_flush_tlb_range
, BTFIXUPCALL_NORM
);
1495 BTFIXUPSET_CALL(flush_tlb_page
, hypersparc_flush_tlb_page
, BTFIXUPCALL_NORM
);
1497 BTFIXUPSET_CALL(__flush_page_to_ram
, hypersparc_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1498 BTFIXUPSET_CALL(flush_sig_insns
, hypersparc_flush_sig_insns
, BTFIXUPCALL_NORM
);
1499 BTFIXUPSET_CALL(flush_page_for_dma
, hypersparc_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1502 poke_srmmu
= poke_hypersparc
;
1504 hypersparc_setup_blockops();
1507 static void __cpuinit
poke_cypress(void)
1509 unsigned long mreg
= srmmu_get_mmureg();
1510 unsigned long faddr
, tagval
;
1511 volatile unsigned long cypress_sucks
;
1512 volatile unsigned long clear
;
1514 clear
= srmmu_get_faddr();
1515 clear
= srmmu_get_fstatus();
1517 if (!(mreg
& CYPRESS_CENABLE
)) {
1518 for(faddr
= 0x0; faddr
< 0x10000; faddr
+= 20) {
1519 __asm__
__volatile__("sta %%g0, [%0 + %1] %2\n\t"
1520 "sta %%g0, [%0] %2\n\t" : :
1521 "r" (faddr
), "r" (0x40000),
1522 "i" (ASI_M_DATAC_TAG
));
1525 for(faddr
= 0; faddr
< 0x10000; faddr
+= 0x20) {
1526 __asm__
__volatile__("lda [%1 + %2] %3, %0\n\t" :
1528 "r" (faddr
), "r" (0x40000),
1529 "i" (ASI_M_DATAC_TAG
));
1531 /* If modified and valid, kick it. */
1532 if((tagval
& 0x60) == 0x60)
1533 cypress_sucks
= *(unsigned long *)
1534 (0xf0020000 + faddr
);
1538 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1539 clear
= srmmu_get_faddr();
1540 clear
= srmmu_get_fstatus();
1542 mreg
|= (CYPRESS_CENABLE
| CYPRESS_CMODE
);
1543 srmmu_set_mmureg(mreg
);
1546 static void __init
init_cypress_common(void)
1550 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1551 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1552 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1553 BTFIXUPSET_CALL(flush_cache_all
, cypress_flush_cache_all
, BTFIXUPCALL_NORM
);
1554 BTFIXUPSET_CALL(flush_cache_mm
, cypress_flush_cache_mm
, BTFIXUPCALL_NORM
);
1555 BTFIXUPSET_CALL(flush_cache_range
, cypress_flush_cache_range
, BTFIXUPCALL_NORM
);
1556 BTFIXUPSET_CALL(flush_cache_page
, cypress_flush_cache_page
, BTFIXUPCALL_NORM
);
1558 BTFIXUPSET_CALL(flush_tlb_all
, cypress_flush_tlb_all
, BTFIXUPCALL_NORM
);
1559 BTFIXUPSET_CALL(flush_tlb_mm
, cypress_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1560 BTFIXUPSET_CALL(flush_tlb_page
, cypress_flush_tlb_page
, BTFIXUPCALL_NORM
);
1561 BTFIXUPSET_CALL(flush_tlb_range
, cypress_flush_tlb_range
, BTFIXUPCALL_NORM
);
1564 BTFIXUPSET_CALL(__flush_page_to_ram
, cypress_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1565 BTFIXUPSET_CALL(flush_sig_insns
, cypress_flush_sig_insns
, BTFIXUPCALL_NOP
);
1566 BTFIXUPSET_CALL(flush_page_for_dma
, cypress_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1568 poke_srmmu
= poke_cypress
;
1571 static void __init
init_cypress_604(void)
1573 srmmu_name
= "ROSS Cypress-604(UP)";
1574 srmmu_modtype
= Cypress
;
1575 init_cypress_common();
1578 static void __init
init_cypress_605(unsigned long mrev
)
1580 srmmu_name
= "ROSS Cypress-605(MP)";
1582 srmmu_modtype
= Cypress_vE
;
1583 hwbug_bitmask
|= HWBUG_COPYBACK_BROKEN
;
1586 srmmu_modtype
= Cypress_vD
;
1587 hwbug_bitmask
|= HWBUG_ASIFLUSH_BROKEN
;
1589 srmmu_modtype
= Cypress
;
1592 init_cypress_common();
1595 static void __cpuinit
poke_swift(void)
1599 /* Clear any crap from the cache or else... */
1600 swift_flush_cache_all();
1602 /* Enable I & D caches */
1603 mreg
= srmmu_get_mmureg();
1604 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1606 * The Swift branch folding logic is completely broken. At
1607 * trap time, if things are just right, if can mistakenly
1608 * think that a trap is coming from kernel mode when in fact
1609 * it is coming from user mode (it mis-executes the branch in
1610 * the trap code). So you see things like crashme completely
1611 * hosing your machine which is completely unacceptable. Turn
1612 * this shit off... nice job Fujitsu.
1614 mreg
&= ~(SWIFT_BF
);
1615 srmmu_set_mmureg(mreg
);
1618 #define SWIFT_MASKID_ADDR 0x10003018
1619 static void __init
init_swift(void)
1621 unsigned long swift_rev
;
1623 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1624 "srl %0, 0x18, %0\n\t" :
1626 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1627 srmmu_name
= "Fujitsu Swift";
1633 srmmu_modtype
= Swift_lots_o_bugs
;
1634 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1636 * Gee george, I wonder why Sun is so hush hush about
1637 * this hardware bug... really braindamage stuff going
1638 * on here. However I think we can find a way to avoid
1639 * all of the workaround overhead under Linux. Basically,
1640 * any page fault can cause kernel pages to become user
1641 * accessible (the mmu gets confused and clears some of
1642 * the ACC bits in kernel ptes). Aha, sounds pretty
1643 * horrible eh? But wait, after extensive testing it appears
1644 * that if you use pgd_t level large kernel pte's (like the
1645 * 4MB pages on the Pentium) the bug does not get tripped
1646 * at all. This avoids almost all of the major overhead.
1647 * Welcome to a world where your vendor tells you to,
1648 * "apply this kernel patch" instead of "sorry for the
1649 * broken hardware, send it back and we'll give you
1650 * properly functioning parts"
1655 srmmu_modtype
= Swift_bad_c
;
1656 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1658 * You see Sun allude to this hardware bug but never
1659 * admit things directly, they'll say things like,
1660 * "the Swift chip cache problems" or similar.
1664 srmmu_modtype
= Swift_ok
;
1668 BTFIXUPSET_CALL(flush_cache_all
, swift_flush_cache_all
, BTFIXUPCALL_NORM
);
1669 BTFIXUPSET_CALL(flush_cache_mm
, swift_flush_cache_mm
, BTFIXUPCALL_NORM
);
1670 BTFIXUPSET_CALL(flush_cache_page
, swift_flush_cache_page
, BTFIXUPCALL_NORM
);
1671 BTFIXUPSET_CALL(flush_cache_range
, swift_flush_cache_range
, BTFIXUPCALL_NORM
);
1674 BTFIXUPSET_CALL(flush_tlb_all
, swift_flush_tlb_all
, BTFIXUPCALL_NORM
);
1675 BTFIXUPSET_CALL(flush_tlb_mm
, swift_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1676 BTFIXUPSET_CALL(flush_tlb_page
, swift_flush_tlb_page
, BTFIXUPCALL_NORM
);
1677 BTFIXUPSET_CALL(flush_tlb_range
, swift_flush_tlb_range
, BTFIXUPCALL_NORM
);
1679 BTFIXUPSET_CALL(__flush_page_to_ram
, swift_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1680 BTFIXUPSET_CALL(flush_sig_insns
, swift_flush_sig_insns
, BTFIXUPCALL_NORM
);
1681 BTFIXUPSET_CALL(flush_page_for_dma
, swift_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1683 BTFIXUPSET_CALL(update_mmu_cache
, swift_update_mmu_cache
, BTFIXUPCALL_NORM
);
1685 flush_page_for_dma_global
= 0;
1688 * Are you now convinced that the Swift is one of the
1689 * biggest VLSI abortions of all time? Bravo Fujitsu!
1690 * Fujitsu, the !#?!%$'d up processor people. I bet if
1691 * you examined the microcode of the Swift you'd find
1692 * XXX's all over the place.
1694 poke_srmmu
= poke_swift
;
1697 static void turbosparc_flush_cache_all(void)
1699 flush_user_windows();
1700 turbosparc_idflash_clear();
1703 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1706 flush_user_windows();
1707 turbosparc_idflash_clear();
1711 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1713 FLUSH_BEGIN(vma
->vm_mm
)
1714 flush_user_windows();
1715 turbosparc_idflash_clear();
1719 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1721 FLUSH_BEGIN(vma
->vm_mm
)
1722 flush_user_windows();
1723 if (vma
->vm_flags
& VM_EXEC
)
1724 turbosparc_flush_icache();
1725 turbosparc_flush_dcache();
1729 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1730 static void turbosparc_flush_page_to_ram(unsigned long page
)
1732 #ifdef TURBOSPARC_WRITEBACK
1733 volatile unsigned long clear
;
1735 if (srmmu_hwprobe(page
))
1736 turbosparc_flush_page_cache(page
);
1737 clear
= srmmu_get_fstatus();
1741 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1745 static void turbosparc_flush_page_for_dma(unsigned long page
)
1747 turbosparc_flush_dcache();
1750 static void turbosparc_flush_tlb_all(void)
1752 srmmu_flush_whole_tlb();
1755 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1758 srmmu_flush_whole_tlb();
1762 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1764 FLUSH_BEGIN(vma
->vm_mm
)
1765 srmmu_flush_whole_tlb();
1769 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1771 FLUSH_BEGIN(vma
->vm_mm
)
1772 srmmu_flush_whole_tlb();
1777 static void __cpuinit
poke_turbosparc(void)
1779 unsigned long mreg
= srmmu_get_mmureg();
1780 unsigned long ccreg
;
1782 /* Clear any crap from the cache or else... */
1783 turbosparc_flush_cache_all();
1784 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* Temporarily disable I & D caches */
1785 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1786 srmmu_set_mmureg(mreg
);
1788 ccreg
= turbosparc_get_ccreg();
1790 #ifdef TURBOSPARC_WRITEBACK
1791 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1792 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1793 /* Write-back D-cache, emulate VLSI
1794 * abortion number three, not number one */
1796 /* For now let's play safe, optimize later */
1797 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1798 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1799 ccreg
&= ~(TURBOSPARC_uS2
);
1800 /* Emulate VLSI abortion number three, not number one */
1803 switch (ccreg
& 7) {
1804 case 0: /* No SE cache */
1805 case 7: /* Test mode */
1808 ccreg
|= (TURBOSPARC_SCENABLE
);
1810 turbosparc_set_ccreg (ccreg
);
1812 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1813 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1814 srmmu_set_mmureg(mreg
);
1817 static void __init
init_turbosparc(void)
1819 srmmu_name
= "Fujitsu TurboSparc";
1820 srmmu_modtype
= TurboSparc
;
1822 BTFIXUPSET_CALL(flush_cache_all
, turbosparc_flush_cache_all
, BTFIXUPCALL_NORM
);
1823 BTFIXUPSET_CALL(flush_cache_mm
, turbosparc_flush_cache_mm
, BTFIXUPCALL_NORM
);
1824 BTFIXUPSET_CALL(flush_cache_page
, turbosparc_flush_cache_page
, BTFIXUPCALL_NORM
);
1825 BTFIXUPSET_CALL(flush_cache_range
, turbosparc_flush_cache_range
, BTFIXUPCALL_NORM
);
1827 BTFIXUPSET_CALL(flush_tlb_all
, turbosparc_flush_tlb_all
, BTFIXUPCALL_NORM
);
1828 BTFIXUPSET_CALL(flush_tlb_mm
, turbosparc_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1829 BTFIXUPSET_CALL(flush_tlb_page
, turbosparc_flush_tlb_page
, BTFIXUPCALL_NORM
);
1830 BTFIXUPSET_CALL(flush_tlb_range
, turbosparc_flush_tlb_range
, BTFIXUPCALL_NORM
);
1832 BTFIXUPSET_CALL(__flush_page_to_ram
, turbosparc_flush_page_to_ram
, BTFIXUPCALL_NORM
);
1834 BTFIXUPSET_CALL(flush_sig_insns
, turbosparc_flush_sig_insns
, BTFIXUPCALL_NOP
);
1835 BTFIXUPSET_CALL(flush_page_for_dma
, turbosparc_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1837 poke_srmmu
= poke_turbosparc
;
1840 static void __cpuinit
poke_tsunami(void)
1842 unsigned long mreg
= srmmu_get_mmureg();
1844 tsunami_flush_icache();
1845 tsunami_flush_dcache();
1846 mreg
&= ~TSUNAMI_ITD
;
1847 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1848 srmmu_set_mmureg(mreg
);
1851 static void __init
init_tsunami(void)
1854 * Tsunami's pretty sane, Sun and TI actually got it
1855 * somewhat right this time. Fujitsu should have
1856 * taken some lessons from them.
1859 srmmu_name
= "TI Tsunami";
1860 srmmu_modtype
= Tsunami
;
1862 BTFIXUPSET_CALL(flush_cache_all
, tsunami_flush_cache_all
, BTFIXUPCALL_NORM
);
1863 BTFIXUPSET_CALL(flush_cache_mm
, tsunami_flush_cache_mm
, BTFIXUPCALL_NORM
);
1864 BTFIXUPSET_CALL(flush_cache_page
, tsunami_flush_cache_page
, BTFIXUPCALL_NORM
);
1865 BTFIXUPSET_CALL(flush_cache_range
, tsunami_flush_cache_range
, BTFIXUPCALL_NORM
);
1868 BTFIXUPSET_CALL(flush_tlb_all
, tsunami_flush_tlb_all
, BTFIXUPCALL_NORM
);
1869 BTFIXUPSET_CALL(flush_tlb_mm
, tsunami_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1870 BTFIXUPSET_CALL(flush_tlb_page
, tsunami_flush_tlb_page
, BTFIXUPCALL_NORM
);
1871 BTFIXUPSET_CALL(flush_tlb_range
, tsunami_flush_tlb_range
, BTFIXUPCALL_NORM
);
1873 BTFIXUPSET_CALL(__flush_page_to_ram
, tsunami_flush_page_to_ram
, BTFIXUPCALL_NOP
);
1874 BTFIXUPSET_CALL(flush_sig_insns
, tsunami_flush_sig_insns
, BTFIXUPCALL_NORM
);
1875 BTFIXUPSET_CALL(flush_page_for_dma
, tsunami_flush_page_for_dma
, BTFIXUPCALL_NORM
);
1877 poke_srmmu
= poke_tsunami
;
1879 tsunami_setup_blockops();
1882 static void __cpuinit
poke_viking(void)
1884 unsigned long mreg
= srmmu_get_mmureg();
1885 static int smp_catch
;
1887 if(viking_mxcc_present
) {
1888 unsigned long mxcc_control
= mxcc_get_creg();
1890 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1891 mxcc_control
&= ~(MXCC_CTL_RRC
);
1892 mxcc_set_creg(mxcc_control
);
1895 * We don't need memory parity checks.
1896 * XXX This is a mess, have to dig out later. ecd.
1897 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900 /* We do cache ptables on MXCC. */
1901 mreg
|= VIKING_TCENABLE
;
1903 unsigned long bpreg
;
1905 mreg
&= ~(VIKING_TCENABLE
);
1907 /* Must disable mixed-cmd mode here for other cpu's. */
1908 bpreg
= viking_get_bpreg();
1909 bpreg
&= ~(VIKING_ACTION_MIX
);
1910 viking_set_bpreg(bpreg
);
1912 /* Just in case PROM does something funny. */
1917 mreg
|= VIKING_SPENABLE
;
1918 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1919 mreg
|= VIKING_SBENABLE
;
1920 mreg
&= ~(VIKING_ACENABLE
);
1921 srmmu_set_mmureg(mreg
);
1924 static void __init
init_viking(void)
1926 unsigned long mreg
= srmmu_get_mmureg();
1928 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1929 if(mreg
& VIKING_MMODE
) {
1930 srmmu_name
= "TI Viking";
1931 viking_mxcc_present
= 0;
1934 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_NORM
);
1935 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_NORM
);
1936 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_NORM
);
1939 * We need this to make sure old viking takes no hits
1940 * on it's cache for dma snoops to workaround the
1941 * "load from non-cacheable memory" interrupt bug.
1942 * This is only necessary because of the new way in
1943 * which we use the IOMMU.
1945 BTFIXUPSET_CALL(flush_page_for_dma
, viking_flush_page
, BTFIXUPCALL_NORM
);
1947 flush_page_for_dma_global
= 0;
1949 srmmu_name
= "TI Viking/MXCC";
1950 viking_mxcc_present
= 1;
1952 srmmu_cache_pagetables
= 1;
1954 /* MXCC vikings lack the DMA snooping bug. */
1955 BTFIXUPSET_CALL(flush_page_for_dma
, viking_flush_page_for_dma
, BTFIXUPCALL_NOP
);
1958 BTFIXUPSET_CALL(flush_cache_all
, viking_flush_cache_all
, BTFIXUPCALL_NORM
);
1959 BTFIXUPSET_CALL(flush_cache_mm
, viking_flush_cache_mm
, BTFIXUPCALL_NORM
);
1960 BTFIXUPSET_CALL(flush_cache_page
, viking_flush_cache_page
, BTFIXUPCALL_NORM
);
1961 BTFIXUPSET_CALL(flush_cache_range
, viking_flush_cache_range
, BTFIXUPCALL_NORM
);
1964 if (sparc_cpu_model
== sun4d
) {
1965 BTFIXUPSET_CALL(flush_tlb_all
, sun4dsmp_flush_tlb_all
, BTFIXUPCALL_NORM
);
1966 BTFIXUPSET_CALL(flush_tlb_mm
, sun4dsmp_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1967 BTFIXUPSET_CALL(flush_tlb_page
, sun4dsmp_flush_tlb_page
, BTFIXUPCALL_NORM
);
1968 BTFIXUPSET_CALL(flush_tlb_range
, sun4dsmp_flush_tlb_range
, BTFIXUPCALL_NORM
);
1972 BTFIXUPSET_CALL(flush_tlb_all
, viking_flush_tlb_all
, BTFIXUPCALL_NORM
);
1973 BTFIXUPSET_CALL(flush_tlb_mm
, viking_flush_tlb_mm
, BTFIXUPCALL_NORM
);
1974 BTFIXUPSET_CALL(flush_tlb_page
, viking_flush_tlb_page
, BTFIXUPCALL_NORM
);
1975 BTFIXUPSET_CALL(flush_tlb_range
, viking_flush_tlb_range
, BTFIXUPCALL_NORM
);
1978 BTFIXUPSET_CALL(__flush_page_to_ram
, viking_flush_page_to_ram
, BTFIXUPCALL_NOP
);
1979 BTFIXUPSET_CALL(flush_sig_insns
, viking_flush_sig_insns
, BTFIXUPCALL_NOP
);
1981 poke_srmmu
= poke_viking
;
1984 #ifdef CONFIG_SPARC_LEON
1986 void __init
poke_leonsparc(void)
1990 void __init
init_leon(void)
1993 srmmu_name
= "LEON";
1995 BTFIXUPSET_CALL(flush_cache_all
, leon_flush_cache_all
,
1997 BTFIXUPSET_CALL(flush_cache_mm
, leon_flush_cache_all
,
1999 BTFIXUPSET_CALL(flush_cache_page
, leon_flush_pcache_all
,
2001 BTFIXUPSET_CALL(flush_cache_range
, leon_flush_cache_all
,
2003 BTFIXUPSET_CALL(flush_page_for_dma
, leon_flush_dcache_all
,
2006 BTFIXUPSET_CALL(flush_tlb_all
, leon_flush_tlb_all
, BTFIXUPCALL_NORM
);
2007 BTFIXUPSET_CALL(flush_tlb_mm
, leon_flush_tlb_all
, BTFIXUPCALL_NORM
);
2008 BTFIXUPSET_CALL(flush_tlb_page
, leon_flush_tlb_all
, BTFIXUPCALL_NORM
);
2009 BTFIXUPSET_CALL(flush_tlb_range
, leon_flush_tlb_all
, BTFIXUPCALL_NORM
);
2011 BTFIXUPSET_CALL(__flush_page_to_ram
, leon_flush_cache_all
,
2013 BTFIXUPSET_CALL(flush_sig_insns
, leon_flush_cache_all
, BTFIXUPCALL_NOP
);
2015 poke_srmmu
= poke_leonsparc
;
2017 srmmu_cache_pagetables
= 0;
2019 leon_flush_during_switch
= leon_flush_needed();
2023 /* Probe for the srmmu chip version. */
2024 static void __init
get_srmmu_type(void)
2026 unsigned long mreg
, psr
;
2027 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
2029 srmmu_modtype
= SRMMU_INVAL_MOD
;
2032 mreg
= srmmu_get_mmureg(); psr
= get_psr();
2033 mod_typ
= (mreg
& 0xf0000000) >> 28;
2034 mod_rev
= (mreg
& 0x0f000000) >> 24;
2035 psr_typ
= (psr
>> 28) & 0xf;
2036 psr_vers
= (psr
>> 24) & 0xf;
2038 /* First, check for sparc-leon. */
2039 if (sparc_cpu_model
== sparc_leon
) {
2044 /* Second, check for HyperSparc or Cypress. */
2048 /* UP or MP Hypersparc */
2053 /* Uniprocessor Cypress */
2059 /* _REALLY OLD_ Cypress MP chips... */
2063 /* MP Cypress mmu/cache-controller */
2064 init_cypress_605(mod_rev
);
2067 /* Some other Cypress revision, assume a 605. */
2068 init_cypress_605(mod_rev
);
2075 * Now Fujitsu TurboSparc. It might happen that it is
2076 * in Swift emulation mode, so we will check later...
2078 if (psr_typ
== 0 && psr_vers
== 5) {
2083 /* Next check for Fujitsu Swift. */
2084 if(psr_typ
== 0 && psr_vers
== 4) {
2088 /* Look if it is not a TurboSparc emulating Swift... */
2089 cpunode
= prom_getchild(prom_root_node
);
2090 while((cpunode
= prom_getsibling(cpunode
)) != 0) {
2091 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
2092 if(!strcmp(node_str
, "cpu")) {
2093 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
2094 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
2106 /* Now the Viking family of srmmu. */
2109 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
2114 /* Finally the Tsunami. */
2115 if(psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
2124 /* don't laugh, static pagetables */
2125 static void srmmu_check_pgt_cache(int low
, int high
)
2129 extern unsigned long spwin_mmu_patchme
, fwin_mmu_patchme
,
2130 tsetup_mmu_patchme
, rtrap_mmu_patchme
;
2132 extern unsigned long spwin_srmmu_stackchk
, srmmu_fwin_stackchk
,
2133 tsetup_srmmu_stackchk
, srmmu_rett_stackchk
;
2135 extern unsigned long srmmu_fault
;
2137 #define PATCH_BRANCH(insn, dest) do { \
2140 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143 static void __init
patch_window_trap_handlers(void)
2145 unsigned long *iaddr
, *daddr
;
2147 PATCH_BRANCH(spwin_mmu_patchme
, spwin_srmmu_stackchk
);
2148 PATCH_BRANCH(fwin_mmu_patchme
, srmmu_fwin_stackchk
);
2149 PATCH_BRANCH(tsetup_mmu_patchme
, tsetup_srmmu_stackchk
);
2150 PATCH_BRANCH(rtrap_mmu_patchme
, srmmu_rett_stackchk
);
2151 PATCH_BRANCH(sparc_ttable
[SP_TRAP_TFLT
].inst_three
, srmmu_fault
);
2152 PATCH_BRANCH(sparc_ttable
[SP_TRAP_DFLT
].inst_three
, srmmu_fault
);
2153 PATCH_BRANCH(sparc_ttable
[SP_TRAP_DACC
].inst_three
, srmmu_fault
);
2157 /* Local cross-calls. */
2158 static void smp_flush_page_for_dma(unsigned long page
)
2160 xc1((smpfunc_t
) BTFIXUP_CALL(local_flush_page_for_dma
), page
);
2161 local_flush_page_for_dma(page
);
2166 static pte_t
srmmu_pgoff_to_pte(unsigned long pgoff
)
2168 return __pte((pgoff
<< SRMMU_PTE_FILE_SHIFT
) | SRMMU_FILE
);
2171 static unsigned long srmmu_pte_to_pgoff(pte_t pte
)
2173 return pte_val(pte
) >> SRMMU_PTE_FILE_SHIFT
;
2176 static pgprot_t
srmmu_pgprot_noncached(pgprot_t prot
)
2178 prot
&= ~__pgprot(SRMMU_CACHE
);
2183 /* Load up routines and constants for sun4m and sun4d mmu */
2184 void __init
ld_mmu_srmmu(void)
2186 extern void ld_mmu_iommu(void);
2187 extern void ld_mmu_iounit(void);
2188 extern void ___xchg32_sun4md(void);
2190 BTFIXUPSET_SIMM13(pgdir_shift
, SRMMU_PGDIR_SHIFT
);
2191 BTFIXUPSET_SETHI(pgdir_size
, SRMMU_PGDIR_SIZE
);
2192 BTFIXUPSET_SETHI(pgdir_mask
, SRMMU_PGDIR_MASK
);
2194 BTFIXUPSET_SIMM13(ptrs_per_pmd
, SRMMU_PTRS_PER_PMD
);
2195 BTFIXUPSET_SIMM13(ptrs_per_pgd
, SRMMU_PTRS_PER_PGD
);
2197 BTFIXUPSET_INT(page_none
, pgprot_val(SRMMU_PAGE_NONE
));
2198 PAGE_SHARED
= pgprot_val(SRMMU_PAGE_SHARED
);
2199 BTFIXUPSET_INT(page_copy
, pgprot_val(SRMMU_PAGE_COPY
));
2200 BTFIXUPSET_INT(page_readonly
, pgprot_val(SRMMU_PAGE_RDONLY
));
2201 BTFIXUPSET_INT(page_kernel
, pgprot_val(SRMMU_PAGE_KERNEL
));
2202 page_kernel
= pgprot_val(SRMMU_PAGE_KERNEL
);
2205 BTFIXUPSET_CALL(pgprot_noncached
, srmmu_pgprot_noncached
, BTFIXUPCALL_NORM
);
2207 BTFIXUPSET_CALL(___xchg32
, ___xchg32_sun4md
, BTFIXUPCALL_SWAPG1G2
);
2209 BTFIXUPSET_CALL(do_check_pgt_cache
, srmmu_check_pgt_cache
, BTFIXUPCALL_NOP
);
2211 BTFIXUPSET_CALL(set_pte
, srmmu_set_pte
, BTFIXUPCALL_SWAPO0O1
);
2212 BTFIXUPSET_CALL(switch_mm
, srmmu_switch_mm
, BTFIXUPCALL_NORM
);
2214 BTFIXUPSET_CALL(pte_pfn
, srmmu_pte_pfn
, BTFIXUPCALL_NORM
);
2215 BTFIXUPSET_CALL(pmd_page
, srmmu_pmd_page
, BTFIXUPCALL_NORM
);
2216 BTFIXUPSET_CALL(pgd_page_vaddr
, srmmu_pgd_page
, BTFIXUPCALL_NORM
);
2218 BTFIXUPSET_SETHI(none_mask
, 0xF0000000);
2220 BTFIXUPSET_CALL(pte_present
, srmmu_pte_present
, BTFIXUPCALL_NORM
);
2221 BTFIXUPSET_CALL(pte_clear
, srmmu_pte_clear
, BTFIXUPCALL_SWAPO0G0
);
2223 BTFIXUPSET_CALL(pmd_bad
, srmmu_pmd_bad
, BTFIXUPCALL_NORM
);
2224 BTFIXUPSET_CALL(pmd_present
, srmmu_pmd_present
, BTFIXUPCALL_NORM
);
2225 BTFIXUPSET_CALL(pmd_clear
, srmmu_pmd_clear
, BTFIXUPCALL_SWAPO0G0
);
2227 BTFIXUPSET_CALL(pgd_none
, srmmu_pgd_none
, BTFIXUPCALL_NORM
);
2228 BTFIXUPSET_CALL(pgd_bad
, srmmu_pgd_bad
, BTFIXUPCALL_NORM
);
2229 BTFIXUPSET_CALL(pgd_present
, srmmu_pgd_present
, BTFIXUPCALL_NORM
);
2230 BTFIXUPSET_CALL(pgd_clear
, srmmu_pgd_clear
, BTFIXUPCALL_SWAPO0G0
);
2232 BTFIXUPSET_CALL(mk_pte
, srmmu_mk_pte
, BTFIXUPCALL_NORM
);
2233 BTFIXUPSET_CALL(mk_pte_phys
, srmmu_mk_pte_phys
, BTFIXUPCALL_NORM
);
2234 BTFIXUPSET_CALL(mk_pte_io
, srmmu_mk_pte_io
, BTFIXUPCALL_NORM
);
2235 BTFIXUPSET_CALL(pgd_set
, srmmu_pgd_set
, BTFIXUPCALL_NORM
);
2236 BTFIXUPSET_CALL(pmd_set
, srmmu_pmd_set
, BTFIXUPCALL_NORM
);
2237 BTFIXUPSET_CALL(pmd_populate
, srmmu_pmd_populate
, BTFIXUPCALL_NORM
);
2239 BTFIXUPSET_INT(pte_modify_mask
, SRMMU_CHG_MASK
);
2240 BTFIXUPSET_CALL(pmd_offset
, srmmu_pmd_offset
, BTFIXUPCALL_NORM
);
2241 BTFIXUPSET_CALL(pte_offset_kernel
, srmmu_pte_offset
, BTFIXUPCALL_NORM
);
2243 BTFIXUPSET_CALL(free_pte_fast
, srmmu_free_pte_fast
, BTFIXUPCALL_NORM
);
2244 BTFIXUPSET_CALL(pte_free
, srmmu_pte_free
, BTFIXUPCALL_NORM
);
2245 BTFIXUPSET_CALL(pte_alloc_one_kernel
, srmmu_pte_alloc_one_kernel
, BTFIXUPCALL_NORM
);
2246 BTFIXUPSET_CALL(pte_alloc_one
, srmmu_pte_alloc_one
, BTFIXUPCALL_NORM
);
2247 BTFIXUPSET_CALL(free_pmd_fast
, srmmu_pmd_free
, BTFIXUPCALL_NORM
);
2248 BTFIXUPSET_CALL(pmd_alloc_one
, srmmu_pmd_alloc_one
, BTFIXUPCALL_NORM
);
2249 BTFIXUPSET_CALL(free_pgd_fast
, srmmu_free_pgd_fast
, BTFIXUPCALL_NORM
);
2250 BTFIXUPSET_CALL(get_pgd_fast
, srmmu_get_pgd_fast
, BTFIXUPCALL_NORM
);
2252 BTFIXUPSET_HALF(pte_writei
, SRMMU_WRITE
);
2253 BTFIXUPSET_HALF(pte_dirtyi
, SRMMU_DIRTY
);
2254 BTFIXUPSET_HALF(pte_youngi
, SRMMU_REF
);
2255 BTFIXUPSET_HALF(pte_filei
, SRMMU_FILE
);
2256 BTFIXUPSET_HALF(pte_wrprotecti
, SRMMU_WRITE
);
2257 BTFIXUPSET_HALF(pte_mkcleani
, SRMMU_DIRTY
);
2258 BTFIXUPSET_HALF(pte_mkoldi
, SRMMU_REF
);
2259 BTFIXUPSET_CALL(pte_mkwrite
, srmmu_pte_mkwrite
, BTFIXUPCALL_ORINT(SRMMU_WRITE
));
2260 BTFIXUPSET_CALL(pte_mkdirty
, srmmu_pte_mkdirty
, BTFIXUPCALL_ORINT(SRMMU_DIRTY
));
2261 BTFIXUPSET_CALL(pte_mkyoung
, srmmu_pte_mkyoung
, BTFIXUPCALL_ORINT(SRMMU_REF
));
2262 BTFIXUPSET_CALL(update_mmu_cache
, srmmu_update_mmu_cache
, BTFIXUPCALL_NOP
);
2263 BTFIXUPSET_CALL(destroy_context
, srmmu_destroy_context
, BTFIXUPCALL_NORM
);
2265 BTFIXUPSET_CALL(sparc_mapiorange
, srmmu_mapiorange
, BTFIXUPCALL_NORM
);
2266 BTFIXUPSET_CALL(sparc_unmapiorange
, srmmu_unmapiorange
, BTFIXUPCALL_NORM
);
2268 BTFIXUPSET_CALL(__swp_type
, srmmu_swp_type
, BTFIXUPCALL_NORM
);
2269 BTFIXUPSET_CALL(__swp_offset
, srmmu_swp_offset
, BTFIXUPCALL_NORM
);
2270 BTFIXUPSET_CALL(__swp_entry
, srmmu_swp_entry
, BTFIXUPCALL_NORM
);
2272 BTFIXUPSET_CALL(mmu_info
, srmmu_mmu_info
, BTFIXUPCALL_NORM
);
2274 BTFIXUPSET_CALL(alloc_thread_info
, srmmu_alloc_thread_info
, BTFIXUPCALL_NORM
);
2275 BTFIXUPSET_CALL(free_thread_info
, srmmu_free_thread_info
, BTFIXUPCALL_NORM
);
2277 BTFIXUPSET_CALL(pte_to_pgoff
, srmmu_pte_to_pgoff
, BTFIXUPCALL_NORM
);
2278 BTFIXUPSET_CALL(pgoff_to_pte
, srmmu_pgoff_to_pte
, BTFIXUPCALL_NORM
);
2281 patch_window_trap_handlers();
2284 /* El switcheroo... */
2286 BTFIXUPCOPY_CALL(local_flush_cache_all
, flush_cache_all
);
2287 BTFIXUPCOPY_CALL(local_flush_cache_mm
, flush_cache_mm
);
2288 BTFIXUPCOPY_CALL(local_flush_cache_range
, flush_cache_range
);
2289 BTFIXUPCOPY_CALL(local_flush_cache_page
, flush_cache_page
);
2290 BTFIXUPCOPY_CALL(local_flush_tlb_all
, flush_tlb_all
);
2291 BTFIXUPCOPY_CALL(local_flush_tlb_mm
, flush_tlb_mm
);
2292 BTFIXUPCOPY_CALL(local_flush_tlb_range
, flush_tlb_range
);
2293 BTFIXUPCOPY_CALL(local_flush_tlb_page
, flush_tlb_page
);
2294 BTFIXUPCOPY_CALL(local_flush_page_to_ram
, __flush_page_to_ram
);
2295 BTFIXUPCOPY_CALL(local_flush_sig_insns
, flush_sig_insns
);
2296 BTFIXUPCOPY_CALL(local_flush_page_for_dma
, flush_page_for_dma
);
2298 BTFIXUPSET_CALL(flush_cache_all
, smp_flush_cache_all
, BTFIXUPCALL_NORM
);
2299 BTFIXUPSET_CALL(flush_cache_mm
, smp_flush_cache_mm
, BTFIXUPCALL_NORM
);
2300 BTFIXUPSET_CALL(flush_cache_range
, smp_flush_cache_range
, BTFIXUPCALL_NORM
);
2301 BTFIXUPSET_CALL(flush_cache_page
, smp_flush_cache_page
, BTFIXUPCALL_NORM
);
2302 if (sparc_cpu_model
!= sun4d
&&
2303 sparc_cpu_model
!= sparc_leon
) {
2304 BTFIXUPSET_CALL(flush_tlb_all
, smp_flush_tlb_all
, BTFIXUPCALL_NORM
);
2305 BTFIXUPSET_CALL(flush_tlb_mm
, smp_flush_tlb_mm
, BTFIXUPCALL_NORM
);
2306 BTFIXUPSET_CALL(flush_tlb_range
, smp_flush_tlb_range
, BTFIXUPCALL_NORM
);
2307 BTFIXUPSET_CALL(flush_tlb_page
, smp_flush_tlb_page
, BTFIXUPCALL_NORM
);
2309 BTFIXUPSET_CALL(__flush_page_to_ram
, smp_flush_page_to_ram
, BTFIXUPCALL_NORM
);
2310 BTFIXUPSET_CALL(flush_sig_insns
, smp_flush_sig_insns
, BTFIXUPCALL_NORM
);
2311 BTFIXUPSET_CALL(flush_page_for_dma
, smp_flush_page_for_dma
, BTFIXUPCALL_NORM
);
2313 if (poke_srmmu
== poke_viking
) {
2314 /* Avoid unnecessary cross calls. */
2315 BTFIXUPCOPY_CALL(flush_cache_all
, local_flush_cache_all
);
2316 BTFIXUPCOPY_CALL(flush_cache_mm
, local_flush_cache_mm
);
2317 BTFIXUPCOPY_CALL(flush_cache_range
, local_flush_cache_range
);
2318 BTFIXUPCOPY_CALL(flush_cache_page
, local_flush_cache_page
);
2319 BTFIXUPCOPY_CALL(__flush_page_to_ram
, local_flush_page_to_ram
);
2320 BTFIXUPCOPY_CALL(flush_sig_insns
, local_flush_sig_insns
);
2321 BTFIXUPCOPY_CALL(flush_page_for_dma
, local_flush_page_for_dma
);
2325 if (sparc_cpu_model
== sun4d
)
2330 if (sparc_cpu_model
== sun4d
)
2332 else if (sparc_cpu_model
== sparc_leon
)