MIPS: Alchemy: devboards: factor out PB1200 IRQ cascade code.
[linux-2.6/linux-mips.git] / fs / gfs2 / aops.c
blob7b8da941526749c9b4a566bf1d3fe7b76f417dd8
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 unsigned int from, unsigned int to)
42 struct buffer_head *head = page_buffers(page);
43 unsigned int bsize = head->b_size;
44 struct buffer_head *bh;
45 unsigned int start, end;
47 for (bh = head, start = 0; bh != head || !start;
48 bh = bh->b_this_page, start = end) {
49 end = start + bsize;
50 if (end <= from || start >= to)
51 continue;
52 if (gfs2_is_jdata(ip))
53 set_buffer_uptodate(bh);
54 gfs2_trans_add_bh(ip->i_gl, bh, 0);
58 /**
59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60 * @inode: The inode
61 * @lblock: The block number to look up
62 * @bh_result: The buffer head to return the result in
63 * @create: Non-zero if we may add block to the file
65 * Returns: errno
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 struct buffer_head *bh_result, int create)
71 int error;
73 error = gfs2_block_map(inode, lblock, bh_result, 0);
74 if (error)
75 return error;
76 if (!buffer_mapped(bh_result))
77 return -EIO;
78 return 0;
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 struct buffer_head *bh_result, int create)
84 return gfs2_block_map(inode, lblock, bh_result, 0);
87 /**
88 * gfs2_writepage_common - Common bits of writepage
89 * @page: The page to be written
90 * @wbc: The writeback control
92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95 static int gfs2_writepage_common(struct page *page,
96 struct writeback_control *wbc)
98 struct inode *inode = page->mapping->host;
99 struct gfs2_inode *ip = GFS2_I(inode);
100 struct gfs2_sbd *sdp = GFS2_SB(inode);
101 loff_t i_size = i_size_read(inode);
102 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 unsigned offset;
105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 goto out;
107 if (current->journal_info)
108 goto redirty;
109 /* Is the page fully outside i_size? (truncate in progress) */
110 offset = i_size & (PAGE_CACHE_SIZE-1);
111 if (page->index > end_index || (page->index == end_index && !offset)) {
112 page->mapping->a_ops->invalidatepage(page, 0);
113 goto out;
115 return 1;
116 redirty:
117 redirty_page_for_writepage(wbc, page);
118 out:
119 unlock_page(page);
120 return 0;
124 * gfs2_writeback_writepage - Write page for writeback mappings
125 * @page: The page
126 * @wbc: The writeback control
130 static int gfs2_writeback_writepage(struct page *page,
131 struct writeback_control *wbc)
133 int ret;
135 ret = gfs2_writepage_common(page, wbc);
136 if (ret <= 0)
137 return ret;
139 ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 if (ret == -EAGAIN)
141 ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 return ret;
146 * gfs2_ordered_writepage - Write page for ordered data files
147 * @page: The page to write
148 * @wbc: The writeback control
152 static int gfs2_ordered_writepage(struct page *page,
153 struct writeback_control *wbc)
155 struct inode *inode = page->mapping->host;
156 struct gfs2_inode *ip = GFS2_I(inode);
157 int ret;
159 ret = gfs2_writepage_common(page, wbc);
160 if (ret <= 0)
161 return ret;
163 if (!page_has_buffers(page)) {
164 create_empty_buffers(page, inode->i_sb->s_blocksize,
165 (1 << BH_Dirty)|(1 << BH_Uptodate));
167 gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
172 * __gfs2_jdata_writepage - The core of jdata writepage
173 * @page: The page to write
174 * @wbc: The writeback control
176 * This is shared between writepage and writepages and implements the
177 * core of the writepage operation. If a transaction is required then
178 * PageChecked will have been set and the transaction will have
179 * already been started before this is called.
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
184 struct inode *inode = page->mapping->host;
185 struct gfs2_inode *ip = GFS2_I(inode);
186 struct gfs2_sbd *sdp = GFS2_SB(inode);
188 if (PageChecked(page)) {
189 ClearPageChecked(page);
190 if (!page_has_buffers(page)) {
191 create_empty_buffers(page, inode->i_sb->s_blocksize,
192 (1 << BH_Dirty)|(1 << BH_Uptodate));
194 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
196 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
200 * gfs2_jdata_writepage - Write complete page
201 * @page: Page to write
203 * Returns: errno
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
209 struct inode *inode = page->mapping->host;
210 struct gfs2_sbd *sdp = GFS2_SB(inode);
211 int ret;
212 int done_trans = 0;
214 if (PageChecked(page)) {
215 if (wbc->sync_mode != WB_SYNC_ALL)
216 goto out_ignore;
217 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 if (ret)
219 goto out_ignore;
220 done_trans = 1;
222 ret = gfs2_writepage_common(page, wbc);
223 if (ret > 0)
224 ret = __gfs2_jdata_writepage(page, wbc);
225 if (done_trans)
226 gfs2_trans_end(sdp);
227 return ret;
229 out_ignore:
230 redirty_page_for_writepage(wbc, page);
231 unlock_page(page);
232 return 0;
236 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237 * @mapping: The mapping to write
238 * @wbc: Write-back control
240 * For the data=writeback case we can already ignore buffer heads
241 * and write whole extents at once. This is a big reduction in the
242 * number of I/O requests we send and the bmap calls we make in this case.
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 struct writeback_control *wbc)
247 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
251 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252 * @mapping: The mapping
253 * @wbc: The writeback control
254 * @writepage: The writepage function to call for each page
255 * @pvec: The vector of pages
256 * @nr_pages: The number of pages to write
258 * Returns: non-zero if loop should terminate, zero otherwise
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 struct writeback_control *wbc,
263 struct pagevec *pvec,
264 int nr_pages, pgoff_t end)
266 struct inode *inode = mapping->host;
267 struct gfs2_sbd *sdp = GFS2_SB(inode);
268 loff_t i_size = i_size_read(inode);
269 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 int i;
273 int ret;
275 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
276 if (ret < 0)
277 return ret;
279 for(i = 0; i < nr_pages; i++) {
280 struct page *page = pvec->pages[i];
282 lock_page(page);
284 if (unlikely(page->mapping != mapping)) {
285 unlock_page(page);
286 continue;
289 if (!wbc->range_cyclic && page->index > end) {
290 ret = 1;
291 unlock_page(page);
292 continue;
295 if (wbc->sync_mode != WB_SYNC_NONE)
296 wait_on_page_writeback(page);
298 if (PageWriteback(page) ||
299 !clear_page_dirty_for_io(page)) {
300 unlock_page(page);
301 continue;
304 /* Is the page fully outside i_size? (truncate in progress) */
305 if (page->index > end_index || (page->index == end_index && !offset)) {
306 page->mapping->a_ops->invalidatepage(page, 0);
307 unlock_page(page);
308 continue;
311 ret = __gfs2_jdata_writepage(page, wbc);
313 if (ret || (--(wbc->nr_to_write) <= 0))
314 ret = 1;
316 gfs2_trans_end(sdp);
317 return ret;
321 * gfs2_write_cache_jdata - Like write_cache_pages but different
322 * @mapping: The mapping to write
323 * @wbc: The writeback control
324 * @writepage: The writepage function to call
325 * @data: The data to pass to writepage
327 * The reason that we use our own function here is that we need to
328 * start transactions before we grab page locks. This allows us
329 * to get the ordering right.
332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333 struct writeback_control *wbc)
335 int ret = 0;
336 int done = 0;
337 struct pagevec pvec;
338 int nr_pages;
339 pgoff_t index;
340 pgoff_t end;
341 int scanned = 0;
342 int range_whole = 0;
344 pagevec_init(&pvec, 0);
345 if (wbc->range_cyclic) {
346 index = mapping->writeback_index; /* Start from prev offset */
347 end = -1;
348 } else {
349 index = wbc->range_start >> PAGE_CACHE_SHIFT;
350 end = wbc->range_end >> PAGE_CACHE_SHIFT;
351 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
352 range_whole = 1;
353 scanned = 1;
356 retry:
357 while (!done && (index <= end) &&
358 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
361 scanned = 1;
362 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
363 if (ret)
364 done = 1;
365 if (ret > 0)
366 ret = 0;
368 pagevec_release(&pvec);
369 cond_resched();
372 if (!scanned && !done) {
374 * We hit the last page and there is more work to be done: wrap
375 * back to the start of the file
377 scanned = 1;
378 index = 0;
379 goto retry;
382 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
383 mapping->writeback_index = index;
384 return ret;
389 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
390 * @mapping: The mapping to write
391 * @wbc: The writeback control
395 static int gfs2_jdata_writepages(struct address_space *mapping,
396 struct writeback_control *wbc)
398 struct gfs2_inode *ip = GFS2_I(mapping->host);
399 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
400 int ret;
402 ret = gfs2_write_cache_jdata(mapping, wbc);
403 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
404 gfs2_log_flush(sdp, ip->i_gl);
405 ret = gfs2_write_cache_jdata(mapping, wbc);
407 return ret;
411 * stuffed_readpage - Fill in a Linux page with stuffed file data
412 * @ip: the inode
413 * @page: the page
415 * Returns: errno
418 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
420 struct buffer_head *dibh;
421 void *kaddr;
422 int error;
425 * Due to the order of unstuffing files and ->fault(), we can be
426 * asked for a zero page in the case of a stuffed file being extended,
427 * so we need to supply one here. It doesn't happen often.
429 if (unlikely(page->index)) {
430 zero_user(page, 0, PAGE_CACHE_SIZE);
431 SetPageUptodate(page);
432 return 0;
435 error = gfs2_meta_inode_buffer(ip, &dibh);
436 if (error)
437 return error;
439 kaddr = kmap_atomic(page, KM_USER0);
440 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
441 ip->i_disksize);
442 memset(kaddr + ip->i_disksize, 0, PAGE_CACHE_SIZE - ip->i_disksize);
443 kunmap_atomic(kaddr, KM_USER0);
444 flush_dcache_page(page);
445 brelse(dibh);
446 SetPageUptodate(page);
448 return 0;
453 * __gfs2_readpage - readpage
454 * @file: The file to read a page for
455 * @page: The page to read
457 * This is the core of gfs2's readpage. Its used by the internal file
458 * reading code as in that case we already hold the glock. Also its
459 * called by gfs2_readpage() once the required lock has been granted.
463 static int __gfs2_readpage(void *file, struct page *page)
465 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
466 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
467 int error;
469 if (gfs2_is_stuffed(ip)) {
470 error = stuffed_readpage(ip, page);
471 unlock_page(page);
472 } else {
473 error = mpage_readpage(page, gfs2_block_map);
476 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
477 return -EIO;
479 return error;
483 * gfs2_readpage - read a page of a file
484 * @file: The file to read
485 * @page: The page of the file
487 * This deals with the locking required. We have to unlock and
488 * relock the page in order to get the locking in the right
489 * order.
492 static int gfs2_readpage(struct file *file, struct page *page)
494 struct address_space *mapping = page->mapping;
495 struct gfs2_inode *ip = GFS2_I(mapping->host);
496 struct gfs2_holder gh;
497 int error;
499 unlock_page(page);
500 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
501 error = gfs2_glock_nq(&gh);
502 if (unlikely(error))
503 goto out;
504 error = AOP_TRUNCATED_PAGE;
505 lock_page(page);
506 if (page->mapping == mapping && !PageUptodate(page))
507 error = __gfs2_readpage(file, page);
508 else
509 unlock_page(page);
510 gfs2_glock_dq(&gh);
511 out:
512 gfs2_holder_uninit(&gh);
513 if (error && error != AOP_TRUNCATED_PAGE)
514 lock_page(page);
515 return error;
519 * gfs2_internal_read - read an internal file
520 * @ip: The gfs2 inode
521 * @ra_state: The readahead state (or NULL for no readahead)
522 * @buf: The buffer to fill
523 * @pos: The file position
524 * @size: The amount to read
528 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
529 char *buf, loff_t *pos, unsigned size)
531 struct address_space *mapping = ip->i_inode.i_mapping;
532 unsigned long index = *pos / PAGE_CACHE_SIZE;
533 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
534 unsigned copied = 0;
535 unsigned amt;
536 struct page *page;
537 void *p;
539 do {
540 amt = size - copied;
541 if (offset + size > PAGE_CACHE_SIZE)
542 amt = PAGE_CACHE_SIZE - offset;
543 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
544 if (IS_ERR(page))
545 return PTR_ERR(page);
546 p = kmap_atomic(page, KM_USER0);
547 memcpy(buf + copied, p + offset, amt);
548 kunmap_atomic(p, KM_USER0);
549 mark_page_accessed(page);
550 page_cache_release(page);
551 copied += amt;
552 index++;
553 offset = 0;
554 } while(copied < size);
555 (*pos) += size;
556 return size;
560 * gfs2_readpages - Read a bunch of pages at once
562 * Some notes:
563 * 1. This is only for readahead, so we can simply ignore any things
564 * which are slightly inconvenient (such as locking conflicts between
565 * the page lock and the glock) and return having done no I/O. Its
566 * obviously not something we'd want to do on too regular a basis.
567 * Any I/O we ignore at this time will be done via readpage later.
568 * 2. We don't handle stuffed files here we let readpage do the honours.
569 * 3. mpage_readpages() does most of the heavy lifting in the common case.
570 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
573 static int gfs2_readpages(struct file *file, struct address_space *mapping,
574 struct list_head *pages, unsigned nr_pages)
576 struct inode *inode = mapping->host;
577 struct gfs2_inode *ip = GFS2_I(inode);
578 struct gfs2_sbd *sdp = GFS2_SB(inode);
579 struct gfs2_holder gh;
580 int ret;
582 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
583 ret = gfs2_glock_nq(&gh);
584 if (unlikely(ret))
585 goto out_uninit;
586 if (!gfs2_is_stuffed(ip))
587 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
588 gfs2_glock_dq(&gh);
589 out_uninit:
590 gfs2_holder_uninit(&gh);
591 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
592 ret = -EIO;
593 return ret;
597 * gfs2_write_begin - Begin to write to a file
598 * @file: The file to write to
599 * @mapping: The mapping in which to write
600 * @pos: The file offset at which to start writing
601 * @len: Length of the write
602 * @flags: Various flags
603 * @pagep: Pointer to return the page
604 * @fsdata: Pointer to return fs data (unused by GFS2)
606 * Returns: errno
609 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
610 loff_t pos, unsigned len, unsigned flags,
611 struct page **pagep, void **fsdata)
613 struct gfs2_inode *ip = GFS2_I(mapping->host);
614 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
615 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
616 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
617 int alloc_required;
618 int error = 0;
619 struct gfs2_alloc *al;
620 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
621 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
622 unsigned to = from + len;
623 struct page *page;
625 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
626 error = gfs2_glock_nq(&ip->i_gh);
627 if (unlikely(error))
628 goto out_uninit;
629 if (&ip->i_inode == sdp->sd_rindex) {
630 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
631 GL_NOCACHE, &m_ip->i_gh);
632 if (unlikely(error)) {
633 gfs2_glock_dq(&ip->i_gh);
634 goto out_uninit;
638 error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
639 if (error)
640 goto out_unlock;
642 if (alloc_required || gfs2_is_jdata(ip))
643 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
645 if (alloc_required) {
646 al = gfs2_alloc_get(ip);
647 if (!al) {
648 error = -ENOMEM;
649 goto out_unlock;
652 error = gfs2_quota_lock_check(ip);
653 if (error)
654 goto out_alloc_put;
656 al->al_requested = data_blocks + ind_blocks;
657 error = gfs2_inplace_reserve(ip);
658 if (error)
659 goto out_qunlock;
662 rblocks = RES_DINODE + ind_blocks;
663 if (gfs2_is_jdata(ip))
664 rblocks += data_blocks ? data_blocks : 1;
665 if (ind_blocks || data_blocks)
666 rblocks += RES_STATFS + RES_QUOTA;
667 if (&ip->i_inode == sdp->sd_rindex)
668 rblocks += 2 * RES_STATFS;
670 error = gfs2_trans_begin(sdp, rblocks,
671 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
672 if (error)
673 goto out_trans_fail;
675 error = -ENOMEM;
676 flags |= AOP_FLAG_NOFS;
677 page = grab_cache_page_write_begin(mapping, index, flags);
678 *pagep = page;
679 if (unlikely(!page))
680 goto out_endtrans;
682 if (gfs2_is_stuffed(ip)) {
683 error = 0;
684 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
685 error = gfs2_unstuff_dinode(ip, page);
686 if (error == 0)
687 goto prepare_write;
688 } else if (!PageUptodate(page)) {
689 error = stuffed_readpage(ip, page);
691 goto out;
694 prepare_write:
695 error = block_prepare_write(page, from, to, gfs2_block_map);
696 out:
697 if (error == 0)
698 return 0;
700 page_cache_release(page);
701 if (pos + len > ip->i_inode.i_size)
702 vmtruncate(&ip->i_inode, ip->i_inode.i_size);
703 out_endtrans:
704 gfs2_trans_end(sdp);
705 out_trans_fail:
706 if (alloc_required) {
707 gfs2_inplace_release(ip);
708 out_qunlock:
709 gfs2_quota_unlock(ip);
710 out_alloc_put:
711 gfs2_alloc_put(ip);
713 out_unlock:
714 if (&ip->i_inode == sdp->sd_rindex) {
715 gfs2_glock_dq(&m_ip->i_gh);
716 gfs2_holder_uninit(&m_ip->i_gh);
718 gfs2_glock_dq(&ip->i_gh);
719 out_uninit:
720 gfs2_holder_uninit(&ip->i_gh);
721 return error;
725 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
726 * @inode: the rindex inode
728 static void adjust_fs_space(struct inode *inode)
730 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
731 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
732 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
733 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
734 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
735 struct buffer_head *m_bh, *l_bh;
736 u64 fs_total, new_free;
738 /* Total up the file system space, according to the latest rindex. */
739 fs_total = gfs2_ri_total(sdp);
740 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
741 return;
743 spin_lock(&sdp->sd_statfs_spin);
744 gfs2_statfs_change_in(m_sc, m_bh->b_data +
745 sizeof(struct gfs2_dinode));
746 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
747 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
748 else
749 new_free = 0;
750 spin_unlock(&sdp->sd_statfs_spin);
751 fs_warn(sdp, "File system extended by %llu blocks.\n",
752 (unsigned long long)new_free);
753 gfs2_statfs_change(sdp, new_free, new_free, 0);
755 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
756 goto out;
757 update_statfs(sdp, m_bh, l_bh);
758 brelse(l_bh);
759 out:
760 brelse(m_bh);
764 * gfs2_stuffed_write_end - Write end for stuffed files
765 * @inode: The inode
766 * @dibh: The buffer_head containing the on-disk inode
767 * @pos: The file position
768 * @len: The length of the write
769 * @copied: How much was actually copied by the VFS
770 * @page: The page
772 * This copies the data from the page into the inode block after
773 * the inode data structure itself.
775 * Returns: errno
777 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
778 loff_t pos, unsigned len, unsigned copied,
779 struct page *page)
781 struct gfs2_inode *ip = GFS2_I(inode);
782 struct gfs2_sbd *sdp = GFS2_SB(inode);
783 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
784 u64 to = pos + copied;
785 void *kaddr;
786 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
787 struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
789 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
790 kaddr = kmap_atomic(page, KM_USER0);
791 memcpy(buf + pos, kaddr + pos, copied);
792 memset(kaddr + pos + copied, 0, len - copied);
793 flush_dcache_page(page);
794 kunmap_atomic(kaddr, KM_USER0);
796 if (!PageUptodate(page))
797 SetPageUptodate(page);
798 unlock_page(page);
799 page_cache_release(page);
801 if (copied) {
802 if (inode->i_size < to) {
803 i_size_write(inode, to);
804 ip->i_disksize = inode->i_size;
806 gfs2_dinode_out(ip, di);
807 mark_inode_dirty(inode);
810 if (inode == sdp->sd_rindex) {
811 adjust_fs_space(inode);
812 ip->i_gh.gh_flags |= GL_NOCACHE;
815 brelse(dibh);
816 gfs2_trans_end(sdp);
817 if (inode == sdp->sd_rindex) {
818 gfs2_glock_dq(&m_ip->i_gh);
819 gfs2_holder_uninit(&m_ip->i_gh);
821 gfs2_glock_dq(&ip->i_gh);
822 gfs2_holder_uninit(&ip->i_gh);
823 return copied;
827 * gfs2_write_end
828 * @file: The file to write to
829 * @mapping: The address space to write to
830 * @pos: The file position
831 * @len: The length of the data
832 * @copied:
833 * @page: The page that has been written
834 * @fsdata: The fsdata (unused in GFS2)
836 * The main write_end function for GFS2. We have a separate one for
837 * stuffed files as they are slightly different, otherwise we just
838 * put our locking around the VFS provided functions.
840 * Returns: errno
843 static int gfs2_write_end(struct file *file, struct address_space *mapping,
844 loff_t pos, unsigned len, unsigned copied,
845 struct page *page, void *fsdata)
847 struct inode *inode = page->mapping->host;
848 struct gfs2_inode *ip = GFS2_I(inode);
849 struct gfs2_sbd *sdp = GFS2_SB(inode);
850 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
851 struct buffer_head *dibh;
852 struct gfs2_alloc *al = ip->i_alloc;
853 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
854 unsigned int to = from + len;
855 int ret;
857 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
859 ret = gfs2_meta_inode_buffer(ip, &dibh);
860 if (unlikely(ret)) {
861 unlock_page(page);
862 page_cache_release(page);
863 goto failed;
866 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
868 if (gfs2_is_stuffed(ip))
869 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
871 if (!gfs2_is_writeback(ip))
872 gfs2_page_add_databufs(ip, page, from, to);
874 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
875 if (ret > 0) {
876 if (inode->i_size > ip->i_disksize)
877 ip->i_disksize = inode->i_size;
878 gfs2_dinode_out(ip, dibh->b_data);
879 mark_inode_dirty(inode);
882 if (inode == sdp->sd_rindex) {
883 adjust_fs_space(inode);
884 ip->i_gh.gh_flags |= GL_NOCACHE;
887 brelse(dibh);
888 gfs2_trans_end(sdp);
889 failed:
890 if (al) {
891 gfs2_inplace_release(ip);
892 gfs2_quota_unlock(ip);
893 gfs2_alloc_put(ip);
895 if (inode == sdp->sd_rindex) {
896 gfs2_glock_dq(&m_ip->i_gh);
897 gfs2_holder_uninit(&m_ip->i_gh);
899 gfs2_glock_dq(&ip->i_gh);
900 gfs2_holder_uninit(&ip->i_gh);
901 return ret;
905 * gfs2_set_page_dirty - Page dirtying function
906 * @page: The page to dirty
908 * Returns: 1 if it dirtyed the page, or 0 otherwise
911 static int gfs2_set_page_dirty(struct page *page)
913 SetPageChecked(page);
914 return __set_page_dirty_buffers(page);
918 * gfs2_bmap - Block map function
919 * @mapping: Address space info
920 * @lblock: The block to map
922 * Returns: The disk address for the block or 0 on hole or error
925 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
927 struct gfs2_inode *ip = GFS2_I(mapping->host);
928 struct gfs2_holder i_gh;
929 sector_t dblock = 0;
930 int error;
932 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
933 if (error)
934 return 0;
936 if (!gfs2_is_stuffed(ip))
937 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
939 gfs2_glock_dq_uninit(&i_gh);
941 return dblock;
944 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
946 struct gfs2_bufdata *bd;
948 lock_buffer(bh);
949 gfs2_log_lock(sdp);
950 clear_buffer_dirty(bh);
951 bd = bh->b_private;
952 if (bd) {
953 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
954 list_del_init(&bd->bd_le.le_list);
955 else
956 gfs2_remove_from_journal(bh, current->journal_info, 0);
958 bh->b_bdev = NULL;
959 clear_buffer_mapped(bh);
960 clear_buffer_req(bh);
961 clear_buffer_new(bh);
962 gfs2_log_unlock(sdp);
963 unlock_buffer(bh);
966 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
968 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
969 struct buffer_head *bh, *head;
970 unsigned long pos = 0;
972 BUG_ON(!PageLocked(page));
973 if (offset == 0)
974 ClearPageChecked(page);
975 if (!page_has_buffers(page))
976 goto out;
978 bh = head = page_buffers(page);
979 do {
980 if (offset <= pos)
981 gfs2_discard(sdp, bh);
982 pos += bh->b_size;
983 bh = bh->b_this_page;
984 } while (bh != head);
985 out:
986 if (offset == 0)
987 try_to_release_page(page, 0);
991 * gfs2_ok_for_dio - check that dio is valid on this file
992 * @ip: The inode
993 * @rw: READ or WRITE
994 * @offset: The offset at which we are reading or writing
996 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
997 * 1 (to accept the i/o request)
999 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1002 * Should we return an error here? I can't see that O_DIRECT for
1003 * a stuffed file makes any sense. For now we'll silently fall
1004 * back to buffered I/O
1006 if (gfs2_is_stuffed(ip))
1007 return 0;
1009 if (offset >= i_size_read(&ip->i_inode))
1010 return 0;
1011 return 1;
1016 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1017 const struct iovec *iov, loff_t offset,
1018 unsigned long nr_segs)
1020 struct file *file = iocb->ki_filp;
1021 struct inode *inode = file->f_mapping->host;
1022 struct gfs2_inode *ip = GFS2_I(inode);
1023 struct gfs2_holder gh;
1024 int rv;
1027 * Deferred lock, even if its a write, since we do no allocation
1028 * on this path. All we need change is atime, and this lock mode
1029 * ensures that other nodes have flushed their buffered read caches
1030 * (i.e. their page cache entries for this inode). We do not,
1031 * unfortunately have the option of only flushing a range like
1032 * the VFS does.
1034 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1035 rv = gfs2_glock_nq(&gh);
1036 if (rv)
1037 return rv;
1038 rv = gfs2_ok_for_dio(ip, rw, offset);
1039 if (rv != 1)
1040 goto out; /* dio not valid, fall back to buffered i/o */
1042 rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1043 iov, offset, nr_segs,
1044 gfs2_get_block_direct, NULL);
1045 out:
1046 gfs2_glock_dq_m(1, &gh);
1047 gfs2_holder_uninit(&gh);
1048 return rv;
1052 * gfs2_releasepage - free the metadata associated with a page
1053 * @page: the page that's being released
1054 * @gfp_mask: passed from Linux VFS, ignored by us
1056 * Call try_to_free_buffers() if the buffers in this page can be
1057 * released.
1059 * Returns: 0
1062 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1064 struct inode *aspace = page->mapping->host;
1065 struct gfs2_sbd *sdp = aspace->i_sb->s_fs_info;
1066 struct buffer_head *bh, *head;
1067 struct gfs2_bufdata *bd;
1069 if (!page_has_buffers(page))
1070 return 0;
1072 gfs2_log_lock(sdp);
1073 head = bh = page_buffers(page);
1074 do {
1075 if (atomic_read(&bh->b_count))
1076 goto cannot_release;
1077 bd = bh->b_private;
1078 if (bd && bd->bd_ail)
1079 goto cannot_release;
1080 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1081 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1082 bh = bh->b_this_page;
1083 } while(bh != head);
1084 gfs2_log_unlock(sdp);
1086 head = bh = page_buffers(page);
1087 do {
1088 gfs2_log_lock(sdp);
1089 bd = bh->b_private;
1090 if (bd) {
1091 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1092 gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1093 if (!list_empty(&bd->bd_le.le_list)) {
1094 if (!buffer_pinned(bh))
1095 list_del_init(&bd->bd_le.le_list);
1096 else
1097 bd = NULL;
1099 if (bd)
1100 bd->bd_bh = NULL;
1101 bh->b_private = NULL;
1103 gfs2_log_unlock(sdp);
1104 if (bd)
1105 kmem_cache_free(gfs2_bufdata_cachep, bd);
1107 bh = bh->b_this_page;
1108 } while (bh != head);
1110 return try_to_free_buffers(page);
1111 cannot_release:
1112 gfs2_log_unlock(sdp);
1113 return 0;
1116 static const struct address_space_operations gfs2_writeback_aops = {
1117 .writepage = gfs2_writeback_writepage,
1118 .writepages = gfs2_writeback_writepages,
1119 .readpage = gfs2_readpage,
1120 .readpages = gfs2_readpages,
1121 .sync_page = block_sync_page,
1122 .write_begin = gfs2_write_begin,
1123 .write_end = gfs2_write_end,
1124 .bmap = gfs2_bmap,
1125 .invalidatepage = gfs2_invalidatepage,
1126 .releasepage = gfs2_releasepage,
1127 .direct_IO = gfs2_direct_IO,
1128 .migratepage = buffer_migrate_page,
1129 .is_partially_uptodate = block_is_partially_uptodate,
1130 .error_remove_page = generic_error_remove_page,
1133 static const struct address_space_operations gfs2_ordered_aops = {
1134 .writepage = gfs2_ordered_writepage,
1135 .readpage = gfs2_readpage,
1136 .readpages = gfs2_readpages,
1137 .sync_page = block_sync_page,
1138 .write_begin = gfs2_write_begin,
1139 .write_end = gfs2_write_end,
1140 .set_page_dirty = gfs2_set_page_dirty,
1141 .bmap = gfs2_bmap,
1142 .invalidatepage = gfs2_invalidatepage,
1143 .releasepage = gfs2_releasepage,
1144 .direct_IO = gfs2_direct_IO,
1145 .migratepage = buffer_migrate_page,
1146 .is_partially_uptodate = block_is_partially_uptodate,
1147 .error_remove_page = generic_error_remove_page,
1150 static const struct address_space_operations gfs2_jdata_aops = {
1151 .writepage = gfs2_jdata_writepage,
1152 .writepages = gfs2_jdata_writepages,
1153 .readpage = gfs2_readpage,
1154 .readpages = gfs2_readpages,
1155 .sync_page = block_sync_page,
1156 .write_begin = gfs2_write_begin,
1157 .write_end = gfs2_write_end,
1158 .set_page_dirty = gfs2_set_page_dirty,
1159 .bmap = gfs2_bmap,
1160 .invalidatepage = gfs2_invalidatepage,
1161 .releasepage = gfs2_releasepage,
1162 .is_partially_uptodate = block_is_partially_uptodate,
1163 .error_remove_page = generic_error_remove_page,
1166 void gfs2_set_aops(struct inode *inode)
1168 struct gfs2_inode *ip = GFS2_I(inode);
1170 if (gfs2_is_writeback(ip))
1171 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1172 else if (gfs2_is_ordered(ip))
1173 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1174 else if (gfs2_is_jdata(ip))
1175 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1176 else
1177 BUG();