2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
109 #include <linux/sysctl.h>
111 #include <net/atmclip.h>
113 #define RT_FL_TOS(oldflp4) \
114 ((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
116 #define IP_MAX_MTU 0xFFF0
118 #define RT_GC_TIMEOUT (300*HZ)
120 static int ip_rt_max_size
;
121 static int ip_rt_gc_timeout __read_mostly
= RT_GC_TIMEOUT
;
122 static int ip_rt_gc_interval __read_mostly
= 60 * HZ
;
123 static int ip_rt_gc_min_interval __read_mostly
= HZ
/ 2;
124 static int ip_rt_redirect_number __read_mostly
= 9;
125 static int ip_rt_redirect_load __read_mostly
= HZ
/ 50;
126 static int ip_rt_redirect_silence __read_mostly
= ((HZ
/ 50) << (9 + 1));
127 static int ip_rt_error_cost __read_mostly
= HZ
;
128 static int ip_rt_error_burst __read_mostly
= 5 * HZ
;
129 static int ip_rt_gc_elasticity __read_mostly
= 8;
130 static int ip_rt_mtu_expires __read_mostly
= 10 * 60 * HZ
;
131 static int ip_rt_min_pmtu __read_mostly
= 512 + 20 + 20;
132 static int ip_rt_min_advmss __read_mostly
= 256;
133 static int rt_chain_length_max __read_mostly
= 20;
136 * Interface to generic destination cache.
139 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
140 static unsigned int ipv4_default_advmss(const struct dst_entry
*dst
);
141 static unsigned int ipv4_default_mtu(const struct dst_entry
*dst
);
142 static void ipv4_dst_destroy(struct dst_entry
*dst
);
143 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
144 static void ipv4_link_failure(struct sk_buff
*skb
);
145 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
146 static int rt_garbage_collect(struct dst_ops
*ops
);
148 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
153 static u32
*ipv4_cow_metrics(struct dst_entry
*dst
, unsigned long old
)
155 struct rtable
*rt
= (struct rtable
*) dst
;
156 struct inet_peer
*peer
;
160 rt_bind_peer(rt
, rt
->rt_dst
, 1);
164 u32
*old_p
= __DST_METRICS_PTR(old
);
165 unsigned long prev
, new;
168 if (inet_metrics_new(peer
))
169 memcpy(p
, old_p
, sizeof(u32
) * RTAX_MAX
);
171 new = (unsigned long) p
;
172 prev
= cmpxchg(&dst
->_metrics
, old
, new);
175 p
= __DST_METRICS_PTR(prev
);
176 if (prev
& DST_METRICS_READ_ONLY
)
180 fib_info_put(rt
->fi
);
188 static struct neighbour
*ipv4_neigh_lookup(const struct dst_entry
*dst
, const void *daddr
);
190 static struct dst_ops ipv4_dst_ops
= {
192 .protocol
= cpu_to_be16(ETH_P_IP
),
193 .gc
= rt_garbage_collect
,
194 .check
= ipv4_dst_check
,
195 .default_advmss
= ipv4_default_advmss
,
196 .default_mtu
= ipv4_default_mtu
,
197 .cow_metrics
= ipv4_cow_metrics
,
198 .destroy
= ipv4_dst_destroy
,
199 .ifdown
= ipv4_dst_ifdown
,
200 .negative_advice
= ipv4_negative_advice
,
201 .link_failure
= ipv4_link_failure
,
202 .update_pmtu
= ip_rt_update_pmtu
,
203 .local_out
= __ip_local_out
,
204 .neigh_lookup
= ipv4_neigh_lookup
,
207 #define ECN_OR_COST(class) TC_PRIO_##class
209 const __u8 ip_tos2prio
[16] = {
211 ECN_OR_COST(BESTEFFORT
),
213 ECN_OR_COST(BESTEFFORT
),
219 ECN_OR_COST(INTERACTIVE
),
221 ECN_OR_COST(INTERACTIVE
),
222 TC_PRIO_INTERACTIVE_BULK
,
223 ECN_OR_COST(INTERACTIVE_BULK
),
224 TC_PRIO_INTERACTIVE_BULK
,
225 ECN_OR_COST(INTERACTIVE_BULK
)
233 /* The locking scheme is rather straight forward:
235 * 1) Read-Copy Update protects the buckets of the central route hash.
236 * 2) Only writers remove entries, and they hold the lock
237 * as they look at rtable reference counts.
238 * 3) Only readers acquire references to rtable entries,
239 * they do so with atomic increments and with the
243 struct rt_hash_bucket
{
244 struct rtable __rcu
*chain
;
247 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
248 defined(CONFIG_PROVE_LOCKING)
250 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
251 * The size of this table is a power of two and depends on the number of CPUS.
252 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
254 #ifdef CONFIG_LOCKDEP
255 # define RT_HASH_LOCK_SZ 256
258 # define RT_HASH_LOCK_SZ 4096
260 # define RT_HASH_LOCK_SZ 2048
262 # define RT_HASH_LOCK_SZ 1024
264 # define RT_HASH_LOCK_SZ 512
266 # define RT_HASH_LOCK_SZ 256
270 static spinlock_t
*rt_hash_locks
;
271 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
273 static __init
void rt_hash_lock_init(void)
277 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
280 panic("IP: failed to allocate rt_hash_locks\n");
282 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
283 spin_lock_init(&rt_hash_locks
[i
]);
286 # define rt_hash_lock_addr(slot) NULL
288 static inline void rt_hash_lock_init(void)
293 static struct rt_hash_bucket
*rt_hash_table __read_mostly
;
294 static unsigned rt_hash_mask __read_mostly
;
295 static unsigned int rt_hash_log __read_mostly
;
297 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
298 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
300 static inline unsigned int rt_hash(__be32 daddr
, __be32 saddr
, int idx
,
303 return jhash_3words((__force u32
)daddr
, (__force u32
)saddr
,
308 static inline int rt_genid(struct net
*net
)
310 return atomic_read(&net
->ipv4
.rt_genid
);
313 #ifdef CONFIG_PROC_FS
314 struct rt_cache_iter_state
{
315 struct seq_net_private p
;
320 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
322 struct rt_cache_iter_state
*st
= seq
->private;
323 struct rtable
*r
= NULL
;
325 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
326 if (!rcu_dereference_raw(rt_hash_table
[st
->bucket
].chain
))
329 r
= rcu_dereference_bh(rt_hash_table
[st
->bucket
].chain
);
331 if (dev_net(r
->dst
.dev
) == seq_file_net(seq
) &&
332 r
->rt_genid
== st
->genid
)
334 r
= rcu_dereference_bh(r
->dst
.rt_next
);
336 rcu_read_unlock_bh();
341 static struct rtable
*__rt_cache_get_next(struct seq_file
*seq
,
344 struct rt_cache_iter_state
*st
= seq
->private;
346 r
= rcu_dereference_bh(r
->dst
.rt_next
);
348 rcu_read_unlock_bh();
350 if (--st
->bucket
< 0)
352 } while (!rcu_dereference_raw(rt_hash_table
[st
->bucket
].chain
));
354 r
= rcu_dereference_bh(rt_hash_table
[st
->bucket
].chain
);
359 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
,
362 struct rt_cache_iter_state
*st
= seq
->private;
363 while ((r
= __rt_cache_get_next(seq
, r
)) != NULL
) {
364 if (dev_net(r
->dst
.dev
) != seq_file_net(seq
))
366 if (r
->rt_genid
== st
->genid
)
372 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
374 struct rtable
*r
= rt_cache_get_first(seq
);
377 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
379 return pos
? NULL
: r
;
382 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
384 struct rt_cache_iter_state
*st
= seq
->private;
386 return rt_cache_get_idx(seq
, *pos
- 1);
387 st
->genid
= rt_genid(seq_file_net(seq
));
388 return SEQ_START_TOKEN
;
391 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
395 if (v
== SEQ_START_TOKEN
)
396 r
= rt_cache_get_first(seq
);
398 r
= rt_cache_get_next(seq
, v
);
403 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
405 if (v
&& v
!= SEQ_START_TOKEN
)
406 rcu_read_unlock_bh();
409 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
411 if (v
== SEQ_START_TOKEN
)
412 seq_printf(seq
, "%-127s\n",
413 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
414 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
417 struct rtable
*r
= v
;
421 n
= dst_get_neighbour(&r
->dst
);
422 seq_printf(seq
, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
423 "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
424 r
->dst
.dev
? r
->dst
.dev
->name
: "*",
425 (__force u32
)r
->rt_dst
,
426 (__force u32
)r
->rt_gateway
,
427 r
->rt_flags
, atomic_read(&r
->dst
.__refcnt
),
428 r
->dst
.__use
, 0, (__force u32
)r
->rt_src
,
429 dst_metric_advmss(&r
->dst
) + 40,
430 dst_metric(&r
->dst
, RTAX_WINDOW
),
431 (int)((dst_metric(&r
->dst
, RTAX_RTT
) >> 3) +
432 dst_metric(&r
->dst
, RTAX_RTTVAR
)),
435 (n
&& (n
->nud_state
& NUD_CONNECTED
)) ? 1 : 0,
436 r
->rt_spec_dst
, &len
);
438 seq_printf(seq
, "%*s\n", 127 - len
, "");
443 static const struct seq_operations rt_cache_seq_ops
= {
444 .start
= rt_cache_seq_start
,
445 .next
= rt_cache_seq_next
,
446 .stop
= rt_cache_seq_stop
,
447 .show
= rt_cache_seq_show
,
450 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
452 return seq_open_net(inode
, file
, &rt_cache_seq_ops
,
453 sizeof(struct rt_cache_iter_state
));
456 static const struct file_operations rt_cache_seq_fops
= {
457 .owner
= THIS_MODULE
,
458 .open
= rt_cache_seq_open
,
461 .release
= seq_release_net
,
465 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
470 return SEQ_START_TOKEN
;
472 for (cpu
= *pos
-1; cpu
< nr_cpu_ids
; ++cpu
) {
473 if (!cpu_possible(cpu
))
476 return &per_cpu(rt_cache_stat
, cpu
);
481 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
485 for (cpu
= *pos
; cpu
< nr_cpu_ids
; ++cpu
) {
486 if (!cpu_possible(cpu
))
489 return &per_cpu(rt_cache_stat
, cpu
);
495 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
500 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
502 struct rt_cache_stat
*st
= v
;
504 if (v
== SEQ_START_TOKEN
) {
505 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
509 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
510 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
511 dst_entries_get_slow(&ipv4_dst_ops
),
534 static const struct seq_operations rt_cpu_seq_ops
= {
535 .start
= rt_cpu_seq_start
,
536 .next
= rt_cpu_seq_next
,
537 .stop
= rt_cpu_seq_stop
,
538 .show
= rt_cpu_seq_show
,
542 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
544 return seq_open(file
, &rt_cpu_seq_ops
);
547 static const struct file_operations rt_cpu_seq_fops
= {
548 .owner
= THIS_MODULE
,
549 .open
= rt_cpu_seq_open
,
552 .release
= seq_release
,
555 #ifdef CONFIG_IP_ROUTE_CLASSID
556 static int rt_acct_proc_show(struct seq_file
*m
, void *v
)
558 struct ip_rt_acct
*dst
, *src
;
561 dst
= kcalloc(256, sizeof(struct ip_rt_acct
), GFP_KERNEL
);
565 for_each_possible_cpu(i
) {
566 src
= (struct ip_rt_acct
*)per_cpu_ptr(ip_rt_acct
, i
);
567 for (j
= 0; j
< 256; j
++) {
568 dst
[j
].o_bytes
+= src
[j
].o_bytes
;
569 dst
[j
].o_packets
+= src
[j
].o_packets
;
570 dst
[j
].i_bytes
+= src
[j
].i_bytes
;
571 dst
[j
].i_packets
+= src
[j
].i_packets
;
575 seq_write(m
, dst
, 256 * sizeof(struct ip_rt_acct
));
580 static int rt_acct_proc_open(struct inode
*inode
, struct file
*file
)
582 return single_open(file
, rt_acct_proc_show
, NULL
);
585 static const struct file_operations rt_acct_proc_fops
= {
586 .owner
= THIS_MODULE
,
587 .open
= rt_acct_proc_open
,
590 .release
= single_release
,
594 static int __net_init
ip_rt_do_proc_init(struct net
*net
)
596 struct proc_dir_entry
*pde
;
598 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
603 pde
= proc_create("rt_cache", S_IRUGO
,
604 net
->proc_net_stat
, &rt_cpu_seq_fops
);
608 #ifdef CONFIG_IP_ROUTE_CLASSID
609 pde
= proc_create("rt_acct", 0, net
->proc_net
, &rt_acct_proc_fops
);
615 #ifdef CONFIG_IP_ROUTE_CLASSID
617 remove_proc_entry("rt_cache", net
->proc_net_stat
);
620 remove_proc_entry("rt_cache", net
->proc_net
);
625 static void __net_exit
ip_rt_do_proc_exit(struct net
*net
)
627 remove_proc_entry("rt_cache", net
->proc_net_stat
);
628 remove_proc_entry("rt_cache", net
->proc_net
);
629 #ifdef CONFIG_IP_ROUTE_CLASSID
630 remove_proc_entry("rt_acct", net
->proc_net
);
634 static struct pernet_operations ip_rt_proc_ops __net_initdata
= {
635 .init
= ip_rt_do_proc_init
,
636 .exit
= ip_rt_do_proc_exit
,
639 static int __init
ip_rt_proc_init(void)
641 return register_pernet_subsys(&ip_rt_proc_ops
);
645 static inline int ip_rt_proc_init(void)
649 #endif /* CONFIG_PROC_FS */
651 static inline void rt_free(struct rtable
*rt
)
653 call_rcu_bh(&rt
->dst
.rcu_head
, dst_rcu_free
);
656 static inline void rt_drop(struct rtable
*rt
)
659 call_rcu_bh(&rt
->dst
.rcu_head
, dst_rcu_free
);
662 static inline int rt_fast_clean(struct rtable
*rth
)
664 /* Kill broadcast/multicast entries very aggresively, if they
665 collide in hash table with more useful entries */
666 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
667 rt_is_input_route(rth
) && rth
->dst
.rt_next
;
670 static inline int rt_valuable(struct rtable
*rth
)
672 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
673 (rth
->peer
&& rth
->peer
->pmtu_expires
);
676 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
681 if (atomic_read(&rth
->dst
.__refcnt
))
684 age
= jiffies
- rth
->dst
.lastuse
;
685 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
686 (age
<= tmo2
&& rt_valuable(rth
)))
692 /* Bits of score are:
694 * 30: not quite useless
695 * 29..0: usage counter
697 static inline u32
rt_score(struct rtable
*rt
)
699 u32 score
= jiffies
- rt
->dst
.lastuse
;
701 score
= ~score
& ~(3<<30);
706 if (rt_is_output_route(rt
) ||
707 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
713 static inline bool rt_caching(const struct net
*net
)
715 return net
->ipv4
.current_rt_cache_rebuild_count
<=
716 net
->ipv4
.sysctl_rt_cache_rebuild_count
;
719 static inline bool compare_hash_inputs(const struct rtable
*rt1
,
720 const struct rtable
*rt2
)
722 return ((((__force u32
)rt1
->rt_key_dst
^ (__force u32
)rt2
->rt_key_dst
) |
723 ((__force u32
)rt1
->rt_key_src
^ (__force u32
)rt2
->rt_key_src
) |
724 (rt1
->rt_iif
^ rt2
->rt_iif
)) == 0);
727 static inline int compare_keys(struct rtable
*rt1
, struct rtable
*rt2
)
729 return (((__force u32
)rt1
->rt_key_dst
^ (__force u32
)rt2
->rt_key_dst
) |
730 ((__force u32
)rt1
->rt_key_src
^ (__force u32
)rt2
->rt_key_src
) |
731 (rt1
->rt_mark
^ rt2
->rt_mark
) |
732 (rt1
->rt_key_tos
^ rt2
->rt_key_tos
) |
733 (rt1
->rt_oif
^ rt2
->rt_oif
) |
734 (rt1
->rt_iif
^ rt2
->rt_iif
)) == 0;
737 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
739 return net_eq(dev_net(rt1
->dst
.dev
), dev_net(rt2
->dst
.dev
));
742 static inline int rt_is_expired(struct rtable
*rth
)
744 return rth
->rt_genid
!= rt_genid(dev_net(rth
->dst
.dev
));
748 * Perform a full scan of hash table and free all entries.
749 * Can be called by a softirq or a process.
750 * In the later case, we want to be reschedule if necessary
752 static void rt_do_flush(struct net
*net
, int process_context
)
755 struct rtable
*rth
, *next
;
757 for (i
= 0; i
<= rt_hash_mask
; i
++) {
758 struct rtable __rcu
**pprev
;
761 if (process_context
&& need_resched())
763 rth
= rcu_dereference_raw(rt_hash_table
[i
].chain
);
767 spin_lock_bh(rt_hash_lock_addr(i
));
770 pprev
= &rt_hash_table
[i
].chain
;
771 rth
= rcu_dereference_protected(*pprev
,
772 lockdep_is_held(rt_hash_lock_addr(i
)));
775 next
= rcu_dereference_protected(rth
->dst
.rt_next
,
776 lockdep_is_held(rt_hash_lock_addr(i
)));
779 net_eq(dev_net(rth
->dst
.dev
), net
)) {
780 rcu_assign_pointer(*pprev
, next
);
781 rcu_assign_pointer(rth
->dst
.rt_next
, list
);
784 pprev
= &rth
->dst
.rt_next
;
789 spin_unlock_bh(rt_hash_lock_addr(i
));
791 for (; list
; list
= next
) {
792 next
= rcu_dereference_protected(list
->dst
.rt_next
, 1);
799 * While freeing expired entries, we compute average chain length
800 * and standard deviation, using fixed-point arithmetic.
801 * This to have an estimation of rt_chain_length_max
802 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
803 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
807 #define ONE (1UL << FRACT_BITS)
810 * Given a hash chain and an item in this hash chain,
811 * find if a previous entry has the same hash_inputs
812 * (but differs on tos, mark or oif)
813 * Returns 0 if an alias is found.
814 * Returns ONE if rth has no alias before itself.
816 static int has_noalias(const struct rtable
*head
, const struct rtable
*rth
)
818 const struct rtable
*aux
= head
;
821 if (compare_hash_inputs(aux
, rth
))
823 aux
= rcu_dereference_protected(aux
->dst
.rt_next
, 1);
829 * Perturbation of rt_genid by a small quantity [1..256]
830 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
831 * many times (2^24) without giving recent rt_genid.
832 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
834 static void rt_cache_invalidate(struct net
*net
)
836 unsigned char shuffle
;
838 get_random_bytes(&shuffle
, sizeof(shuffle
));
839 atomic_add(shuffle
+ 1U, &net
->ipv4
.rt_genid
);
843 * delay < 0 : invalidate cache (fast : entries will be deleted later)
844 * delay >= 0 : invalidate & flush cache (can be long)
846 void rt_cache_flush(struct net
*net
, int delay
)
848 rt_cache_invalidate(net
);
850 rt_do_flush(net
, !in_softirq());
853 /* Flush previous cache invalidated entries from the cache */
854 void rt_cache_flush_batch(struct net
*net
)
856 rt_do_flush(net
, !in_softirq());
859 static void rt_emergency_hash_rebuild(struct net
*net
)
862 printk(KERN_WARNING
"Route hash chain too long!\n");
863 rt_cache_invalidate(net
);
867 Short description of GC goals.
869 We want to build algorithm, which will keep routing cache
870 at some equilibrium point, when number of aged off entries
871 is kept approximately equal to newly generated ones.
873 Current expiration strength is variable "expire".
874 We try to adjust it dynamically, so that if networking
875 is idle expires is large enough to keep enough of warm entries,
876 and when load increases it reduces to limit cache size.
879 static int rt_garbage_collect(struct dst_ops
*ops
)
881 static unsigned long expire
= RT_GC_TIMEOUT
;
882 static unsigned long last_gc
;
884 static int equilibrium
;
886 struct rtable __rcu
**rthp
;
887 unsigned long now
= jiffies
;
889 int entries
= dst_entries_get_fast(&ipv4_dst_ops
);
892 * Garbage collection is pretty expensive,
893 * do not make it too frequently.
896 RT_CACHE_STAT_INC(gc_total
);
898 if (now
- last_gc
< ip_rt_gc_min_interval
&&
899 entries
< ip_rt_max_size
) {
900 RT_CACHE_STAT_INC(gc_ignored
);
904 entries
= dst_entries_get_slow(&ipv4_dst_ops
);
905 /* Calculate number of entries, which we want to expire now. */
906 goal
= entries
- (ip_rt_gc_elasticity
<< rt_hash_log
);
908 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
909 equilibrium
= ipv4_dst_ops
.gc_thresh
;
910 goal
= entries
- equilibrium
;
912 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
913 goal
= entries
- equilibrium
;
916 /* We are in dangerous area. Try to reduce cache really
919 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
920 equilibrium
= entries
- goal
;
923 if (now
- last_gc
>= ip_rt_gc_min_interval
)
934 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
935 unsigned long tmo
= expire
;
937 k
= (k
+ 1) & rt_hash_mask
;
938 rthp
= &rt_hash_table
[k
].chain
;
939 spin_lock_bh(rt_hash_lock_addr(k
));
940 while ((rth
= rcu_dereference_protected(*rthp
,
941 lockdep_is_held(rt_hash_lock_addr(k
)))) != NULL
) {
942 if (!rt_is_expired(rth
) &&
943 !rt_may_expire(rth
, tmo
, expire
)) {
945 rthp
= &rth
->dst
.rt_next
;
948 *rthp
= rth
->dst
.rt_next
;
952 spin_unlock_bh(rt_hash_lock_addr(k
));
961 /* Goal is not achieved. We stop process if:
963 - if expire reduced to zero. Otherwise, expire is halfed.
964 - if table is not full.
965 - if we are called from interrupt.
966 - jiffies check is just fallback/debug loop breaker.
967 We will not spin here for long time in any case.
970 RT_CACHE_STAT_INC(gc_goal_miss
);
977 if (dst_entries_get_fast(&ipv4_dst_ops
) < ip_rt_max_size
)
979 } while (!in_softirq() && time_before_eq(jiffies
, now
));
981 if (dst_entries_get_fast(&ipv4_dst_ops
) < ip_rt_max_size
)
983 if (dst_entries_get_slow(&ipv4_dst_ops
) < ip_rt_max_size
)
986 printk(KERN_WARNING
"dst cache overflow\n");
987 RT_CACHE_STAT_INC(gc_dst_overflow
);
991 expire
+= ip_rt_gc_min_interval
;
992 if (expire
> ip_rt_gc_timeout
||
993 dst_entries_get_fast(&ipv4_dst_ops
) < ipv4_dst_ops
.gc_thresh
||
994 dst_entries_get_slow(&ipv4_dst_ops
) < ipv4_dst_ops
.gc_thresh
)
995 expire
= ip_rt_gc_timeout
;
1000 * Returns number of entries in a hash chain that have different hash_inputs
1002 static int slow_chain_length(const struct rtable
*head
)
1005 const struct rtable
*rth
= head
;
1008 length
+= has_noalias(head
, rth
);
1009 rth
= rcu_dereference_protected(rth
->dst
.rt_next
, 1);
1011 return length
>> FRACT_BITS
;
1014 static struct neighbour
*ipv4_neigh_lookup(const struct dst_entry
*dst
, const void *daddr
)
1016 struct neigh_table
*tbl
= &arp_tbl
;
1017 static const __be32 inaddr_any
= 0;
1018 struct net_device
*dev
= dst
->dev
;
1019 const __be32
*pkey
= daddr
;
1020 struct neighbour
*n
;
1022 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1023 if (dev
->type
== ARPHRD_ATM
)
1024 tbl
= clip_tbl_hook
;
1026 if (dev
->flags
& (IFF_LOOPBACK
| IFF_POINTOPOINT
))
1029 n
= __ipv4_neigh_lookup(tbl
, dev
, *(__force u32
*)pkey
);
1032 return neigh_create(tbl
, pkey
, dev
);
1035 static int rt_bind_neighbour(struct rtable
*rt
)
1037 struct neighbour
*n
= ipv4_neigh_lookup(&rt
->dst
, &rt
->rt_gateway
);
1040 dst_set_neighbour(&rt
->dst
, n
);
1045 static struct rtable
*rt_intern_hash(unsigned hash
, struct rtable
*rt
,
1046 struct sk_buff
*skb
, int ifindex
)
1048 struct rtable
*rth
, *cand
;
1049 struct rtable __rcu
**rthp
, **candp
;
1053 int attempts
= !in_softirq();
1057 min_score
= ~(u32
)0;
1062 if (!rt_caching(dev_net(rt
->dst
.dev
))) {
1064 * If we're not caching, just tell the caller we
1065 * were successful and don't touch the route. The
1066 * caller hold the sole reference to the cache entry, and
1067 * it will be released when the caller is done with it.
1068 * If we drop it here, the callers have no way to resolve routes
1069 * when we're not caching. Instead, just point *rp at rt, so
1070 * the caller gets a single use out of the route
1071 * Note that we do rt_free on this new route entry, so that
1072 * once its refcount hits zero, we are still able to reap it
1074 * Note: To avoid expensive rcu stuff for this uncached dst,
1075 * we set DST_NOCACHE so that dst_release() can free dst without
1076 * waiting a grace period.
1079 rt
->dst
.flags
|= DST_NOCACHE
;
1080 if (rt
->rt_type
== RTN_UNICAST
|| rt_is_output_route(rt
)) {
1081 int err
= rt_bind_neighbour(rt
);
1083 if (net_ratelimit())
1085 "Neighbour table failure & not caching routes.\n");
1087 return ERR_PTR(err
);
1094 rthp
= &rt_hash_table
[hash
].chain
;
1096 spin_lock_bh(rt_hash_lock_addr(hash
));
1097 while ((rth
= rcu_dereference_protected(*rthp
,
1098 lockdep_is_held(rt_hash_lock_addr(hash
)))) != NULL
) {
1099 if (rt_is_expired(rth
)) {
1100 *rthp
= rth
->dst
.rt_next
;
1104 if (compare_keys(rth
, rt
) && compare_netns(rth
, rt
)) {
1106 *rthp
= rth
->dst
.rt_next
;
1108 * Since lookup is lockfree, the deletion
1109 * must be visible to another weakly ordered CPU before
1110 * the insertion at the start of the hash chain.
1112 rcu_assign_pointer(rth
->dst
.rt_next
,
1113 rt_hash_table
[hash
].chain
);
1115 * Since lookup is lockfree, the update writes
1116 * must be ordered for consistency on SMP.
1118 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
1120 dst_use(&rth
->dst
, now
);
1121 spin_unlock_bh(rt_hash_lock_addr(hash
));
1125 skb_dst_set(skb
, &rth
->dst
);
1129 if (!atomic_read(&rth
->dst
.__refcnt
)) {
1130 u32 score
= rt_score(rth
);
1132 if (score
<= min_score
) {
1141 rthp
= &rth
->dst
.rt_next
;
1145 /* ip_rt_gc_elasticity used to be average length of chain
1146 * length, when exceeded gc becomes really aggressive.
1148 * The second limit is less certain. At the moment it allows
1149 * only 2 entries per bucket. We will see.
1151 if (chain_length
> ip_rt_gc_elasticity
) {
1152 *candp
= cand
->dst
.rt_next
;
1156 if (chain_length
> rt_chain_length_max
&&
1157 slow_chain_length(rt_hash_table
[hash
].chain
) > rt_chain_length_max
) {
1158 struct net
*net
= dev_net(rt
->dst
.dev
);
1159 int num
= ++net
->ipv4
.current_rt_cache_rebuild_count
;
1160 if (!rt_caching(net
)) {
1161 printk(KERN_WARNING
"%s: %d rebuilds is over limit, route caching disabled\n",
1162 rt
->dst
.dev
->name
, num
);
1164 rt_emergency_hash_rebuild(net
);
1165 spin_unlock_bh(rt_hash_lock_addr(hash
));
1167 hash
= rt_hash(rt
->rt_key_dst
, rt
->rt_key_src
,
1168 ifindex
, rt_genid(net
));
1173 /* Try to bind route to arp only if it is output
1174 route or unicast forwarding path.
1176 if (rt
->rt_type
== RTN_UNICAST
|| rt_is_output_route(rt
)) {
1177 int err
= rt_bind_neighbour(rt
);
1179 spin_unlock_bh(rt_hash_lock_addr(hash
));
1181 if (err
!= -ENOBUFS
) {
1183 return ERR_PTR(err
);
1186 /* Neighbour tables are full and nothing
1187 can be released. Try to shrink route cache,
1188 it is most likely it holds some neighbour records.
1190 if (attempts
-- > 0) {
1191 int saved_elasticity
= ip_rt_gc_elasticity
;
1192 int saved_int
= ip_rt_gc_min_interval
;
1193 ip_rt_gc_elasticity
= 1;
1194 ip_rt_gc_min_interval
= 0;
1195 rt_garbage_collect(&ipv4_dst_ops
);
1196 ip_rt_gc_min_interval
= saved_int
;
1197 ip_rt_gc_elasticity
= saved_elasticity
;
1201 if (net_ratelimit())
1202 printk(KERN_WARNING
"ipv4: Neighbour table overflow.\n");
1204 return ERR_PTR(-ENOBUFS
);
1208 rt
->dst
.rt_next
= rt_hash_table
[hash
].chain
;
1211 * Since lookup is lockfree, we must make sure
1212 * previous writes to rt are committed to memory
1213 * before making rt visible to other CPUS.
1215 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rt
);
1217 spin_unlock_bh(rt_hash_lock_addr(hash
));
1221 skb_dst_set(skb
, &rt
->dst
);
1225 static atomic_t __rt_peer_genid
= ATOMIC_INIT(0);
1227 static u32
rt_peer_genid(void)
1229 return atomic_read(&__rt_peer_genid
);
1232 void rt_bind_peer(struct rtable
*rt
, __be32 daddr
, int create
)
1234 struct inet_peer
*peer
;
1236 peer
= inet_getpeer_v4(daddr
, create
);
1238 if (peer
&& cmpxchg(&rt
->peer
, NULL
, peer
) != NULL
)
1241 rt
->rt_peer_genid
= rt_peer_genid();
1245 * Peer allocation may fail only in serious out-of-memory conditions. However
1246 * we still can generate some output.
1247 * Random ID selection looks a bit dangerous because we have no chances to
1248 * select ID being unique in a reasonable period of time.
1249 * But broken packet identifier may be better than no packet at all.
1251 static void ip_select_fb_ident(struct iphdr
*iph
)
1253 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1254 static u32 ip_fallback_id
;
1257 spin_lock_bh(&ip_fb_id_lock
);
1258 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1259 iph
->id
= htons(salt
& 0xFFFF);
1260 ip_fallback_id
= salt
;
1261 spin_unlock_bh(&ip_fb_id_lock
);
1264 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1266 struct rtable
*rt
= (struct rtable
*) dst
;
1269 if (rt
->peer
== NULL
)
1270 rt_bind_peer(rt
, rt
->rt_dst
, 1);
1272 /* If peer is attached to destination, it is never detached,
1273 so that we need not to grab a lock to dereference it.
1276 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1280 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1281 __builtin_return_address(0));
1283 ip_select_fb_ident(iph
);
1285 EXPORT_SYMBOL(__ip_select_ident
);
1287 static void rt_del(unsigned hash
, struct rtable
*rt
)
1289 struct rtable __rcu
**rthp
;
1292 rthp
= &rt_hash_table
[hash
].chain
;
1293 spin_lock_bh(rt_hash_lock_addr(hash
));
1295 while ((aux
= rcu_dereference_protected(*rthp
,
1296 lockdep_is_held(rt_hash_lock_addr(hash
)))) != NULL
) {
1297 if (aux
== rt
|| rt_is_expired(aux
)) {
1298 *rthp
= aux
->dst
.rt_next
;
1302 rthp
= &aux
->dst
.rt_next
;
1304 spin_unlock_bh(rt_hash_lock_addr(hash
));
1307 /* called in rcu_read_lock() section */
1308 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1309 __be32 saddr
, struct net_device
*dev
)
1311 struct in_device
*in_dev
= __in_dev_get_rcu(dev
);
1312 struct inet_peer
*peer
;
1319 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
) ||
1320 ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
) ||
1321 ipv4_is_zeronet(new_gw
))
1322 goto reject_redirect
;
1324 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1325 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1326 goto reject_redirect
;
1327 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1328 goto reject_redirect
;
1330 if (inet_addr_type(net
, new_gw
) != RTN_UNICAST
)
1331 goto reject_redirect
;
1334 peer
= inet_getpeer_v4(daddr
, 1);
1336 peer
->redirect_learned
.a4
= new_gw
;
1340 atomic_inc(&__rt_peer_genid
);
1345 #ifdef CONFIG_IP_ROUTE_VERBOSE
1346 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1347 printk(KERN_INFO
"Redirect from %pI4 on %s about %pI4 ignored.\n"
1348 " Advised path = %pI4 -> %pI4\n",
1349 &old_gw
, dev
->name
, &new_gw
,
1355 static bool peer_pmtu_expired(struct inet_peer
*peer
)
1357 unsigned long orig
= ACCESS_ONCE(peer
->pmtu_expires
);
1360 time_after_eq(jiffies
, orig
) &&
1361 cmpxchg(&peer
->pmtu_expires
, orig
, 0) == orig
;
1364 static bool peer_pmtu_cleaned(struct inet_peer
*peer
)
1366 unsigned long orig
= ACCESS_ONCE(peer
->pmtu_expires
);
1369 cmpxchg(&peer
->pmtu_expires
, orig
, 0) == orig
;
1372 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1374 struct rtable
*rt
= (struct rtable
*)dst
;
1375 struct dst_entry
*ret
= dst
;
1378 if (dst
->obsolete
> 0) {
1381 } else if (rt
->rt_flags
& RTCF_REDIRECTED
) {
1382 unsigned hash
= rt_hash(rt
->rt_key_dst
, rt
->rt_key_src
,
1384 rt_genid(dev_net(dst
->dev
)));
1387 } else if (rt
->peer
&& peer_pmtu_expired(rt
->peer
)) {
1388 dst_metric_set(dst
, RTAX_MTU
, rt
->peer
->pmtu_orig
);
1396 * 1. The first ip_rt_redirect_number redirects are sent
1397 * with exponential backoff, then we stop sending them at all,
1398 * assuming that the host ignores our redirects.
1399 * 2. If we did not see packets requiring redirects
1400 * during ip_rt_redirect_silence, we assume that the host
1401 * forgot redirected route and start to send redirects again.
1403 * This algorithm is much cheaper and more intelligent than dumb load limiting
1406 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1407 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1410 void ip_rt_send_redirect(struct sk_buff
*skb
)
1412 struct rtable
*rt
= skb_rtable(skb
);
1413 struct in_device
*in_dev
;
1414 struct inet_peer
*peer
;
1418 in_dev
= __in_dev_get_rcu(rt
->dst
.dev
);
1419 if (!in_dev
|| !IN_DEV_TX_REDIRECTS(in_dev
)) {
1423 log_martians
= IN_DEV_LOG_MARTIANS(in_dev
);
1427 rt_bind_peer(rt
, rt
->rt_dst
, 1);
1430 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1434 /* No redirected packets during ip_rt_redirect_silence;
1435 * reset the algorithm.
1437 if (time_after(jiffies
, peer
->rate_last
+ ip_rt_redirect_silence
))
1438 peer
->rate_tokens
= 0;
1440 /* Too many ignored redirects; do not send anything
1441 * set dst.rate_last to the last seen redirected packet.
1443 if (peer
->rate_tokens
>= ip_rt_redirect_number
) {
1444 peer
->rate_last
= jiffies
;
1448 /* Check for load limit; set rate_last to the latest sent
1451 if (peer
->rate_tokens
== 0 ||
1454 (ip_rt_redirect_load
<< peer
->rate_tokens
)))) {
1455 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1456 peer
->rate_last
= jiffies
;
1457 ++peer
->rate_tokens
;
1458 #ifdef CONFIG_IP_ROUTE_VERBOSE
1460 peer
->rate_tokens
== ip_rt_redirect_number
&&
1462 printk(KERN_WARNING
"host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1463 &ip_hdr(skb
)->saddr
, rt
->rt_iif
,
1464 &rt
->rt_dst
, &rt
->rt_gateway
);
1469 static int ip_error(struct sk_buff
*skb
)
1471 struct rtable
*rt
= skb_rtable(skb
);
1472 struct inet_peer
*peer
;
1477 switch (rt
->dst
.error
) {
1482 code
= ICMP_HOST_UNREACH
;
1485 code
= ICMP_NET_UNREACH
;
1486 IP_INC_STATS_BH(dev_net(rt
->dst
.dev
),
1487 IPSTATS_MIB_INNOROUTES
);
1490 code
= ICMP_PKT_FILTERED
;
1495 rt_bind_peer(rt
, rt
->rt_dst
, 1);
1501 peer
->rate_tokens
+= now
- peer
->rate_last
;
1502 if (peer
->rate_tokens
> ip_rt_error_burst
)
1503 peer
->rate_tokens
= ip_rt_error_burst
;
1504 peer
->rate_last
= now
;
1505 if (peer
->rate_tokens
>= ip_rt_error_cost
)
1506 peer
->rate_tokens
-= ip_rt_error_cost
;
1511 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1513 out
: kfree_skb(skb
);
1518 * The last two values are not from the RFC but
1519 * are needed for AMPRnet AX.25 paths.
1522 static const unsigned short mtu_plateau
[] =
1523 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1525 static inline unsigned short guess_mtu(unsigned short old_mtu
)
1529 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1530 if (old_mtu
> mtu_plateau
[i
])
1531 return mtu_plateau
[i
];
1535 unsigned short ip_rt_frag_needed(struct net
*net
, const struct iphdr
*iph
,
1536 unsigned short new_mtu
,
1537 struct net_device
*dev
)
1539 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1540 unsigned short est_mtu
= 0;
1541 struct inet_peer
*peer
;
1543 peer
= inet_getpeer_v4(iph
->daddr
, 1);
1545 unsigned short mtu
= new_mtu
;
1547 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1548 /* BSD 4.2 derived systems incorrectly adjust
1549 * tot_len by the IP header length, and report
1550 * a zero MTU in the ICMP message.
1553 old_mtu
>= 68 + (iph
->ihl
<< 2))
1554 old_mtu
-= iph
->ihl
<< 2;
1555 mtu
= guess_mtu(old_mtu
);
1558 if (mtu
< ip_rt_min_pmtu
)
1559 mtu
= ip_rt_min_pmtu
;
1560 if (!peer
->pmtu_expires
|| mtu
< peer
->pmtu_learned
) {
1561 unsigned long pmtu_expires
;
1563 pmtu_expires
= jiffies
+ ip_rt_mtu_expires
;
1568 peer
->pmtu_learned
= mtu
;
1569 peer
->pmtu_expires
= pmtu_expires
;
1574 atomic_inc(&__rt_peer_genid
);
1576 return est_mtu
? : new_mtu
;
1579 static void check_peer_pmtu(struct dst_entry
*dst
, struct inet_peer
*peer
)
1581 unsigned long expires
= ACCESS_ONCE(peer
->pmtu_expires
);
1585 if (time_before(jiffies
, expires
)) {
1586 u32 orig_dst_mtu
= dst_mtu(dst
);
1587 if (peer
->pmtu_learned
< orig_dst_mtu
) {
1588 if (!peer
->pmtu_orig
)
1589 peer
->pmtu_orig
= dst_metric_raw(dst
, RTAX_MTU
);
1590 dst_metric_set(dst
, RTAX_MTU
, peer
->pmtu_learned
);
1592 } else if (cmpxchg(&peer
->pmtu_expires
, expires
, 0) == expires
)
1593 dst_metric_set(dst
, RTAX_MTU
, peer
->pmtu_orig
);
1596 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1598 struct rtable
*rt
= (struct rtable
*) dst
;
1599 struct inet_peer
*peer
;
1604 rt_bind_peer(rt
, rt
->rt_dst
, 1);
1607 unsigned long pmtu_expires
= ACCESS_ONCE(peer
->pmtu_expires
);
1609 if (mtu
< ip_rt_min_pmtu
)
1610 mtu
= ip_rt_min_pmtu
;
1611 if (!pmtu_expires
|| mtu
< peer
->pmtu_learned
) {
1613 pmtu_expires
= jiffies
+ ip_rt_mtu_expires
;
1617 peer
->pmtu_learned
= mtu
;
1618 peer
->pmtu_expires
= pmtu_expires
;
1620 atomic_inc(&__rt_peer_genid
);
1621 rt
->rt_peer_genid
= rt_peer_genid();
1623 check_peer_pmtu(dst
, peer
);
1627 static int check_peer_redir(struct dst_entry
*dst
, struct inet_peer
*peer
)
1629 struct rtable
*rt
= (struct rtable
*) dst
;
1630 __be32 orig_gw
= rt
->rt_gateway
;
1631 struct neighbour
*n
;
1633 dst_confirm(&rt
->dst
);
1635 neigh_release(dst_get_neighbour(&rt
->dst
));
1636 dst_set_neighbour(&rt
->dst
, NULL
);
1638 rt
->rt_gateway
= peer
->redirect_learned
.a4
;
1639 rt_bind_neighbour(rt
);
1640 n
= dst_get_neighbour(&rt
->dst
);
1641 if (!n
|| !(n
->nud_state
& NUD_VALID
)) {
1643 neigh_event_send(n
, NULL
);
1644 rt
->rt_gateway
= orig_gw
;
1647 rt
->rt_flags
|= RTCF_REDIRECTED
;
1648 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE
, n
);
1653 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1655 struct rtable
*rt
= (struct rtable
*) dst
;
1657 if (rt_is_expired(rt
))
1659 if (rt
->rt_peer_genid
!= rt_peer_genid()) {
1660 struct inet_peer
*peer
;
1663 rt_bind_peer(rt
, rt
->rt_dst
, 0);
1667 check_peer_pmtu(dst
, peer
);
1669 if (peer
->redirect_learned
.a4
&&
1670 peer
->redirect_learned
.a4
!= rt
->rt_gateway
) {
1671 if (check_peer_redir(dst
, peer
))
1676 rt
->rt_peer_genid
= rt_peer_genid();
1681 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1683 struct rtable
*rt
= (struct rtable
*) dst
;
1684 struct inet_peer
*peer
= rt
->peer
;
1687 fib_info_put(rt
->fi
);
1697 static void ipv4_link_failure(struct sk_buff
*skb
)
1701 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1703 rt
= skb_rtable(skb
);
1704 if (rt
&& rt
->peer
&& peer_pmtu_cleaned(rt
->peer
))
1705 dst_metric_set(&rt
->dst
, RTAX_MTU
, rt
->peer
->pmtu_orig
);
1708 static int ip_rt_bug(struct sk_buff
*skb
)
1710 printk(KERN_DEBUG
"ip_rt_bug: %pI4 -> %pI4, %s\n",
1711 &ip_hdr(skb
)->saddr
, &ip_hdr(skb
)->daddr
,
1712 skb
->dev
? skb
->dev
->name
: "?");
1719 We do not cache source address of outgoing interface,
1720 because it is used only by IP RR, TS and SRR options,
1721 so that it out of fast path.
1723 BTW remember: "addr" is allowed to be not aligned
1727 void ip_rt_get_source(u8
*addr
, struct sk_buff
*skb
, struct rtable
*rt
)
1731 if (rt_is_output_route(rt
))
1732 src
= ip_hdr(skb
)->saddr
;
1734 struct fib_result res
;
1740 memset(&fl4
, 0, sizeof(fl4
));
1741 fl4
.daddr
= iph
->daddr
;
1742 fl4
.saddr
= iph
->saddr
;
1743 fl4
.flowi4_tos
= RT_TOS(iph
->tos
);
1744 fl4
.flowi4_oif
= rt
->dst
.dev
->ifindex
;
1745 fl4
.flowi4_iif
= skb
->dev
->ifindex
;
1746 fl4
.flowi4_mark
= skb
->mark
;
1749 if (fib_lookup(dev_net(rt
->dst
.dev
), &fl4
, &res
) == 0)
1750 src
= FIB_RES_PREFSRC(dev_net(rt
->dst
.dev
), res
);
1752 src
= inet_select_addr(rt
->dst
.dev
, rt
->rt_gateway
,
1756 memcpy(addr
, &src
, 4);
1759 #ifdef CONFIG_IP_ROUTE_CLASSID
1760 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1762 if (!(rt
->dst
.tclassid
& 0xFFFF))
1763 rt
->dst
.tclassid
|= tag
& 0xFFFF;
1764 if (!(rt
->dst
.tclassid
& 0xFFFF0000))
1765 rt
->dst
.tclassid
|= tag
& 0xFFFF0000;
1769 static unsigned int ipv4_default_advmss(const struct dst_entry
*dst
)
1771 unsigned int advmss
= dst_metric_raw(dst
, RTAX_ADVMSS
);
1774 advmss
= max_t(unsigned int, dst
->dev
->mtu
- 40,
1776 if (advmss
> 65535 - 40)
1777 advmss
= 65535 - 40;
1782 static unsigned int ipv4_default_mtu(const struct dst_entry
*dst
)
1784 unsigned int mtu
= dst
->dev
->mtu
;
1786 if (unlikely(dst_metric_locked(dst
, RTAX_MTU
))) {
1787 const struct rtable
*rt
= (const struct rtable
*) dst
;
1789 if (rt
->rt_gateway
!= rt
->rt_dst
&& mtu
> 576)
1793 if (mtu
> IP_MAX_MTU
)
1799 static void rt_init_metrics(struct rtable
*rt
, const struct flowi4
*fl4
,
1800 struct fib_info
*fi
)
1802 struct inet_peer
*peer
;
1805 /* If a peer entry exists for this destination, we must hook
1806 * it up in order to get at cached metrics.
1808 if (fl4
&& (fl4
->flowi4_flags
& FLOWI_FLAG_PRECOW_METRICS
))
1811 rt
->peer
= peer
= inet_getpeer_v4(rt
->rt_dst
, create
);
1813 rt
->rt_peer_genid
= rt_peer_genid();
1814 if (inet_metrics_new(peer
))
1815 memcpy(peer
->metrics
, fi
->fib_metrics
,
1816 sizeof(u32
) * RTAX_MAX
);
1817 dst_init_metrics(&rt
->dst
, peer
->metrics
, false);
1819 check_peer_pmtu(&rt
->dst
, peer
);
1820 if (peer
->redirect_learned
.a4
&&
1821 peer
->redirect_learned
.a4
!= rt
->rt_gateway
) {
1822 rt
->rt_gateway
= peer
->redirect_learned
.a4
;
1823 rt
->rt_flags
|= RTCF_REDIRECTED
;
1826 if (fi
->fib_metrics
!= (u32
*) dst_default_metrics
) {
1828 atomic_inc(&fi
->fib_clntref
);
1830 dst_init_metrics(&rt
->dst
, fi
->fib_metrics
, true);
1834 static void rt_set_nexthop(struct rtable
*rt
, const struct flowi4
*fl4
,
1835 const struct fib_result
*res
,
1836 struct fib_info
*fi
, u16 type
, u32 itag
)
1838 struct dst_entry
*dst
= &rt
->dst
;
1841 if (FIB_RES_GW(*res
) &&
1842 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1843 rt
->rt_gateway
= FIB_RES_GW(*res
);
1844 rt_init_metrics(rt
, fl4
, fi
);
1845 #ifdef CONFIG_IP_ROUTE_CLASSID
1846 dst
->tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1850 if (dst_mtu(dst
) > IP_MAX_MTU
)
1851 dst_metric_set(dst
, RTAX_MTU
, IP_MAX_MTU
);
1852 if (dst_metric_raw(dst
, RTAX_ADVMSS
) > 65535 - 40)
1853 dst_metric_set(dst
, RTAX_ADVMSS
, 65535 - 40);
1855 #ifdef CONFIG_IP_ROUTE_CLASSID
1856 #ifdef CONFIG_IP_MULTIPLE_TABLES
1857 set_class_tag(rt
, fib_rules_tclass(res
));
1859 set_class_tag(rt
, itag
);
1863 static struct rtable
*rt_dst_alloc(struct net_device
*dev
,
1864 bool nopolicy
, bool noxfrm
)
1866 return dst_alloc(&ipv4_dst_ops
, dev
, 1, -1,
1868 (nopolicy
? DST_NOPOLICY
: 0) |
1869 (noxfrm
? DST_NOXFRM
: 0));
1872 /* called in rcu_read_lock() section */
1873 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1874 u8 tos
, struct net_device
*dev
, int our
)
1879 struct in_device
*in_dev
= __in_dev_get_rcu(dev
);
1883 /* Primary sanity checks. */
1888 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1889 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1892 if (ipv4_is_zeronet(saddr
)) {
1893 if (!ipv4_is_local_multicast(daddr
))
1895 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1897 err
= fib_validate_source(skb
, saddr
, 0, tos
, 0, dev
, &spec_dst
,
1902 rth
= rt_dst_alloc(init_net
.loopback_dev
,
1903 IN_DEV_CONF_GET(in_dev
, NOPOLICY
), false);
1907 #ifdef CONFIG_IP_ROUTE_CLASSID
1908 rth
->dst
.tclassid
= itag
;
1910 rth
->dst
.output
= ip_rt_bug
;
1912 rth
->rt_key_dst
= daddr
;
1913 rth
->rt_key_src
= saddr
;
1914 rth
->rt_genid
= rt_genid(dev_net(dev
));
1915 rth
->rt_flags
= RTCF_MULTICAST
;
1916 rth
->rt_type
= RTN_MULTICAST
;
1917 rth
->rt_key_tos
= tos
;
1918 rth
->rt_dst
= daddr
;
1919 rth
->rt_src
= saddr
;
1920 rth
->rt_route_iif
= dev
->ifindex
;
1921 rth
->rt_iif
= dev
->ifindex
;
1923 rth
->rt_mark
= skb
->mark
;
1924 rth
->rt_gateway
= daddr
;
1925 rth
->rt_spec_dst
= spec_dst
;
1926 rth
->rt_peer_genid
= 0;
1930 rth
->dst
.input
= ip_local_deliver
;
1931 rth
->rt_flags
|= RTCF_LOCAL
;
1934 #ifdef CONFIG_IP_MROUTE
1935 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1936 rth
->dst
.input
= ip_mr_input
;
1938 RT_CACHE_STAT_INC(in_slow_mc
);
1940 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
, rt_genid(dev_net(dev
)));
1941 rth
= rt_intern_hash(hash
, rth
, skb
, dev
->ifindex
);
1942 return IS_ERR(rth
) ? PTR_ERR(rth
) : 0;
1953 static void ip_handle_martian_source(struct net_device
*dev
,
1954 struct in_device
*in_dev
,
1955 struct sk_buff
*skb
,
1959 RT_CACHE_STAT_INC(in_martian_src
);
1960 #ifdef CONFIG_IP_ROUTE_VERBOSE
1961 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1963 * RFC1812 recommendation, if source is martian,
1964 * the only hint is MAC header.
1966 printk(KERN_WARNING
"martian source %pI4 from %pI4, on dev %s\n",
1967 &daddr
, &saddr
, dev
->name
);
1968 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1970 const unsigned char *p
= skb_mac_header(skb
);
1971 printk(KERN_WARNING
"ll header: ");
1972 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1974 if (i
< (dev
->hard_header_len
- 1))
1983 /* called in rcu_read_lock() section */
1984 static int __mkroute_input(struct sk_buff
*skb
,
1985 const struct fib_result
*res
,
1986 struct in_device
*in_dev
,
1987 __be32 daddr
, __be32 saddr
, u32 tos
,
1988 struct rtable
**result
)
1992 struct in_device
*out_dev
;
1993 unsigned int flags
= 0;
1997 /* get a working reference to the output device */
1998 out_dev
= __in_dev_get_rcu(FIB_RES_DEV(*res
));
1999 if (out_dev
== NULL
) {
2000 if (net_ratelimit())
2001 printk(KERN_CRIT
"Bug in ip_route_input" \
2002 "_slow(). Please, report\n");
2007 err
= fib_validate_source(skb
, saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
2008 in_dev
->dev
, &spec_dst
, &itag
);
2010 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
2017 flags
|= RTCF_DIRECTSRC
;
2019 if (out_dev
== in_dev
&& err
&&
2020 (IN_DEV_SHARED_MEDIA(out_dev
) ||
2021 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
2022 flags
|= RTCF_DOREDIRECT
;
2024 if (skb
->protocol
!= htons(ETH_P_IP
)) {
2025 /* Not IP (i.e. ARP). Do not create route, if it is
2026 * invalid for proxy arp. DNAT routes are always valid.
2028 * Proxy arp feature have been extended to allow, ARP
2029 * replies back to the same interface, to support
2030 * Private VLAN switch technologies. See arp.c.
2032 if (out_dev
== in_dev
&&
2033 IN_DEV_PROXY_ARP_PVLAN(in_dev
) == 0) {
2039 rth
= rt_dst_alloc(out_dev
->dev
,
2040 IN_DEV_CONF_GET(in_dev
, NOPOLICY
),
2041 IN_DEV_CONF_GET(out_dev
, NOXFRM
));
2047 rth
->rt_key_dst
= daddr
;
2048 rth
->rt_key_src
= saddr
;
2049 rth
->rt_genid
= rt_genid(dev_net(rth
->dst
.dev
));
2050 rth
->rt_flags
= flags
;
2051 rth
->rt_type
= res
->type
;
2052 rth
->rt_key_tos
= tos
;
2053 rth
->rt_dst
= daddr
;
2054 rth
->rt_src
= saddr
;
2055 rth
->rt_route_iif
= in_dev
->dev
->ifindex
;
2056 rth
->rt_iif
= in_dev
->dev
->ifindex
;
2058 rth
->rt_mark
= skb
->mark
;
2059 rth
->rt_gateway
= daddr
;
2060 rth
->rt_spec_dst
= spec_dst
;
2061 rth
->rt_peer_genid
= 0;
2065 rth
->dst
.input
= ip_forward
;
2066 rth
->dst
.output
= ip_output
;
2068 rt_set_nexthop(rth
, NULL
, res
, res
->fi
, res
->type
, itag
);
2076 static int ip_mkroute_input(struct sk_buff
*skb
,
2077 struct fib_result
*res
,
2078 const struct flowi4
*fl4
,
2079 struct in_device
*in_dev
,
2080 __be32 daddr
, __be32 saddr
, u32 tos
)
2082 struct rtable
* rth
= NULL
;
2086 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2087 if (res
->fi
&& res
->fi
->fib_nhs
> 1)
2088 fib_select_multipath(res
);
2091 /* create a routing cache entry */
2092 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
2096 /* put it into the cache */
2097 hash
= rt_hash(daddr
, saddr
, fl4
->flowi4_iif
,
2098 rt_genid(dev_net(rth
->dst
.dev
)));
2099 rth
= rt_intern_hash(hash
, rth
, skb
, fl4
->flowi4_iif
);
2101 return PTR_ERR(rth
);
2106 * NOTE. We drop all the packets that has local source
2107 * addresses, because every properly looped back packet
2108 * must have correct destination already attached by output routine.
2110 * Such approach solves two big problems:
2111 * 1. Not simplex devices are handled properly.
2112 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2113 * called with rcu_read_lock()
2116 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2117 u8 tos
, struct net_device
*dev
)
2119 struct fib_result res
;
2120 struct in_device
*in_dev
= __in_dev_get_rcu(dev
);
2124 struct rtable
* rth
;
2128 struct net
* net
= dev_net(dev
);
2130 /* IP on this device is disabled. */
2135 /* Check for the most weird martians, which can be not detected
2139 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
2140 ipv4_is_loopback(saddr
))
2141 goto martian_source
;
2143 if (ipv4_is_lbcast(daddr
) || (saddr
== 0 && daddr
== 0))
2146 /* Accept zero addresses only to limited broadcast;
2147 * I even do not know to fix it or not. Waiting for complains :-)
2149 if (ipv4_is_zeronet(saddr
))
2150 goto martian_source
;
2152 if (ipv4_is_zeronet(daddr
) || ipv4_is_loopback(daddr
))
2153 goto martian_destination
;
2156 * Now we are ready to route packet.
2159 fl4
.flowi4_iif
= dev
->ifindex
;
2160 fl4
.flowi4_mark
= skb
->mark
;
2161 fl4
.flowi4_tos
= tos
;
2162 fl4
.flowi4_scope
= RT_SCOPE_UNIVERSE
;
2165 err
= fib_lookup(net
, &fl4
, &res
);
2167 if (!IN_DEV_FORWARD(in_dev
))
2172 RT_CACHE_STAT_INC(in_slow_tot
);
2174 if (res
.type
== RTN_BROADCAST
)
2177 if (res
.type
== RTN_LOCAL
) {
2178 err
= fib_validate_source(skb
, saddr
, daddr
, tos
,
2179 net
->loopback_dev
->ifindex
,
2180 dev
, &spec_dst
, &itag
);
2182 goto martian_source_keep_err
;
2184 flags
|= RTCF_DIRECTSRC
;
2189 if (!IN_DEV_FORWARD(in_dev
))
2191 if (res
.type
!= RTN_UNICAST
)
2192 goto martian_destination
;
2194 err
= ip_mkroute_input(skb
, &res
, &fl4
, in_dev
, daddr
, saddr
, tos
);
2198 if (skb
->protocol
!= htons(ETH_P_IP
))
2201 if (ipv4_is_zeronet(saddr
))
2202 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
2204 err
= fib_validate_source(skb
, saddr
, 0, tos
, 0, dev
, &spec_dst
,
2207 goto martian_source_keep_err
;
2209 flags
|= RTCF_DIRECTSRC
;
2211 flags
|= RTCF_BROADCAST
;
2212 res
.type
= RTN_BROADCAST
;
2213 RT_CACHE_STAT_INC(in_brd
);
2216 rth
= rt_dst_alloc(net
->loopback_dev
,
2217 IN_DEV_CONF_GET(in_dev
, NOPOLICY
), false);
2221 rth
->dst
.input
= ip_local_deliver
;
2222 rth
->dst
.output
= ip_rt_bug
;
2223 #ifdef CONFIG_IP_ROUTE_CLASSID
2224 rth
->dst
.tclassid
= itag
;
2227 rth
->rt_key_dst
= daddr
;
2228 rth
->rt_key_src
= saddr
;
2229 rth
->rt_genid
= rt_genid(net
);
2230 rth
->rt_flags
= flags
|RTCF_LOCAL
;
2231 rth
->rt_type
= res
.type
;
2232 rth
->rt_key_tos
= tos
;
2233 rth
->rt_dst
= daddr
;
2234 rth
->rt_src
= saddr
;
2235 #ifdef CONFIG_IP_ROUTE_CLASSID
2236 rth
->dst
.tclassid
= itag
;
2238 rth
->rt_route_iif
= dev
->ifindex
;
2239 rth
->rt_iif
= dev
->ifindex
;
2241 rth
->rt_mark
= skb
->mark
;
2242 rth
->rt_gateway
= daddr
;
2243 rth
->rt_spec_dst
= spec_dst
;
2244 rth
->rt_peer_genid
= 0;
2247 if (res
.type
== RTN_UNREACHABLE
) {
2248 rth
->dst
.input
= ip_error
;
2249 rth
->dst
.error
= -err
;
2250 rth
->rt_flags
&= ~RTCF_LOCAL
;
2252 hash
= rt_hash(daddr
, saddr
, fl4
.flowi4_iif
, rt_genid(net
));
2253 rth
= rt_intern_hash(hash
, rth
, skb
, fl4
.flowi4_iif
);
2260 RT_CACHE_STAT_INC(in_no_route
);
2261 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2262 res
.type
= RTN_UNREACHABLE
;
2268 * Do not cache martian addresses: they should be logged (RFC1812)
2270 martian_destination
:
2271 RT_CACHE_STAT_INC(in_martian_dst
);
2272 #ifdef CONFIG_IP_ROUTE_VERBOSE
2273 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2274 printk(KERN_WARNING
"martian destination %pI4 from %pI4, dev %s\n",
2275 &daddr
, &saddr
, dev
->name
);
2279 err
= -EHOSTUNREACH
;
2292 martian_source_keep_err
:
2293 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2297 int ip_route_input_common(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2298 u8 tos
, struct net_device
*dev
, bool noref
)
2300 struct rtable
* rth
;
2302 int iif
= dev
->ifindex
;
2310 if (!rt_caching(net
))
2313 tos
&= IPTOS_RT_MASK
;
2314 hash
= rt_hash(daddr
, saddr
, iif
, rt_genid(net
));
2316 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2317 rth
= rcu_dereference(rth
->dst
.rt_next
)) {
2318 if ((((__force u32
)rth
->rt_key_dst
^ (__force u32
)daddr
) |
2319 ((__force u32
)rth
->rt_key_src
^ (__force u32
)saddr
) |
2320 (rth
->rt_iif
^ iif
) |
2322 (rth
->rt_key_tos
^ tos
)) == 0 &&
2323 rth
->rt_mark
== skb
->mark
&&
2324 net_eq(dev_net(rth
->dst
.dev
), net
) &&
2325 !rt_is_expired(rth
)) {
2327 dst_use_noref(&rth
->dst
, jiffies
);
2328 skb_dst_set_noref(skb
, &rth
->dst
);
2330 dst_use(&rth
->dst
, jiffies
);
2331 skb_dst_set(skb
, &rth
->dst
);
2333 RT_CACHE_STAT_INC(in_hit
);
2337 RT_CACHE_STAT_INC(in_hlist_search
);
2341 /* Multicast recognition logic is moved from route cache to here.
2342 The problem was that too many Ethernet cards have broken/missing
2343 hardware multicast filters :-( As result the host on multicasting
2344 network acquires a lot of useless route cache entries, sort of
2345 SDR messages from all the world. Now we try to get rid of them.
2346 Really, provided software IP multicast filter is organized
2347 reasonably (at least, hashed), it does not result in a slowdown
2348 comparing with route cache reject entries.
2349 Note, that multicast routers are not affected, because
2350 route cache entry is created eventually.
2352 if (ipv4_is_multicast(daddr
)) {
2353 struct in_device
*in_dev
= __in_dev_get_rcu(dev
);
2356 int our
= ip_check_mc_rcu(in_dev
, daddr
, saddr
,
2357 ip_hdr(skb
)->protocol
);
2359 #ifdef CONFIG_IP_MROUTE
2361 (!ipv4_is_local_multicast(daddr
) &&
2362 IN_DEV_MFORWARD(in_dev
))
2365 int res
= ip_route_input_mc(skb
, daddr
, saddr
,
2374 res
= ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2378 EXPORT_SYMBOL(ip_route_input_common
);
2380 /* called with rcu_read_lock() */
2381 static struct rtable
*__mkroute_output(const struct fib_result
*res
,
2382 const struct flowi4
*fl4
,
2383 __be32 orig_daddr
, __be32 orig_saddr
,
2384 int orig_oif
, struct net_device
*dev_out
,
2387 struct fib_info
*fi
= res
->fi
;
2388 u32 tos
= RT_FL_TOS(fl4
);
2389 struct in_device
*in_dev
;
2390 u16 type
= res
->type
;
2393 if (ipv4_is_loopback(fl4
->saddr
) && !(dev_out
->flags
& IFF_LOOPBACK
))
2394 return ERR_PTR(-EINVAL
);
2396 if (ipv4_is_lbcast(fl4
->daddr
))
2397 type
= RTN_BROADCAST
;
2398 else if (ipv4_is_multicast(fl4
->daddr
))
2399 type
= RTN_MULTICAST
;
2400 else if (ipv4_is_zeronet(fl4
->daddr
))
2401 return ERR_PTR(-EINVAL
);
2403 if (dev_out
->flags
& IFF_LOOPBACK
)
2404 flags
|= RTCF_LOCAL
;
2406 in_dev
= __in_dev_get_rcu(dev_out
);
2408 return ERR_PTR(-EINVAL
);
2410 if (type
== RTN_BROADCAST
) {
2411 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2413 } else if (type
== RTN_MULTICAST
) {
2414 flags
|= RTCF_MULTICAST
| RTCF_LOCAL
;
2415 if (!ip_check_mc_rcu(in_dev
, fl4
->daddr
, fl4
->saddr
,
2417 flags
&= ~RTCF_LOCAL
;
2418 /* If multicast route do not exist use
2419 * default one, but do not gateway in this case.
2422 if (fi
&& res
->prefixlen
< 4)
2426 rth
= rt_dst_alloc(dev_out
,
2427 IN_DEV_CONF_GET(in_dev
, NOPOLICY
),
2428 IN_DEV_CONF_GET(in_dev
, NOXFRM
));
2430 return ERR_PTR(-ENOBUFS
);
2432 rth
->dst
.output
= ip_output
;
2434 rth
->rt_key_dst
= orig_daddr
;
2435 rth
->rt_key_src
= orig_saddr
;
2436 rth
->rt_genid
= rt_genid(dev_net(dev_out
));
2437 rth
->rt_flags
= flags
;
2438 rth
->rt_type
= type
;
2439 rth
->rt_key_tos
= tos
;
2440 rth
->rt_dst
= fl4
->daddr
;
2441 rth
->rt_src
= fl4
->saddr
;
2442 rth
->rt_route_iif
= 0;
2443 rth
->rt_iif
= orig_oif
? : dev_out
->ifindex
;
2444 rth
->rt_oif
= orig_oif
;
2445 rth
->rt_mark
= fl4
->flowi4_mark
;
2446 rth
->rt_gateway
= fl4
->daddr
;
2447 rth
->rt_spec_dst
= fl4
->saddr
;
2448 rth
->rt_peer_genid
= 0;
2452 RT_CACHE_STAT_INC(out_slow_tot
);
2454 if (flags
& RTCF_LOCAL
) {
2455 rth
->dst
.input
= ip_local_deliver
;
2456 rth
->rt_spec_dst
= fl4
->daddr
;
2458 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2459 rth
->rt_spec_dst
= fl4
->saddr
;
2460 if (flags
& RTCF_LOCAL
&&
2461 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2462 rth
->dst
.output
= ip_mc_output
;
2463 RT_CACHE_STAT_INC(out_slow_mc
);
2465 #ifdef CONFIG_IP_MROUTE
2466 if (type
== RTN_MULTICAST
) {
2467 if (IN_DEV_MFORWARD(in_dev
) &&
2468 !ipv4_is_local_multicast(fl4
->daddr
)) {
2469 rth
->dst
.input
= ip_mr_input
;
2470 rth
->dst
.output
= ip_mc_output
;
2476 rt_set_nexthop(rth
, fl4
, res
, fi
, type
, 0);
2482 * Major route resolver routine.
2483 * called with rcu_read_lock();
2486 static struct rtable
*ip_route_output_slow(struct net
*net
, struct flowi4
*fl4
)
2488 struct net_device
*dev_out
= NULL
;
2489 u32 tos
= RT_FL_TOS(fl4
);
2490 unsigned int flags
= 0;
2491 struct fib_result res
;
2498 #ifdef CONFIG_IP_MULTIPLE_TABLES
2502 orig_daddr
= fl4
->daddr
;
2503 orig_saddr
= fl4
->saddr
;
2504 orig_oif
= fl4
->flowi4_oif
;
2506 fl4
->flowi4_iif
= net
->loopback_dev
->ifindex
;
2507 fl4
->flowi4_tos
= tos
& IPTOS_RT_MASK
;
2508 fl4
->flowi4_scope
= ((tos
& RTO_ONLINK
) ?
2509 RT_SCOPE_LINK
: RT_SCOPE_UNIVERSE
);
2513 rth
= ERR_PTR(-EINVAL
);
2514 if (ipv4_is_multicast(fl4
->saddr
) ||
2515 ipv4_is_lbcast(fl4
->saddr
) ||
2516 ipv4_is_zeronet(fl4
->saddr
))
2519 /* I removed check for oif == dev_out->oif here.
2520 It was wrong for two reasons:
2521 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2522 is assigned to multiple interfaces.
2523 2. Moreover, we are allowed to send packets with saddr
2524 of another iface. --ANK
2527 if (fl4
->flowi4_oif
== 0 &&
2528 (ipv4_is_multicast(fl4
->daddr
) ||
2529 ipv4_is_lbcast(fl4
->daddr
))) {
2530 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2531 dev_out
= __ip_dev_find(net
, fl4
->saddr
, false);
2532 if (dev_out
== NULL
)
2535 /* Special hack: user can direct multicasts
2536 and limited broadcast via necessary interface
2537 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2538 This hack is not just for fun, it allows
2539 vic,vat and friends to work.
2540 They bind socket to loopback, set ttl to zero
2541 and expect that it will work.
2542 From the viewpoint of routing cache they are broken,
2543 because we are not allowed to build multicast path
2544 with loopback source addr (look, routing cache
2545 cannot know, that ttl is zero, so that packet
2546 will not leave this host and route is valid).
2547 Luckily, this hack is good workaround.
2550 fl4
->flowi4_oif
= dev_out
->ifindex
;
2554 if (!(fl4
->flowi4_flags
& FLOWI_FLAG_ANYSRC
)) {
2555 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2556 if (!__ip_dev_find(net
, fl4
->saddr
, false))
2562 if (fl4
->flowi4_oif
) {
2563 dev_out
= dev_get_by_index_rcu(net
, fl4
->flowi4_oif
);
2564 rth
= ERR_PTR(-ENODEV
);
2565 if (dev_out
== NULL
)
2568 /* RACE: Check return value of inet_select_addr instead. */
2569 if (!(dev_out
->flags
& IFF_UP
) || !__in_dev_get_rcu(dev_out
)) {
2570 rth
= ERR_PTR(-ENETUNREACH
);
2573 if (ipv4_is_local_multicast(fl4
->daddr
) ||
2574 ipv4_is_lbcast(fl4
->daddr
)) {
2576 fl4
->saddr
= inet_select_addr(dev_out
, 0,
2581 if (ipv4_is_multicast(fl4
->daddr
))
2582 fl4
->saddr
= inet_select_addr(dev_out
, 0,
2584 else if (!fl4
->daddr
)
2585 fl4
->saddr
= inet_select_addr(dev_out
, 0,
2591 fl4
->daddr
= fl4
->saddr
;
2593 fl4
->daddr
= fl4
->saddr
= htonl(INADDR_LOOPBACK
);
2594 dev_out
= net
->loopback_dev
;
2595 fl4
->flowi4_oif
= net
->loopback_dev
->ifindex
;
2596 res
.type
= RTN_LOCAL
;
2597 flags
|= RTCF_LOCAL
;
2601 if (fib_lookup(net
, fl4
, &res
)) {
2603 if (fl4
->flowi4_oif
) {
2604 /* Apparently, routing tables are wrong. Assume,
2605 that the destination is on link.
2608 Because we are allowed to send to iface
2609 even if it has NO routes and NO assigned
2610 addresses. When oif is specified, routing
2611 tables are looked up with only one purpose:
2612 to catch if destination is gatewayed, rather than
2613 direct. Moreover, if MSG_DONTROUTE is set,
2614 we send packet, ignoring both routing tables
2615 and ifaddr state. --ANK
2618 We could make it even if oif is unknown,
2619 likely IPv6, but we do not.
2622 if (fl4
->saddr
== 0)
2623 fl4
->saddr
= inet_select_addr(dev_out
, 0,
2625 res
.type
= RTN_UNICAST
;
2628 rth
= ERR_PTR(-ENETUNREACH
);
2632 if (res
.type
== RTN_LOCAL
) {
2634 if (res
.fi
->fib_prefsrc
)
2635 fl4
->saddr
= res
.fi
->fib_prefsrc
;
2637 fl4
->saddr
= fl4
->daddr
;
2639 dev_out
= net
->loopback_dev
;
2640 fl4
->flowi4_oif
= dev_out
->ifindex
;
2642 flags
|= RTCF_LOCAL
;
2646 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2647 if (res
.fi
->fib_nhs
> 1 && fl4
->flowi4_oif
== 0)
2648 fib_select_multipath(&res
);
2651 if (!res
.prefixlen
&&
2652 res
.table
->tb_num_default
> 1 &&
2653 res
.type
== RTN_UNICAST
&& !fl4
->flowi4_oif
)
2654 fib_select_default(&res
);
2657 fl4
->saddr
= FIB_RES_PREFSRC(net
, res
);
2659 dev_out
= FIB_RES_DEV(res
);
2660 fl4
->flowi4_oif
= dev_out
->ifindex
;
2664 rth
= __mkroute_output(&res
, fl4
, orig_daddr
, orig_saddr
, orig_oif
,
2669 hash
= rt_hash(orig_daddr
, orig_saddr
, orig_oif
,
2670 rt_genid(dev_net(dev_out
)));
2671 rth
= rt_intern_hash(hash
, rth
, NULL
, orig_oif
);
2679 struct rtable
*__ip_route_output_key(struct net
*net
, struct flowi4
*flp4
)
2684 if (!rt_caching(net
))
2687 hash
= rt_hash(flp4
->daddr
, flp4
->saddr
, flp4
->flowi4_oif
, rt_genid(net
));
2690 for (rth
= rcu_dereference_bh(rt_hash_table
[hash
].chain
); rth
;
2691 rth
= rcu_dereference_bh(rth
->dst
.rt_next
)) {
2692 if (rth
->rt_key_dst
== flp4
->daddr
&&
2693 rth
->rt_key_src
== flp4
->saddr
&&
2694 rt_is_output_route(rth
) &&
2695 rth
->rt_oif
== flp4
->flowi4_oif
&&
2696 rth
->rt_mark
== flp4
->flowi4_mark
&&
2697 !((rth
->rt_key_tos
^ flp4
->flowi4_tos
) &
2698 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2699 net_eq(dev_net(rth
->dst
.dev
), net
) &&
2700 !rt_is_expired(rth
)) {
2701 dst_use(&rth
->dst
, jiffies
);
2702 RT_CACHE_STAT_INC(out_hit
);
2703 rcu_read_unlock_bh();
2705 flp4
->saddr
= rth
->rt_src
;
2707 flp4
->daddr
= rth
->rt_dst
;
2710 RT_CACHE_STAT_INC(out_hlist_search
);
2712 rcu_read_unlock_bh();
2715 return ip_route_output_slow(net
, flp4
);
2717 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2719 static struct dst_entry
*ipv4_blackhole_dst_check(struct dst_entry
*dst
, u32 cookie
)
2724 static unsigned int ipv4_blackhole_default_mtu(const struct dst_entry
*dst
)
2729 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2733 static u32
*ipv4_rt_blackhole_cow_metrics(struct dst_entry
*dst
,
2739 static struct dst_ops ipv4_dst_blackhole_ops
= {
2741 .protocol
= cpu_to_be16(ETH_P_IP
),
2742 .destroy
= ipv4_dst_destroy
,
2743 .check
= ipv4_blackhole_dst_check
,
2744 .default_mtu
= ipv4_blackhole_default_mtu
,
2745 .default_advmss
= ipv4_default_advmss
,
2746 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2747 .cow_metrics
= ipv4_rt_blackhole_cow_metrics
,
2748 .neigh_lookup
= ipv4_neigh_lookup
,
2751 struct dst_entry
*ipv4_blackhole_route(struct net
*net
, struct dst_entry
*dst_orig
)
2753 struct rtable
*rt
= dst_alloc(&ipv4_dst_blackhole_ops
, NULL
, 1, 0, 0);
2754 struct rtable
*ort
= (struct rtable
*) dst_orig
;
2757 struct dst_entry
*new = &rt
->dst
;
2760 new->input
= dst_discard
;
2761 new->output
= dst_discard
;
2762 dst_copy_metrics(new, &ort
->dst
);
2764 new->dev
= ort
->dst
.dev
;
2768 rt
->rt_key_dst
= ort
->rt_key_dst
;
2769 rt
->rt_key_src
= ort
->rt_key_src
;
2770 rt
->rt_key_tos
= ort
->rt_key_tos
;
2771 rt
->rt_route_iif
= ort
->rt_route_iif
;
2772 rt
->rt_iif
= ort
->rt_iif
;
2773 rt
->rt_oif
= ort
->rt_oif
;
2774 rt
->rt_mark
= ort
->rt_mark
;
2776 rt
->rt_genid
= rt_genid(net
);
2777 rt
->rt_flags
= ort
->rt_flags
;
2778 rt
->rt_type
= ort
->rt_type
;
2779 rt
->rt_dst
= ort
->rt_dst
;
2780 rt
->rt_src
= ort
->rt_src
;
2781 rt
->rt_gateway
= ort
->rt_gateway
;
2782 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2783 rt
->peer
= ort
->peer
;
2785 atomic_inc(&rt
->peer
->refcnt
);
2788 atomic_inc(&rt
->fi
->fib_clntref
);
2793 dst_release(dst_orig
);
2795 return rt
? &rt
->dst
: ERR_PTR(-ENOMEM
);
2798 struct rtable
*ip_route_output_flow(struct net
*net
, struct flowi4
*flp4
,
2801 struct rtable
*rt
= __ip_route_output_key(net
, flp4
);
2806 if (flp4
->flowi4_proto
)
2807 rt
= (struct rtable
*) xfrm_lookup(net
, &rt
->dst
,
2808 flowi4_to_flowi(flp4
),
2813 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2815 static int rt_fill_info(struct net
*net
,
2816 struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2817 int nowait
, unsigned int flags
)
2819 struct rtable
*rt
= skb_rtable(skb
);
2821 struct nlmsghdr
*nlh
;
2823 const struct inet_peer
*peer
= rt
->peer
;
2824 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2826 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2830 r
= nlmsg_data(nlh
);
2831 r
->rtm_family
= AF_INET
;
2832 r
->rtm_dst_len
= 32;
2834 r
->rtm_tos
= rt
->rt_key_tos
;
2835 r
->rtm_table
= RT_TABLE_MAIN
;
2836 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2837 r
->rtm_type
= rt
->rt_type
;
2838 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2839 r
->rtm_protocol
= RTPROT_UNSPEC
;
2840 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2841 if (rt
->rt_flags
& RTCF_NOTIFY
)
2842 r
->rtm_flags
|= RTM_F_NOTIFY
;
2844 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2846 if (rt
->rt_key_src
) {
2847 r
->rtm_src_len
= 32;
2848 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->rt_key_src
);
2851 NLA_PUT_U32(skb
, RTA_OIF
, rt
->dst
.dev
->ifindex
);
2852 #ifdef CONFIG_IP_ROUTE_CLASSID
2853 if (rt
->dst
.tclassid
)
2854 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->dst
.tclassid
);
2856 if (rt_is_input_route(rt
))
2857 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2858 else if (rt
->rt_src
!= rt
->rt_key_src
)
2859 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2861 if (rt
->rt_dst
!= rt
->rt_gateway
)
2862 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2864 if (rtnetlink_put_metrics(skb
, dst_metrics_ptr(&rt
->dst
)) < 0)
2865 goto nla_put_failure
;
2868 NLA_PUT_BE32(skb
, RTA_MARK
, rt
->rt_mark
);
2870 error
= rt
->dst
.error
;
2872 inet_peer_refcheck(rt
->peer
);
2873 id
= atomic_read(&peer
->ip_id_count
) & 0xffff;
2874 if (peer
->tcp_ts_stamp
) {
2876 tsage
= get_seconds() - peer
->tcp_ts_stamp
;
2878 expires
= ACCESS_ONCE(peer
->pmtu_expires
);
2883 if (rt_is_input_route(rt
)) {
2884 #ifdef CONFIG_IP_MROUTE
2885 __be32 dst
= rt
->rt_dst
;
2887 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2888 IPV4_DEVCONF_ALL(net
, MC_FORWARDING
)) {
2889 int err
= ipmr_get_route(net
, skb
,
2890 rt
->rt_src
, rt
->rt_dst
,
2896 goto nla_put_failure
;
2898 if (err
== -EMSGSIZE
)
2899 goto nla_put_failure
;
2905 NLA_PUT_U32(skb
, RTA_IIF
, rt
->rt_iif
);
2908 if (rtnl_put_cacheinfo(skb
, &rt
->dst
, id
, ts
, tsage
,
2909 expires
, error
) < 0)
2910 goto nla_put_failure
;
2912 return nlmsg_end(skb
, nlh
);
2915 nlmsg_cancel(skb
, nlh
);
2919 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2921 struct net
*net
= sock_net(in_skb
->sk
);
2923 struct nlattr
*tb
[RTA_MAX
+1];
2924 struct rtable
*rt
= NULL
;
2930 struct sk_buff
*skb
;
2932 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2936 rtm
= nlmsg_data(nlh
);
2938 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2944 /* Reserve room for dummy headers, this skb can pass
2945 through good chunk of routing engine.
2947 skb_reset_mac_header(skb
);
2948 skb_reset_network_header(skb
);
2950 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2951 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2952 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2954 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2955 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2956 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2957 mark
= tb
[RTA_MARK
] ? nla_get_u32(tb
[RTA_MARK
]) : 0;
2960 struct net_device
*dev
;
2962 dev
= __dev_get_by_index(net
, iif
);
2968 skb
->protocol
= htons(ETH_P_IP
);
2972 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2975 rt
= skb_rtable(skb
);
2976 if (err
== 0 && rt
->dst
.error
)
2977 err
= -rt
->dst
.error
;
2979 struct flowi4 fl4
= {
2982 .flowi4_tos
= rtm
->rtm_tos
,
2983 .flowi4_oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2984 .flowi4_mark
= mark
,
2986 rt
= ip_route_output_key(net
, &fl4
);
2996 skb_dst_set(skb
, &rt
->dst
);
2997 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2998 rt
->rt_flags
|= RTCF_NOTIFY
;
3000 err
= rt_fill_info(net
, skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
3001 RTM_NEWROUTE
, 0, 0);
3005 err
= rtnl_unicast(skb
, net
, NETLINK_CB(in_skb
).pid
);
3014 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
3021 net
= sock_net(skb
->sk
);
3026 s_idx
= idx
= cb
->args
[1];
3027 for (h
= s_h
; h
<= rt_hash_mask
; h
++, s_idx
= 0) {
3028 if (!rt_hash_table
[h
].chain
)
3031 for (rt
= rcu_dereference_bh(rt_hash_table
[h
].chain
), idx
= 0; rt
;
3032 rt
= rcu_dereference_bh(rt
->dst
.rt_next
), idx
++) {
3033 if (!net_eq(dev_net(rt
->dst
.dev
), net
) || idx
< s_idx
)
3035 if (rt_is_expired(rt
))
3037 skb_dst_set_noref(skb
, &rt
->dst
);
3038 if (rt_fill_info(net
, skb
, NETLINK_CB(cb
->skb
).pid
,
3039 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
3040 1, NLM_F_MULTI
) <= 0) {
3042 rcu_read_unlock_bh();
3047 rcu_read_unlock_bh();
3056 void ip_rt_multicast_event(struct in_device
*in_dev
)
3058 rt_cache_flush(dev_net(in_dev
->dev
), 0);
3061 #ifdef CONFIG_SYSCTL
3062 static int ipv4_sysctl_rtcache_flush(ctl_table
*__ctl
, int write
,
3063 void __user
*buffer
,
3064 size_t *lenp
, loff_t
*ppos
)
3071 memcpy(&ctl
, __ctl
, sizeof(ctl
));
3072 ctl
.data
= &flush_delay
;
3073 proc_dointvec(&ctl
, write
, buffer
, lenp
, ppos
);
3075 net
= (struct net
*)__ctl
->extra1
;
3076 rt_cache_flush(net
, flush_delay
);
3083 static ctl_table ipv4_route_table
[] = {
3085 .procname
= "gc_thresh",
3086 .data
= &ipv4_dst_ops
.gc_thresh
,
3087 .maxlen
= sizeof(int),
3089 .proc_handler
= proc_dointvec
,
3092 .procname
= "max_size",
3093 .data
= &ip_rt_max_size
,
3094 .maxlen
= sizeof(int),
3096 .proc_handler
= proc_dointvec
,
3099 /* Deprecated. Use gc_min_interval_ms */
3101 .procname
= "gc_min_interval",
3102 .data
= &ip_rt_gc_min_interval
,
3103 .maxlen
= sizeof(int),
3105 .proc_handler
= proc_dointvec_jiffies
,
3108 .procname
= "gc_min_interval_ms",
3109 .data
= &ip_rt_gc_min_interval
,
3110 .maxlen
= sizeof(int),
3112 .proc_handler
= proc_dointvec_ms_jiffies
,
3115 .procname
= "gc_timeout",
3116 .data
= &ip_rt_gc_timeout
,
3117 .maxlen
= sizeof(int),
3119 .proc_handler
= proc_dointvec_jiffies
,
3122 .procname
= "gc_interval",
3123 .data
= &ip_rt_gc_interval
,
3124 .maxlen
= sizeof(int),
3126 .proc_handler
= proc_dointvec_jiffies
,
3129 .procname
= "redirect_load",
3130 .data
= &ip_rt_redirect_load
,
3131 .maxlen
= sizeof(int),
3133 .proc_handler
= proc_dointvec
,
3136 .procname
= "redirect_number",
3137 .data
= &ip_rt_redirect_number
,
3138 .maxlen
= sizeof(int),
3140 .proc_handler
= proc_dointvec
,
3143 .procname
= "redirect_silence",
3144 .data
= &ip_rt_redirect_silence
,
3145 .maxlen
= sizeof(int),
3147 .proc_handler
= proc_dointvec
,
3150 .procname
= "error_cost",
3151 .data
= &ip_rt_error_cost
,
3152 .maxlen
= sizeof(int),
3154 .proc_handler
= proc_dointvec
,
3157 .procname
= "error_burst",
3158 .data
= &ip_rt_error_burst
,
3159 .maxlen
= sizeof(int),
3161 .proc_handler
= proc_dointvec
,
3164 .procname
= "gc_elasticity",
3165 .data
= &ip_rt_gc_elasticity
,
3166 .maxlen
= sizeof(int),
3168 .proc_handler
= proc_dointvec
,
3171 .procname
= "mtu_expires",
3172 .data
= &ip_rt_mtu_expires
,
3173 .maxlen
= sizeof(int),
3175 .proc_handler
= proc_dointvec_jiffies
,
3178 .procname
= "min_pmtu",
3179 .data
= &ip_rt_min_pmtu
,
3180 .maxlen
= sizeof(int),
3182 .proc_handler
= proc_dointvec
,
3185 .procname
= "min_adv_mss",
3186 .data
= &ip_rt_min_advmss
,
3187 .maxlen
= sizeof(int),
3189 .proc_handler
= proc_dointvec
,
3194 static struct ctl_table empty
[1];
3196 static struct ctl_table ipv4_skeleton
[] =
3198 { .procname
= "route",
3199 .mode
= 0555, .child
= ipv4_route_table
},
3200 { .procname
= "neigh",
3201 .mode
= 0555, .child
= empty
},
3205 static __net_initdata
struct ctl_path ipv4_path
[] = {
3206 { .procname
= "net", },
3207 { .procname
= "ipv4", },
3211 static struct ctl_table ipv4_route_flush_table
[] = {
3213 .procname
= "flush",
3214 .maxlen
= sizeof(int),
3216 .proc_handler
= ipv4_sysctl_rtcache_flush
,
3221 static __net_initdata
struct ctl_path ipv4_route_path
[] = {
3222 { .procname
= "net", },
3223 { .procname
= "ipv4", },
3224 { .procname
= "route", },
3228 static __net_init
int sysctl_route_net_init(struct net
*net
)
3230 struct ctl_table
*tbl
;
3232 tbl
= ipv4_route_flush_table
;
3233 if (!net_eq(net
, &init_net
)) {
3234 tbl
= kmemdup(tbl
, sizeof(ipv4_route_flush_table
), GFP_KERNEL
);
3238 tbl
[0].extra1
= net
;
3240 net
->ipv4
.route_hdr
=
3241 register_net_sysctl_table(net
, ipv4_route_path
, tbl
);
3242 if (net
->ipv4
.route_hdr
== NULL
)
3247 if (tbl
!= ipv4_route_flush_table
)
3253 static __net_exit
void sysctl_route_net_exit(struct net
*net
)
3255 struct ctl_table
*tbl
;
3257 tbl
= net
->ipv4
.route_hdr
->ctl_table_arg
;
3258 unregister_net_sysctl_table(net
->ipv4
.route_hdr
);
3259 BUG_ON(tbl
== ipv4_route_flush_table
);
3263 static __net_initdata
struct pernet_operations sysctl_route_ops
= {
3264 .init
= sysctl_route_net_init
,
3265 .exit
= sysctl_route_net_exit
,
3269 static __net_init
int rt_genid_init(struct net
*net
)
3271 get_random_bytes(&net
->ipv4
.rt_genid
,
3272 sizeof(net
->ipv4
.rt_genid
));
3273 get_random_bytes(&net
->ipv4
.dev_addr_genid
,
3274 sizeof(net
->ipv4
.dev_addr_genid
));
3278 static __net_initdata
struct pernet_operations rt_genid_ops
= {
3279 .init
= rt_genid_init
,
3283 #ifdef CONFIG_IP_ROUTE_CLASSID
3284 struct ip_rt_acct __percpu
*ip_rt_acct __read_mostly
;
3285 #endif /* CONFIG_IP_ROUTE_CLASSID */
3287 static __initdata
unsigned long rhash_entries
;
3288 static int __init
set_rhash_entries(char *str
)
3292 rhash_entries
= simple_strtoul(str
, &str
, 0);
3295 __setup("rhash_entries=", set_rhash_entries
);
3297 int __init
ip_rt_init(void)
3301 #ifdef CONFIG_IP_ROUTE_CLASSID
3302 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
), __alignof__(struct ip_rt_acct
));
3304 panic("IP: failed to allocate ip_rt_acct\n");
3307 ipv4_dst_ops
.kmem_cachep
=
3308 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3309 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3311 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3313 if (dst_entries_init(&ipv4_dst_ops
) < 0)
3314 panic("IP: failed to allocate ipv4_dst_ops counter\n");
3316 if (dst_entries_init(&ipv4_dst_blackhole_ops
) < 0)
3317 panic("IP: failed to allocate ipv4_dst_blackhole_ops counter\n");
3319 rt_hash_table
= (struct rt_hash_bucket
*)
3320 alloc_large_system_hash("IP route cache",
3321 sizeof(struct rt_hash_bucket
),
3323 (totalram_pages
>= 128 * 1024) ?
3328 rhash_entries
? 0 : 512 * 1024);
3329 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3330 rt_hash_lock_init();
3332 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3333 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3338 if (ip_rt_proc_init())
3339 printk(KERN_ERR
"Unable to create route proc files\n");
3342 xfrm4_init(ip_rt_max_size
);
3344 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
, NULL
);
3346 #ifdef CONFIG_SYSCTL
3347 register_pernet_subsys(&sysctl_route_ops
);
3349 register_pernet_subsys(&rt_genid_ops
);
3353 #ifdef CONFIG_SYSCTL
3355 * We really need to sanitize the damn ipv4 init order, then all
3356 * this nonsense will go away.
3358 void __init
ip_static_sysctl_init(void)
3360 register_sysctl_paths(ipv4_path
, ipv4_skeleton
);