Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/linux-mips.git] / fs / namei.c
blobe2e4e8d032ee47cc899007443482a823caf30535
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 static char *getname_flags(const char __user * filename, int flags)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
156 audit_getname(result);
157 return result;
160 char *getname(const char __user * filename)
162 return getname_flags(filename, 0);
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
173 EXPORT_SYMBOL(putname);
174 #endif
177 * This does basic POSIX ACL permission checking
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
182 unsigned int mode = inode->i_mode;
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask, flags);
194 if (error != -EAGAIN)
195 return error;
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
202 other_perms:
204 * If the DACs are ok we don't need any capability check.
206 if ((mask & ~mode) == 0)
207 return 0;
208 return -EACCES;
212 * generic_permission - check for access rights on a Posix-like filesystem
213 * @inode: inode to check access rights for
214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215 * @check_acl: optional callback to check for Posix ACLs
216 * @flags: IPERM_FLAG_ flags.
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
230 int ret;
233 * Do the basic POSIX ACL permission checks.
235 ret = acl_permission_check(inode, mask, flags, check_acl);
236 if (ret != -EACCES)
237 return ret;
240 * Read/write DACs are always overridable.
241 * Executable DACs are overridable if at least one exec bit is set.
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
248 * Searching includes executable on directories, else just read.
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
255 return -EACCES;
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
268 int inode_permission(struct inode *inode, int mask)
270 int retval;
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
276 * Nobody gets write access to a read-only fs.
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
283 * Nobody gets write access to an immutable file.
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask, 0,
293 inode->i_op->check_acl);
295 if (retval)
296 return retval;
298 retval = devcgroup_inode_permission(inode, mask);
299 if (retval)
300 return retval;
302 return security_inode_permission(inode, mask);
306 * file_permission - check for additional access rights to a given file
307 * @file: file to check access rights for
308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
310 * Used to check for read/write/execute permissions on an already opened
311 * file.
313 * Note:
314 * Do not use this function in new code. All access checks should
315 * be done using inode_permission().
317 int file_permission(struct file *file, int mask)
319 return inode_permission(file->f_path.dentry->d_inode, mask);
323 * get_write_access() gets write permission for a file.
324 * put_write_access() releases this write permission.
325 * This is used for regular files.
326 * We cannot support write (and maybe mmap read-write shared) accesses and
327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328 * can have the following values:
329 * 0: no writers, no VM_DENYWRITE mappings
330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331 * > 0: (i_writecount) users are writing to the file.
333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334 * except for the cases where we don't hold i_writecount yet. Then we need to
335 * use {get,deny}_write_access() - these functions check the sign and refuse
336 * to do the change if sign is wrong. Exclusion between them is provided by
337 * the inode->i_lock spinlock.
340 int get_write_access(struct inode * inode)
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) < 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
347 atomic_inc(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
350 return 0;
353 int deny_write_access(struct file * file)
355 struct inode *inode = file->f_path.dentry->d_inode;
357 spin_lock(&inode->i_lock);
358 if (atomic_read(&inode->i_writecount) > 0) {
359 spin_unlock(&inode->i_lock);
360 return -ETXTBSY;
362 atomic_dec(&inode->i_writecount);
363 spin_unlock(&inode->i_lock);
365 return 0;
369 * path_get - get a reference to a path
370 * @path: path to get the reference to
372 * Given a path increment the reference count to the dentry and the vfsmount.
374 void path_get(struct path *path)
376 mntget(path->mnt);
377 dget(path->dentry);
379 EXPORT_SYMBOL(path_get);
382 * path_put - put a reference to a path
383 * @path: path to put the reference to
385 * Given a path decrement the reference count to the dentry and the vfsmount.
387 void path_put(struct path *path)
389 dput(path->dentry);
390 mntput(path->mnt);
392 EXPORT_SYMBOL(path_put);
395 * Path walking has 2 modes, rcu-walk and ref-walk (see
396 * Documentation/filesystems/path-lookup.txt). In situations when we can't
397 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
398 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
399 * mode. Refcounts are grabbed at the last known good point before rcu-walk
400 * got stuck, so ref-walk may continue from there. If this is not successful
401 * (eg. a seqcount has changed), then failure is returned and it's up to caller
402 * to restart the path walk from the beginning in ref-walk mode.
406 * unlazy_walk - try to switch to ref-walk mode.
407 * @nd: nameidata pathwalk data
408 * @dentry: child of nd->path.dentry or NULL
409 * Returns: 0 on success, -ECHILD on failure
411 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
412 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
413 * @nd or NULL. Must be called from rcu-walk context.
415 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
417 struct fs_struct *fs = current->fs;
418 struct dentry *parent = nd->path.dentry;
419 int want_root = 0;
421 BUG_ON(!(nd->flags & LOOKUP_RCU));
422 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
423 want_root = 1;
424 spin_lock(&fs->lock);
425 if (nd->root.mnt != fs->root.mnt ||
426 nd->root.dentry != fs->root.dentry)
427 goto err_root;
429 spin_lock(&parent->d_lock);
430 if (!dentry) {
431 if (!__d_rcu_to_refcount(parent, nd->seq))
432 goto err_parent;
433 BUG_ON(nd->inode != parent->d_inode);
434 } else {
435 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
436 if (!__d_rcu_to_refcount(dentry, nd->seq))
437 goto err_child;
439 * If the sequence check on the child dentry passed, then
440 * the child has not been removed from its parent. This
441 * means the parent dentry must be valid and able to take
442 * a reference at this point.
444 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
445 BUG_ON(!parent->d_count);
446 parent->d_count++;
447 spin_unlock(&dentry->d_lock);
449 spin_unlock(&parent->d_lock);
450 if (want_root) {
451 path_get(&nd->root);
452 spin_unlock(&fs->lock);
454 mntget(nd->path.mnt);
456 rcu_read_unlock();
457 br_read_unlock(vfsmount_lock);
458 nd->flags &= ~LOOKUP_RCU;
459 return 0;
461 err_child:
462 spin_unlock(&dentry->d_lock);
463 err_parent:
464 spin_unlock(&parent->d_lock);
465 err_root:
466 if (want_root)
467 spin_unlock(&fs->lock);
468 return -ECHILD;
472 * release_open_intent - free up open intent resources
473 * @nd: pointer to nameidata
475 void release_open_intent(struct nameidata *nd)
477 struct file *file = nd->intent.open.file;
479 if (file && !IS_ERR(file)) {
480 if (file->f_path.dentry == NULL)
481 put_filp(file);
482 else
483 fput(file);
487 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
489 return dentry->d_op->d_revalidate(dentry, nd);
492 static struct dentry *
493 do_revalidate(struct dentry *dentry, struct nameidata *nd)
495 int status = d_revalidate(dentry, nd);
496 if (unlikely(status <= 0)) {
498 * The dentry failed validation.
499 * If d_revalidate returned 0 attempt to invalidate
500 * the dentry otherwise d_revalidate is asking us
501 * to return a fail status.
503 if (status < 0) {
504 dput(dentry);
505 dentry = ERR_PTR(status);
506 } else if (!d_invalidate(dentry)) {
507 dput(dentry);
508 dentry = NULL;
511 return dentry;
515 * complete_walk - successful completion of path walk
516 * @nd: pointer nameidata
518 * If we had been in RCU mode, drop out of it and legitimize nd->path.
519 * Revalidate the final result, unless we'd already done that during
520 * the path walk or the filesystem doesn't ask for it. Return 0 on
521 * success, -error on failure. In case of failure caller does not
522 * need to drop nd->path.
524 static int complete_walk(struct nameidata *nd)
526 struct dentry *dentry = nd->path.dentry;
527 int status;
529 if (nd->flags & LOOKUP_RCU) {
530 nd->flags &= ~LOOKUP_RCU;
531 if (!(nd->flags & LOOKUP_ROOT))
532 nd->root.mnt = NULL;
533 spin_lock(&dentry->d_lock);
534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 spin_unlock(&dentry->d_lock);
536 rcu_read_unlock();
537 br_read_unlock(vfsmount_lock);
538 return -ECHILD;
540 BUG_ON(nd->inode != dentry->d_inode);
541 spin_unlock(&dentry->d_lock);
542 mntget(nd->path.mnt);
543 rcu_read_unlock();
544 br_read_unlock(vfsmount_lock);
547 if (likely(!(nd->flags & LOOKUP_JUMPED)))
548 return 0;
550 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
551 return 0;
553 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
554 return 0;
556 /* Note: we do not d_invalidate() */
557 status = d_revalidate(dentry, nd);
558 if (status > 0)
559 return 0;
561 if (!status)
562 status = -ESTALE;
564 path_put(&nd->path);
565 return status;
569 * Short-cut version of permission(), for calling on directories
570 * during pathname resolution. Combines parts of permission()
571 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
573 * If appropriate, check DAC only. If not appropriate, or
574 * short-cut DAC fails, then call ->permission() to do more
575 * complete permission check.
577 static inline int exec_permission(struct inode *inode, unsigned int flags)
579 int ret;
580 struct user_namespace *ns = inode_userns(inode);
582 if (inode->i_op->permission) {
583 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
584 } else {
585 ret = acl_permission_check(inode, MAY_EXEC, flags,
586 inode->i_op->check_acl);
588 if (likely(!ret))
589 goto ok;
590 if (ret == -ECHILD)
591 return ret;
593 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
594 ns_capable(ns, CAP_DAC_READ_SEARCH))
595 goto ok;
597 return ret;
599 return security_inode_exec_permission(inode, flags);
602 static __always_inline void set_root(struct nameidata *nd)
604 if (!nd->root.mnt)
605 get_fs_root(current->fs, &nd->root);
608 static int link_path_walk(const char *, struct nameidata *);
610 static __always_inline void set_root_rcu(struct nameidata *nd)
612 if (!nd->root.mnt) {
613 struct fs_struct *fs = current->fs;
614 unsigned seq;
616 do {
617 seq = read_seqcount_begin(&fs->seq);
618 nd->root = fs->root;
619 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
620 } while (read_seqcount_retry(&fs->seq, seq));
624 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
626 int ret;
628 if (IS_ERR(link))
629 goto fail;
631 if (*link == '/') {
632 set_root(nd);
633 path_put(&nd->path);
634 nd->path = nd->root;
635 path_get(&nd->root);
636 nd->flags |= LOOKUP_JUMPED;
638 nd->inode = nd->path.dentry->d_inode;
640 ret = link_path_walk(link, nd);
641 return ret;
642 fail:
643 path_put(&nd->path);
644 return PTR_ERR(link);
647 static void path_put_conditional(struct path *path, struct nameidata *nd)
649 dput(path->dentry);
650 if (path->mnt != nd->path.mnt)
651 mntput(path->mnt);
654 static inline void path_to_nameidata(const struct path *path,
655 struct nameidata *nd)
657 if (!(nd->flags & LOOKUP_RCU)) {
658 dput(nd->path.dentry);
659 if (nd->path.mnt != path->mnt)
660 mntput(nd->path.mnt);
662 nd->path.mnt = path->mnt;
663 nd->path.dentry = path->dentry;
666 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
668 struct inode *inode = link->dentry->d_inode;
669 if (!IS_ERR(cookie) && inode->i_op->put_link)
670 inode->i_op->put_link(link->dentry, nd, cookie);
671 path_put(link);
674 static __always_inline int
675 follow_link(struct path *link, struct nameidata *nd, void **p)
677 int error;
678 struct dentry *dentry = link->dentry;
680 BUG_ON(nd->flags & LOOKUP_RCU);
682 if (link->mnt == nd->path.mnt)
683 mntget(link->mnt);
685 if (unlikely(current->total_link_count >= 40)) {
686 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
687 path_put(&nd->path);
688 return -ELOOP;
690 cond_resched();
691 current->total_link_count++;
693 touch_atime(link->mnt, dentry);
694 nd_set_link(nd, NULL);
696 error = security_inode_follow_link(link->dentry, nd);
697 if (error) {
698 *p = ERR_PTR(error); /* no ->put_link(), please */
699 path_put(&nd->path);
700 return error;
703 nd->last_type = LAST_BIND;
704 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
705 error = PTR_ERR(*p);
706 if (!IS_ERR(*p)) {
707 char *s = nd_get_link(nd);
708 error = 0;
709 if (s)
710 error = __vfs_follow_link(nd, s);
711 else if (nd->last_type == LAST_BIND) {
712 nd->flags |= LOOKUP_JUMPED;
713 nd->inode = nd->path.dentry->d_inode;
714 if (nd->inode->i_op->follow_link) {
715 /* stepped on a _really_ weird one */
716 path_put(&nd->path);
717 error = -ELOOP;
721 return error;
724 static int follow_up_rcu(struct path *path)
726 struct vfsmount *parent;
727 struct dentry *mountpoint;
729 parent = path->mnt->mnt_parent;
730 if (parent == path->mnt)
731 return 0;
732 mountpoint = path->mnt->mnt_mountpoint;
733 path->dentry = mountpoint;
734 path->mnt = parent;
735 return 1;
738 int follow_up(struct path *path)
740 struct vfsmount *parent;
741 struct dentry *mountpoint;
743 br_read_lock(vfsmount_lock);
744 parent = path->mnt->mnt_parent;
745 if (parent == path->mnt) {
746 br_read_unlock(vfsmount_lock);
747 return 0;
749 mntget(parent);
750 mountpoint = dget(path->mnt->mnt_mountpoint);
751 br_read_unlock(vfsmount_lock);
752 dput(path->dentry);
753 path->dentry = mountpoint;
754 mntput(path->mnt);
755 path->mnt = parent;
756 return 1;
760 * Perform an automount
761 * - return -EISDIR to tell follow_managed() to stop and return the path we
762 * were called with.
764 static int follow_automount(struct path *path, unsigned flags,
765 bool *need_mntput)
767 struct vfsmount *mnt;
768 int err;
770 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
771 return -EREMOTE;
773 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
774 * and this is the terminal part of the path.
776 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
777 return -EISDIR; /* we actually want to stop here */
779 /* We want to mount if someone is trying to open/create a file of any
780 * type under the mountpoint, wants to traverse through the mountpoint
781 * or wants to open the mounted directory.
783 * We don't want to mount if someone's just doing a stat and they've
784 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
785 * appended a '/' to the name.
787 if (!(flags & LOOKUP_FOLLOW) &&
788 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
789 LOOKUP_OPEN | LOOKUP_CREATE)))
790 return -EISDIR;
792 current->total_link_count++;
793 if (current->total_link_count >= 40)
794 return -ELOOP;
796 mnt = path->dentry->d_op->d_automount(path);
797 if (IS_ERR(mnt)) {
799 * The filesystem is allowed to return -EISDIR here to indicate
800 * it doesn't want to automount. For instance, autofs would do
801 * this so that its userspace daemon can mount on this dentry.
803 * However, we can only permit this if it's a terminal point in
804 * the path being looked up; if it wasn't then the remainder of
805 * the path is inaccessible and we should say so.
807 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
808 return -EREMOTE;
809 return PTR_ERR(mnt);
812 if (!mnt) /* mount collision */
813 return 0;
815 err = finish_automount(mnt, path);
817 switch (err) {
818 case -EBUSY:
819 /* Someone else made a mount here whilst we were busy */
820 return 0;
821 case 0:
822 dput(path->dentry);
823 if (*need_mntput)
824 mntput(path->mnt);
825 path->mnt = mnt;
826 path->dentry = dget(mnt->mnt_root);
827 *need_mntput = true;
828 return 0;
829 default:
830 return err;
836 * Handle a dentry that is managed in some way.
837 * - Flagged for transit management (autofs)
838 * - Flagged as mountpoint
839 * - Flagged as automount point
841 * This may only be called in refwalk mode.
843 * Serialization is taken care of in namespace.c
845 static int follow_managed(struct path *path, unsigned flags)
847 unsigned managed;
848 bool need_mntput = false;
849 int ret;
851 /* Given that we're not holding a lock here, we retain the value in a
852 * local variable for each dentry as we look at it so that we don't see
853 * the components of that value change under us */
854 while (managed = ACCESS_ONCE(path->dentry->d_flags),
855 managed &= DCACHE_MANAGED_DENTRY,
856 unlikely(managed != 0)) {
857 /* Allow the filesystem to manage the transit without i_mutex
858 * being held. */
859 if (managed & DCACHE_MANAGE_TRANSIT) {
860 BUG_ON(!path->dentry->d_op);
861 BUG_ON(!path->dentry->d_op->d_manage);
862 ret = path->dentry->d_op->d_manage(path->dentry, false);
863 if (ret < 0)
864 return ret == -EISDIR ? 0 : ret;
867 /* Transit to a mounted filesystem. */
868 if (managed & DCACHE_MOUNTED) {
869 struct vfsmount *mounted = lookup_mnt(path);
870 if (mounted) {
871 dput(path->dentry);
872 if (need_mntput)
873 mntput(path->mnt);
874 path->mnt = mounted;
875 path->dentry = dget(mounted->mnt_root);
876 need_mntput = true;
877 continue;
880 /* Something is mounted on this dentry in another
881 * namespace and/or whatever was mounted there in this
882 * namespace got unmounted before we managed to get the
883 * vfsmount_lock */
886 /* Handle an automount point */
887 if (managed & DCACHE_NEED_AUTOMOUNT) {
888 ret = follow_automount(path, flags, &need_mntput);
889 if (ret < 0)
890 return ret == -EISDIR ? 0 : ret;
891 continue;
894 /* We didn't change the current path point */
895 break;
897 return 0;
900 int follow_down_one(struct path *path)
902 struct vfsmount *mounted;
904 mounted = lookup_mnt(path);
905 if (mounted) {
906 dput(path->dentry);
907 mntput(path->mnt);
908 path->mnt = mounted;
909 path->dentry = dget(mounted->mnt_root);
910 return 1;
912 return 0;
915 static inline bool managed_dentry_might_block(struct dentry *dentry)
917 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
918 dentry->d_op->d_manage(dentry, true) < 0);
922 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
923 * we meet a managed dentry that would need blocking.
925 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
926 struct inode **inode)
928 for (;;) {
929 struct vfsmount *mounted;
931 * Don't forget we might have a non-mountpoint managed dentry
932 * that wants to block transit.
934 *inode = path->dentry->d_inode;
935 if (unlikely(managed_dentry_might_block(path->dentry)))
936 return false;
938 if (!d_mountpoint(path->dentry))
939 break;
941 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
942 if (!mounted)
943 break;
944 path->mnt = mounted;
945 path->dentry = mounted->mnt_root;
946 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
948 return true;
951 static void follow_mount_rcu(struct nameidata *nd)
953 while (d_mountpoint(nd->path.dentry)) {
954 struct vfsmount *mounted;
955 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
956 if (!mounted)
957 break;
958 nd->path.mnt = mounted;
959 nd->path.dentry = mounted->mnt_root;
960 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
964 static int follow_dotdot_rcu(struct nameidata *nd)
966 set_root_rcu(nd);
968 while (1) {
969 if (nd->path.dentry == nd->root.dentry &&
970 nd->path.mnt == nd->root.mnt) {
971 break;
973 if (nd->path.dentry != nd->path.mnt->mnt_root) {
974 struct dentry *old = nd->path.dentry;
975 struct dentry *parent = old->d_parent;
976 unsigned seq;
978 seq = read_seqcount_begin(&parent->d_seq);
979 if (read_seqcount_retry(&old->d_seq, nd->seq))
980 goto failed;
981 nd->path.dentry = parent;
982 nd->seq = seq;
983 break;
985 if (!follow_up_rcu(&nd->path))
986 break;
987 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
989 follow_mount_rcu(nd);
990 nd->inode = nd->path.dentry->d_inode;
991 return 0;
993 failed:
994 nd->flags &= ~LOOKUP_RCU;
995 if (!(nd->flags & LOOKUP_ROOT))
996 nd->root.mnt = NULL;
997 rcu_read_unlock();
998 br_read_unlock(vfsmount_lock);
999 return -ECHILD;
1003 * Follow down to the covering mount currently visible to userspace. At each
1004 * point, the filesystem owning that dentry may be queried as to whether the
1005 * caller is permitted to proceed or not.
1007 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1008 * being true).
1010 int follow_down(struct path *path)
1012 unsigned managed;
1013 int ret;
1015 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1016 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1017 /* Allow the filesystem to manage the transit without i_mutex
1018 * being held.
1020 * We indicate to the filesystem if someone is trying to mount
1021 * something here. This gives autofs the chance to deny anyone
1022 * other than its daemon the right to mount on its
1023 * superstructure.
1025 * The filesystem may sleep at this point.
1027 if (managed & DCACHE_MANAGE_TRANSIT) {
1028 BUG_ON(!path->dentry->d_op);
1029 BUG_ON(!path->dentry->d_op->d_manage);
1030 ret = path->dentry->d_op->d_manage(
1031 path->dentry, false);
1032 if (ret < 0)
1033 return ret == -EISDIR ? 0 : ret;
1036 /* Transit to a mounted filesystem. */
1037 if (managed & DCACHE_MOUNTED) {
1038 struct vfsmount *mounted = lookup_mnt(path);
1039 if (!mounted)
1040 break;
1041 dput(path->dentry);
1042 mntput(path->mnt);
1043 path->mnt = mounted;
1044 path->dentry = dget(mounted->mnt_root);
1045 continue;
1048 /* Don't handle automount points here */
1049 break;
1051 return 0;
1055 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1057 static void follow_mount(struct path *path)
1059 while (d_mountpoint(path->dentry)) {
1060 struct vfsmount *mounted = lookup_mnt(path);
1061 if (!mounted)
1062 break;
1063 dput(path->dentry);
1064 mntput(path->mnt);
1065 path->mnt = mounted;
1066 path->dentry = dget(mounted->mnt_root);
1070 static void follow_dotdot(struct nameidata *nd)
1072 set_root(nd);
1074 while(1) {
1075 struct dentry *old = nd->path.dentry;
1077 if (nd->path.dentry == nd->root.dentry &&
1078 nd->path.mnt == nd->root.mnt) {
1079 break;
1081 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1082 /* rare case of legitimate dget_parent()... */
1083 nd->path.dentry = dget_parent(nd->path.dentry);
1084 dput(old);
1085 break;
1087 if (!follow_up(&nd->path))
1088 break;
1090 follow_mount(&nd->path);
1091 nd->inode = nd->path.dentry->d_inode;
1095 * Allocate a dentry with name and parent, and perform a parent
1096 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1097 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1098 * have verified that no child exists while under i_mutex.
1100 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1101 struct qstr *name, struct nameidata *nd)
1103 struct inode *inode = parent->d_inode;
1104 struct dentry *dentry;
1105 struct dentry *old;
1107 /* Don't create child dentry for a dead directory. */
1108 if (unlikely(IS_DEADDIR(inode)))
1109 return ERR_PTR(-ENOENT);
1111 dentry = d_alloc(parent, name);
1112 if (unlikely(!dentry))
1113 return ERR_PTR(-ENOMEM);
1115 old = inode->i_op->lookup(inode, dentry, nd);
1116 if (unlikely(old)) {
1117 dput(dentry);
1118 dentry = old;
1120 return dentry;
1124 * It's more convoluted than I'd like it to be, but... it's still fairly
1125 * small and for now I'd prefer to have fast path as straight as possible.
1126 * It _is_ time-critical.
1128 static int do_lookup(struct nameidata *nd, struct qstr *name,
1129 struct path *path, struct inode **inode)
1131 struct vfsmount *mnt = nd->path.mnt;
1132 struct dentry *dentry, *parent = nd->path.dentry;
1133 int need_reval = 1;
1134 int status = 1;
1135 int err;
1138 * Rename seqlock is not required here because in the off chance
1139 * of a false negative due to a concurrent rename, we're going to
1140 * do the non-racy lookup, below.
1142 if (nd->flags & LOOKUP_RCU) {
1143 unsigned seq;
1144 *inode = nd->inode;
1145 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1146 if (!dentry)
1147 goto unlazy;
1149 /* Memory barrier in read_seqcount_begin of child is enough */
1150 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1151 return -ECHILD;
1152 nd->seq = seq;
1154 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1155 status = d_revalidate(dentry, nd);
1156 if (unlikely(status <= 0)) {
1157 if (status != -ECHILD)
1158 need_reval = 0;
1159 goto unlazy;
1162 path->mnt = mnt;
1163 path->dentry = dentry;
1164 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1165 goto unlazy;
1166 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1167 goto unlazy;
1168 return 0;
1169 unlazy:
1170 if (unlazy_walk(nd, dentry))
1171 return -ECHILD;
1172 } else {
1173 dentry = __d_lookup(parent, name);
1176 retry:
1177 if (unlikely(!dentry)) {
1178 struct inode *dir = parent->d_inode;
1179 BUG_ON(nd->inode != dir);
1181 mutex_lock(&dir->i_mutex);
1182 dentry = d_lookup(parent, name);
1183 if (likely(!dentry)) {
1184 dentry = d_alloc_and_lookup(parent, name, nd);
1185 if (IS_ERR(dentry)) {
1186 mutex_unlock(&dir->i_mutex);
1187 return PTR_ERR(dentry);
1189 /* known good */
1190 need_reval = 0;
1191 status = 1;
1193 mutex_unlock(&dir->i_mutex);
1195 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1196 status = d_revalidate(dentry, nd);
1197 if (unlikely(status <= 0)) {
1198 if (status < 0) {
1199 dput(dentry);
1200 return status;
1202 if (!d_invalidate(dentry)) {
1203 dput(dentry);
1204 dentry = NULL;
1205 need_reval = 1;
1206 goto retry;
1210 path->mnt = mnt;
1211 path->dentry = dentry;
1212 err = follow_managed(path, nd->flags);
1213 if (unlikely(err < 0)) {
1214 path_put_conditional(path, nd);
1215 return err;
1217 *inode = path->dentry->d_inode;
1218 return 0;
1221 static inline int may_lookup(struct nameidata *nd)
1223 if (nd->flags & LOOKUP_RCU) {
1224 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1225 if (err != -ECHILD)
1226 return err;
1227 if (unlazy_walk(nd, NULL))
1228 return -ECHILD;
1230 return exec_permission(nd->inode, 0);
1233 static inline int handle_dots(struct nameidata *nd, int type)
1235 if (type == LAST_DOTDOT) {
1236 if (nd->flags & LOOKUP_RCU) {
1237 if (follow_dotdot_rcu(nd))
1238 return -ECHILD;
1239 } else
1240 follow_dotdot(nd);
1242 return 0;
1245 static void terminate_walk(struct nameidata *nd)
1247 if (!(nd->flags & LOOKUP_RCU)) {
1248 path_put(&nd->path);
1249 } else {
1250 nd->flags &= ~LOOKUP_RCU;
1251 if (!(nd->flags & LOOKUP_ROOT))
1252 nd->root.mnt = NULL;
1253 rcu_read_unlock();
1254 br_read_unlock(vfsmount_lock);
1258 static inline int walk_component(struct nameidata *nd, struct path *path,
1259 struct qstr *name, int type, int follow)
1261 struct inode *inode;
1262 int err;
1264 * "." and ".." are special - ".." especially so because it has
1265 * to be able to know about the current root directory and
1266 * parent relationships.
1268 if (unlikely(type != LAST_NORM))
1269 return handle_dots(nd, type);
1270 err = do_lookup(nd, name, path, &inode);
1271 if (unlikely(err)) {
1272 terminate_walk(nd);
1273 return err;
1275 if (!inode) {
1276 path_to_nameidata(path, nd);
1277 terminate_walk(nd);
1278 return -ENOENT;
1280 if (unlikely(inode->i_op->follow_link) && follow) {
1281 if (nd->flags & LOOKUP_RCU) {
1282 if (unlikely(unlazy_walk(nd, path->dentry))) {
1283 terminate_walk(nd);
1284 return -ECHILD;
1287 BUG_ON(inode != path->dentry->d_inode);
1288 return 1;
1290 path_to_nameidata(path, nd);
1291 nd->inode = inode;
1292 return 0;
1296 * This limits recursive symlink follows to 8, while
1297 * limiting consecutive symlinks to 40.
1299 * Without that kind of total limit, nasty chains of consecutive
1300 * symlinks can cause almost arbitrarily long lookups.
1302 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1304 int res;
1306 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1307 path_put_conditional(path, nd);
1308 path_put(&nd->path);
1309 return -ELOOP;
1311 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1313 nd->depth++;
1314 current->link_count++;
1316 do {
1317 struct path link = *path;
1318 void *cookie;
1320 res = follow_link(&link, nd, &cookie);
1321 if (!res)
1322 res = walk_component(nd, path, &nd->last,
1323 nd->last_type, LOOKUP_FOLLOW);
1324 put_link(nd, &link, cookie);
1325 } while (res > 0);
1327 current->link_count--;
1328 nd->depth--;
1329 return res;
1333 * Name resolution.
1334 * This is the basic name resolution function, turning a pathname into
1335 * the final dentry. We expect 'base' to be positive and a directory.
1337 * Returns 0 and nd will have valid dentry and mnt on success.
1338 * Returns error and drops reference to input namei data on failure.
1340 static int link_path_walk(const char *name, struct nameidata *nd)
1342 struct path next;
1343 int err;
1344 unsigned int lookup_flags = nd->flags;
1346 while (*name=='/')
1347 name++;
1348 if (!*name)
1349 return 0;
1351 /* At this point we know we have a real path component. */
1352 for(;;) {
1353 unsigned long hash;
1354 struct qstr this;
1355 unsigned int c;
1356 int type;
1358 nd->flags |= LOOKUP_CONTINUE;
1360 err = may_lookup(nd);
1361 if (err)
1362 break;
1364 this.name = name;
1365 c = *(const unsigned char *)name;
1367 hash = init_name_hash();
1368 do {
1369 name++;
1370 hash = partial_name_hash(c, hash);
1371 c = *(const unsigned char *)name;
1372 } while (c && (c != '/'));
1373 this.len = name - (const char *) this.name;
1374 this.hash = end_name_hash(hash);
1376 type = LAST_NORM;
1377 if (this.name[0] == '.') switch (this.len) {
1378 case 2:
1379 if (this.name[1] == '.') {
1380 type = LAST_DOTDOT;
1381 nd->flags |= LOOKUP_JUMPED;
1383 break;
1384 case 1:
1385 type = LAST_DOT;
1387 if (likely(type == LAST_NORM)) {
1388 struct dentry *parent = nd->path.dentry;
1389 nd->flags &= ~LOOKUP_JUMPED;
1390 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1391 err = parent->d_op->d_hash(parent, nd->inode,
1392 &this);
1393 if (err < 0)
1394 break;
1398 /* remove trailing slashes? */
1399 if (!c)
1400 goto last_component;
1401 while (*++name == '/');
1402 if (!*name)
1403 goto last_component;
1405 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1406 if (err < 0)
1407 return err;
1409 if (err) {
1410 err = nested_symlink(&next, nd);
1411 if (err)
1412 return err;
1414 err = -ENOTDIR;
1415 if (!nd->inode->i_op->lookup)
1416 break;
1417 continue;
1418 /* here ends the main loop */
1420 last_component:
1421 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1422 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1423 nd->last = this;
1424 nd->last_type = type;
1425 return 0;
1427 terminate_walk(nd);
1428 return err;
1431 static int path_init(int dfd, const char *name, unsigned int flags,
1432 struct nameidata *nd, struct file **fp)
1434 int retval = 0;
1435 int fput_needed;
1436 struct file *file;
1438 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1439 nd->flags = flags | LOOKUP_JUMPED;
1440 nd->depth = 0;
1441 if (flags & LOOKUP_ROOT) {
1442 struct inode *inode = nd->root.dentry->d_inode;
1443 if (*name) {
1444 if (!inode->i_op->lookup)
1445 return -ENOTDIR;
1446 retval = inode_permission(inode, MAY_EXEC);
1447 if (retval)
1448 return retval;
1450 nd->path = nd->root;
1451 nd->inode = inode;
1452 if (flags & LOOKUP_RCU) {
1453 br_read_lock(vfsmount_lock);
1454 rcu_read_lock();
1455 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1456 } else {
1457 path_get(&nd->path);
1459 return 0;
1462 nd->root.mnt = NULL;
1464 if (*name=='/') {
1465 if (flags & LOOKUP_RCU) {
1466 br_read_lock(vfsmount_lock);
1467 rcu_read_lock();
1468 set_root_rcu(nd);
1469 } else {
1470 set_root(nd);
1471 path_get(&nd->root);
1473 nd->path = nd->root;
1474 } else if (dfd == AT_FDCWD) {
1475 if (flags & LOOKUP_RCU) {
1476 struct fs_struct *fs = current->fs;
1477 unsigned seq;
1479 br_read_lock(vfsmount_lock);
1480 rcu_read_lock();
1482 do {
1483 seq = read_seqcount_begin(&fs->seq);
1484 nd->path = fs->pwd;
1485 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1486 } while (read_seqcount_retry(&fs->seq, seq));
1487 } else {
1488 get_fs_pwd(current->fs, &nd->path);
1490 } else {
1491 struct dentry *dentry;
1493 file = fget_raw_light(dfd, &fput_needed);
1494 retval = -EBADF;
1495 if (!file)
1496 goto out_fail;
1498 dentry = file->f_path.dentry;
1500 if (*name) {
1501 retval = -ENOTDIR;
1502 if (!S_ISDIR(dentry->d_inode->i_mode))
1503 goto fput_fail;
1505 retval = file_permission(file, MAY_EXEC);
1506 if (retval)
1507 goto fput_fail;
1510 nd->path = file->f_path;
1511 if (flags & LOOKUP_RCU) {
1512 if (fput_needed)
1513 *fp = file;
1514 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1515 br_read_lock(vfsmount_lock);
1516 rcu_read_lock();
1517 } else {
1518 path_get(&file->f_path);
1519 fput_light(file, fput_needed);
1523 nd->inode = nd->path.dentry->d_inode;
1524 return 0;
1526 fput_fail:
1527 fput_light(file, fput_needed);
1528 out_fail:
1529 return retval;
1532 static inline int lookup_last(struct nameidata *nd, struct path *path)
1534 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1535 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1537 nd->flags &= ~LOOKUP_PARENT;
1538 return walk_component(nd, path, &nd->last, nd->last_type,
1539 nd->flags & LOOKUP_FOLLOW);
1542 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1543 static int path_lookupat(int dfd, const char *name,
1544 unsigned int flags, struct nameidata *nd)
1546 struct file *base = NULL;
1547 struct path path;
1548 int err;
1551 * Path walking is largely split up into 2 different synchronisation
1552 * schemes, rcu-walk and ref-walk (explained in
1553 * Documentation/filesystems/path-lookup.txt). These share much of the
1554 * path walk code, but some things particularly setup, cleanup, and
1555 * following mounts are sufficiently divergent that functions are
1556 * duplicated. Typically there is a function foo(), and its RCU
1557 * analogue, foo_rcu().
1559 * -ECHILD is the error number of choice (just to avoid clashes) that
1560 * is returned if some aspect of an rcu-walk fails. Such an error must
1561 * be handled by restarting a traditional ref-walk (which will always
1562 * be able to complete).
1564 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1566 if (unlikely(err))
1567 return err;
1569 current->total_link_count = 0;
1570 err = link_path_walk(name, nd);
1572 if (!err && !(flags & LOOKUP_PARENT)) {
1573 err = lookup_last(nd, &path);
1574 while (err > 0) {
1575 void *cookie;
1576 struct path link = path;
1577 nd->flags |= LOOKUP_PARENT;
1578 err = follow_link(&link, nd, &cookie);
1579 if (!err)
1580 err = lookup_last(nd, &path);
1581 put_link(nd, &link, cookie);
1585 if (!err)
1586 err = complete_walk(nd);
1588 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1589 if (!nd->inode->i_op->lookup) {
1590 path_put(&nd->path);
1591 err = -ENOTDIR;
1595 if (base)
1596 fput(base);
1598 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1599 path_put(&nd->root);
1600 nd->root.mnt = NULL;
1602 return err;
1605 static int do_path_lookup(int dfd, const char *name,
1606 unsigned int flags, struct nameidata *nd)
1608 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1609 if (unlikely(retval == -ECHILD))
1610 retval = path_lookupat(dfd, name, flags, nd);
1611 if (unlikely(retval == -ESTALE))
1612 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1614 if (likely(!retval)) {
1615 if (unlikely(!audit_dummy_context())) {
1616 if (nd->path.dentry && nd->inode)
1617 audit_inode(name, nd->path.dentry);
1620 return retval;
1623 int kern_path_parent(const char *name, struct nameidata *nd)
1625 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1628 int kern_path(const char *name, unsigned int flags, struct path *path)
1630 struct nameidata nd;
1631 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1632 if (!res)
1633 *path = nd.path;
1634 return res;
1638 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1639 * @dentry: pointer to dentry of the base directory
1640 * @mnt: pointer to vfs mount of the base directory
1641 * @name: pointer to file name
1642 * @flags: lookup flags
1643 * @nd: pointer to nameidata
1645 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1646 const char *name, unsigned int flags,
1647 struct nameidata *nd)
1649 nd->root.dentry = dentry;
1650 nd->root.mnt = mnt;
1651 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1652 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1655 static struct dentry *__lookup_hash(struct qstr *name,
1656 struct dentry *base, struct nameidata *nd)
1658 struct inode *inode = base->d_inode;
1659 struct dentry *dentry;
1660 int err;
1662 err = exec_permission(inode, 0);
1663 if (err)
1664 return ERR_PTR(err);
1667 * Don't bother with __d_lookup: callers are for creat as
1668 * well as unlink, so a lot of the time it would cost
1669 * a double lookup.
1671 dentry = d_lookup(base, name);
1673 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1674 dentry = do_revalidate(dentry, nd);
1676 if (!dentry)
1677 dentry = d_alloc_and_lookup(base, name, nd);
1679 return dentry;
1683 * Restricted form of lookup. Doesn't follow links, single-component only,
1684 * needs parent already locked. Doesn't follow mounts.
1685 * SMP-safe.
1687 static struct dentry *lookup_hash(struct nameidata *nd)
1689 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1693 * lookup_one_len - filesystem helper to lookup single pathname component
1694 * @name: pathname component to lookup
1695 * @base: base directory to lookup from
1696 * @len: maximum length @len should be interpreted to
1698 * Note that this routine is purely a helper for filesystem usage and should
1699 * not be called by generic code. Also note that by using this function the
1700 * nameidata argument is passed to the filesystem methods and a filesystem
1701 * using this helper needs to be prepared for that.
1703 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1705 struct qstr this;
1706 unsigned long hash;
1707 unsigned int c;
1709 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1711 this.name = name;
1712 this.len = len;
1713 if (!len)
1714 return ERR_PTR(-EACCES);
1716 hash = init_name_hash();
1717 while (len--) {
1718 c = *(const unsigned char *)name++;
1719 if (c == '/' || c == '\0')
1720 return ERR_PTR(-EACCES);
1721 hash = partial_name_hash(c, hash);
1723 this.hash = end_name_hash(hash);
1725 * See if the low-level filesystem might want
1726 * to use its own hash..
1728 if (base->d_flags & DCACHE_OP_HASH) {
1729 int err = base->d_op->d_hash(base, base->d_inode, &this);
1730 if (err < 0)
1731 return ERR_PTR(err);
1734 return __lookup_hash(&this, base, NULL);
1737 int user_path_at(int dfd, const char __user *name, unsigned flags,
1738 struct path *path)
1740 struct nameidata nd;
1741 char *tmp = getname_flags(name, flags);
1742 int err = PTR_ERR(tmp);
1743 if (!IS_ERR(tmp)) {
1745 BUG_ON(flags & LOOKUP_PARENT);
1747 err = do_path_lookup(dfd, tmp, flags, &nd);
1748 putname(tmp);
1749 if (!err)
1750 *path = nd.path;
1752 return err;
1755 static int user_path_parent(int dfd, const char __user *path,
1756 struct nameidata *nd, char **name)
1758 char *s = getname(path);
1759 int error;
1761 if (IS_ERR(s))
1762 return PTR_ERR(s);
1764 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1765 if (error)
1766 putname(s);
1767 else
1768 *name = s;
1770 return error;
1774 * It's inline, so penalty for filesystems that don't use sticky bit is
1775 * minimal.
1777 static inline int check_sticky(struct inode *dir, struct inode *inode)
1779 uid_t fsuid = current_fsuid();
1781 if (!(dir->i_mode & S_ISVTX))
1782 return 0;
1783 if (current_user_ns() != inode_userns(inode))
1784 goto other_userns;
1785 if (inode->i_uid == fsuid)
1786 return 0;
1787 if (dir->i_uid == fsuid)
1788 return 0;
1790 other_userns:
1791 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1795 * Check whether we can remove a link victim from directory dir, check
1796 * whether the type of victim is right.
1797 * 1. We can't do it if dir is read-only (done in permission())
1798 * 2. We should have write and exec permissions on dir
1799 * 3. We can't remove anything from append-only dir
1800 * 4. We can't do anything with immutable dir (done in permission())
1801 * 5. If the sticky bit on dir is set we should either
1802 * a. be owner of dir, or
1803 * b. be owner of victim, or
1804 * c. have CAP_FOWNER capability
1805 * 6. If the victim is append-only or immutable we can't do antyhing with
1806 * links pointing to it.
1807 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1808 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1809 * 9. We can't remove a root or mountpoint.
1810 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1811 * nfs_async_unlink().
1813 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1815 int error;
1817 if (!victim->d_inode)
1818 return -ENOENT;
1820 BUG_ON(victim->d_parent->d_inode != dir);
1821 audit_inode_child(victim, dir);
1823 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1824 if (error)
1825 return error;
1826 if (IS_APPEND(dir))
1827 return -EPERM;
1828 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1829 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1830 return -EPERM;
1831 if (isdir) {
1832 if (!S_ISDIR(victim->d_inode->i_mode))
1833 return -ENOTDIR;
1834 if (IS_ROOT(victim))
1835 return -EBUSY;
1836 } else if (S_ISDIR(victim->d_inode->i_mode))
1837 return -EISDIR;
1838 if (IS_DEADDIR(dir))
1839 return -ENOENT;
1840 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1841 return -EBUSY;
1842 return 0;
1845 /* Check whether we can create an object with dentry child in directory
1846 * dir.
1847 * 1. We can't do it if child already exists (open has special treatment for
1848 * this case, but since we are inlined it's OK)
1849 * 2. We can't do it if dir is read-only (done in permission())
1850 * 3. We should have write and exec permissions on dir
1851 * 4. We can't do it if dir is immutable (done in permission())
1853 static inline int may_create(struct inode *dir, struct dentry *child)
1855 if (child->d_inode)
1856 return -EEXIST;
1857 if (IS_DEADDIR(dir))
1858 return -ENOENT;
1859 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1863 * p1 and p2 should be directories on the same fs.
1865 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1867 struct dentry *p;
1869 if (p1 == p2) {
1870 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1871 return NULL;
1874 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1876 p = d_ancestor(p2, p1);
1877 if (p) {
1878 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1879 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1880 return p;
1883 p = d_ancestor(p1, p2);
1884 if (p) {
1885 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1886 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1887 return p;
1890 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1891 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1892 return NULL;
1895 void unlock_rename(struct dentry *p1, struct dentry *p2)
1897 mutex_unlock(&p1->d_inode->i_mutex);
1898 if (p1 != p2) {
1899 mutex_unlock(&p2->d_inode->i_mutex);
1900 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1904 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1905 struct nameidata *nd)
1907 int error = may_create(dir, dentry);
1909 if (error)
1910 return error;
1912 if (!dir->i_op->create)
1913 return -EACCES; /* shouldn't it be ENOSYS? */
1914 mode &= S_IALLUGO;
1915 mode |= S_IFREG;
1916 error = security_inode_create(dir, dentry, mode);
1917 if (error)
1918 return error;
1919 error = dir->i_op->create(dir, dentry, mode, nd);
1920 if (!error)
1921 fsnotify_create(dir, dentry);
1922 return error;
1925 static int may_open(struct path *path, int acc_mode, int flag)
1927 struct dentry *dentry = path->dentry;
1928 struct inode *inode = dentry->d_inode;
1929 int error;
1931 /* O_PATH? */
1932 if (!acc_mode)
1933 return 0;
1935 if (!inode)
1936 return -ENOENT;
1938 switch (inode->i_mode & S_IFMT) {
1939 case S_IFLNK:
1940 return -ELOOP;
1941 case S_IFDIR:
1942 if (acc_mode & MAY_WRITE)
1943 return -EISDIR;
1944 break;
1945 case S_IFBLK:
1946 case S_IFCHR:
1947 if (path->mnt->mnt_flags & MNT_NODEV)
1948 return -EACCES;
1949 /*FALLTHRU*/
1950 case S_IFIFO:
1951 case S_IFSOCK:
1952 flag &= ~O_TRUNC;
1953 break;
1956 error = inode_permission(inode, acc_mode);
1957 if (error)
1958 return error;
1961 * An append-only file must be opened in append mode for writing.
1963 if (IS_APPEND(inode)) {
1964 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1965 return -EPERM;
1966 if (flag & O_TRUNC)
1967 return -EPERM;
1970 /* O_NOATIME can only be set by the owner or superuser */
1971 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1972 return -EPERM;
1975 * Ensure there are no outstanding leases on the file.
1977 return break_lease(inode, flag);
1980 static int handle_truncate(struct file *filp)
1982 struct path *path = &filp->f_path;
1983 struct inode *inode = path->dentry->d_inode;
1984 int error = get_write_access(inode);
1985 if (error)
1986 return error;
1988 * Refuse to truncate files with mandatory locks held on them.
1990 error = locks_verify_locked(inode);
1991 if (!error)
1992 error = security_path_truncate(path);
1993 if (!error) {
1994 error = do_truncate(path->dentry, 0,
1995 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1996 filp);
1998 put_write_access(inode);
1999 return error;
2003 * Note that while the flag value (low two bits) for sys_open means:
2004 * 00 - read-only
2005 * 01 - write-only
2006 * 10 - read-write
2007 * 11 - special
2008 * it is changed into
2009 * 00 - no permissions needed
2010 * 01 - read-permission
2011 * 10 - write-permission
2012 * 11 - read-write
2013 * for the internal routines (ie open_namei()/follow_link() etc)
2014 * This is more logical, and also allows the 00 "no perm needed"
2015 * to be used for symlinks (where the permissions are checked
2016 * later).
2019 static inline int open_to_namei_flags(int flag)
2021 if ((flag+1) & O_ACCMODE)
2022 flag++;
2023 return flag;
2027 * Handle the last step of open()
2029 static struct file *do_last(struct nameidata *nd, struct path *path,
2030 const struct open_flags *op, const char *pathname)
2032 struct dentry *dir = nd->path.dentry;
2033 struct dentry *dentry;
2034 int open_flag = op->open_flag;
2035 int will_truncate = open_flag & O_TRUNC;
2036 int want_write = 0;
2037 int acc_mode = op->acc_mode;
2038 struct file *filp;
2039 int error;
2041 nd->flags &= ~LOOKUP_PARENT;
2042 nd->flags |= op->intent;
2044 switch (nd->last_type) {
2045 case LAST_DOTDOT:
2046 case LAST_DOT:
2047 error = handle_dots(nd, nd->last_type);
2048 if (error)
2049 return ERR_PTR(error);
2050 /* fallthrough */
2051 case LAST_ROOT:
2052 error = complete_walk(nd);
2053 if (error)
2054 return ERR_PTR(error);
2055 audit_inode(pathname, nd->path.dentry);
2056 if (open_flag & O_CREAT) {
2057 error = -EISDIR;
2058 goto exit;
2060 goto ok;
2061 case LAST_BIND:
2062 error = complete_walk(nd);
2063 if (error)
2064 return ERR_PTR(error);
2065 audit_inode(pathname, dir);
2066 goto ok;
2069 if (!(open_flag & O_CREAT)) {
2070 int symlink_ok = 0;
2071 if (nd->last.name[nd->last.len])
2072 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2073 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2074 symlink_ok = 1;
2075 /* we _can_ be in RCU mode here */
2076 error = walk_component(nd, path, &nd->last, LAST_NORM,
2077 !symlink_ok);
2078 if (error < 0)
2079 return ERR_PTR(error);
2080 if (error) /* symlink */
2081 return NULL;
2082 /* sayonara */
2083 error = complete_walk(nd);
2084 if (error)
2085 return ERR_PTR(-ECHILD);
2087 error = -ENOTDIR;
2088 if (nd->flags & LOOKUP_DIRECTORY) {
2089 if (!nd->inode->i_op->lookup)
2090 goto exit;
2092 audit_inode(pathname, nd->path.dentry);
2093 goto ok;
2096 /* create side of things */
2097 error = complete_walk(nd);
2098 if (error)
2099 return ERR_PTR(error);
2101 audit_inode(pathname, dir);
2102 error = -EISDIR;
2103 /* trailing slashes? */
2104 if (nd->last.name[nd->last.len])
2105 goto exit;
2107 mutex_lock(&dir->d_inode->i_mutex);
2109 dentry = lookup_hash(nd);
2110 error = PTR_ERR(dentry);
2111 if (IS_ERR(dentry)) {
2112 mutex_unlock(&dir->d_inode->i_mutex);
2113 goto exit;
2116 path->dentry = dentry;
2117 path->mnt = nd->path.mnt;
2119 /* Negative dentry, just create the file */
2120 if (!dentry->d_inode) {
2121 int mode = op->mode;
2122 if (!IS_POSIXACL(dir->d_inode))
2123 mode &= ~current_umask();
2125 * This write is needed to ensure that a
2126 * rw->ro transition does not occur between
2127 * the time when the file is created and when
2128 * a permanent write count is taken through
2129 * the 'struct file' in nameidata_to_filp().
2131 error = mnt_want_write(nd->path.mnt);
2132 if (error)
2133 goto exit_mutex_unlock;
2134 want_write = 1;
2135 /* Don't check for write permission, don't truncate */
2136 open_flag &= ~O_TRUNC;
2137 will_truncate = 0;
2138 acc_mode = MAY_OPEN;
2139 error = security_path_mknod(&nd->path, dentry, mode, 0);
2140 if (error)
2141 goto exit_mutex_unlock;
2142 error = vfs_create(dir->d_inode, dentry, mode, nd);
2143 if (error)
2144 goto exit_mutex_unlock;
2145 mutex_unlock(&dir->d_inode->i_mutex);
2146 dput(nd->path.dentry);
2147 nd->path.dentry = dentry;
2148 goto common;
2152 * It already exists.
2154 mutex_unlock(&dir->d_inode->i_mutex);
2155 audit_inode(pathname, path->dentry);
2157 error = -EEXIST;
2158 if (open_flag & O_EXCL)
2159 goto exit_dput;
2161 error = follow_managed(path, nd->flags);
2162 if (error < 0)
2163 goto exit_dput;
2165 error = -ENOENT;
2166 if (!path->dentry->d_inode)
2167 goto exit_dput;
2169 if (path->dentry->d_inode->i_op->follow_link)
2170 return NULL;
2172 path_to_nameidata(path, nd);
2173 nd->inode = path->dentry->d_inode;
2174 error = -EISDIR;
2175 if (S_ISDIR(nd->inode->i_mode))
2176 goto exit;
2178 if (!S_ISREG(nd->inode->i_mode))
2179 will_truncate = 0;
2181 if (will_truncate) {
2182 error = mnt_want_write(nd->path.mnt);
2183 if (error)
2184 goto exit;
2185 want_write = 1;
2187 common:
2188 error = may_open(&nd->path, acc_mode, open_flag);
2189 if (error)
2190 goto exit;
2191 filp = nameidata_to_filp(nd);
2192 if (!IS_ERR(filp)) {
2193 error = ima_file_check(filp, op->acc_mode);
2194 if (error) {
2195 fput(filp);
2196 filp = ERR_PTR(error);
2199 if (!IS_ERR(filp)) {
2200 if (will_truncate) {
2201 error = handle_truncate(filp);
2202 if (error) {
2203 fput(filp);
2204 filp = ERR_PTR(error);
2208 out:
2209 if (want_write)
2210 mnt_drop_write(nd->path.mnt);
2211 path_put(&nd->path);
2212 return filp;
2214 exit_mutex_unlock:
2215 mutex_unlock(&dir->d_inode->i_mutex);
2216 exit_dput:
2217 path_put_conditional(path, nd);
2218 exit:
2219 filp = ERR_PTR(error);
2220 goto out;
2223 static struct file *path_openat(int dfd, const char *pathname,
2224 struct nameidata *nd, const struct open_flags *op, int flags)
2226 struct file *base = NULL;
2227 struct file *filp;
2228 struct path path;
2229 int error;
2231 filp = get_empty_filp();
2232 if (!filp)
2233 return ERR_PTR(-ENFILE);
2235 filp->f_flags = op->open_flag;
2236 nd->intent.open.file = filp;
2237 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2238 nd->intent.open.create_mode = op->mode;
2240 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2241 if (unlikely(error))
2242 goto out_filp;
2244 current->total_link_count = 0;
2245 error = link_path_walk(pathname, nd);
2246 if (unlikely(error))
2247 goto out_filp;
2249 filp = do_last(nd, &path, op, pathname);
2250 while (unlikely(!filp)) { /* trailing symlink */
2251 struct path link = path;
2252 void *cookie;
2253 if (!(nd->flags & LOOKUP_FOLLOW)) {
2254 path_put_conditional(&path, nd);
2255 path_put(&nd->path);
2256 filp = ERR_PTR(-ELOOP);
2257 break;
2259 nd->flags |= LOOKUP_PARENT;
2260 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2261 error = follow_link(&link, nd, &cookie);
2262 if (unlikely(error))
2263 filp = ERR_PTR(error);
2264 else
2265 filp = do_last(nd, &path, op, pathname);
2266 put_link(nd, &link, cookie);
2268 out:
2269 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2270 path_put(&nd->root);
2271 if (base)
2272 fput(base);
2273 release_open_intent(nd);
2274 return filp;
2276 out_filp:
2277 filp = ERR_PTR(error);
2278 goto out;
2281 struct file *do_filp_open(int dfd, const char *pathname,
2282 const struct open_flags *op, int flags)
2284 struct nameidata nd;
2285 struct file *filp;
2287 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2288 if (unlikely(filp == ERR_PTR(-ECHILD)))
2289 filp = path_openat(dfd, pathname, &nd, op, flags);
2290 if (unlikely(filp == ERR_PTR(-ESTALE)))
2291 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2292 return filp;
2295 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2296 const char *name, const struct open_flags *op, int flags)
2298 struct nameidata nd;
2299 struct file *file;
2301 nd.root.mnt = mnt;
2302 nd.root.dentry = dentry;
2304 flags |= LOOKUP_ROOT;
2306 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2307 return ERR_PTR(-ELOOP);
2309 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2310 if (unlikely(file == ERR_PTR(-ECHILD)))
2311 file = path_openat(-1, name, &nd, op, flags);
2312 if (unlikely(file == ERR_PTR(-ESTALE)))
2313 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2314 return file;
2318 * lookup_create - lookup a dentry, creating it if it doesn't exist
2319 * @nd: nameidata info
2320 * @is_dir: directory flag
2322 * Simple function to lookup and return a dentry and create it
2323 * if it doesn't exist. Is SMP-safe.
2325 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2327 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2329 struct dentry *dentry = ERR_PTR(-EEXIST);
2331 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2333 * Yucky last component or no last component at all?
2334 * (foo/., foo/.., /////)
2336 if (nd->last_type != LAST_NORM)
2337 goto fail;
2338 nd->flags &= ~LOOKUP_PARENT;
2339 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2340 nd->intent.open.flags = O_EXCL;
2343 * Do the final lookup.
2345 dentry = lookup_hash(nd);
2346 if (IS_ERR(dentry))
2347 goto fail;
2349 if (dentry->d_inode)
2350 goto eexist;
2352 * Special case - lookup gave negative, but... we had foo/bar/
2353 * From the vfs_mknod() POV we just have a negative dentry -
2354 * all is fine. Let's be bastards - you had / on the end, you've
2355 * been asking for (non-existent) directory. -ENOENT for you.
2357 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2358 dput(dentry);
2359 dentry = ERR_PTR(-ENOENT);
2361 return dentry;
2362 eexist:
2363 dput(dentry);
2364 dentry = ERR_PTR(-EEXIST);
2365 fail:
2366 return dentry;
2368 EXPORT_SYMBOL_GPL(lookup_create);
2370 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2372 int error = may_create(dir, dentry);
2374 if (error)
2375 return error;
2377 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2378 !ns_capable(inode_userns(dir), CAP_MKNOD))
2379 return -EPERM;
2381 if (!dir->i_op->mknod)
2382 return -EPERM;
2384 error = devcgroup_inode_mknod(mode, dev);
2385 if (error)
2386 return error;
2388 error = security_inode_mknod(dir, dentry, mode, dev);
2389 if (error)
2390 return error;
2392 error = dir->i_op->mknod(dir, dentry, mode, dev);
2393 if (!error)
2394 fsnotify_create(dir, dentry);
2395 return error;
2398 static int may_mknod(mode_t mode)
2400 switch (mode & S_IFMT) {
2401 case S_IFREG:
2402 case S_IFCHR:
2403 case S_IFBLK:
2404 case S_IFIFO:
2405 case S_IFSOCK:
2406 case 0: /* zero mode translates to S_IFREG */
2407 return 0;
2408 case S_IFDIR:
2409 return -EPERM;
2410 default:
2411 return -EINVAL;
2415 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2416 unsigned, dev)
2418 int error;
2419 char *tmp;
2420 struct dentry *dentry;
2421 struct nameidata nd;
2423 if (S_ISDIR(mode))
2424 return -EPERM;
2426 error = user_path_parent(dfd, filename, &nd, &tmp);
2427 if (error)
2428 return error;
2430 dentry = lookup_create(&nd, 0);
2431 if (IS_ERR(dentry)) {
2432 error = PTR_ERR(dentry);
2433 goto out_unlock;
2435 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2436 mode &= ~current_umask();
2437 error = may_mknod(mode);
2438 if (error)
2439 goto out_dput;
2440 error = mnt_want_write(nd.path.mnt);
2441 if (error)
2442 goto out_dput;
2443 error = security_path_mknod(&nd.path, dentry, mode, dev);
2444 if (error)
2445 goto out_drop_write;
2446 switch (mode & S_IFMT) {
2447 case 0: case S_IFREG:
2448 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2449 break;
2450 case S_IFCHR: case S_IFBLK:
2451 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2452 new_decode_dev(dev));
2453 break;
2454 case S_IFIFO: case S_IFSOCK:
2455 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2456 break;
2458 out_drop_write:
2459 mnt_drop_write(nd.path.mnt);
2460 out_dput:
2461 dput(dentry);
2462 out_unlock:
2463 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2464 path_put(&nd.path);
2465 putname(tmp);
2467 return error;
2470 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2472 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2475 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2477 int error = may_create(dir, dentry);
2479 if (error)
2480 return error;
2482 if (!dir->i_op->mkdir)
2483 return -EPERM;
2485 mode &= (S_IRWXUGO|S_ISVTX);
2486 error = security_inode_mkdir(dir, dentry, mode);
2487 if (error)
2488 return error;
2490 error = dir->i_op->mkdir(dir, dentry, mode);
2491 if (!error)
2492 fsnotify_mkdir(dir, dentry);
2493 return error;
2496 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2498 int error = 0;
2499 char * tmp;
2500 struct dentry *dentry;
2501 struct nameidata nd;
2503 error = user_path_parent(dfd, pathname, &nd, &tmp);
2504 if (error)
2505 goto out_err;
2507 dentry = lookup_create(&nd, 1);
2508 error = PTR_ERR(dentry);
2509 if (IS_ERR(dentry))
2510 goto out_unlock;
2512 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2513 mode &= ~current_umask();
2514 error = mnt_want_write(nd.path.mnt);
2515 if (error)
2516 goto out_dput;
2517 error = security_path_mkdir(&nd.path, dentry, mode);
2518 if (error)
2519 goto out_drop_write;
2520 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2521 out_drop_write:
2522 mnt_drop_write(nd.path.mnt);
2523 out_dput:
2524 dput(dentry);
2525 out_unlock:
2526 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2527 path_put(&nd.path);
2528 putname(tmp);
2529 out_err:
2530 return error;
2533 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2535 return sys_mkdirat(AT_FDCWD, pathname, mode);
2539 * The dentry_unhash() helper will try to drop the dentry early: we
2540 * should have a usage count of 2 if we're the only user of this
2541 * dentry, and if that is true (possibly after pruning the dcache),
2542 * then we drop the dentry now.
2544 * A low-level filesystem can, if it choses, legally
2545 * do a
2547 * if (!d_unhashed(dentry))
2548 * return -EBUSY;
2550 * if it cannot handle the case of removing a directory
2551 * that is still in use by something else..
2553 void dentry_unhash(struct dentry *dentry)
2555 shrink_dcache_parent(dentry);
2556 spin_lock(&dentry->d_lock);
2557 if (dentry->d_count == 1)
2558 __d_drop(dentry);
2559 spin_unlock(&dentry->d_lock);
2562 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2564 int error = may_delete(dir, dentry, 1);
2566 if (error)
2567 return error;
2569 if (!dir->i_op->rmdir)
2570 return -EPERM;
2572 mutex_lock(&dentry->d_inode->i_mutex);
2574 error = -EBUSY;
2575 if (d_mountpoint(dentry))
2576 goto out;
2578 error = security_inode_rmdir(dir, dentry);
2579 if (error)
2580 goto out;
2582 shrink_dcache_parent(dentry);
2583 error = dir->i_op->rmdir(dir, dentry);
2584 if (error)
2585 goto out;
2587 dentry->d_inode->i_flags |= S_DEAD;
2588 dont_mount(dentry);
2590 out:
2591 mutex_unlock(&dentry->d_inode->i_mutex);
2592 if (!error)
2593 d_delete(dentry);
2594 return error;
2597 static long do_rmdir(int dfd, const char __user *pathname)
2599 int error = 0;
2600 char * name;
2601 struct dentry *dentry;
2602 struct nameidata nd;
2604 error = user_path_parent(dfd, pathname, &nd, &name);
2605 if (error)
2606 return error;
2608 switch(nd.last_type) {
2609 case LAST_DOTDOT:
2610 error = -ENOTEMPTY;
2611 goto exit1;
2612 case LAST_DOT:
2613 error = -EINVAL;
2614 goto exit1;
2615 case LAST_ROOT:
2616 error = -EBUSY;
2617 goto exit1;
2620 nd.flags &= ~LOOKUP_PARENT;
2622 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2623 dentry = lookup_hash(&nd);
2624 error = PTR_ERR(dentry);
2625 if (IS_ERR(dentry))
2626 goto exit2;
2627 error = mnt_want_write(nd.path.mnt);
2628 if (error)
2629 goto exit3;
2630 error = security_path_rmdir(&nd.path, dentry);
2631 if (error)
2632 goto exit4;
2633 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2634 exit4:
2635 mnt_drop_write(nd.path.mnt);
2636 exit3:
2637 dput(dentry);
2638 exit2:
2639 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2640 exit1:
2641 path_put(&nd.path);
2642 putname(name);
2643 return error;
2646 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2648 return do_rmdir(AT_FDCWD, pathname);
2651 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2653 int error = may_delete(dir, dentry, 0);
2655 if (error)
2656 return error;
2658 if (!dir->i_op->unlink)
2659 return -EPERM;
2661 mutex_lock(&dentry->d_inode->i_mutex);
2662 if (d_mountpoint(dentry))
2663 error = -EBUSY;
2664 else {
2665 error = security_inode_unlink(dir, dentry);
2666 if (!error) {
2667 error = dir->i_op->unlink(dir, dentry);
2668 if (!error)
2669 dont_mount(dentry);
2672 mutex_unlock(&dentry->d_inode->i_mutex);
2674 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2675 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2676 fsnotify_link_count(dentry->d_inode);
2677 d_delete(dentry);
2680 return error;
2684 * Make sure that the actual truncation of the file will occur outside its
2685 * directory's i_mutex. Truncate can take a long time if there is a lot of
2686 * writeout happening, and we don't want to prevent access to the directory
2687 * while waiting on the I/O.
2689 static long do_unlinkat(int dfd, const char __user *pathname)
2691 int error;
2692 char *name;
2693 struct dentry *dentry;
2694 struct nameidata nd;
2695 struct inode *inode = NULL;
2697 error = user_path_parent(dfd, pathname, &nd, &name);
2698 if (error)
2699 return error;
2701 error = -EISDIR;
2702 if (nd.last_type != LAST_NORM)
2703 goto exit1;
2705 nd.flags &= ~LOOKUP_PARENT;
2707 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2708 dentry = lookup_hash(&nd);
2709 error = PTR_ERR(dentry);
2710 if (!IS_ERR(dentry)) {
2711 /* Why not before? Because we want correct error value */
2712 if (nd.last.name[nd.last.len])
2713 goto slashes;
2714 inode = dentry->d_inode;
2715 if (inode)
2716 ihold(inode);
2717 error = mnt_want_write(nd.path.mnt);
2718 if (error)
2719 goto exit2;
2720 error = security_path_unlink(&nd.path, dentry);
2721 if (error)
2722 goto exit3;
2723 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2724 exit3:
2725 mnt_drop_write(nd.path.mnt);
2726 exit2:
2727 dput(dentry);
2729 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2730 if (inode)
2731 iput(inode); /* truncate the inode here */
2732 exit1:
2733 path_put(&nd.path);
2734 putname(name);
2735 return error;
2737 slashes:
2738 error = !dentry->d_inode ? -ENOENT :
2739 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2740 goto exit2;
2743 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2745 if ((flag & ~AT_REMOVEDIR) != 0)
2746 return -EINVAL;
2748 if (flag & AT_REMOVEDIR)
2749 return do_rmdir(dfd, pathname);
2751 return do_unlinkat(dfd, pathname);
2754 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2756 return do_unlinkat(AT_FDCWD, pathname);
2759 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2761 int error = may_create(dir, dentry);
2763 if (error)
2764 return error;
2766 if (!dir->i_op->symlink)
2767 return -EPERM;
2769 error = security_inode_symlink(dir, dentry, oldname);
2770 if (error)
2771 return error;
2773 error = dir->i_op->symlink(dir, dentry, oldname);
2774 if (!error)
2775 fsnotify_create(dir, dentry);
2776 return error;
2779 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2780 int, newdfd, const char __user *, newname)
2782 int error;
2783 char *from;
2784 char *to;
2785 struct dentry *dentry;
2786 struct nameidata nd;
2788 from = getname(oldname);
2789 if (IS_ERR(from))
2790 return PTR_ERR(from);
2792 error = user_path_parent(newdfd, newname, &nd, &to);
2793 if (error)
2794 goto out_putname;
2796 dentry = lookup_create(&nd, 0);
2797 error = PTR_ERR(dentry);
2798 if (IS_ERR(dentry))
2799 goto out_unlock;
2801 error = mnt_want_write(nd.path.mnt);
2802 if (error)
2803 goto out_dput;
2804 error = security_path_symlink(&nd.path, dentry, from);
2805 if (error)
2806 goto out_drop_write;
2807 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2808 out_drop_write:
2809 mnt_drop_write(nd.path.mnt);
2810 out_dput:
2811 dput(dentry);
2812 out_unlock:
2813 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2814 path_put(&nd.path);
2815 putname(to);
2816 out_putname:
2817 putname(from);
2818 return error;
2821 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2823 return sys_symlinkat(oldname, AT_FDCWD, newname);
2826 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2828 struct inode *inode = old_dentry->d_inode;
2829 int error;
2831 if (!inode)
2832 return -ENOENT;
2834 error = may_create(dir, new_dentry);
2835 if (error)
2836 return error;
2838 if (dir->i_sb != inode->i_sb)
2839 return -EXDEV;
2842 * A link to an append-only or immutable file cannot be created.
2844 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2845 return -EPERM;
2846 if (!dir->i_op->link)
2847 return -EPERM;
2848 if (S_ISDIR(inode->i_mode))
2849 return -EPERM;
2851 error = security_inode_link(old_dentry, dir, new_dentry);
2852 if (error)
2853 return error;
2855 mutex_lock(&inode->i_mutex);
2856 /* Make sure we don't allow creating hardlink to an unlinked file */
2857 if (inode->i_nlink == 0)
2858 error = -ENOENT;
2859 else
2860 error = dir->i_op->link(old_dentry, dir, new_dentry);
2861 mutex_unlock(&inode->i_mutex);
2862 if (!error)
2863 fsnotify_link(dir, inode, new_dentry);
2864 return error;
2868 * Hardlinks are often used in delicate situations. We avoid
2869 * security-related surprises by not following symlinks on the
2870 * newname. --KAB
2872 * We don't follow them on the oldname either to be compatible
2873 * with linux 2.0, and to avoid hard-linking to directories
2874 * and other special files. --ADM
2876 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2877 int, newdfd, const char __user *, newname, int, flags)
2879 struct dentry *new_dentry;
2880 struct nameidata nd;
2881 struct path old_path;
2882 int how = 0;
2883 int error;
2884 char *to;
2886 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2887 return -EINVAL;
2889 * To use null names we require CAP_DAC_READ_SEARCH
2890 * This ensures that not everyone will be able to create
2891 * handlink using the passed filedescriptor.
2893 if (flags & AT_EMPTY_PATH) {
2894 if (!capable(CAP_DAC_READ_SEARCH))
2895 return -ENOENT;
2896 how = LOOKUP_EMPTY;
2899 if (flags & AT_SYMLINK_FOLLOW)
2900 how |= LOOKUP_FOLLOW;
2902 error = user_path_at(olddfd, oldname, how, &old_path);
2903 if (error)
2904 return error;
2906 error = user_path_parent(newdfd, newname, &nd, &to);
2907 if (error)
2908 goto out;
2909 error = -EXDEV;
2910 if (old_path.mnt != nd.path.mnt)
2911 goto out_release;
2912 new_dentry = lookup_create(&nd, 0);
2913 error = PTR_ERR(new_dentry);
2914 if (IS_ERR(new_dentry))
2915 goto out_unlock;
2916 error = mnt_want_write(nd.path.mnt);
2917 if (error)
2918 goto out_dput;
2919 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2920 if (error)
2921 goto out_drop_write;
2922 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2923 out_drop_write:
2924 mnt_drop_write(nd.path.mnt);
2925 out_dput:
2926 dput(new_dentry);
2927 out_unlock:
2928 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2929 out_release:
2930 path_put(&nd.path);
2931 putname(to);
2932 out:
2933 path_put(&old_path);
2935 return error;
2938 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2940 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2944 * The worst of all namespace operations - renaming directory. "Perverted"
2945 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2946 * Problems:
2947 * a) we can get into loop creation. Check is done in is_subdir().
2948 * b) race potential - two innocent renames can create a loop together.
2949 * That's where 4.4 screws up. Current fix: serialization on
2950 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2951 * story.
2952 * c) we have to lock _three_ objects - parents and victim (if it exists).
2953 * And that - after we got ->i_mutex on parents (until then we don't know
2954 * whether the target exists). Solution: try to be smart with locking
2955 * order for inodes. We rely on the fact that tree topology may change
2956 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2957 * move will be locked. Thus we can rank directories by the tree
2958 * (ancestors first) and rank all non-directories after them.
2959 * That works since everybody except rename does "lock parent, lookup,
2960 * lock child" and rename is under ->s_vfs_rename_mutex.
2961 * HOWEVER, it relies on the assumption that any object with ->lookup()
2962 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2963 * we'd better make sure that there's no link(2) for them.
2964 * d) conversion from fhandle to dentry may come in the wrong moment - when
2965 * we are removing the target. Solution: we will have to grab ->i_mutex
2966 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2967 * ->i_mutex on parents, which works but leads to some truly excessive
2968 * locking].
2970 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2971 struct inode *new_dir, struct dentry *new_dentry)
2973 int error = 0;
2974 struct inode *target = new_dentry->d_inode;
2977 * If we are going to change the parent - check write permissions,
2978 * we'll need to flip '..'.
2980 if (new_dir != old_dir) {
2981 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2982 if (error)
2983 return error;
2986 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2987 if (error)
2988 return error;
2990 if (target)
2991 mutex_lock(&target->i_mutex);
2993 error = -EBUSY;
2994 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
2995 goto out;
2997 if (target)
2998 shrink_dcache_parent(new_dentry);
2999 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3000 if (error)
3001 goto out;
3003 if (target) {
3004 target->i_flags |= S_DEAD;
3005 dont_mount(new_dentry);
3007 out:
3008 if (target)
3009 mutex_unlock(&target->i_mutex);
3010 if (!error)
3011 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3012 d_move(old_dentry,new_dentry);
3013 return error;
3016 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3017 struct inode *new_dir, struct dentry *new_dentry)
3019 struct inode *target = new_dentry->d_inode;
3020 int error;
3022 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3023 if (error)
3024 return error;
3026 dget(new_dentry);
3027 if (target)
3028 mutex_lock(&target->i_mutex);
3030 error = -EBUSY;
3031 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3032 goto out;
3034 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3035 if (error)
3036 goto out;
3038 if (target)
3039 dont_mount(new_dentry);
3040 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3041 d_move(old_dentry, new_dentry);
3042 out:
3043 if (target)
3044 mutex_unlock(&target->i_mutex);
3045 dput(new_dentry);
3046 return error;
3049 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3050 struct inode *new_dir, struct dentry *new_dentry)
3052 int error;
3053 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3054 const unsigned char *old_name;
3056 if (old_dentry->d_inode == new_dentry->d_inode)
3057 return 0;
3059 error = may_delete(old_dir, old_dentry, is_dir);
3060 if (error)
3061 return error;
3063 if (!new_dentry->d_inode)
3064 error = may_create(new_dir, new_dentry);
3065 else
3066 error = may_delete(new_dir, new_dentry, is_dir);
3067 if (error)
3068 return error;
3070 if (!old_dir->i_op->rename)
3071 return -EPERM;
3073 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3075 if (is_dir)
3076 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3077 else
3078 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3079 if (!error)
3080 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3081 new_dentry->d_inode, old_dentry);
3082 fsnotify_oldname_free(old_name);
3084 return error;
3087 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3088 int, newdfd, const char __user *, newname)
3090 struct dentry *old_dir, *new_dir;
3091 struct dentry *old_dentry, *new_dentry;
3092 struct dentry *trap;
3093 struct nameidata oldnd, newnd;
3094 char *from;
3095 char *to;
3096 int error;
3098 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3099 if (error)
3100 goto exit;
3102 error = user_path_parent(newdfd, newname, &newnd, &to);
3103 if (error)
3104 goto exit1;
3106 error = -EXDEV;
3107 if (oldnd.path.mnt != newnd.path.mnt)
3108 goto exit2;
3110 old_dir = oldnd.path.dentry;
3111 error = -EBUSY;
3112 if (oldnd.last_type != LAST_NORM)
3113 goto exit2;
3115 new_dir = newnd.path.dentry;
3116 if (newnd.last_type != LAST_NORM)
3117 goto exit2;
3119 oldnd.flags &= ~LOOKUP_PARENT;
3120 newnd.flags &= ~LOOKUP_PARENT;
3121 newnd.flags |= LOOKUP_RENAME_TARGET;
3123 trap = lock_rename(new_dir, old_dir);
3125 old_dentry = lookup_hash(&oldnd);
3126 error = PTR_ERR(old_dentry);
3127 if (IS_ERR(old_dentry))
3128 goto exit3;
3129 /* source must exist */
3130 error = -ENOENT;
3131 if (!old_dentry->d_inode)
3132 goto exit4;
3133 /* unless the source is a directory trailing slashes give -ENOTDIR */
3134 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3135 error = -ENOTDIR;
3136 if (oldnd.last.name[oldnd.last.len])
3137 goto exit4;
3138 if (newnd.last.name[newnd.last.len])
3139 goto exit4;
3141 /* source should not be ancestor of target */
3142 error = -EINVAL;
3143 if (old_dentry == trap)
3144 goto exit4;
3145 new_dentry = lookup_hash(&newnd);
3146 error = PTR_ERR(new_dentry);
3147 if (IS_ERR(new_dentry))
3148 goto exit4;
3149 /* target should not be an ancestor of source */
3150 error = -ENOTEMPTY;
3151 if (new_dentry == trap)
3152 goto exit5;
3154 error = mnt_want_write(oldnd.path.mnt);
3155 if (error)
3156 goto exit5;
3157 error = security_path_rename(&oldnd.path, old_dentry,
3158 &newnd.path, new_dentry);
3159 if (error)
3160 goto exit6;
3161 error = vfs_rename(old_dir->d_inode, old_dentry,
3162 new_dir->d_inode, new_dentry);
3163 exit6:
3164 mnt_drop_write(oldnd.path.mnt);
3165 exit5:
3166 dput(new_dentry);
3167 exit4:
3168 dput(old_dentry);
3169 exit3:
3170 unlock_rename(new_dir, old_dir);
3171 exit2:
3172 path_put(&newnd.path);
3173 putname(to);
3174 exit1:
3175 path_put(&oldnd.path);
3176 putname(from);
3177 exit:
3178 return error;
3181 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3183 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3186 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3188 int len;
3190 len = PTR_ERR(link);
3191 if (IS_ERR(link))
3192 goto out;
3194 len = strlen(link);
3195 if (len > (unsigned) buflen)
3196 len = buflen;
3197 if (copy_to_user(buffer, link, len))
3198 len = -EFAULT;
3199 out:
3200 return len;
3204 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3205 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3206 * using) it for any given inode is up to filesystem.
3208 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3210 struct nameidata nd;
3211 void *cookie;
3212 int res;
3214 nd.depth = 0;
3215 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3216 if (IS_ERR(cookie))
3217 return PTR_ERR(cookie);
3219 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3220 if (dentry->d_inode->i_op->put_link)
3221 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3222 return res;
3225 int vfs_follow_link(struct nameidata *nd, const char *link)
3227 return __vfs_follow_link(nd, link);
3230 /* get the link contents into pagecache */
3231 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3233 char *kaddr;
3234 struct page *page;
3235 struct address_space *mapping = dentry->d_inode->i_mapping;
3236 page = read_mapping_page(mapping, 0, NULL);
3237 if (IS_ERR(page))
3238 return (char*)page;
3239 *ppage = page;
3240 kaddr = kmap(page);
3241 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3242 return kaddr;
3245 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3247 struct page *page = NULL;
3248 char *s = page_getlink(dentry, &page);
3249 int res = vfs_readlink(dentry,buffer,buflen,s);
3250 if (page) {
3251 kunmap(page);
3252 page_cache_release(page);
3254 return res;
3257 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3259 struct page *page = NULL;
3260 nd_set_link(nd, page_getlink(dentry, &page));
3261 return page;
3264 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3266 struct page *page = cookie;
3268 if (page) {
3269 kunmap(page);
3270 page_cache_release(page);
3275 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3277 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3279 struct address_space *mapping = inode->i_mapping;
3280 struct page *page;
3281 void *fsdata;
3282 int err;
3283 char *kaddr;
3284 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3285 if (nofs)
3286 flags |= AOP_FLAG_NOFS;
3288 retry:
3289 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3290 flags, &page, &fsdata);
3291 if (err)
3292 goto fail;
3294 kaddr = kmap_atomic(page, KM_USER0);
3295 memcpy(kaddr, symname, len-1);
3296 kunmap_atomic(kaddr, KM_USER0);
3298 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3299 page, fsdata);
3300 if (err < 0)
3301 goto fail;
3302 if (err < len-1)
3303 goto retry;
3305 mark_inode_dirty(inode);
3306 return 0;
3307 fail:
3308 return err;
3311 int page_symlink(struct inode *inode, const char *symname, int len)
3313 return __page_symlink(inode, symname, len,
3314 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3317 const struct inode_operations page_symlink_inode_operations = {
3318 .readlink = generic_readlink,
3319 .follow_link = page_follow_link_light,
3320 .put_link = page_put_link,
3323 EXPORT_SYMBOL(user_path_at);
3324 EXPORT_SYMBOL(follow_down_one);
3325 EXPORT_SYMBOL(follow_down);
3326 EXPORT_SYMBOL(follow_up);
3327 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3328 EXPORT_SYMBOL(getname);
3329 EXPORT_SYMBOL(lock_rename);
3330 EXPORT_SYMBOL(lookup_one_len);
3331 EXPORT_SYMBOL(page_follow_link_light);
3332 EXPORT_SYMBOL(page_put_link);
3333 EXPORT_SYMBOL(page_readlink);
3334 EXPORT_SYMBOL(__page_symlink);
3335 EXPORT_SYMBOL(page_symlink);
3336 EXPORT_SYMBOL(page_symlink_inode_operations);
3337 EXPORT_SYMBOL(kern_path_parent);
3338 EXPORT_SYMBOL(kern_path);
3339 EXPORT_SYMBOL(vfs_path_lookup);
3340 EXPORT_SYMBOL(inode_permission);
3341 EXPORT_SYMBOL(file_permission);
3342 EXPORT_SYMBOL(unlock_rename);
3343 EXPORT_SYMBOL(vfs_create);
3344 EXPORT_SYMBOL(vfs_follow_link);
3345 EXPORT_SYMBOL(vfs_link);
3346 EXPORT_SYMBOL(vfs_mkdir);
3347 EXPORT_SYMBOL(vfs_mknod);
3348 EXPORT_SYMBOL(generic_permission);
3349 EXPORT_SYMBOL(vfs_readlink);
3350 EXPORT_SYMBOL(vfs_rename);
3351 EXPORT_SYMBOL(vfs_rmdir);
3352 EXPORT_SYMBOL(vfs_symlink);
3353 EXPORT_SYMBOL(vfs_unlink);
3354 EXPORT_SYMBOL(dentry_unhash);
3355 EXPORT_SYMBOL(generic_readlink);