MIPS: Alchemy: devboards: factor out PB1200 IRQ cascade code.
[linux-2.6/linux-mips.git] / fs / xfs / xfs_inode.c
blobfa31360046d48a1c07d999da3157740bf4729999
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 #include "xfs_trace.h"
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
131 STATIC int
132 xfs_imap_to_bp(
133 xfs_mount_t *mp,
134 xfs_trans_t *tp,
135 struct xfs_imap *imap,
136 xfs_buf_t **bpp,
137 uint buf_flags,
138 uint iget_flags)
140 int error;
141 int i;
142 int ni;
143 xfs_buf_t *bp;
145 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 (int)imap->im_len, buf_flags, &bp);
147 if (error) {
148 if (error != EAGAIN) {
149 cmn_err(CE_WARN,
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error, mp->m_fsname);
153 } else {
154 ASSERT(buf_flags & XBF_TRYLOCK);
156 return error;
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 #ifdef DEBUG
164 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else /* usual case */
166 ni = 1;
167 #endif
169 for (i = 0; i < ni; i++) {
170 int di_ok;
171 xfs_dinode_t *dip;
173 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 (i << mp->m_sb.sb_inodelog));
175 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 XFS_DINODE_GOOD_VERSION(dip->di_version);
177 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 XFS_ERRTAG_ITOBP_INOTOBP,
179 XFS_RANDOM_ITOBP_INOTOBP))) {
180 if (iget_flags & XFS_IGET_BULKSTAT) {
181 xfs_trans_brelse(tp, bp);
182 return XFS_ERROR(EINVAL);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 cmn_err(CE_PANIC,
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 (unsigned long long)imap->im_blkno, i,
192 be16_to_cpu(dip->di_magic));
193 #endif
194 xfs_trans_brelse(tp, bp);
195 return XFS_ERROR(EFSCORRUPTED);
199 xfs_inobp_check(mp, bp);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 *bpp = bp;
207 return 0;
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
224 xfs_inotobp(
225 xfs_mount_t *mp,
226 xfs_trans_t *tp,
227 xfs_ino_t ino,
228 xfs_dinode_t **dipp,
229 xfs_buf_t **bpp,
230 int *offset,
231 uint imap_flags)
233 struct xfs_imap imap;
234 xfs_buf_t *bp;
235 int error;
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 if (error)
240 return error;
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
243 if (error)
244 return error;
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
267 * (see xfs_imap()).
270 xfs_itobp(
271 xfs_mount_t *mp,
272 xfs_trans_t *tp,
273 xfs_inode_t *ip,
274 xfs_dinode_t **dipp,
275 xfs_buf_t **bpp,
276 uint buf_flags)
278 xfs_buf_t *bp;
279 int error;
281 ASSERT(ip->i_imap.im_blkno != 0);
283 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 if (error)
285 return error;
287 if (!bp) {
288 ASSERT(buf_flags & XBF_TRYLOCK);
289 ASSERT(tp == NULL);
290 *bpp = NULL;
291 return EAGAIN;
294 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 *bpp = bp;
296 return 0;
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
308 STATIC int
309 xfs_iformat(
310 xfs_inode_t *ip,
311 xfs_dinode_t *dip)
313 xfs_attr_shortform_t *atp;
314 int size;
315 int error;
316 xfs_fsize_t di_size;
317 ip->i_df.if_ext_max =
318 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 error = 0;
321 if (unlikely(be32_to_cpu(dip->di_nextents) +
322 be16_to_cpu(dip->di_anextents) >
323 be64_to_cpu(dip->di_nblocks))) {
324 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip->i_ino,
327 (int)(be32_to_cpu(dip->di_nextents) +
328 be16_to_cpu(dip->di_anextents)),
329 (unsigned long long)
330 be64_to_cpu(dip->di_nblocks));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 ip->i_mount, dip);
333 return XFS_ERROR(EFSCORRUPTED);
336 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip->i_ino,
340 dip->di_forkoff);
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 ip->i_mount, dip);
343 return XFS_ERROR(EFSCORRUPTED);
346 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 !ip->i_mount->m_rtdev_targp)) {
348 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 "corrupt dinode %Lu, has realtime flag set.",
350 ip->i_ino);
351 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 return XFS_ERROR(EFSCORRUPTED);
356 switch (ip->i_d.di_mode & S_IFMT) {
357 case S_IFIFO:
358 case S_IFCHR:
359 case S_IFBLK:
360 case S_IFSOCK:
361 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 ip->i_mount, dip);
364 return XFS_ERROR(EFSCORRUPTED);
366 ip->i_d.di_size = 0;
367 ip->i_size = 0;
368 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 break;
371 case S_IFREG:
372 case S_IFLNK:
373 case S_IFDIR:
374 switch (dip->di_format) {
375 case XFS_DINODE_FMT_LOCAL:
377 * no local regular files yet
379 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 "corrupt inode %Lu "
382 "(local format for regular file).",
383 (unsigned long long) ip->i_ino);
384 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 XFS_ERRLEVEL_LOW,
386 ip->i_mount, dip);
387 return XFS_ERROR(EFSCORRUPTED);
390 di_size = be64_to_cpu(dip->di_size);
391 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 "corrupt inode %Lu "
394 "(bad size %Ld for local inode).",
395 (unsigned long long) ip->i_ino,
396 (long long) di_size);
397 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 XFS_ERRLEVEL_LOW,
399 ip->i_mount, dip);
400 return XFS_ERROR(EFSCORRUPTED);
403 size = (int)di_size;
404 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 break;
406 case XFS_DINODE_FMT_EXTENTS:
407 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 break;
409 case XFS_DINODE_FMT_BTREE:
410 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 break;
412 default:
413 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 ip->i_mount);
415 return XFS_ERROR(EFSCORRUPTED);
417 break;
419 default:
420 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 return XFS_ERROR(EFSCORRUPTED);
423 if (error) {
424 return error;
426 if (!XFS_DFORK_Q(dip))
427 return 0;
428 ASSERT(ip->i_afp == NULL);
429 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 ip->i_afp->if_ext_max =
431 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 switch (dip->di_aformat) {
433 case XFS_DINODE_FMT_LOCAL:
434 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 size = be16_to_cpu(atp->hdr.totsize);
437 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 "corrupt inode %Lu "
440 "(bad attr fork size %Ld).",
441 (unsigned long long) ip->i_ino,
442 (long long) size);
443 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 XFS_ERRLEVEL_LOW,
445 ip->i_mount, dip);
446 return XFS_ERROR(EFSCORRUPTED);
449 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 break;
451 case XFS_DINODE_FMT_EXTENTS:
452 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 break;
454 case XFS_DINODE_FMT_BTREE:
455 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 break;
457 default:
458 error = XFS_ERROR(EFSCORRUPTED);
459 break;
461 if (error) {
462 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 ip->i_afp = NULL;
464 xfs_idestroy_fork(ip, XFS_DATA_FORK);
466 return error;
470 * The file is in-lined in the on-disk inode.
471 * If it fits into if_inline_data, then copy
472 * it there, otherwise allocate a buffer for it
473 * and copy the data there. Either way, set
474 * if_data to point at the data.
475 * If we allocate a buffer for the data, make
476 * sure that its size is a multiple of 4 and
477 * record the real size in i_real_bytes.
479 STATIC int
480 xfs_iformat_local(
481 xfs_inode_t *ip,
482 xfs_dinode_t *dip,
483 int whichfork,
484 int size)
486 xfs_ifork_t *ifp;
487 int real_size;
490 * If the size is unreasonable, then something
491 * is wrong and we just bail out rather than crash in
492 * kmem_alloc() or memcpy() below.
494 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 "corrupt inode %Lu "
497 "(bad size %d for local fork, size = %d).",
498 (unsigned long long) ip->i_ino, size,
499 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 ip->i_mount, dip);
502 return XFS_ERROR(EFSCORRUPTED);
504 ifp = XFS_IFORK_PTR(ip, whichfork);
505 real_size = 0;
506 if (size == 0)
507 ifp->if_u1.if_data = NULL;
508 else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 else {
511 real_size = roundup(size, 4);
512 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
514 ifp->if_bytes = size;
515 ifp->if_real_bytes = real_size;
516 if (size)
517 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 ifp->if_flags &= ~XFS_IFEXTENTS;
519 ifp->if_flags |= XFS_IFINLINE;
520 return 0;
524 * The file consists of a set of extents all
525 * of which fit into the on-disk inode.
526 * If there are few enough extents to fit into
527 * the if_inline_ext, then copy them there.
528 * Otherwise allocate a buffer for them and copy
529 * them into it. Either way, set if_extents
530 * to point at the extents.
532 STATIC int
533 xfs_iformat_extents(
534 xfs_inode_t *ip,
535 xfs_dinode_t *dip,
536 int whichfork)
538 xfs_bmbt_rec_t *dp;
539 xfs_ifork_t *ifp;
540 int nex;
541 int size;
542 int i;
544 ifp = XFS_IFORK_PTR(ip, whichfork);
545 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
549 * If the number of extents is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu ((a)extents = %d).",
556 (unsigned long long) ip->i_ino, nex);
557 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 ip->i_mount, dip);
559 return XFS_ERROR(EFSCORRUPTED);
562 ifp->if_real_bytes = 0;
563 if (nex == 0)
564 ifp->if_u1.if_extents = NULL;
565 else if (nex <= XFS_INLINE_EXTS)
566 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 else
568 xfs_iext_add(ifp, 0, nex);
570 ifp->if_bytes = size;
571 if (size) {
572 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 for (i = 0; i < nex; i++, dp++) {
575 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 ep->l0 = get_unaligned_be64(&dp->l0);
577 ep->l1 = get_unaligned_be64(&dp->l1);
579 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 if (whichfork != XFS_DATA_FORK ||
581 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 if (unlikely(xfs_check_nostate_extents(
583 ifp, 0, nex))) {
584 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 XFS_ERRLEVEL_LOW,
586 ip->i_mount);
587 return XFS_ERROR(EFSCORRUPTED);
590 ifp->if_flags |= XFS_IFEXTENTS;
591 return 0;
595 * The file has too many extents to fit into
596 * the inode, so they are in B-tree format.
597 * Allocate a buffer for the root of the B-tree
598 * and copy the root into it. The i_extents
599 * field will remain NULL until all of the
600 * extents are read in (when they are needed).
602 STATIC int
603 xfs_iformat_btree(
604 xfs_inode_t *ip,
605 xfs_dinode_t *dip,
606 int whichfork)
608 xfs_bmdr_block_t *dfp;
609 xfs_ifork_t *ifp;
610 /* REFERENCED */
611 int nrecs;
612 int size;
614 ifp = XFS_IFORK_PTR(ip, whichfork);
615 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 size = XFS_BMAP_BROOT_SPACE(dfp);
617 nrecs = be16_to_cpu(dfp->bb_numrecs);
620 * blow out if -- fork has less extents than can fit in
621 * fork (fork shouldn't be a btree format), root btree
622 * block has more records than can fit into the fork,
623 * or the number of extents is greater than the number of
624 * blocks.
626 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 || XFS_BMDR_SPACE_CALC(nrecs) >
628 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 "corrupt inode %Lu (btree).",
632 (unsigned long long) ip->i_ino);
633 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 ip->i_mount);
635 return XFS_ERROR(EFSCORRUPTED);
638 ifp->if_broot_bytes = size;
639 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 ASSERT(ifp->if_broot != NULL);
642 * Copy and convert from the on-disk structure
643 * to the in-memory structure.
645 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 ifp->if_broot, size);
648 ifp->if_flags &= ~XFS_IFEXTENTS;
649 ifp->if_flags |= XFS_IFBROOT;
651 return 0;
654 STATIC void
655 xfs_dinode_from_disk(
656 xfs_icdinode_t *to,
657 xfs_dinode_t *from)
659 to->di_magic = be16_to_cpu(from->di_magic);
660 to->di_mode = be16_to_cpu(from->di_mode);
661 to->di_version = from ->di_version;
662 to->di_format = from->di_format;
663 to->di_onlink = be16_to_cpu(from->di_onlink);
664 to->di_uid = be32_to_cpu(from->di_uid);
665 to->di_gid = be32_to_cpu(from->di_gid);
666 to->di_nlink = be32_to_cpu(from->di_nlink);
667 to->di_projid = be16_to_cpu(from->di_projid);
668 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 to->di_size = be64_to_cpu(from->di_size);
677 to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 to->di_extsize = be32_to_cpu(from->di_extsize);
679 to->di_nextents = be32_to_cpu(from->di_nextents);
680 to->di_anextents = be16_to_cpu(from->di_anextents);
681 to->di_forkoff = from->di_forkoff;
682 to->di_aformat = from->di_aformat;
683 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
684 to->di_dmstate = be16_to_cpu(from->di_dmstate);
685 to->di_flags = be16_to_cpu(from->di_flags);
686 to->di_gen = be32_to_cpu(from->di_gen);
689 void
690 xfs_dinode_to_disk(
691 xfs_dinode_t *to,
692 xfs_icdinode_t *from)
694 to->di_magic = cpu_to_be16(from->di_magic);
695 to->di_mode = cpu_to_be16(from->di_mode);
696 to->di_version = from ->di_version;
697 to->di_format = from->di_format;
698 to->di_onlink = cpu_to_be16(from->di_onlink);
699 to->di_uid = cpu_to_be32(from->di_uid);
700 to->di_gid = cpu_to_be32(from->di_gid);
701 to->di_nlink = cpu_to_be32(from->di_nlink);
702 to->di_projid = cpu_to_be16(from->di_projid);
703 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 to->di_size = cpu_to_be64(from->di_size);
712 to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 to->di_extsize = cpu_to_be32(from->di_extsize);
714 to->di_nextents = cpu_to_be32(from->di_nextents);
715 to->di_anextents = cpu_to_be16(from->di_anextents);
716 to->di_forkoff = from->di_forkoff;
717 to->di_aformat = from->di_aformat;
718 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 to->di_flags = cpu_to_be16(from->di_flags);
721 to->di_gen = cpu_to_be32(from->di_gen);
724 STATIC uint
725 _xfs_dic2xflags(
726 __uint16_t di_flags)
728 uint flags = 0;
730 if (di_flags & XFS_DIFLAG_ANY) {
731 if (di_flags & XFS_DIFLAG_REALTIME)
732 flags |= XFS_XFLAG_REALTIME;
733 if (di_flags & XFS_DIFLAG_PREALLOC)
734 flags |= XFS_XFLAG_PREALLOC;
735 if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 flags |= XFS_XFLAG_IMMUTABLE;
737 if (di_flags & XFS_DIFLAG_APPEND)
738 flags |= XFS_XFLAG_APPEND;
739 if (di_flags & XFS_DIFLAG_SYNC)
740 flags |= XFS_XFLAG_SYNC;
741 if (di_flags & XFS_DIFLAG_NOATIME)
742 flags |= XFS_XFLAG_NOATIME;
743 if (di_flags & XFS_DIFLAG_NODUMP)
744 flags |= XFS_XFLAG_NODUMP;
745 if (di_flags & XFS_DIFLAG_RTINHERIT)
746 flags |= XFS_XFLAG_RTINHERIT;
747 if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 flags |= XFS_XFLAG_PROJINHERIT;
749 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 flags |= XFS_XFLAG_NOSYMLINKS;
751 if (di_flags & XFS_DIFLAG_EXTSIZE)
752 flags |= XFS_XFLAG_EXTSIZE;
753 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 flags |= XFS_XFLAG_EXTSZINHERIT;
755 if (di_flags & XFS_DIFLAG_NODEFRAG)
756 flags |= XFS_XFLAG_NODEFRAG;
757 if (di_flags & XFS_DIFLAG_FILESTREAM)
758 flags |= XFS_XFLAG_FILESTREAM;
761 return flags;
764 uint
765 xfs_ip2xflags(
766 xfs_inode_t *ip)
768 xfs_icdinode_t *dic = &ip->i_d;
770 return _xfs_dic2xflags(dic->di_flags) |
771 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
774 uint
775 xfs_dic2xflags(
776 xfs_dinode_t *dip)
778 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
783 * Read the disk inode attributes into the in-core inode structure.
786 xfs_iread(
787 xfs_mount_t *mp,
788 xfs_trans_t *tp,
789 xfs_inode_t *ip,
790 xfs_daddr_t bno,
791 uint iget_flags)
793 xfs_buf_t *bp;
794 xfs_dinode_t *dip;
795 int error;
798 * Fill in the location information in the in-core inode.
800 ip->i_imap.im_blkno = bno;
801 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
802 if (error)
803 return error;
804 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
807 * Get pointers to the on-disk inode and the buffer containing it.
809 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
810 XBF_LOCK, iget_flags);
811 if (error)
812 return error;
813 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
816 * If we got something that isn't an inode it means someone
817 * (nfs or dmi) has a stale handle.
819 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
820 #ifdef DEBUG
821 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
822 "dip->di_magic (0x%x) != "
823 "XFS_DINODE_MAGIC (0x%x)",
824 be16_to_cpu(dip->di_magic),
825 XFS_DINODE_MAGIC);
826 #endif /* DEBUG */
827 error = XFS_ERROR(EINVAL);
828 goto out_brelse;
832 * If the on-disk inode is already linked to a directory
833 * entry, copy all of the inode into the in-core inode.
834 * xfs_iformat() handles copying in the inode format
835 * specific information.
836 * Otherwise, just get the truly permanent information.
838 if (dip->di_mode) {
839 xfs_dinode_from_disk(&ip->i_d, dip);
840 error = xfs_iformat(ip, dip);
841 if (error) {
842 #ifdef DEBUG
843 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
844 "xfs_iformat() returned error %d",
845 error);
846 #endif /* DEBUG */
847 goto out_brelse;
849 } else {
850 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
851 ip->i_d.di_version = dip->di_version;
852 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
853 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
855 * Make sure to pull in the mode here as well in
856 * case the inode is released without being used.
857 * This ensures that xfs_inactive() will see that
858 * the inode is already free and not try to mess
859 * with the uninitialized part of it.
861 ip->i_d.di_mode = 0;
863 * Initialize the per-fork minima and maxima for a new
864 * inode here. xfs_iformat will do it for old inodes.
866 ip->i_df.if_ext_max =
867 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
871 * The inode format changed when we moved the link count and
872 * made it 32 bits long. If this is an old format inode,
873 * convert it in memory to look like a new one. If it gets
874 * flushed to disk we will convert back before flushing or
875 * logging it. We zero out the new projid field and the old link
876 * count field. We'll handle clearing the pad field (the remains
877 * of the old uuid field) when we actually convert the inode to
878 * the new format. We don't change the version number so that we
879 * can distinguish this from a real new format inode.
881 if (ip->i_d.di_version == 1) {
882 ip->i_d.di_nlink = ip->i_d.di_onlink;
883 ip->i_d.di_onlink = 0;
884 ip->i_d.di_projid = 0;
887 ip->i_delayed_blks = 0;
888 ip->i_size = ip->i_d.di_size;
891 * Mark the buffer containing the inode as something to keep
892 * around for a while. This helps to keep recently accessed
893 * meta-data in-core longer.
895 XFS_BUF_SET_REF(bp, XFS_INO_REF);
898 * Use xfs_trans_brelse() to release the buffer containing the
899 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 * in xfs_itobp() above. If tp is NULL, this is just a normal
901 * brelse(). If we're within a transaction, then xfs_trans_brelse()
902 * will only release the buffer if it is not dirty within the
903 * transaction. It will be OK to release the buffer in this case,
904 * because inodes on disk are never destroyed and we will be
905 * locking the new in-core inode before putting it in the hash
906 * table where other processes can find it. Thus we don't have
907 * to worry about the inode being changed just because we released
908 * the buffer.
910 out_brelse:
911 xfs_trans_brelse(tp, bp);
912 return error;
916 * Read in extents from a btree-format inode.
917 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
920 xfs_iread_extents(
921 xfs_trans_t *tp,
922 xfs_inode_t *ip,
923 int whichfork)
925 int error;
926 xfs_ifork_t *ifp;
927 xfs_extnum_t nextents;
928 size_t size;
930 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
931 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
932 ip->i_mount);
933 return XFS_ERROR(EFSCORRUPTED);
935 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
936 size = nextents * sizeof(xfs_bmbt_rec_t);
937 ifp = XFS_IFORK_PTR(ip, whichfork);
940 * We know that the size is valid (it's checked in iformat_btree)
942 ifp->if_lastex = NULLEXTNUM;
943 ifp->if_bytes = ifp->if_real_bytes = 0;
944 ifp->if_flags |= XFS_IFEXTENTS;
945 xfs_iext_add(ifp, 0, nextents);
946 error = xfs_bmap_read_extents(tp, ip, whichfork);
947 if (error) {
948 xfs_iext_destroy(ifp);
949 ifp->if_flags &= ~XFS_IFEXTENTS;
950 return error;
952 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
953 return 0;
957 * Allocate an inode on disk and return a copy of its in-core version.
958 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
959 * appropriately within the inode. The uid and gid for the inode are
960 * set according to the contents of the given cred structure.
962 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963 * has a free inode available, call xfs_iget()
964 * to obtain the in-core version of the allocated inode. Finally,
965 * fill in the inode and log its initial contents. In this case,
966 * ialloc_context would be set to NULL and call_again set to false.
968 * If xfs_dialloc() does not have an available inode,
969 * it will replenish its supply by doing an allocation. Since we can
970 * only do one allocation within a transaction without deadlocks, we
971 * must commit the current transaction before returning the inode itself.
972 * In this case, therefore, we will set call_again to true and return.
973 * The caller should then commit the current transaction, start a new
974 * transaction, and call xfs_ialloc() again to actually get the inode.
976 * To ensure that some other process does not grab the inode that
977 * was allocated during the first call to xfs_ialloc(), this routine
978 * also returns the [locked] bp pointing to the head of the freelist
979 * as ialloc_context. The caller should hold this buffer across
980 * the commit and pass it back into this routine on the second call.
982 * If we are allocating quota inodes, we do not have a parent inode
983 * to attach to or associate with (i.e. pip == NULL) because they
984 * are not linked into the directory structure - they are attached
985 * directly to the superblock - and so have no parent.
988 xfs_ialloc(
989 xfs_trans_t *tp,
990 xfs_inode_t *pip,
991 mode_t mode,
992 xfs_nlink_t nlink,
993 xfs_dev_t rdev,
994 cred_t *cr,
995 xfs_prid_t prid,
996 int okalloc,
997 xfs_buf_t **ialloc_context,
998 boolean_t *call_again,
999 xfs_inode_t **ipp)
1001 xfs_ino_t ino;
1002 xfs_inode_t *ip;
1003 uint flags;
1004 int error;
1005 timespec_t tv;
1006 int filestreams = 0;
1009 * Call the space management code to pick
1010 * the on-disk inode to be allocated.
1012 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1013 ialloc_context, call_again, &ino);
1014 if (error)
1015 return error;
1016 if (*call_again || ino == NULLFSINO) {
1017 *ipp = NULL;
1018 return 0;
1020 ASSERT(*ialloc_context == NULL);
1023 * Get the in-core inode with the lock held exclusively.
1024 * This is because we're setting fields here we need
1025 * to prevent others from looking at until we're done.
1027 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1028 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1029 if (error)
1030 return error;
1031 ASSERT(ip != NULL);
1033 ip->i_d.di_mode = (__uint16_t)mode;
1034 ip->i_d.di_onlink = 0;
1035 ip->i_d.di_nlink = nlink;
1036 ASSERT(ip->i_d.di_nlink == nlink);
1037 ip->i_d.di_uid = current_fsuid();
1038 ip->i_d.di_gid = current_fsgid();
1039 ip->i_d.di_projid = prid;
1040 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1043 * If the superblock version is up to where we support new format
1044 * inodes and this is currently an old format inode, then change
1045 * the inode version number now. This way we only do the conversion
1046 * here rather than here and in the flush/logging code.
1048 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1049 ip->i_d.di_version == 1) {
1050 ip->i_d.di_version = 2;
1052 * We've already zeroed the old link count, the projid field,
1053 * and the pad field.
1058 * Project ids won't be stored on disk if we are using a version 1 inode.
1060 if ((prid != 0) && (ip->i_d.di_version == 1))
1061 xfs_bump_ino_vers2(tp, ip);
1063 if (pip && XFS_INHERIT_GID(pip)) {
1064 ip->i_d.di_gid = pip->i_d.di_gid;
1065 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1066 ip->i_d.di_mode |= S_ISGID;
1071 * If the group ID of the new file does not match the effective group
1072 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 * (and only if the irix_sgid_inherit compatibility variable is set).
1075 if ((irix_sgid_inherit) &&
1076 (ip->i_d.di_mode & S_ISGID) &&
1077 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1078 ip->i_d.di_mode &= ~S_ISGID;
1081 ip->i_d.di_size = 0;
1082 ip->i_size = 0;
1083 ip->i_d.di_nextents = 0;
1084 ASSERT(ip->i_d.di_nblocks == 0);
1086 nanotime(&tv);
1087 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1088 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1089 ip->i_d.di_atime = ip->i_d.di_mtime;
1090 ip->i_d.di_ctime = ip->i_d.di_mtime;
1093 * di_gen will have been taken care of in xfs_iread.
1095 ip->i_d.di_extsize = 0;
1096 ip->i_d.di_dmevmask = 0;
1097 ip->i_d.di_dmstate = 0;
1098 ip->i_d.di_flags = 0;
1099 flags = XFS_ILOG_CORE;
1100 switch (mode & S_IFMT) {
1101 case S_IFIFO:
1102 case S_IFCHR:
1103 case S_IFBLK:
1104 case S_IFSOCK:
1105 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1106 ip->i_df.if_u2.if_rdev = rdev;
1107 ip->i_df.if_flags = 0;
1108 flags |= XFS_ILOG_DEV;
1109 break;
1110 case S_IFREG:
1112 * we can't set up filestreams until after the VFS inode
1113 * is set up properly.
1115 if (pip && xfs_inode_is_filestream(pip))
1116 filestreams = 1;
1117 /* fall through */
1118 case S_IFDIR:
1119 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1120 uint di_flags = 0;
1122 if ((mode & S_IFMT) == S_IFDIR) {
1123 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1124 di_flags |= XFS_DIFLAG_RTINHERIT;
1125 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1126 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1127 ip->i_d.di_extsize = pip->i_d.di_extsize;
1129 } else if ((mode & S_IFMT) == S_IFREG) {
1130 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1131 di_flags |= XFS_DIFLAG_REALTIME;
1132 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1133 di_flags |= XFS_DIFLAG_EXTSIZE;
1134 ip->i_d.di_extsize = pip->i_d.di_extsize;
1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1138 xfs_inherit_noatime)
1139 di_flags |= XFS_DIFLAG_NOATIME;
1140 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1141 xfs_inherit_nodump)
1142 di_flags |= XFS_DIFLAG_NODUMP;
1143 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1144 xfs_inherit_sync)
1145 di_flags |= XFS_DIFLAG_SYNC;
1146 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1147 xfs_inherit_nosymlinks)
1148 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1149 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1150 di_flags |= XFS_DIFLAG_PROJINHERIT;
1151 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1152 xfs_inherit_nodefrag)
1153 di_flags |= XFS_DIFLAG_NODEFRAG;
1154 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1155 di_flags |= XFS_DIFLAG_FILESTREAM;
1156 ip->i_d.di_flags |= di_flags;
1158 /* FALLTHROUGH */
1159 case S_IFLNK:
1160 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1161 ip->i_df.if_flags = XFS_IFEXTENTS;
1162 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1163 ip->i_df.if_u1.if_extents = NULL;
1164 break;
1165 default:
1166 ASSERT(0);
1169 * Attribute fork settings for new inode.
1171 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1172 ip->i_d.di_anextents = 0;
1175 * Log the new values stuffed into the inode.
1177 xfs_trans_log_inode(tp, ip, flags);
1179 /* now that we have an i_mode we can setup inode ops and unlock */
1180 xfs_setup_inode(ip);
1182 /* now we have set up the vfs inode we can associate the filestream */
1183 if (filestreams) {
1184 error = xfs_filestream_associate(pip, ip);
1185 if (error < 0)
1186 return -error;
1187 if (!error)
1188 xfs_iflags_set(ip, XFS_IFILESTREAM);
1191 *ipp = ip;
1192 return 0;
1196 * Check to make sure that there are no blocks allocated to the
1197 * file beyond the size of the file. We don't check this for
1198 * files with fixed size extents or real time extents, but we
1199 * at least do it for regular files.
1201 #ifdef DEBUG
1202 void
1203 xfs_isize_check(
1204 xfs_mount_t *mp,
1205 xfs_inode_t *ip,
1206 xfs_fsize_t isize)
1208 xfs_fileoff_t map_first;
1209 int nimaps;
1210 xfs_bmbt_irec_t imaps[2];
1212 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1213 return;
1215 if (XFS_IS_REALTIME_INODE(ip))
1216 return;
1218 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1219 return;
1221 nimaps = 2;
1222 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1224 * The filesystem could be shutting down, so bmapi may return
1225 * an error.
1227 if (xfs_bmapi(NULL, ip, map_first,
1228 (XFS_B_TO_FSB(mp,
1229 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1230 map_first),
1231 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1232 NULL, NULL))
1233 return;
1234 ASSERT(nimaps == 1);
1235 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1237 #endif /* DEBUG */
1240 * Calculate the last possible buffered byte in a file. This must
1241 * include data that was buffered beyond the EOF by the write code.
1242 * This also needs to deal with overflowing the xfs_fsize_t type
1243 * which can happen for sizes near the limit.
1245 * We also need to take into account any blocks beyond the EOF. It
1246 * may be the case that they were buffered by a write which failed.
1247 * In that case the pages will still be in memory, but the inode size
1248 * will never have been updated.
1250 STATIC xfs_fsize_t
1251 xfs_file_last_byte(
1252 xfs_inode_t *ip)
1254 xfs_mount_t *mp;
1255 xfs_fsize_t last_byte;
1256 xfs_fileoff_t last_block;
1257 xfs_fileoff_t size_last_block;
1258 int error;
1260 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1262 mp = ip->i_mount;
1264 * Only check for blocks beyond the EOF if the extents have
1265 * been read in. This eliminates the need for the inode lock,
1266 * and it also saves us from looking when it really isn't
1267 * necessary.
1269 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1270 xfs_ilock(ip, XFS_ILOCK_SHARED);
1271 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1272 XFS_DATA_FORK);
1273 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1274 if (error) {
1275 last_block = 0;
1277 } else {
1278 last_block = 0;
1280 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1281 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1283 last_byte = XFS_FSB_TO_B(mp, last_block);
1284 if (last_byte < 0) {
1285 return XFS_MAXIOFFSET(mp);
1287 last_byte += (1 << mp->m_writeio_log);
1288 if (last_byte < 0) {
1289 return XFS_MAXIOFFSET(mp);
1291 return last_byte;
1295 * Start the truncation of the file to new_size. The new size
1296 * must be smaller than the current size. This routine will
1297 * clear the buffer and page caches of file data in the removed
1298 * range, and xfs_itruncate_finish() will remove the underlying
1299 * disk blocks.
1301 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1302 * must NOT have the inode lock held at all. This is because we're
1303 * calling into the buffer/page cache code and we can't hold the
1304 * inode lock when we do so.
1306 * We need to wait for any direct I/Os in flight to complete before we
1307 * proceed with the truncate. This is needed to prevent the extents
1308 * being read or written by the direct I/Os from being removed while the
1309 * I/O is in flight as there is no other method of synchronising
1310 * direct I/O with the truncate operation. Also, because we hold
1311 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1312 * started until the truncate completes and drops the lock. Essentially,
1313 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1314 * ordering between direct I/Os and the truncate operation.
1316 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1317 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1318 * in the case that the caller is locking things out of order and
1319 * may not be able to call xfs_itruncate_finish() with the inode lock
1320 * held without dropping the I/O lock. If the caller must drop the
1321 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1322 * must be called again with all the same restrictions as the initial
1323 * call.
1326 xfs_itruncate_start(
1327 xfs_inode_t *ip,
1328 uint flags,
1329 xfs_fsize_t new_size)
1331 xfs_fsize_t last_byte;
1332 xfs_off_t toss_start;
1333 xfs_mount_t *mp;
1334 int error = 0;
1336 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1337 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1338 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1339 (flags == XFS_ITRUNC_MAYBE));
1341 mp = ip->i_mount;
1343 /* wait for the completion of any pending DIOs */
1344 if (new_size == 0 || new_size < ip->i_size)
1345 xfs_ioend_wait(ip);
1348 * Call toss_pages or flushinval_pages to get rid of pages
1349 * overlapping the region being removed. We have to use
1350 * the less efficient flushinval_pages in the case that the
1351 * caller may not be able to finish the truncate without
1352 * dropping the inode's I/O lock. Make sure
1353 * to catch any pages brought in by buffers overlapping
1354 * the EOF by searching out beyond the isize by our
1355 * block size. We round new_size up to a block boundary
1356 * so that we don't toss things on the same block as
1357 * new_size but before it.
1359 * Before calling toss_page or flushinval_pages, make sure to
1360 * call remapf() over the same region if the file is mapped.
1361 * This frees up mapped file references to the pages in the
1362 * given range and for the flushinval_pages case it ensures
1363 * that we get the latest mapped changes flushed out.
1365 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1366 toss_start = XFS_FSB_TO_B(mp, toss_start);
1367 if (toss_start < 0) {
1369 * The place to start tossing is beyond our maximum
1370 * file size, so there is no way that the data extended
1371 * out there.
1373 return 0;
1375 last_byte = xfs_file_last_byte(ip);
1376 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1377 if (last_byte > toss_start) {
1378 if (flags & XFS_ITRUNC_DEFINITE) {
1379 xfs_tosspages(ip, toss_start,
1380 -1, FI_REMAPF_LOCKED);
1381 } else {
1382 error = xfs_flushinval_pages(ip, toss_start,
1383 -1, FI_REMAPF_LOCKED);
1387 #ifdef DEBUG
1388 if (new_size == 0) {
1389 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1391 #endif
1392 return error;
1396 * Shrink the file to the given new_size. The new size must be smaller than
1397 * the current size. This will free up the underlying blocks in the removed
1398 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1400 * The transaction passed to this routine must have made a permanent log
1401 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1402 * given transaction and start new ones, so make sure everything involved in
1403 * the transaction is tidy before calling here. Some transaction will be
1404 * returned to the caller to be committed. The incoming transaction must
1405 * already include the inode, and both inode locks must be held exclusively.
1406 * The inode must also be "held" within the transaction. On return the inode
1407 * will be "held" within the returned transaction. This routine does NOT
1408 * require any disk space to be reserved for it within the transaction.
1410 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1411 * indicates the fork which is to be truncated. For the attribute fork we only
1412 * support truncation to size 0.
1414 * We use the sync parameter to indicate whether or not the first transaction
1415 * we perform might have to be synchronous. For the attr fork, it needs to be
1416 * so if the unlink of the inode is not yet known to be permanent in the log.
1417 * This keeps us from freeing and reusing the blocks of the attribute fork
1418 * before the unlink of the inode becomes permanent.
1420 * For the data fork, we normally have to run synchronously if we're being
1421 * called out of the inactive path or we're being called out of the create path
1422 * where we're truncating an existing file. Either way, the truncate needs to
1423 * be sync so blocks don't reappear in the file with altered data in case of a
1424 * crash. wsync filesystems can run the first case async because anything that
1425 * shrinks the inode has to run sync so by the time we're called here from
1426 * inactive, the inode size is permanently set to 0.
1428 * Calls from the truncate path always need to be sync unless we're in a wsync
1429 * filesystem and the file has already been unlinked.
1431 * The caller is responsible for correctly setting the sync parameter. It gets
1432 * too hard for us to guess here which path we're being called out of just
1433 * based on inode state.
1435 * If we get an error, we must return with the inode locked and linked into the
1436 * current transaction. This keeps things simple for the higher level code,
1437 * because it always knows that the inode is locked and held in the transaction
1438 * that returns to it whether errors occur or not. We don't mark the inode
1439 * dirty on error so that transactions can be easily aborted if possible.
1442 xfs_itruncate_finish(
1443 xfs_trans_t **tp,
1444 xfs_inode_t *ip,
1445 xfs_fsize_t new_size,
1446 int fork,
1447 int sync)
1449 xfs_fsblock_t first_block;
1450 xfs_fileoff_t first_unmap_block;
1451 xfs_fileoff_t last_block;
1452 xfs_filblks_t unmap_len=0;
1453 xfs_mount_t *mp;
1454 xfs_trans_t *ntp;
1455 int done;
1456 int committed;
1457 xfs_bmap_free_t free_list;
1458 int error;
1460 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1461 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1462 ASSERT(*tp != NULL);
1463 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1464 ASSERT(ip->i_transp == *tp);
1465 ASSERT(ip->i_itemp != NULL);
1466 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1469 ntp = *tp;
1470 mp = (ntp)->t_mountp;
1471 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1474 * We only support truncating the entire attribute fork.
1476 if (fork == XFS_ATTR_FORK) {
1477 new_size = 0LL;
1479 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1480 trace_xfs_itruncate_finish_start(ip, new_size);
1483 * The first thing we do is set the size to new_size permanently
1484 * on disk. This way we don't have to worry about anyone ever
1485 * being able to look at the data being freed even in the face
1486 * of a crash. What we're getting around here is the case where
1487 * we free a block, it is allocated to another file, it is written
1488 * to, and then we crash. If the new data gets written to the
1489 * file but the log buffers containing the free and reallocation
1490 * don't, then we'd end up with garbage in the blocks being freed.
1491 * As long as we make the new_size permanent before actually
1492 * freeing any blocks it doesn't matter if they get writtten to.
1494 * The callers must signal into us whether or not the size
1495 * setting here must be synchronous. There are a few cases
1496 * where it doesn't have to be synchronous. Those cases
1497 * occur if the file is unlinked and we know the unlink is
1498 * permanent or if the blocks being truncated are guaranteed
1499 * to be beyond the inode eof (regardless of the link count)
1500 * and the eof value is permanent. Both of these cases occur
1501 * only on wsync-mounted filesystems. In those cases, we're
1502 * guaranteed that no user will ever see the data in the blocks
1503 * that are being truncated so the truncate can run async.
1504 * In the free beyond eof case, the file may wind up with
1505 * more blocks allocated to it than it needs if we crash
1506 * and that won't get fixed until the next time the file
1507 * is re-opened and closed but that's ok as that shouldn't
1508 * be too many blocks.
1510 * However, we can't just make all wsync xactions run async
1511 * because there's one call out of the create path that needs
1512 * to run sync where it's truncating an existing file to size
1513 * 0 whose size is > 0.
1515 * It's probably possible to come up with a test in this
1516 * routine that would correctly distinguish all the above
1517 * cases from the values of the function parameters and the
1518 * inode state but for sanity's sake, I've decided to let the
1519 * layers above just tell us. It's simpler to correctly figure
1520 * out in the layer above exactly under what conditions we
1521 * can run async and I think it's easier for others read and
1522 * follow the logic in case something has to be changed.
1523 * cscope is your friend -- rcc.
1525 * The attribute fork is much simpler.
1527 * For the attribute fork we allow the caller to tell us whether
1528 * the unlink of the inode that led to this call is yet permanent
1529 * in the on disk log. If it is not and we will be freeing extents
1530 * in this inode then we make the first transaction synchronous
1531 * to make sure that the unlink is permanent by the time we free
1532 * the blocks.
1534 if (fork == XFS_DATA_FORK) {
1535 if (ip->i_d.di_nextents > 0) {
1537 * If we are not changing the file size then do
1538 * not update the on-disk file size - we may be
1539 * called from xfs_inactive_free_eofblocks(). If we
1540 * update the on-disk file size and then the system
1541 * crashes before the contents of the file are
1542 * flushed to disk then the files may be full of
1543 * holes (ie NULL files bug).
1545 if (ip->i_size != new_size) {
1546 ip->i_d.di_size = new_size;
1547 ip->i_size = new_size;
1548 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1551 } else if (sync) {
1552 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1553 if (ip->i_d.di_anextents > 0)
1554 xfs_trans_set_sync(ntp);
1556 ASSERT(fork == XFS_DATA_FORK ||
1557 (fork == XFS_ATTR_FORK &&
1558 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1559 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1562 * Since it is possible for space to become allocated beyond
1563 * the end of the file (in a crash where the space is allocated
1564 * but the inode size is not yet updated), simply remove any
1565 * blocks which show up between the new EOF and the maximum
1566 * possible file size. If the first block to be removed is
1567 * beyond the maximum file size (ie it is the same as last_block),
1568 * then there is nothing to do.
1570 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1571 ASSERT(first_unmap_block <= last_block);
1572 done = 0;
1573 if (last_block == first_unmap_block) {
1574 done = 1;
1575 } else {
1576 unmap_len = last_block - first_unmap_block + 1;
1578 while (!done) {
1580 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1581 * will tell us whether it freed the entire range or
1582 * not. If this is a synchronous mount (wsync),
1583 * then we can tell bunmapi to keep all the
1584 * transactions asynchronous since the unlink
1585 * transaction that made this inode inactive has
1586 * already hit the disk. There's no danger of
1587 * the freed blocks being reused, there being a
1588 * crash, and the reused blocks suddenly reappearing
1589 * in this file with garbage in them once recovery
1590 * runs.
1592 xfs_bmap_init(&free_list, &first_block);
1593 error = xfs_bunmapi(ntp, ip,
1594 first_unmap_block, unmap_len,
1595 xfs_bmapi_aflag(fork) |
1596 (sync ? 0 : XFS_BMAPI_ASYNC),
1597 XFS_ITRUNC_MAX_EXTENTS,
1598 &first_block, &free_list,
1599 NULL, &done);
1600 if (error) {
1602 * If the bunmapi call encounters an error,
1603 * return to the caller where the transaction
1604 * can be properly aborted. We just need to
1605 * make sure we're not holding any resources
1606 * that we were not when we came in.
1608 xfs_bmap_cancel(&free_list);
1609 return error;
1613 * Duplicate the transaction that has the permanent
1614 * reservation and commit the old transaction.
1616 error = xfs_bmap_finish(tp, &free_list, &committed);
1617 ntp = *tp;
1618 if (committed) {
1619 /* link the inode into the next xact in the chain */
1620 xfs_trans_ijoin(ntp, ip,
1621 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1622 xfs_trans_ihold(ntp, ip);
1625 if (error) {
1627 * If the bmap finish call encounters an error, return
1628 * to the caller where the transaction can be properly
1629 * aborted. We just need to make sure we're not
1630 * holding any resources that we were not when we came
1631 * in.
1633 * Aborting from this point might lose some blocks in
1634 * the file system, but oh well.
1636 xfs_bmap_cancel(&free_list);
1637 return error;
1640 if (committed) {
1642 * Mark the inode dirty so it will be logged and
1643 * moved forward in the log as part of every commit.
1645 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1648 ntp = xfs_trans_dup(ntp);
1649 error = xfs_trans_commit(*tp, 0);
1650 *tp = ntp;
1652 /* link the inode into the next transaction in the chain */
1653 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1654 xfs_trans_ihold(ntp, ip);
1656 if (error)
1657 return error;
1659 * transaction commit worked ok so we can drop the extra ticket
1660 * reference that we gained in xfs_trans_dup()
1662 xfs_log_ticket_put(ntp->t_ticket);
1663 error = xfs_trans_reserve(ntp, 0,
1664 XFS_ITRUNCATE_LOG_RES(mp), 0,
1665 XFS_TRANS_PERM_LOG_RES,
1666 XFS_ITRUNCATE_LOG_COUNT);
1667 if (error)
1668 return error;
1671 * Only update the size in the case of the data fork, but
1672 * always re-log the inode so that our permanent transaction
1673 * can keep on rolling it forward in the log.
1675 if (fork == XFS_DATA_FORK) {
1676 xfs_isize_check(mp, ip, new_size);
1678 * If we are not changing the file size then do
1679 * not update the on-disk file size - we may be
1680 * called from xfs_inactive_free_eofblocks(). If we
1681 * update the on-disk file size and then the system
1682 * crashes before the contents of the file are
1683 * flushed to disk then the files may be full of
1684 * holes (ie NULL files bug).
1686 if (ip->i_size != new_size) {
1687 ip->i_d.di_size = new_size;
1688 ip->i_size = new_size;
1691 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1692 ASSERT((new_size != 0) ||
1693 (fork == XFS_ATTR_FORK) ||
1694 (ip->i_delayed_blks == 0));
1695 ASSERT((new_size != 0) ||
1696 (fork == XFS_ATTR_FORK) ||
1697 (ip->i_d.di_nextents == 0));
1698 trace_xfs_itruncate_finish_end(ip, new_size);
1699 return 0;
1703 * This is called when the inode's link count goes to 0.
1704 * We place the on-disk inode on a list in the AGI. It
1705 * will be pulled from this list when the inode is freed.
1708 xfs_iunlink(
1709 xfs_trans_t *tp,
1710 xfs_inode_t *ip)
1712 xfs_mount_t *mp;
1713 xfs_agi_t *agi;
1714 xfs_dinode_t *dip;
1715 xfs_buf_t *agibp;
1716 xfs_buf_t *ibp;
1717 xfs_agino_t agino;
1718 short bucket_index;
1719 int offset;
1720 int error;
1722 ASSERT(ip->i_d.di_nlink == 0);
1723 ASSERT(ip->i_d.di_mode != 0);
1724 ASSERT(ip->i_transp == tp);
1726 mp = tp->t_mountp;
1729 * Get the agi buffer first. It ensures lock ordering
1730 * on the list.
1732 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1733 if (error)
1734 return error;
1735 agi = XFS_BUF_TO_AGI(agibp);
1738 * Get the index into the agi hash table for the
1739 * list this inode will go on.
1741 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1742 ASSERT(agino != 0);
1743 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1744 ASSERT(agi->agi_unlinked[bucket_index]);
1745 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1747 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1749 * There is already another inode in the bucket we need
1750 * to add ourselves to. Add us at the front of the list.
1751 * Here we put the head pointer into our next pointer,
1752 * and then we fall through to point the head at us.
1754 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1755 if (error)
1756 return error;
1758 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1759 /* both on-disk, don't endian flip twice */
1760 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1761 offset = ip->i_imap.im_boffset +
1762 offsetof(xfs_dinode_t, di_next_unlinked);
1763 xfs_trans_inode_buf(tp, ibp);
1764 xfs_trans_log_buf(tp, ibp, offset,
1765 (offset + sizeof(xfs_agino_t) - 1));
1766 xfs_inobp_check(mp, ibp);
1770 * Point the bucket head pointer at the inode being inserted.
1772 ASSERT(agino != 0);
1773 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1774 offset = offsetof(xfs_agi_t, agi_unlinked) +
1775 (sizeof(xfs_agino_t) * bucket_index);
1776 xfs_trans_log_buf(tp, agibp, offset,
1777 (offset + sizeof(xfs_agino_t) - 1));
1778 return 0;
1782 * Pull the on-disk inode from the AGI unlinked list.
1784 STATIC int
1785 xfs_iunlink_remove(
1786 xfs_trans_t *tp,
1787 xfs_inode_t *ip)
1789 xfs_ino_t next_ino;
1790 xfs_mount_t *mp;
1791 xfs_agi_t *agi;
1792 xfs_dinode_t *dip;
1793 xfs_buf_t *agibp;
1794 xfs_buf_t *ibp;
1795 xfs_agnumber_t agno;
1796 xfs_agino_t agino;
1797 xfs_agino_t next_agino;
1798 xfs_buf_t *last_ibp;
1799 xfs_dinode_t *last_dip = NULL;
1800 short bucket_index;
1801 int offset, last_offset = 0;
1802 int error;
1804 mp = tp->t_mountp;
1805 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1808 * Get the agi buffer first. It ensures lock ordering
1809 * on the list.
1811 error = xfs_read_agi(mp, tp, agno, &agibp);
1812 if (error)
1813 return error;
1815 agi = XFS_BUF_TO_AGI(agibp);
1818 * Get the index into the agi hash table for the
1819 * list this inode will go on.
1821 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1822 ASSERT(agino != 0);
1823 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1824 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1825 ASSERT(agi->agi_unlinked[bucket_index]);
1827 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1829 * We're at the head of the list. Get the inode's
1830 * on-disk buffer to see if there is anyone after us
1831 * on the list. Only modify our next pointer if it
1832 * is not already NULLAGINO. This saves us the overhead
1833 * of dealing with the buffer when there is no need to
1834 * change it.
1836 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1837 if (error) {
1838 cmn_err(CE_WARN,
1839 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1840 error, mp->m_fsname);
1841 return error;
1843 next_agino = be32_to_cpu(dip->di_next_unlinked);
1844 ASSERT(next_agino != 0);
1845 if (next_agino != NULLAGINO) {
1846 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1847 offset = ip->i_imap.im_boffset +
1848 offsetof(xfs_dinode_t, di_next_unlinked);
1849 xfs_trans_inode_buf(tp, ibp);
1850 xfs_trans_log_buf(tp, ibp, offset,
1851 (offset + sizeof(xfs_agino_t) - 1));
1852 xfs_inobp_check(mp, ibp);
1853 } else {
1854 xfs_trans_brelse(tp, ibp);
1857 * Point the bucket head pointer at the next inode.
1859 ASSERT(next_agino != 0);
1860 ASSERT(next_agino != agino);
1861 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1862 offset = offsetof(xfs_agi_t, agi_unlinked) +
1863 (sizeof(xfs_agino_t) * bucket_index);
1864 xfs_trans_log_buf(tp, agibp, offset,
1865 (offset + sizeof(xfs_agino_t) - 1));
1866 } else {
1868 * We need to search the list for the inode being freed.
1870 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1871 last_ibp = NULL;
1872 while (next_agino != agino) {
1874 * If the last inode wasn't the one pointing to
1875 * us, then release its buffer since we're not
1876 * going to do anything with it.
1878 if (last_ibp != NULL) {
1879 xfs_trans_brelse(tp, last_ibp);
1881 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1882 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1883 &last_ibp, &last_offset, 0);
1884 if (error) {
1885 cmn_err(CE_WARN,
1886 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1887 error, mp->m_fsname);
1888 return error;
1890 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1891 ASSERT(next_agino != NULLAGINO);
1892 ASSERT(next_agino != 0);
1895 * Now last_ibp points to the buffer previous to us on
1896 * the unlinked list. Pull us from the list.
1898 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1899 if (error) {
1900 cmn_err(CE_WARN,
1901 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1902 error, mp->m_fsname);
1903 return error;
1905 next_agino = be32_to_cpu(dip->di_next_unlinked);
1906 ASSERT(next_agino != 0);
1907 ASSERT(next_agino != agino);
1908 if (next_agino != NULLAGINO) {
1909 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1910 offset = ip->i_imap.im_boffset +
1911 offsetof(xfs_dinode_t, di_next_unlinked);
1912 xfs_trans_inode_buf(tp, ibp);
1913 xfs_trans_log_buf(tp, ibp, offset,
1914 (offset + sizeof(xfs_agino_t) - 1));
1915 xfs_inobp_check(mp, ibp);
1916 } else {
1917 xfs_trans_brelse(tp, ibp);
1920 * Point the previous inode on the list to the next inode.
1922 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1923 ASSERT(next_agino != 0);
1924 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1925 xfs_trans_inode_buf(tp, last_ibp);
1926 xfs_trans_log_buf(tp, last_ibp, offset,
1927 (offset + sizeof(xfs_agino_t) - 1));
1928 xfs_inobp_check(mp, last_ibp);
1930 return 0;
1933 STATIC void
1934 xfs_ifree_cluster(
1935 xfs_inode_t *free_ip,
1936 xfs_trans_t *tp,
1937 xfs_ino_t inum)
1939 xfs_mount_t *mp = free_ip->i_mount;
1940 int blks_per_cluster;
1941 int nbufs;
1942 int ninodes;
1943 int i, j, found, pre_flushed;
1944 xfs_daddr_t blkno;
1945 xfs_buf_t *bp;
1946 xfs_inode_t *ip, **ip_found;
1947 xfs_inode_log_item_t *iip;
1948 xfs_log_item_t *lip;
1949 struct xfs_perag *pag;
1951 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1952 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1953 blks_per_cluster = 1;
1954 ninodes = mp->m_sb.sb_inopblock;
1955 nbufs = XFS_IALLOC_BLOCKS(mp);
1956 } else {
1957 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1958 mp->m_sb.sb_blocksize;
1959 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1960 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1963 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1965 for (j = 0; j < nbufs; j++, inum += ninodes) {
1966 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1967 XFS_INO_TO_AGBNO(mp, inum));
1971 * Look for each inode in memory and attempt to lock it,
1972 * we can be racing with flush and tail pushing here.
1973 * any inode we get the locks on, add to an array of
1974 * inode items to process later.
1976 * The get the buffer lock, we could beat a flush
1977 * or tail pushing thread to the lock here, in which
1978 * case they will go looking for the inode buffer
1979 * and fail, we need some other form of interlock
1980 * here.
1982 found = 0;
1983 for (i = 0; i < ninodes; i++) {
1984 read_lock(&pag->pag_ici_lock);
1985 ip = radix_tree_lookup(&pag->pag_ici_root,
1986 XFS_INO_TO_AGINO(mp, (inum + i)));
1988 /* Inode not in memory or we found it already,
1989 * nothing to do
1991 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
1992 read_unlock(&pag->pag_ici_lock);
1993 continue;
1996 if (xfs_inode_clean(ip)) {
1997 read_unlock(&pag->pag_ici_lock);
1998 continue;
2001 /* If we can get the locks then add it to the
2002 * list, otherwise by the time we get the bp lock
2003 * below it will already be attached to the
2004 * inode buffer.
2007 /* This inode will already be locked - by us, lets
2008 * keep it that way.
2011 if (ip == free_ip) {
2012 if (xfs_iflock_nowait(ip)) {
2013 xfs_iflags_set(ip, XFS_ISTALE);
2014 if (xfs_inode_clean(ip)) {
2015 xfs_ifunlock(ip);
2016 } else {
2017 ip_found[found++] = ip;
2020 read_unlock(&pag->pag_ici_lock);
2021 continue;
2024 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2025 if (xfs_iflock_nowait(ip)) {
2026 xfs_iflags_set(ip, XFS_ISTALE);
2028 if (xfs_inode_clean(ip)) {
2029 xfs_ifunlock(ip);
2030 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2031 } else {
2032 ip_found[found++] = ip;
2034 } else {
2035 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2038 read_unlock(&pag->pag_ici_lock);
2041 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2042 mp->m_bsize * blks_per_cluster,
2043 XBF_LOCK);
2045 pre_flushed = 0;
2046 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2047 while (lip) {
2048 if (lip->li_type == XFS_LI_INODE) {
2049 iip = (xfs_inode_log_item_t *)lip;
2050 ASSERT(iip->ili_logged == 1);
2051 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2052 xfs_trans_ail_copy_lsn(mp->m_ail,
2053 &iip->ili_flush_lsn,
2054 &iip->ili_item.li_lsn);
2055 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2056 pre_flushed++;
2058 lip = lip->li_bio_list;
2061 for (i = 0; i < found; i++) {
2062 ip = ip_found[i];
2063 iip = ip->i_itemp;
2065 if (!iip) {
2066 ip->i_update_core = 0;
2067 xfs_ifunlock(ip);
2068 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2069 continue;
2072 iip->ili_last_fields = iip->ili_format.ilf_fields;
2073 iip->ili_format.ilf_fields = 0;
2074 iip->ili_logged = 1;
2075 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2076 &iip->ili_item.li_lsn);
2078 xfs_buf_attach_iodone(bp,
2079 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2080 xfs_istale_done, (xfs_log_item_t *)iip);
2081 if (ip != free_ip) {
2082 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2086 if (found || pre_flushed)
2087 xfs_trans_stale_inode_buf(tp, bp);
2088 xfs_trans_binval(tp, bp);
2091 kmem_free(ip_found);
2092 xfs_perag_put(pag);
2096 * This is called to return an inode to the inode free list.
2097 * The inode should already be truncated to 0 length and have
2098 * no pages associated with it. This routine also assumes that
2099 * the inode is already a part of the transaction.
2101 * The on-disk copy of the inode will have been added to the list
2102 * of unlinked inodes in the AGI. We need to remove the inode from
2103 * that list atomically with respect to freeing it here.
2106 xfs_ifree(
2107 xfs_trans_t *tp,
2108 xfs_inode_t *ip,
2109 xfs_bmap_free_t *flist)
2111 int error;
2112 int delete;
2113 xfs_ino_t first_ino;
2114 xfs_dinode_t *dip;
2115 xfs_buf_t *ibp;
2117 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2118 ASSERT(ip->i_transp == tp);
2119 ASSERT(ip->i_d.di_nlink == 0);
2120 ASSERT(ip->i_d.di_nextents == 0);
2121 ASSERT(ip->i_d.di_anextents == 0);
2122 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2123 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2124 ASSERT(ip->i_d.di_nblocks == 0);
2127 * Pull the on-disk inode from the AGI unlinked list.
2129 error = xfs_iunlink_remove(tp, ip);
2130 if (error != 0) {
2131 return error;
2134 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2135 if (error != 0) {
2136 return error;
2138 ip->i_d.di_mode = 0; /* mark incore inode as free */
2139 ip->i_d.di_flags = 0;
2140 ip->i_d.di_dmevmask = 0;
2141 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2142 ip->i_df.if_ext_max =
2143 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2144 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2145 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2147 * Bump the generation count so no one will be confused
2148 * by reincarnations of this inode.
2150 ip->i_d.di_gen++;
2152 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2154 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2155 if (error)
2156 return error;
2159 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2160 * from picking up this inode when it is reclaimed (its incore state
2161 * initialzed but not flushed to disk yet). The in-core di_mode is
2162 * already cleared and a corresponding transaction logged.
2163 * The hack here just synchronizes the in-core to on-disk
2164 * di_mode value in advance before the actual inode sync to disk.
2165 * This is OK because the inode is already unlinked and would never
2166 * change its di_mode again for this inode generation.
2167 * This is a temporary hack that would require a proper fix
2168 * in the future.
2170 dip->di_mode = 0;
2172 if (delete) {
2173 xfs_ifree_cluster(ip, tp, first_ino);
2176 return 0;
2180 * Reallocate the space for if_broot based on the number of records
2181 * being added or deleted as indicated in rec_diff. Move the records
2182 * and pointers in if_broot to fit the new size. When shrinking this
2183 * will eliminate holes between the records and pointers created by
2184 * the caller. When growing this will create holes to be filled in
2185 * by the caller.
2187 * The caller must not request to add more records than would fit in
2188 * the on-disk inode root. If the if_broot is currently NULL, then
2189 * if we adding records one will be allocated. The caller must also
2190 * not request that the number of records go below zero, although
2191 * it can go to zero.
2193 * ip -- the inode whose if_broot area is changing
2194 * ext_diff -- the change in the number of records, positive or negative,
2195 * requested for the if_broot array.
2197 void
2198 xfs_iroot_realloc(
2199 xfs_inode_t *ip,
2200 int rec_diff,
2201 int whichfork)
2203 struct xfs_mount *mp = ip->i_mount;
2204 int cur_max;
2205 xfs_ifork_t *ifp;
2206 struct xfs_btree_block *new_broot;
2207 int new_max;
2208 size_t new_size;
2209 char *np;
2210 char *op;
2213 * Handle the degenerate case quietly.
2215 if (rec_diff == 0) {
2216 return;
2219 ifp = XFS_IFORK_PTR(ip, whichfork);
2220 if (rec_diff > 0) {
2222 * If there wasn't any memory allocated before, just
2223 * allocate it now and get out.
2225 if (ifp->if_broot_bytes == 0) {
2226 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2227 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2228 ifp->if_broot_bytes = (int)new_size;
2229 return;
2233 * If there is already an existing if_broot, then we need
2234 * to realloc() it and shift the pointers to their new
2235 * location. The records don't change location because
2236 * they are kept butted up against the btree block header.
2238 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2239 new_max = cur_max + rec_diff;
2240 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2241 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2242 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2243 KM_SLEEP);
2244 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2245 ifp->if_broot_bytes);
2246 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2247 (int)new_size);
2248 ifp->if_broot_bytes = (int)new_size;
2249 ASSERT(ifp->if_broot_bytes <=
2250 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2251 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2252 return;
2256 * rec_diff is less than 0. In this case, we are shrinking the
2257 * if_broot buffer. It must already exist. If we go to zero
2258 * records, just get rid of the root and clear the status bit.
2260 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2261 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2262 new_max = cur_max + rec_diff;
2263 ASSERT(new_max >= 0);
2264 if (new_max > 0)
2265 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2266 else
2267 new_size = 0;
2268 if (new_size > 0) {
2269 new_broot = kmem_alloc(new_size, KM_SLEEP);
2271 * First copy over the btree block header.
2273 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2274 } else {
2275 new_broot = NULL;
2276 ifp->if_flags &= ~XFS_IFBROOT;
2280 * Only copy the records and pointers if there are any.
2282 if (new_max > 0) {
2284 * First copy the records.
2286 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2287 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2288 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2291 * Then copy the pointers.
2293 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2294 ifp->if_broot_bytes);
2295 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2296 (int)new_size);
2297 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2299 kmem_free(ifp->if_broot);
2300 ifp->if_broot = new_broot;
2301 ifp->if_broot_bytes = (int)new_size;
2302 ASSERT(ifp->if_broot_bytes <=
2303 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2304 return;
2309 * This is called when the amount of space needed for if_data
2310 * is increased or decreased. The change in size is indicated by
2311 * the number of bytes that need to be added or deleted in the
2312 * byte_diff parameter.
2314 * If the amount of space needed has decreased below the size of the
2315 * inline buffer, then switch to using the inline buffer. Otherwise,
2316 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2317 * to what is needed.
2319 * ip -- the inode whose if_data area is changing
2320 * byte_diff -- the change in the number of bytes, positive or negative,
2321 * requested for the if_data array.
2323 void
2324 xfs_idata_realloc(
2325 xfs_inode_t *ip,
2326 int byte_diff,
2327 int whichfork)
2329 xfs_ifork_t *ifp;
2330 int new_size;
2331 int real_size;
2333 if (byte_diff == 0) {
2334 return;
2337 ifp = XFS_IFORK_PTR(ip, whichfork);
2338 new_size = (int)ifp->if_bytes + byte_diff;
2339 ASSERT(new_size >= 0);
2341 if (new_size == 0) {
2342 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2343 kmem_free(ifp->if_u1.if_data);
2345 ifp->if_u1.if_data = NULL;
2346 real_size = 0;
2347 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2349 * If the valid extents/data can fit in if_inline_ext/data,
2350 * copy them from the malloc'd vector and free it.
2352 if (ifp->if_u1.if_data == NULL) {
2353 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2354 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2355 ASSERT(ifp->if_real_bytes != 0);
2356 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2357 new_size);
2358 kmem_free(ifp->if_u1.if_data);
2359 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2361 real_size = 0;
2362 } else {
2364 * Stuck with malloc/realloc.
2365 * For inline data, the underlying buffer must be
2366 * a multiple of 4 bytes in size so that it can be
2367 * logged and stay on word boundaries. We enforce
2368 * that here.
2370 real_size = roundup(new_size, 4);
2371 if (ifp->if_u1.if_data == NULL) {
2372 ASSERT(ifp->if_real_bytes == 0);
2373 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2374 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2376 * Only do the realloc if the underlying size
2377 * is really changing.
2379 if (ifp->if_real_bytes != real_size) {
2380 ifp->if_u1.if_data =
2381 kmem_realloc(ifp->if_u1.if_data,
2382 real_size,
2383 ifp->if_real_bytes,
2384 KM_SLEEP);
2386 } else {
2387 ASSERT(ifp->if_real_bytes == 0);
2388 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2389 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2390 ifp->if_bytes);
2393 ifp->if_real_bytes = real_size;
2394 ifp->if_bytes = new_size;
2395 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2398 void
2399 xfs_idestroy_fork(
2400 xfs_inode_t *ip,
2401 int whichfork)
2403 xfs_ifork_t *ifp;
2405 ifp = XFS_IFORK_PTR(ip, whichfork);
2406 if (ifp->if_broot != NULL) {
2407 kmem_free(ifp->if_broot);
2408 ifp->if_broot = NULL;
2412 * If the format is local, then we can't have an extents
2413 * array so just look for an inline data array. If we're
2414 * not local then we may or may not have an extents list,
2415 * so check and free it up if we do.
2417 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2418 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2419 (ifp->if_u1.if_data != NULL)) {
2420 ASSERT(ifp->if_real_bytes != 0);
2421 kmem_free(ifp->if_u1.if_data);
2422 ifp->if_u1.if_data = NULL;
2423 ifp->if_real_bytes = 0;
2425 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2426 ((ifp->if_flags & XFS_IFEXTIREC) ||
2427 ((ifp->if_u1.if_extents != NULL) &&
2428 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2429 ASSERT(ifp->if_real_bytes != 0);
2430 xfs_iext_destroy(ifp);
2432 ASSERT(ifp->if_u1.if_extents == NULL ||
2433 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2434 ASSERT(ifp->if_real_bytes == 0);
2435 if (whichfork == XFS_ATTR_FORK) {
2436 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2437 ip->i_afp = NULL;
2442 * Increment the pin count of the given buffer.
2443 * This value is protected by ipinlock spinlock in the mount structure.
2445 void
2446 xfs_ipin(
2447 xfs_inode_t *ip)
2449 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2451 atomic_inc(&ip->i_pincount);
2455 * Decrement the pin count of the given inode, and wake up
2456 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2457 * inode must have been previously pinned with a call to xfs_ipin().
2459 void
2460 xfs_iunpin(
2461 xfs_inode_t *ip)
2463 ASSERT(atomic_read(&ip->i_pincount) > 0);
2465 if (atomic_dec_and_test(&ip->i_pincount))
2466 wake_up(&ip->i_ipin_wait);
2470 * This is called to unpin an inode. It can be directed to wait or to return
2471 * immediately without waiting for the inode to be unpinned. The caller must
2472 * have the inode locked in at least shared mode so that the buffer cannot be
2473 * subsequently pinned once someone is waiting for it to be unpinned.
2475 STATIC void
2476 __xfs_iunpin_wait(
2477 xfs_inode_t *ip,
2478 int wait)
2480 xfs_inode_log_item_t *iip = ip->i_itemp;
2482 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2483 if (atomic_read(&ip->i_pincount) == 0)
2484 return;
2486 /* Give the log a push to start the unpinning I/O */
2487 if (iip && iip->ili_last_lsn)
2488 xfs_log_force_lsn(ip->i_mount, iip->ili_last_lsn, 0);
2489 else
2490 xfs_log_force(ip->i_mount, 0);
2492 if (wait)
2493 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2496 void
2497 xfs_iunpin_wait(
2498 xfs_inode_t *ip)
2500 __xfs_iunpin_wait(ip, 1);
2503 static inline void
2504 xfs_iunpin_nowait(
2505 xfs_inode_t *ip)
2507 __xfs_iunpin_wait(ip, 0);
2512 * xfs_iextents_copy()
2514 * This is called to copy the REAL extents (as opposed to the delayed
2515 * allocation extents) from the inode into the given buffer. It
2516 * returns the number of bytes copied into the buffer.
2518 * If there are no delayed allocation extents, then we can just
2519 * memcpy() the extents into the buffer. Otherwise, we need to
2520 * examine each extent in turn and skip those which are delayed.
2523 xfs_iextents_copy(
2524 xfs_inode_t *ip,
2525 xfs_bmbt_rec_t *dp,
2526 int whichfork)
2528 int copied;
2529 int i;
2530 xfs_ifork_t *ifp;
2531 int nrecs;
2532 xfs_fsblock_t start_block;
2534 ifp = XFS_IFORK_PTR(ip, whichfork);
2535 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2536 ASSERT(ifp->if_bytes > 0);
2538 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2539 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2540 ASSERT(nrecs > 0);
2543 * There are some delayed allocation extents in the
2544 * inode, so copy the extents one at a time and skip
2545 * the delayed ones. There must be at least one
2546 * non-delayed extent.
2548 copied = 0;
2549 for (i = 0; i < nrecs; i++) {
2550 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2551 start_block = xfs_bmbt_get_startblock(ep);
2552 if (isnullstartblock(start_block)) {
2554 * It's a delayed allocation extent, so skip it.
2556 continue;
2559 /* Translate to on disk format */
2560 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2561 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2562 dp++;
2563 copied++;
2565 ASSERT(copied != 0);
2566 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2568 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2572 * Each of the following cases stores data into the same region
2573 * of the on-disk inode, so only one of them can be valid at
2574 * any given time. While it is possible to have conflicting formats
2575 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2576 * in EXTENTS format, this can only happen when the fork has
2577 * changed formats after being modified but before being flushed.
2578 * In these cases, the format always takes precedence, because the
2579 * format indicates the current state of the fork.
2581 /*ARGSUSED*/
2582 STATIC void
2583 xfs_iflush_fork(
2584 xfs_inode_t *ip,
2585 xfs_dinode_t *dip,
2586 xfs_inode_log_item_t *iip,
2587 int whichfork,
2588 xfs_buf_t *bp)
2590 char *cp;
2591 xfs_ifork_t *ifp;
2592 xfs_mount_t *mp;
2593 #ifdef XFS_TRANS_DEBUG
2594 int first;
2595 #endif
2596 static const short brootflag[2] =
2597 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2598 static const short dataflag[2] =
2599 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2600 static const short extflag[2] =
2601 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2603 if (!iip)
2604 return;
2605 ifp = XFS_IFORK_PTR(ip, whichfork);
2607 * This can happen if we gave up in iformat in an error path,
2608 * for the attribute fork.
2610 if (!ifp) {
2611 ASSERT(whichfork == XFS_ATTR_FORK);
2612 return;
2614 cp = XFS_DFORK_PTR(dip, whichfork);
2615 mp = ip->i_mount;
2616 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2617 case XFS_DINODE_FMT_LOCAL:
2618 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2619 (ifp->if_bytes > 0)) {
2620 ASSERT(ifp->if_u1.if_data != NULL);
2621 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2622 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2624 break;
2626 case XFS_DINODE_FMT_EXTENTS:
2627 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2628 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2629 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2630 (ifp->if_bytes == 0));
2631 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2632 (ifp->if_bytes > 0));
2633 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2634 (ifp->if_bytes > 0)) {
2635 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2636 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2637 whichfork);
2639 break;
2641 case XFS_DINODE_FMT_BTREE:
2642 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2643 (ifp->if_broot_bytes > 0)) {
2644 ASSERT(ifp->if_broot != NULL);
2645 ASSERT(ifp->if_broot_bytes <=
2646 (XFS_IFORK_SIZE(ip, whichfork) +
2647 XFS_BROOT_SIZE_ADJ));
2648 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2649 (xfs_bmdr_block_t *)cp,
2650 XFS_DFORK_SIZE(dip, mp, whichfork));
2652 break;
2654 case XFS_DINODE_FMT_DEV:
2655 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2656 ASSERT(whichfork == XFS_DATA_FORK);
2657 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2659 break;
2661 case XFS_DINODE_FMT_UUID:
2662 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2663 ASSERT(whichfork == XFS_DATA_FORK);
2664 memcpy(XFS_DFORK_DPTR(dip),
2665 &ip->i_df.if_u2.if_uuid,
2666 sizeof(uuid_t));
2668 break;
2670 default:
2671 ASSERT(0);
2672 break;
2676 STATIC int
2677 xfs_iflush_cluster(
2678 xfs_inode_t *ip,
2679 xfs_buf_t *bp)
2681 xfs_mount_t *mp = ip->i_mount;
2682 struct xfs_perag *pag;
2683 unsigned long first_index, mask;
2684 unsigned long inodes_per_cluster;
2685 int ilist_size;
2686 xfs_inode_t **ilist;
2687 xfs_inode_t *iq;
2688 int nr_found;
2689 int clcount = 0;
2690 int bufwasdelwri;
2691 int i;
2693 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2694 ASSERT(pag->pagi_inodeok);
2695 ASSERT(pag->pag_ici_init);
2697 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2698 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2699 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2700 if (!ilist)
2701 goto out_put;
2703 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2704 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2705 read_lock(&pag->pag_ici_lock);
2706 /* really need a gang lookup range call here */
2707 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2708 first_index, inodes_per_cluster);
2709 if (nr_found == 0)
2710 goto out_free;
2712 for (i = 0; i < nr_found; i++) {
2713 iq = ilist[i];
2714 if (iq == ip)
2715 continue;
2716 /* if the inode lies outside this cluster, we're done. */
2717 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2718 break;
2720 * Do an un-protected check to see if the inode is dirty and
2721 * is a candidate for flushing. These checks will be repeated
2722 * later after the appropriate locks are acquired.
2724 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2725 continue;
2728 * Try to get locks. If any are unavailable or it is pinned,
2729 * then this inode cannot be flushed and is skipped.
2732 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2733 continue;
2734 if (!xfs_iflock_nowait(iq)) {
2735 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2736 continue;
2738 if (xfs_ipincount(iq)) {
2739 xfs_ifunlock(iq);
2740 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2741 continue;
2745 * arriving here means that this inode can be flushed. First
2746 * re-check that it's dirty before flushing.
2748 if (!xfs_inode_clean(iq)) {
2749 int error;
2750 error = xfs_iflush_int(iq, bp);
2751 if (error) {
2752 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2753 goto cluster_corrupt_out;
2755 clcount++;
2756 } else {
2757 xfs_ifunlock(iq);
2759 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2762 if (clcount) {
2763 XFS_STATS_INC(xs_icluster_flushcnt);
2764 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2767 out_free:
2768 read_unlock(&pag->pag_ici_lock);
2769 kmem_free(ilist);
2770 out_put:
2771 xfs_perag_put(pag);
2772 return 0;
2775 cluster_corrupt_out:
2777 * Corruption detected in the clustering loop. Invalidate the
2778 * inode buffer and shut down the filesystem.
2780 read_unlock(&pag->pag_ici_lock);
2782 * Clean up the buffer. If it was B_DELWRI, just release it --
2783 * brelse can handle it with no problems. If not, shut down the
2784 * filesystem before releasing the buffer.
2786 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2787 if (bufwasdelwri)
2788 xfs_buf_relse(bp);
2790 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2792 if (!bufwasdelwri) {
2794 * Just like incore_relse: if we have b_iodone functions,
2795 * mark the buffer as an error and call them. Otherwise
2796 * mark it as stale and brelse.
2798 if (XFS_BUF_IODONE_FUNC(bp)) {
2799 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2800 XFS_BUF_UNDONE(bp);
2801 XFS_BUF_STALE(bp);
2802 XFS_BUF_ERROR(bp,EIO);
2803 xfs_biodone(bp);
2804 } else {
2805 XFS_BUF_STALE(bp);
2806 xfs_buf_relse(bp);
2811 * Unlocks the flush lock
2813 xfs_iflush_abort(iq);
2814 kmem_free(ilist);
2815 xfs_perag_put(pag);
2816 return XFS_ERROR(EFSCORRUPTED);
2820 * xfs_iflush() will write a modified inode's changes out to the
2821 * inode's on disk home. The caller must have the inode lock held
2822 * in at least shared mode and the inode flush completion must be
2823 * active as well. The inode lock will still be held upon return from
2824 * the call and the caller is free to unlock it.
2825 * The inode flush will be completed when the inode reaches the disk.
2826 * The flags indicate how the inode's buffer should be written out.
2829 xfs_iflush(
2830 xfs_inode_t *ip,
2831 uint flags)
2833 xfs_inode_log_item_t *iip;
2834 xfs_buf_t *bp;
2835 xfs_dinode_t *dip;
2836 xfs_mount_t *mp;
2837 int error;
2839 XFS_STATS_INC(xs_iflush_count);
2841 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2842 ASSERT(!completion_done(&ip->i_flush));
2843 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2844 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2846 iip = ip->i_itemp;
2847 mp = ip->i_mount;
2850 * We can't flush the inode until it is unpinned, so wait for it if we
2851 * are allowed to block. We know noone new can pin it, because we are
2852 * holding the inode lock shared and you need to hold it exclusively to
2853 * pin the inode.
2855 * If we are not allowed to block, force the log out asynchronously so
2856 * that when we come back the inode will be unpinned. If other inodes
2857 * in the same cluster are dirty, they will probably write the inode
2858 * out for us if they occur after the log force completes.
2860 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2861 xfs_iunpin_nowait(ip);
2862 xfs_ifunlock(ip);
2863 return EAGAIN;
2865 xfs_iunpin_wait(ip);
2868 * For stale inodes we cannot rely on the backing buffer remaining
2869 * stale in cache for the remaining life of the stale inode and so
2870 * xfs_itobp() below may give us a buffer that no longer contains
2871 * inodes below. We have to check this after ensuring the inode is
2872 * unpinned so that it is safe to reclaim the stale inode after the
2873 * flush call.
2875 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2876 xfs_ifunlock(ip);
2877 return 0;
2881 * This may have been unpinned because the filesystem is shutting
2882 * down forcibly. If that's the case we must not write this inode
2883 * to disk, because the log record didn't make it to disk!
2885 if (XFS_FORCED_SHUTDOWN(mp)) {
2886 ip->i_update_core = 0;
2887 if (iip)
2888 iip->ili_format.ilf_fields = 0;
2889 xfs_ifunlock(ip);
2890 return XFS_ERROR(EIO);
2894 * Get the buffer containing the on-disk inode.
2896 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2897 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2898 if (error || !bp) {
2899 xfs_ifunlock(ip);
2900 return error;
2904 * First flush out the inode that xfs_iflush was called with.
2906 error = xfs_iflush_int(ip, bp);
2907 if (error)
2908 goto corrupt_out;
2911 * If the buffer is pinned then push on the log now so we won't
2912 * get stuck waiting in the write for too long.
2914 if (XFS_BUF_ISPINNED(bp))
2915 xfs_log_force(mp, 0);
2918 * inode clustering:
2919 * see if other inodes can be gathered into this write
2921 error = xfs_iflush_cluster(ip, bp);
2922 if (error)
2923 goto cluster_corrupt_out;
2925 if (flags & SYNC_WAIT)
2926 error = xfs_bwrite(mp, bp);
2927 else
2928 xfs_bdwrite(mp, bp);
2929 return error;
2931 corrupt_out:
2932 xfs_buf_relse(bp);
2933 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2934 cluster_corrupt_out:
2936 * Unlocks the flush lock
2938 xfs_iflush_abort(ip);
2939 return XFS_ERROR(EFSCORRUPTED);
2943 STATIC int
2944 xfs_iflush_int(
2945 xfs_inode_t *ip,
2946 xfs_buf_t *bp)
2948 xfs_inode_log_item_t *iip;
2949 xfs_dinode_t *dip;
2950 xfs_mount_t *mp;
2951 #ifdef XFS_TRANS_DEBUG
2952 int first;
2953 #endif
2955 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2956 ASSERT(!completion_done(&ip->i_flush));
2957 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2958 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2960 iip = ip->i_itemp;
2961 mp = ip->i_mount;
2963 /* set *dip = inode's place in the buffer */
2964 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2967 * Clear i_update_core before copying out the data.
2968 * This is for coordination with our timestamp updates
2969 * that don't hold the inode lock. They will always
2970 * update the timestamps BEFORE setting i_update_core,
2971 * so if we clear i_update_core after they set it we
2972 * are guaranteed to see their updates to the timestamps.
2973 * I believe that this depends on strongly ordered memory
2974 * semantics, but we have that. We use the SYNCHRONIZE
2975 * macro to make sure that the compiler does not reorder
2976 * the i_update_core access below the data copy below.
2978 ip->i_update_core = 0;
2979 SYNCHRONIZE();
2982 * Make sure to get the latest timestamps from the Linux inode.
2984 xfs_synchronize_times(ip);
2986 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2987 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2988 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2989 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2990 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2991 goto corrupt_out;
2993 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2994 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2995 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2996 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2997 ip->i_ino, ip, ip->i_d.di_magic);
2998 goto corrupt_out;
3000 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3001 if (XFS_TEST_ERROR(
3002 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3003 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3004 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3005 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3006 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3007 ip->i_ino, ip);
3008 goto corrupt_out;
3010 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3011 if (XFS_TEST_ERROR(
3012 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3013 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3014 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3015 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3016 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3017 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3018 ip->i_ino, ip);
3019 goto corrupt_out;
3022 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3023 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3024 XFS_RANDOM_IFLUSH_5)) {
3025 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3026 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3027 ip->i_ino,
3028 ip->i_d.di_nextents + ip->i_d.di_anextents,
3029 ip->i_d.di_nblocks,
3030 ip);
3031 goto corrupt_out;
3033 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3034 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3035 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3036 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3037 ip->i_ino, ip->i_d.di_forkoff, ip);
3038 goto corrupt_out;
3041 * bump the flush iteration count, used to detect flushes which
3042 * postdate a log record during recovery.
3045 ip->i_d.di_flushiter++;
3048 * Copy the dirty parts of the inode into the on-disk
3049 * inode. We always copy out the core of the inode,
3050 * because if the inode is dirty at all the core must
3051 * be.
3053 xfs_dinode_to_disk(dip, &ip->i_d);
3055 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3056 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3057 ip->i_d.di_flushiter = 0;
3060 * If this is really an old format inode and the superblock version
3061 * has not been updated to support only new format inodes, then
3062 * convert back to the old inode format. If the superblock version
3063 * has been updated, then make the conversion permanent.
3065 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3066 if (ip->i_d.di_version == 1) {
3067 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3069 * Convert it back.
3071 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3072 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3073 } else {
3075 * The superblock version has already been bumped,
3076 * so just make the conversion to the new inode
3077 * format permanent.
3079 ip->i_d.di_version = 2;
3080 dip->di_version = 2;
3081 ip->i_d.di_onlink = 0;
3082 dip->di_onlink = 0;
3083 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3084 memset(&(dip->di_pad[0]), 0,
3085 sizeof(dip->di_pad));
3086 ASSERT(ip->i_d.di_projid == 0);
3090 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3091 if (XFS_IFORK_Q(ip))
3092 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3093 xfs_inobp_check(mp, bp);
3096 * We've recorded everything logged in the inode, so we'd
3097 * like to clear the ilf_fields bits so we don't log and
3098 * flush things unnecessarily. However, we can't stop
3099 * logging all this information until the data we've copied
3100 * into the disk buffer is written to disk. If we did we might
3101 * overwrite the copy of the inode in the log with all the
3102 * data after re-logging only part of it, and in the face of
3103 * a crash we wouldn't have all the data we need to recover.
3105 * What we do is move the bits to the ili_last_fields field.
3106 * When logging the inode, these bits are moved back to the
3107 * ilf_fields field. In the xfs_iflush_done() routine we
3108 * clear ili_last_fields, since we know that the information
3109 * those bits represent is permanently on disk. As long as
3110 * the flush completes before the inode is logged again, then
3111 * both ilf_fields and ili_last_fields will be cleared.
3113 * We can play with the ilf_fields bits here, because the inode
3114 * lock must be held exclusively in order to set bits there
3115 * and the flush lock protects the ili_last_fields bits.
3116 * Set ili_logged so the flush done
3117 * routine can tell whether or not to look in the AIL.
3118 * Also, store the current LSN of the inode so that we can tell
3119 * whether the item has moved in the AIL from xfs_iflush_done().
3120 * In order to read the lsn we need the AIL lock, because
3121 * it is a 64 bit value that cannot be read atomically.
3123 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3124 iip->ili_last_fields = iip->ili_format.ilf_fields;
3125 iip->ili_format.ilf_fields = 0;
3126 iip->ili_logged = 1;
3128 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3129 &iip->ili_item.li_lsn);
3132 * Attach the function xfs_iflush_done to the inode's
3133 * buffer. This will remove the inode from the AIL
3134 * and unlock the inode's flush lock when the inode is
3135 * completely written to disk.
3137 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3138 xfs_iflush_done, (xfs_log_item_t *)iip);
3140 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3141 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3142 } else {
3144 * We're flushing an inode which is not in the AIL and has
3145 * not been logged but has i_update_core set. For this
3146 * case we can use a B_DELWRI flush and immediately drop
3147 * the inode flush lock because we can avoid the whole
3148 * AIL state thing. It's OK to drop the flush lock now,
3149 * because we've already locked the buffer and to do anything
3150 * you really need both.
3152 if (iip != NULL) {
3153 ASSERT(iip->ili_logged == 0);
3154 ASSERT(iip->ili_last_fields == 0);
3155 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3157 xfs_ifunlock(ip);
3160 return 0;
3162 corrupt_out:
3163 return XFS_ERROR(EFSCORRUPTED);
3167 * Return a pointer to the extent record at file index idx.
3169 xfs_bmbt_rec_host_t *
3170 xfs_iext_get_ext(
3171 xfs_ifork_t *ifp, /* inode fork pointer */
3172 xfs_extnum_t idx) /* index of target extent */
3174 ASSERT(idx >= 0);
3175 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3176 return ifp->if_u1.if_ext_irec->er_extbuf;
3177 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3178 xfs_ext_irec_t *erp; /* irec pointer */
3179 int erp_idx = 0; /* irec index */
3180 xfs_extnum_t page_idx = idx; /* ext index in target list */
3182 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3183 return &erp->er_extbuf[page_idx];
3184 } else if (ifp->if_bytes) {
3185 return &ifp->if_u1.if_extents[idx];
3186 } else {
3187 return NULL;
3192 * Insert new item(s) into the extent records for incore inode
3193 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3195 void
3196 xfs_iext_insert(
3197 xfs_inode_t *ip, /* incore inode pointer */
3198 xfs_extnum_t idx, /* starting index of new items */
3199 xfs_extnum_t count, /* number of inserted items */
3200 xfs_bmbt_irec_t *new, /* items to insert */
3201 int state) /* type of extent conversion */
3203 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3204 xfs_extnum_t i; /* extent record index */
3206 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3208 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3209 xfs_iext_add(ifp, idx, count);
3210 for (i = idx; i < idx + count; i++, new++)
3211 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3215 * This is called when the amount of space required for incore file
3216 * extents needs to be increased. The ext_diff parameter stores the
3217 * number of new extents being added and the idx parameter contains
3218 * the extent index where the new extents will be added. If the new
3219 * extents are being appended, then we just need to (re)allocate and
3220 * initialize the space. Otherwise, if the new extents are being
3221 * inserted into the middle of the existing entries, a bit more work
3222 * is required to make room for the new extents to be inserted. The
3223 * caller is responsible for filling in the new extent entries upon
3224 * return.
3226 void
3227 xfs_iext_add(
3228 xfs_ifork_t *ifp, /* inode fork pointer */
3229 xfs_extnum_t idx, /* index to begin adding exts */
3230 int ext_diff) /* number of extents to add */
3232 int byte_diff; /* new bytes being added */
3233 int new_size; /* size of extents after adding */
3234 xfs_extnum_t nextents; /* number of extents in file */
3236 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3237 ASSERT((idx >= 0) && (idx <= nextents));
3238 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3239 new_size = ifp->if_bytes + byte_diff;
3241 * If the new number of extents (nextents + ext_diff)
3242 * fits inside the inode, then continue to use the inline
3243 * extent buffer.
3245 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3246 if (idx < nextents) {
3247 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3248 &ifp->if_u2.if_inline_ext[idx],
3249 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3250 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3252 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3253 ifp->if_real_bytes = 0;
3254 ifp->if_lastex = nextents + ext_diff;
3257 * Otherwise use a linear (direct) extent list.
3258 * If the extents are currently inside the inode,
3259 * xfs_iext_realloc_direct will switch us from
3260 * inline to direct extent allocation mode.
3262 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3263 xfs_iext_realloc_direct(ifp, new_size);
3264 if (idx < nextents) {
3265 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3266 &ifp->if_u1.if_extents[idx],
3267 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3268 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3271 /* Indirection array */
3272 else {
3273 xfs_ext_irec_t *erp;
3274 int erp_idx = 0;
3275 int page_idx = idx;
3277 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3278 if (ifp->if_flags & XFS_IFEXTIREC) {
3279 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3280 } else {
3281 xfs_iext_irec_init(ifp);
3282 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3283 erp = ifp->if_u1.if_ext_irec;
3285 /* Extents fit in target extent page */
3286 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3287 if (page_idx < erp->er_extcount) {
3288 memmove(&erp->er_extbuf[page_idx + ext_diff],
3289 &erp->er_extbuf[page_idx],
3290 (erp->er_extcount - page_idx) *
3291 sizeof(xfs_bmbt_rec_t));
3292 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3294 erp->er_extcount += ext_diff;
3295 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3297 /* Insert a new extent page */
3298 else if (erp) {
3299 xfs_iext_add_indirect_multi(ifp,
3300 erp_idx, page_idx, ext_diff);
3303 * If extent(s) are being appended to the last page in
3304 * the indirection array and the new extent(s) don't fit
3305 * in the page, then erp is NULL and erp_idx is set to
3306 * the next index needed in the indirection array.
3308 else {
3309 int count = ext_diff;
3311 while (count) {
3312 erp = xfs_iext_irec_new(ifp, erp_idx);
3313 erp->er_extcount = count;
3314 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3315 if (count) {
3316 erp_idx++;
3321 ifp->if_bytes = new_size;
3325 * This is called when incore extents are being added to the indirection
3326 * array and the new extents do not fit in the target extent list. The
3327 * erp_idx parameter contains the irec index for the target extent list
3328 * in the indirection array, and the idx parameter contains the extent
3329 * index within the list. The number of extents being added is stored
3330 * in the count parameter.
3332 * |-------| |-------|
3333 * | | | | idx - number of extents before idx
3334 * | idx | | count |
3335 * | | | | count - number of extents being inserted at idx
3336 * |-------| |-------|
3337 * | count | | nex2 | nex2 - number of extents after idx + count
3338 * |-------| |-------|
3340 void
3341 xfs_iext_add_indirect_multi(
3342 xfs_ifork_t *ifp, /* inode fork pointer */
3343 int erp_idx, /* target extent irec index */
3344 xfs_extnum_t idx, /* index within target list */
3345 int count) /* new extents being added */
3347 int byte_diff; /* new bytes being added */
3348 xfs_ext_irec_t *erp; /* pointer to irec entry */
3349 xfs_extnum_t ext_diff; /* number of extents to add */
3350 xfs_extnum_t ext_cnt; /* new extents still needed */
3351 xfs_extnum_t nex2; /* extents after idx + count */
3352 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3353 int nlists; /* number of irec's (lists) */
3355 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3356 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3357 nex2 = erp->er_extcount - idx;
3358 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3361 * Save second part of target extent list
3362 * (all extents past */
3363 if (nex2) {
3364 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3365 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3366 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3367 erp->er_extcount -= nex2;
3368 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3369 memset(&erp->er_extbuf[idx], 0, byte_diff);
3373 * Add the new extents to the end of the target
3374 * list, then allocate new irec record(s) and
3375 * extent buffer(s) as needed to store the rest
3376 * of the new extents.
3378 ext_cnt = count;
3379 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3380 if (ext_diff) {
3381 erp->er_extcount += ext_diff;
3382 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3383 ext_cnt -= ext_diff;
3385 while (ext_cnt) {
3386 erp_idx++;
3387 erp = xfs_iext_irec_new(ifp, erp_idx);
3388 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3389 erp->er_extcount = ext_diff;
3390 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3391 ext_cnt -= ext_diff;
3394 /* Add nex2 extents back to indirection array */
3395 if (nex2) {
3396 xfs_extnum_t ext_avail;
3397 int i;
3399 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3400 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3401 i = 0;
3403 * If nex2 extents fit in the current page, append
3404 * nex2_ep after the new extents.
3406 if (nex2 <= ext_avail) {
3407 i = erp->er_extcount;
3410 * Otherwise, check if space is available in the
3411 * next page.
3413 else if ((erp_idx < nlists - 1) &&
3414 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3415 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3416 erp_idx++;
3417 erp++;
3418 /* Create a hole for nex2 extents */
3419 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3420 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3423 * Final choice, create a new extent page for
3424 * nex2 extents.
3426 else {
3427 erp_idx++;
3428 erp = xfs_iext_irec_new(ifp, erp_idx);
3430 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3431 kmem_free(nex2_ep);
3432 erp->er_extcount += nex2;
3433 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3438 * This is called when the amount of space required for incore file
3439 * extents needs to be decreased. The ext_diff parameter stores the
3440 * number of extents to be removed and the idx parameter contains
3441 * the extent index where the extents will be removed from.
3443 * If the amount of space needed has decreased below the linear
3444 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3445 * extent array. Otherwise, use kmem_realloc() to adjust the
3446 * size to what is needed.
3448 void
3449 xfs_iext_remove(
3450 xfs_inode_t *ip, /* incore inode pointer */
3451 xfs_extnum_t idx, /* index to begin removing exts */
3452 int ext_diff, /* number of extents to remove */
3453 int state) /* type of extent conversion */
3455 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3456 xfs_extnum_t nextents; /* number of extents in file */
3457 int new_size; /* size of extents after removal */
3459 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3461 ASSERT(ext_diff > 0);
3462 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3463 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3465 if (new_size == 0) {
3466 xfs_iext_destroy(ifp);
3467 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3468 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3469 } else if (ifp->if_real_bytes) {
3470 xfs_iext_remove_direct(ifp, idx, ext_diff);
3471 } else {
3472 xfs_iext_remove_inline(ifp, idx, ext_diff);
3474 ifp->if_bytes = new_size;
3478 * This removes ext_diff extents from the inline buffer, beginning
3479 * at extent index idx.
3481 void
3482 xfs_iext_remove_inline(
3483 xfs_ifork_t *ifp, /* inode fork pointer */
3484 xfs_extnum_t idx, /* index to begin removing exts */
3485 int ext_diff) /* number of extents to remove */
3487 int nextents; /* number of extents in file */
3489 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3490 ASSERT(idx < XFS_INLINE_EXTS);
3491 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3492 ASSERT(((nextents - ext_diff) > 0) &&
3493 (nextents - ext_diff) < XFS_INLINE_EXTS);
3495 if (idx + ext_diff < nextents) {
3496 memmove(&ifp->if_u2.if_inline_ext[idx],
3497 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3498 (nextents - (idx + ext_diff)) *
3499 sizeof(xfs_bmbt_rec_t));
3500 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3501 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3502 } else {
3503 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3504 ext_diff * sizeof(xfs_bmbt_rec_t));
3509 * This removes ext_diff extents from a linear (direct) extent list,
3510 * beginning at extent index idx. If the extents are being removed
3511 * from the end of the list (ie. truncate) then we just need to re-
3512 * allocate the list to remove the extra space. Otherwise, if the
3513 * extents are being removed from the middle of the existing extent
3514 * entries, then we first need to move the extent records beginning
3515 * at idx + ext_diff up in the list to overwrite the records being
3516 * removed, then remove the extra space via kmem_realloc.
3518 void
3519 xfs_iext_remove_direct(
3520 xfs_ifork_t *ifp, /* inode fork pointer */
3521 xfs_extnum_t idx, /* index to begin removing exts */
3522 int ext_diff) /* number of extents to remove */
3524 xfs_extnum_t nextents; /* number of extents in file */
3525 int new_size; /* size of extents after removal */
3527 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3528 new_size = ifp->if_bytes -
3529 (ext_diff * sizeof(xfs_bmbt_rec_t));
3530 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3532 if (new_size == 0) {
3533 xfs_iext_destroy(ifp);
3534 return;
3536 /* Move extents up in the list (if needed) */
3537 if (idx + ext_diff < nextents) {
3538 memmove(&ifp->if_u1.if_extents[idx],
3539 &ifp->if_u1.if_extents[idx + ext_diff],
3540 (nextents - (idx + ext_diff)) *
3541 sizeof(xfs_bmbt_rec_t));
3543 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3544 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3546 * Reallocate the direct extent list. If the extents
3547 * will fit inside the inode then xfs_iext_realloc_direct
3548 * will switch from direct to inline extent allocation
3549 * mode for us.
3551 xfs_iext_realloc_direct(ifp, new_size);
3552 ifp->if_bytes = new_size;
3556 * This is called when incore extents are being removed from the
3557 * indirection array and the extents being removed span multiple extent
3558 * buffers. The idx parameter contains the file extent index where we
3559 * want to begin removing extents, and the count parameter contains
3560 * how many extents need to be removed.
3562 * |-------| |-------|
3563 * | nex1 | | | nex1 - number of extents before idx
3564 * |-------| | count |
3565 * | | | | count - number of extents being removed at idx
3566 * | count | |-------|
3567 * | | | nex2 | nex2 - number of extents after idx + count
3568 * |-------| |-------|
3570 void
3571 xfs_iext_remove_indirect(
3572 xfs_ifork_t *ifp, /* inode fork pointer */
3573 xfs_extnum_t idx, /* index to begin removing extents */
3574 int count) /* number of extents to remove */
3576 xfs_ext_irec_t *erp; /* indirection array pointer */
3577 int erp_idx = 0; /* indirection array index */
3578 xfs_extnum_t ext_cnt; /* extents left to remove */
3579 xfs_extnum_t ext_diff; /* extents to remove in current list */
3580 xfs_extnum_t nex1; /* number of extents before idx */
3581 xfs_extnum_t nex2; /* extents after idx + count */
3582 int nlists; /* entries in indirection array */
3583 int page_idx = idx; /* index in target extent list */
3585 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3586 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3587 ASSERT(erp != NULL);
3588 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3589 nex1 = page_idx;
3590 ext_cnt = count;
3591 while (ext_cnt) {
3592 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3593 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3595 * Check for deletion of entire list;
3596 * xfs_iext_irec_remove() updates extent offsets.
3598 if (ext_diff == erp->er_extcount) {
3599 xfs_iext_irec_remove(ifp, erp_idx);
3600 ext_cnt -= ext_diff;
3601 nex1 = 0;
3602 if (ext_cnt) {
3603 ASSERT(erp_idx < ifp->if_real_bytes /
3604 XFS_IEXT_BUFSZ);
3605 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3606 nex1 = 0;
3607 continue;
3608 } else {
3609 break;
3612 /* Move extents up (if needed) */
3613 if (nex2) {
3614 memmove(&erp->er_extbuf[nex1],
3615 &erp->er_extbuf[nex1 + ext_diff],
3616 nex2 * sizeof(xfs_bmbt_rec_t));
3618 /* Zero out rest of page */
3619 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3620 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3621 /* Update remaining counters */
3622 erp->er_extcount -= ext_diff;
3623 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3624 ext_cnt -= ext_diff;
3625 nex1 = 0;
3626 erp_idx++;
3627 erp++;
3629 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3630 xfs_iext_irec_compact(ifp);
3634 * Create, destroy, or resize a linear (direct) block of extents.
3636 void
3637 xfs_iext_realloc_direct(
3638 xfs_ifork_t *ifp, /* inode fork pointer */
3639 int new_size) /* new size of extents */
3641 int rnew_size; /* real new size of extents */
3643 rnew_size = new_size;
3645 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3646 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3647 (new_size != ifp->if_real_bytes)));
3649 /* Free extent records */
3650 if (new_size == 0) {
3651 xfs_iext_destroy(ifp);
3653 /* Resize direct extent list and zero any new bytes */
3654 else if (ifp->if_real_bytes) {
3655 /* Check if extents will fit inside the inode */
3656 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3657 xfs_iext_direct_to_inline(ifp, new_size /
3658 (uint)sizeof(xfs_bmbt_rec_t));
3659 ifp->if_bytes = new_size;
3660 return;
3662 if (!is_power_of_2(new_size)){
3663 rnew_size = roundup_pow_of_two(new_size);
3665 if (rnew_size != ifp->if_real_bytes) {
3666 ifp->if_u1.if_extents =
3667 kmem_realloc(ifp->if_u1.if_extents,
3668 rnew_size,
3669 ifp->if_real_bytes, KM_NOFS);
3671 if (rnew_size > ifp->if_real_bytes) {
3672 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3673 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3674 rnew_size - ifp->if_real_bytes);
3678 * Switch from the inline extent buffer to a direct
3679 * extent list. Be sure to include the inline extent
3680 * bytes in new_size.
3682 else {
3683 new_size += ifp->if_bytes;
3684 if (!is_power_of_2(new_size)) {
3685 rnew_size = roundup_pow_of_two(new_size);
3687 xfs_iext_inline_to_direct(ifp, rnew_size);
3689 ifp->if_real_bytes = rnew_size;
3690 ifp->if_bytes = new_size;
3694 * Switch from linear (direct) extent records to inline buffer.
3696 void
3697 xfs_iext_direct_to_inline(
3698 xfs_ifork_t *ifp, /* inode fork pointer */
3699 xfs_extnum_t nextents) /* number of extents in file */
3701 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3702 ASSERT(nextents <= XFS_INLINE_EXTS);
3704 * The inline buffer was zeroed when we switched
3705 * from inline to direct extent allocation mode,
3706 * so we don't need to clear it here.
3708 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3709 nextents * sizeof(xfs_bmbt_rec_t));
3710 kmem_free(ifp->if_u1.if_extents);
3711 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3712 ifp->if_real_bytes = 0;
3716 * Switch from inline buffer to linear (direct) extent records.
3717 * new_size should already be rounded up to the next power of 2
3718 * by the caller (when appropriate), so use new_size as it is.
3719 * However, since new_size may be rounded up, we can't update
3720 * if_bytes here. It is the caller's responsibility to update
3721 * if_bytes upon return.
3723 void
3724 xfs_iext_inline_to_direct(
3725 xfs_ifork_t *ifp, /* inode fork pointer */
3726 int new_size) /* number of extents in file */
3728 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3729 memset(ifp->if_u1.if_extents, 0, new_size);
3730 if (ifp->if_bytes) {
3731 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3732 ifp->if_bytes);
3733 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3734 sizeof(xfs_bmbt_rec_t));
3736 ifp->if_real_bytes = new_size;
3740 * Resize an extent indirection array to new_size bytes.
3742 STATIC void
3743 xfs_iext_realloc_indirect(
3744 xfs_ifork_t *ifp, /* inode fork pointer */
3745 int new_size) /* new indirection array size */
3747 int nlists; /* number of irec's (ex lists) */
3748 int size; /* current indirection array size */
3750 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3751 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3752 size = nlists * sizeof(xfs_ext_irec_t);
3753 ASSERT(ifp->if_real_bytes);
3754 ASSERT((new_size >= 0) && (new_size != size));
3755 if (new_size == 0) {
3756 xfs_iext_destroy(ifp);
3757 } else {
3758 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3759 kmem_realloc(ifp->if_u1.if_ext_irec,
3760 new_size, size, KM_NOFS);
3765 * Switch from indirection array to linear (direct) extent allocations.
3767 STATIC void
3768 xfs_iext_indirect_to_direct(
3769 xfs_ifork_t *ifp) /* inode fork pointer */
3771 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3772 xfs_extnum_t nextents; /* number of extents in file */
3773 int size; /* size of file extents */
3775 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3776 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3777 ASSERT(nextents <= XFS_LINEAR_EXTS);
3778 size = nextents * sizeof(xfs_bmbt_rec_t);
3780 xfs_iext_irec_compact_pages(ifp);
3781 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3783 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3784 kmem_free(ifp->if_u1.if_ext_irec);
3785 ifp->if_flags &= ~XFS_IFEXTIREC;
3786 ifp->if_u1.if_extents = ep;
3787 ifp->if_bytes = size;
3788 if (nextents < XFS_LINEAR_EXTS) {
3789 xfs_iext_realloc_direct(ifp, size);
3794 * Free incore file extents.
3796 void
3797 xfs_iext_destroy(
3798 xfs_ifork_t *ifp) /* inode fork pointer */
3800 if (ifp->if_flags & XFS_IFEXTIREC) {
3801 int erp_idx;
3802 int nlists;
3804 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3805 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3806 xfs_iext_irec_remove(ifp, erp_idx);
3808 ifp->if_flags &= ~XFS_IFEXTIREC;
3809 } else if (ifp->if_real_bytes) {
3810 kmem_free(ifp->if_u1.if_extents);
3811 } else if (ifp->if_bytes) {
3812 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3813 sizeof(xfs_bmbt_rec_t));
3815 ifp->if_u1.if_extents = NULL;
3816 ifp->if_real_bytes = 0;
3817 ifp->if_bytes = 0;
3821 * Return a pointer to the extent record for file system block bno.
3823 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3824 xfs_iext_bno_to_ext(
3825 xfs_ifork_t *ifp, /* inode fork pointer */
3826 xfs_fileoff_t bno, /* block number to search for */
3827 xfs_extnum_t *idxp) /* index of target extent */
3829 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3830 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3831 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3832 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3833 int high; /* upper boundary in search */
3834 xfs_extnum_t idx = 0; /* index of target extent */
3835 int low; /* lower boundary in search */
3836 xfs_extnum_t nextents; /* number of file extents */
3837 xfs_fileoff_t startoff = 0; /* start offset of extent */
3839 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3840 if (nextents == 0) {
3841 *idxp = 0;
3842 return NULL;
3844 low = 0;
3845 if (ifp->if_flags & XFS_IFEXTIREC) {
3846 /* Find target extent list */
3847 int erp_idx = 0;
3848 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3849 base = erp->er_extbuf;
3850 high = erp->er_extcount - 1;
3851 } else {
3852 base = ifp->if_u1.if_extents;
3853 high = nextents - 1;
3855 /* Binary search extent records */
3856 while (low <= high) {
3857 idx = (low + high) >> 1;
3858 ep = base + idx;
3859 startoff = xfs_bmbt_get_startoff(ep);
3860 blockcount = xfs_bmbt_get_blockcount(ep);
3861 if (bno < startoff) {
3862 high = idx - 1;
3863 } else if (bno >= startoff + blockcount) {
3864 low = idx + 1;
3865 } else {
3866 /* Convert back to file-based extent index */
3867 if (ifp->if_flags & XFS_IFEXTIREC) {
3868 idx += erp->er_extoff;
3870 *idxp = idx;
3871 return ep;
3874 /* Convert back to file-based extent index */
3875 if (ifp->if_flags & XFS_IFEXTIREC) {
3876 idx += erp->er_extoff;
3878 if (bno >= startoff + blockcount) {
3879 if (++idx == nextents) {
3880 ep = NULL;
3881 } else {
3882 ep = xfs_iext_get_ext(ifp, idx);
3885 *idxp = idx;
3886 return ep;
3890 * Return a pointer to the indirection array entry containing the
3891 * extent record for filesystem block bno. Store the index of the
3892 * target irec in *erp_idxp.
3894 xfs_ext_irec_t * /* pointer to found extent record */
3895 xfs_iext_bno_to_irec(
3896 xfs_ifork_t *ifp, /* inode fork pointer */
3897 xfs_fileoff_t bno, /* block number to search for */
3898 int *erp_idxp) /* irec index of target ext list */
3900 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3901 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3902 int erp_idx; /* indirection array index */
3903 int nlists; /* number of extent irec's (lists) */
3904 int high; /* binary search upper limit */
3905 int low; /* binary search lower limit */
3907 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3908 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3909 erp_idx = 0;
3910 low = 0;
3911 high = nlists - 1;
3912 while (low <= high) {
3913 erp_idx = (low + high) >> 1;
3914 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3915 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3916 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3917 high = erp_idx - 1;
3918 } else if (erp_next && bno >=
3919 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3920 low = erp_idx + 1;
3921 } else {
3922 break;
3925 *erp_idxp = erp_idx;
3926 return erp;
3930 * Return a pointer to the indirection array entry containing the
3931 * extent record at file extent index *idxp. Store the index of the
3932 * target irec in *erp_idxp and store the page index of the target
3933 * extent record in *idxp.
3935 xfs_ext_irec_t *
3936 xfs_iext_idx_to_irec(
3937 xfs_ifork_t *ifp, /* inode fork pointer */
3938 xfs_extnum_t *idxp, /* extent index (file -> page) */
3939 int *erp_idxp, /* pointer to target irec */
3940 int realloc) /* new bytes were just added */
3942 xfs_ext_irec_t *prev; /* pointer to previous irec */
3943 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3944 int erp_idx; /* indirection array index */
3945 int nlists; /* number of irec's (ex lists) */
3946 int high; /* binary search upper limit */
3947 int low; /* binary search lower limit */
3948 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3950 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3951 ASSERT(page_idx >= 0 && page_idx <=
3952 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3953 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3954 erp_idx = 0;
3955 low = 0;
3956 high = nlists - 1;
3958 /* Binary search extent irec's */
3959 while (low <= high) {
3960 erp_idx = (low + high) >> 1;
3961 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3962 prev = erp_idx > 0 ? erp - 1 : NULL;
3963 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3964 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3965 high = erp_idx - 1;
3966 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3967 (page_idx == erp->er_extoff + erp->er_extcount &&
3968 !realloc)) {
3969 low = erp_idx + 1;
3970 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3971 erp->er_extcount == XFS_LINEAR_EXTS) {
3972 ASSERT(realloc);
3973 page_idx = 0;
3974 erp_idx++;
3975 erp = erp_idx < nlists ? erp + 1 : NULL;
3976 break;
3977 } else {
3978 page_idx -= erp->er_extoff;
3979 break;
3982 *idxp = page_idx;
3983 *erp_idxp = erp_idx;
3984 return(erp);
3988 * Allocate and initialize an indirection array once the space needed
3989 * for incore extents increases above XFS_IEXT_BUFSZ.
3991 void
3992 xfs_iext_irec_init(
3993 xfs_ifork_t *ifp) /* inode fork pointer */
3995 xfs_ext_irec_t *erp; /* indirection array pointer */
3996 xfs_extnum_t nextents; /* number of extents in file */
3998 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3999 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4000 ASSERT(nextents <= XFS_LINEAR_EXTS);
4002 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4004 if (nextents == 0) {
4005 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4006 } else if (!ifp->if_real_bytes) {
4007 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4008 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4009 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4011 erp->er_extbuf = ifp->if_u1.if_extents;
4012 erp->er_extcount = nextents;
4013 erp->er_extoff = 0;
4015 ifp->if_flags |= XFS_IFEXTIREC;
4016 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4017 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4018 ifp->if_u1.if_ext_irec = erp;
4020 return;
4024 * Allocate and initialize a new entry in the indirection array.
4026 xfs_ext_irec_t *
4027 xfs_iext_irec_new(
4028 xfs_ifork_t *ifp, /* inode fork pointer */
4029 int erp_idx) /* index for new irec */
4031 xfs_ext_irec_t *erp; /* indirection array pointer */
4032 int i; /* loop counter */
4033 int nlists; /* number of irec's (ex lists) */
4035 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4036 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4038 /* Resize indirection array */
4039 xfs_iext_realloc_indirect(ifp, ++nlists *
4040 sizeof(xfs_ext_irec_t));
4042 * Move records down in the array so the
4043 * new page can use erp_idx.
4045 erp = ifp->if_u1.if_ext_irec;
4046 for (i = nlists - 1; i > erp_idx; i--) {
4047 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4049 ASSERT(i == erp_idx);
4051 /* Initialize new extent record */
4052 erp = ifp->if_u1.if_ext_irec;
4053 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4054 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4055 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4056 erp[erp_idx].er_extcount = 0;
4057 erp[erp_idx].er_extoff = erp_idx > 0 ?
4058 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4059 return (&erp[erp_idx]);
4063 * Remove a record from the indirection array.
4065 void
4066 xfs_iext_irec_remove(
4067 xfs_ifork_t *ifp, /* inode fork pointer */
4068 int erp_idx) /* irec index to remove */
4070 xfs_ext_irec_t *erp; /* indirection array pointer */
4071 int i; /* loop counter */
4072 int nlists; /* number of irec's (ex lists) */
4074 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4075 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4076 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4077 if (erp->er_extbuf) {
4078 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4079 -erp->er_extcount);
4080 kmem_free(erp->er_extbuf);
4082 /* Compact extent records */
4083 erp = ifp->if_u1.if_ext_irec;
4084 for (i = erp_idx; i < nlists - 1; i++) {
4085 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4088 * Manually free the last extent record from the indirection
4089 * array. A call to xfs_iext_realloc_indirect() with a size
4090 * of zero would result in a call to xfs_iext_destroy() which
4091 * would in turn call this function again, creating a nasty
4092 * infinite loop.
4094 if (--nlists) {
4095 xfs_iext_realloc_indirect(ifp,
4096 nlists * sizeof(xfs_ext_irec_t));
4097 } else {
4098 kmem_free(ifp->if_u1.if_ext_irec);
4100 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4104 * This is called to clean up large amounts of unused memory allocated
4105 * by the indirection array. Before compacting anything though, verify
4106 * that the indirection array is still needed and switch back to the
4107 * linear extent list (or even the inline buffer) if possible. The
4108 * compaction policy is as follows:
4110 * Full Compaction: Extents fit into a single page (or inline buffer)
4111 * Partial Compaction: Extents occupy less than 50% of allocated space
4112 * No Compaction: Extents occupy at least 50% of allocated space
4114 void
4115 xfs_iext_irec_compact(
4116 xfs_ifork_t *ifp) /* inode fork pointer */
4118 xfs_extnum_t nextents; /* number of extents in file */
4119 int nlists; /* number of irec's (ex lists) */
4121 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4122 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4123 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4125 if (nextents == 0) {
4126 xfs_iext_destroy(ifp);
4127 } else if (nextents <= XFS_INLINE_EXTS) {
4128 xfs_iext_indirect_to_direct(ifp);
4129 xfs_iext_direct_to_inline(ifp, nextents);
4130 } else if (nextents <= XFS_LINEAR_EXTS) {
4131 xfs_iext_indirect_to_direct(ifp);
4132 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4133 xfs_iext_irec_compact_pages(ifp);
4138 * Combine extents from neighboring extent pages.
4140 void
4141 xfs_iext_irec_compact_pages(
4142 xfs_ifork_t *ifp) /* inode fork pointer */
4144 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4145 int erp_idx = 0; /* indirection array index */
4146 int nlists; /* number of irec's (ex lists) */
4148 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4149 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4150 while (erp_idx < nlists - 1) {
4151 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4152 erp_next = erp + 1;
4153 if (erp_next->er_extcount <=
4154 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4155 memcpy(&erp->er_extbuf[erp->er_extcount],
4156 erp_next->er_extbuf, erp_next->er_extcount *
4157 sizeof(xfs_bmbt_rec_t));
4158 erp->er_extcount += erp_next->er_extcount;
4160 * Free page before removing extent record
4161 * so er_extoffs don't get modified in
4162 * xfs_iext_irec_remove.
4164 kmem_free(erp_next->er_extbuf);
4165 erp_next->er_extbuf = NULL;
4166 xfs_iext_irec_remove(ifp, erp_idx + 1);
4167 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4168 } else {
4169 erp_idx++;
4175 * This is called to update the er_extoff field in the indirection
4176 * array when extents have been added or removed from one of the
4177 * extent lists. erp_idx contains the irec index to begin updating
4178 * at and ext_diff contains the number of extents that were added
4179 * or removed.
4181 void
4182 xfs_iext_irec_update_extoffs(
4183 xfs_ifork_t *ifp, /* inode fork pointer */
4184 int erp_idx, /* irec index to update */
4185 int ext_diff) /* number of new extents */
4187 int i; /* loop counter */
4188 int nlists; /* number of irec's (ex lists */
4190 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4191 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4192 for (i = erp_idx; i < nlists; i++) {
4193 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;