MIPS: Alchemy: devboards: factor out PB1200 IRQ cascade code.
[linux-2.6/linux-mips.git] / fs / xfs / xfs_log_recover.c
blob22e6efdc17eae253dbe6517c1c02b4ddc7eee825
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 #if defined(DEBUG)
54 STATIC void xlog_recover_check_summary(xlog_t *);
55 #else
56 #define xlog_recover_check_summary(log)
57 #endif
61 * Sector aligned buffer routines for buffer create/read/write/access
64 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
65 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
66 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
67 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
69 STATIC xfs_buf_t *
70 xlog_get_bp(
71 xlog_t *log,
72 int nbblks)
74 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
75 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
76 XFS_ERROR_REPORT("xlog_get_bp(1)",
77 XFS_ERRLEVEL_HIGH, log->l_mp);
78 return NULL;
81 if (log->l_sectbb_log) {
82 if (nbblks > 1)
83 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
86 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
89 STATIC void
90 xlog_put_bp(
91 xfs_buf_t *bp)
93 xfs_buf_free(bp);
96 STATIC xfs_caddr_t
97 xlog_align(
98 xlog_t *log,
99 xfs_daddr_t blk_no,
100 int nbblks,
101 xfs_buf_t *bp)
103 xfs_caddr_t ptr;
105 if (!log->l_sectbb_log)
106 return XFS_BUF_PTR(bp);
108 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
109 ASSERT(XFS_BUF_SIZE(bp) >=
110 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
111 return ptr;
116 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
118 STATIC int
119 xlog_bread_noalign(
120 xlog_t *log,
121 xfs_daddr_t blk_no,
122 int nbblks,
123 xfs_buf_t *bp)
125 int error;
127 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
128 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
129 XFS_ERROR_REPORT("xlog_bread(1)",
130 XFS_ERRLEVEL_HIGH, log->l_mp);
131 return EFSCORRUPTED;
134 if (log->l_sectbb_log) {
135 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
136 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
139 ASSERT(nbblks > 0);
140 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
141 ASSERT(bp);
143 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
144 XFS_BUF_READ(bp);
145 XFS_BUF_BUSY(bp);
146 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
147 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
149 xfsbdstrat(log->l_mp, bp);
150 error = xfs_iowait(bp);
151 if (error)
152 xfs_ioerror_alert("xlog_bread", log->l_mp,
153 bp, XFS_BUF_ADDR(bp));
154 return error;
157 STATIC int
158 xlog_bread(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp,
163 xfs_caddr_t *offset)
165 int error;
167 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
168 if (error)
169 return error;
171 *offset = xlog_align(log, blk_no, nbblks, bp);
172 return 0;
176 * Write out the buffer at the given block for the given number of blocks.
177 * The buffer is kept locked across the write and is returned locked.
178 * This can only be used for synchronous log writes.
180 STATIC int
181 xlog_bwrite(
182 xlog_t *log,
183 xfs_daddr_t blk_no,
184 int nbblks,
185 xfs_buf_t *bp)
187 int error;
189 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
190 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
191 XFS_ERROR_REPORT("xlog_bwrite(1)",
192 XFS_ERRLEVEL_HIGH, log->l_mp);
193 return EFSCORRUPTED;
196 if (log->l_sectbb_log) {
197 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
198 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
201 ASSERT(nbblks > 0);
202 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
204 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
205 XFS_BUF_ZEROFLAGS(bp);
206 XFS_BUF_BUSY(bp);
207 XFS_BUF_HOLD(bp);
208 XFS_BUF_PSEMA(bp, PRIBIO);
209 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
210 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
212 if ((error = xfs_bwrite(log->l_mp, bp)))
213 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
214 bp, XFS_BUF_ADDR(bp));
215 return error;
218 #ifdef DEBUG
220 * dump debug superblock and log record information
222 STATIC void
223 xlog_header_check_dump(
224 xfs_mount_t *mp,
225 xlog_rec_header_t *head)
227 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
228 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
229 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
230 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
232 #else
233 #define xlog_header_check_dump(mp, head)
234 #endif
237 * check log record header for recovery
239 STATIC int
240 xlog_header_check_recover(
241 xfs_mount_t *mp,
242 xlog_rec_header_t *head)
244 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
247 * IRIX doesn't write the h_fmt field and leaves it zeroed
248 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
249 * a dirty log created in IRIX.
251 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
252 xlog_warn(
253 "XFS: dirty log written in incompatible format - can't recover");
254 xlog_header_check_dump(mp, head);
255 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
256 XFS_ERRLEVEL_HIGH, mp);
257 return XFS_ERROR(EFSCORRUPTED);
258 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
259 xlog_warn(
260 "XFS: dirty log entry has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
266 return 0;
270 * read the head block of the log and check the header
272 STATIC int
273 xlog_header_check_mount(
274 xfs_mount_t *mp,
275 xlog_rec_header_t *head)
277 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
279 if (uuid_is_nil(&head->h_fs_uuid)) {
281 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
282 * h_fs_uuid is nil, we assume this log was last mounted
283 * by IRIX and continue.
285 xlog_warn("XFS: nil uuid in log - IRIX style log");
286 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
287 xlog_warn("XFS: log has mismatched uuid - can't recover");
288 xlog_header_check_dump(mp, head);
289 XFS_ERROR_REPORT("xlog_header_check_mount",
290 XFS_ERRLEVEL_HIGH, mp);
291 return XFS_ERROR(EFSCORRUPTED);
293 return 0;
296 STATIC void
297 xlog_recover_iodone(
298 struct xfs_buf *bp)
300 if (XFS_BUF_GETERROR(bp)) {
302 * We're not going to bother about retrying
303 * this during recovery. One strike!
305 xfs_ioerror_alert("xlog_recover_iodone",
306 bp->b_mount, bp, XFS_BUF_ADDR(bp));
307 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
309 bp->b_mount = NULL;
310 XFS_BUF_CLR_IODONE_FUNC(bp);
311 xfs_biodone(bp);
315 * This routine finds (to an approximation) the first block in the physical
316 * log which contains the given cycle. It uses a binary search algorithm.
317 * Note that the algorithm can not be perfect because the disk will not
318 * necessarily be perfect.
320 STATIC int
321 xlog_find_cycle_start(
322 xlog_t *log,
323 xfs_buf_t *bp,
324 xfs_daddr_t first_blk,
325 xfs_daddr_t *last_blk,
326 uint cycle)
328 xfs_caddr_t offset;
329 xfs_daddr_t mid_blk;
330 uint mid_cycle;
331 int error;
333 mid_blk = BLK_AVG(first_blk, *last_blk);
334 while (mid_blk != first_blk && mid_blk != *last_blk) {
335 error = xlog_bread(log, mid_blk, 1, bp, &offset);
336 if (error)
337 return error;
338 mid_cycle = xlog_get_cycle(offset);
339 if (mid_cycle == cycle) {
340 *last_blk = mid_blk;
341 /* last_half_cycle == mid_cycle */
342 } else {
343 first_blk = mid_blk;
344 /* first_half_cycle == mid_cycle */
346 mid_blk = BLK_AVG(first_blk, *last_blk);
348 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
349 (mid_blk == *last_blk && mid_blk-1 == first_blk));
351 return 0;
355 * Check that the range of blocks does not contain the cycle number
356 * given. The scan needs to occur from front to back and the ptr into the
357 * region must be updated since a later routine will need to perform another
358 * test. If the region is completely good, we end up returning the same
359 * last block number.
361 * Set blkno to -1 if we encounter no errors. This is an invalid block number
362 * since we don't ever expect logs to get this large.
364 STATIC int
365 xlog_find_verify_cycle(
366 xlog_t *log,
367 xfs_daddr_t start_blk,
368 int nbblks,
369 uint stop_on_cycle_no,
370 xfs_daddr_t *new_blk)
372 xfs_daddr_t i, j;
373 uint cycle;
374 xfs_buf_t *bp;
375 xfs_daddr_t bufblks;
376 xfs_caddr_t buf = NULL;
377 int error = 0;
379 bufblks = 1 << ffs(nbblks);
381 while (!(bp = xlog_get_bp(log, bufblks))) {
382 /* can't get enough memory to do everything in one big buffer */
383 bufblks >>= 1;
384 if (bufblks <= log->l_sectbb_log)
385 return ENOMEM;
388 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
389 int bcount;
391 bcount = min(bufblks, (start_blk + nbblks - i));
393 error = xlog_bread(log, i, bcount, bp, &buf);
394 if (error)
395 goto out;
397 for (j = 0; j < bcount; j++) {
398 cycle = xlog_get_cycle(buf);
399 if (cycle == stop_on_cycle_no) {
400 *new_blk = i+j;
401 goto out;
404 buf += BBSIZE;
408 *new_blk = -1;
410 out:
411 xlog_put_bp(bp);
412 return error;
416 * Potentially backup over partial log record write.
418 * In the typical case, last_blk is the number of the block directly after
419 * a good log record. Therefore, we subtract one to get the block number
420 * of the last block in the given buffer. extra_bblks contains the number
421 * of blocks we would have read on a previous read. This happens when the
422 * last log record is split over the end of the physical log.
424 * extra_bblks is the number of blocks potentially verified on a previous
425 * call to this routine.
427 STATIC int
428 xlog_find_verify_log_record(
429 xlog_t *log,
430 xfs_daddr_t start_blk,
431 xfs_daddr_t *last_blk,
432 int extra_bblks)
434 xfs_daddr_t i;
435 xfs_buf_t *bp;
436 xfs_caddr_t offset = NULL;
437 xlog_rec_header_t *head = NULL;
438 int error = 0;
439 int smallmem = 0;
440 int num_blks = *last_blk - start_blk;
441 int xhdrs;
443 ASSERT(start_blk != 0 || *last_blk != start_blk);
445 if (!(bp = xlog_get_bp(log, num_blks))) {
446 if (!(bp = xlog_get_bp(log, 1)))
447 return ENOMEM;
448 smallmem = 1;
449 } else {
450 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
451 if (error)
452 goto out;
453 offset += ((num_blks - 1) << BBSHIFT);
456 for (i = (*last_blk) - 1; i >= 0; i--) {
457 if (i < start_blk) {
458 /* valid log record not found */
459 xlog_warn(
460 "XFS: Log inconsistent (didn't find previous header)");
461 ASSERT(0);
462 error = XFS_ERROR(EIO);
463 goto out;
466 if (smallmem) {
467 error = xlog_bread(log, i, 1, bp, &offset);
468 if (error)
469 goto out;
472 head = (xlog_rec_header_t *)offset;
474 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
475 break;
477 if (!smallmem)
478 offset -= BBSIZE;
482 * We hit the beginning of the physical log & still no header. Return
483 * to caller. If caller can handle a return of -1, then this routine
484 * will be called again for the end of the physical log.
486 if (i == -1) {
487 error = -1;
488 goto out;
492 * We have the final block of the good log (the first block
493 * of the log record _before_ the head. So we check the uuid.
495 if ((error = xlog_header_check_mount(log->l_mp, head)))
496 goto out;
499 * We may have found a log record header before we expected one.
500 * last_blk will be the 1st block # with a given cycle #. We may end
501 * up reading an entire log record. In this case, we don't want to
502 * reset last_blk. Only when last_blk points in the middle of a log
503 * record do we update last_blk.
505 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
506 uint h_size = be32_to_cpu(head->h_size);
508 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
509 if (h_size % XLOG_HEADER_CYCLE_SIZE)
510 xhdrs++;
511 } else {
512 xhdrs = 1;
515 if (*last_blk - i + extra_bblks !=
516 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
517 *last_blk = i;
519 out:
520 xlog_put_bp(bp);
521 return error;
525 * Head is defined to be the point of the log where the next log write
526 * write could go. This means that incomplete LR writes at the end are
527 * eliminated when calculating the head. We aren't guaranteed that previous
528 * LR have complete transactions. We only know that a cycle number of
529 * current cycle number -1 won't be present in the log if we start writing
530 * from our current block number.
532 * last_blk contains the block number of the first block with a given
533 * cycle number.
535 * Return: zero if normal, non-zero if error.
537 STATIC int
538 xlog_find_head(
539 xlog_t *log,
540 xfs_daddr_t *return_head_blk)
542 xfs_buf_t *bp;
543 xfs_caddr_t offset;
544 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
545 int num_scan_bblks;
546 uint first_half_cycle, last_half_cycle;
547 uint stop_on_cycle;
548 int error, log_bbnum = log->l_logBBsize;
550 /* Is the end of the log device zeroed? */
551 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
552 *return_head_blk = first_blk;
554 /* Is the whole lot zeroed? */
555 if (!first_blk) {
556 /* Linux XFS shouldn't generate totally zeroed logs -
557 * mkfs etc write a dummy unmount record to a fresh
558 * log so we can store the uuid in there
560 xlog_warn("XFS: totally zeroed log");
563 return 0;
564 } else if (error) {
565 xlog_warn("XFS: empty log check failed");
566 return error;
569 first_blk = 0; /* get cycle # of 1st block */
570 bp = xlog_get_bp(log, 1);
571 if (!bp)
572 return ENOMEM;
574 error = xlog_bread(log, 0, 1, bp, &offset);
575 if (error)
576 goto bp_err;
578 first_half_cycle = xlog_get_cycle(offset);
580 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
581 error = xlog_bread(log, last_blk, 1, bp, &offset);
582 if (error)
583 goto bp_err;
585 last_half_cycle = xlog_get_cycle(offset);
586 ASSERT(last_half_cycle != 0);
589 * If the 1st half cycle number is equal to the last half cycle number,
590 * then the entire log is stamped with the same cycle number. In this
591 * case, head_blk can't be set to zero (which makes sense). The below
592 * math doesn't work out properly with head_blk equal to zero. Instead,
593 * we set it to log_bbnum which is an invalid block number, but this
594 * value makes the math correct. If head_blk doesn't changed through
595 * all the tests below, *head_blk is set to zero at the very end rather
596 * than log_bbnum. In a sense, log_bbnum and zero are the same block
597 * in a circular file.
599 if (first_half_cycle == last_half_cycle) {
601 * In this case we believe that the entire log should have
602 * cycle number last_half_cycle. We need to scan backwards
603 * from the end verifying that there are no holes still
604 * containing last_half_cycle - 1. If we find such a hole,
605 * then the start of that hole will be the new head. The
606 * simple case looks like
607 * x | x ... | x - 1 | x
608 * Another case that fits this picture would be
609 * x | x + 1 | x ... | x
610 * In this case the head really is somewhere at the end of the
611 * log, as one of the latest writes at the beginning was
612 * incomplete.
613 * One more case is
614 * x | x + 1 | x ... | x - 1 | x
615 * This is really the combination of the above two cases, and
616 * the head has to end up at the start of the x-1 hole at the
617 * end of the log.
619 * In the 256k log case, we will read from the beginning to the
620 * end of the log and search for cycle numbers equal to x-1.
621 * We don't worry about the x+1 blocks that we encounter,
622 * because we know that they cannot be the head since the log
623 * started with x.
625 head_blk = log_bbnum;
626 stop_on_cycle = last_half_cycle - 1;
627 } else {
629 * In this case we want to find the first block with cycle
630 * number matching last_half_cycle. We expect the log to be
631 * some variation on
632 * x + 1 ... | x ...
633 * The first block with cycle number x (last_half_cycle) will
634 * be where the new head belongs. First we do a binary search
635 * for the first occurrence of last_half_cycle. The binary
636 * search may not be totally accurate, so then we scan back
637 * from there looking for occurrences of last_half_cycle before
638 * us. If that backwards scan wraps around the beginning of
639 * the log, then we look for occurrences of last_half_cycle - 1
640 * at the end of the log. The cases we're looking for look
641 * like
642 * x + 1 ... | x | x + 1 | x ...
643 * ^ binary search stopped here
644 * or
645 * x + 1 ... | x ... | x - 1 | x
646 * <---------> less than scan distance
648 stop_on_cycle = last_half_cycle;
649 if ((error = xlog_find_cycle_start(log, bp, first_blk,
650 &head_blk, last_half_cycle)))
651 goto bp_err;
655 * Now validate the answer. Scan back some number of maximum possible
656 * blocks and make sure each one has the expected cycle number. The
657 * maximum is determined by the total possible amount of buffering
658 * in the in-core log. The following number can be made tighter if
659 * we actually look at the block size of the filesystem.
661 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
662 if (head_blk >= num_scan_bblks) {
664 * We are guaranteed that the entire check can be performed
665 * in one buffer.
667 start_blk = head_blk - num_scan_bblks;
668 if ((error = xlog_find_verify_cycle(log,
669 start_blk, num_scan_bblks,
670 stop_on_cycle, &new_blk)))
671 goto bp_err;
672 if (new_blk != -1)
673 head_blk = new_blk;
674 } else { /* need to read 2 parts of log */
676 * We are going to scan backwards in the log in two parts.
677 * First we scan the physical end of the log. In this part
678 * of the log, we are looking for blocks with cycle number
679 * last_half_cycle - 1.
680 * If we find one, then we know that the log starts there, as
681 * we've found a hole that didn't get written in going around
682 * the end of the physical log. The simple case for this is
683 * x + 1 ... | x ... | x - 1 | x
684 * <---------> less than scan distance
685 * If all of the blocks at the end of the log have cycle number
686 * last_half_cycle, then we check the blocks at the start of
687 * the log looking for occurrences of last_half_cycle. If we
688 * find one, then our current estimate for the location of the
689 * first occurrence of last_half_cycle is wrong and we move
690 * back to the hole we've found. This case looks like
691 * x + 1 ... | x | x + 1 | x ...
692 * ^ binary search stopped here
693 * Another case we need to handle that only occurs in 256k
694 * logs is
695 * x + 1 ... | x ... | x+1 | x ...
696 * ^ binary search stops here
697 * In a 256k log, the scan at the end of the log will see the
698 * x + 1 blocks. We need to skip past those since that is
699 * certainly not the head of the log. By searching for
700 * last_half_cycle-1 we accomplish that.
702 start_blk = log_bbnum - num_scan_bblks + head_blk;
703 ASSERT(head_blk <= INT_MAX &&
704 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
705 if ((error = xlog_find_verify_cycle(log, start_blk,
706 num_scan_bblks - (int)head_blk,
707 (stop_on_cycle - 1), &new_blk)))
708 goto bp_err;
709 if (new_blk != -1) {
710 head_blk = new_blk;
711 goto bad_blk;
715 * Scan beginning of log now. The last part of the physical
716 * log is good. This scan needs to verify that it doesn't find
717 * the last_half_cycle.
719 start_blk = 0;
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_cycle(log,
722 start_blk, (int)head_blk,
723 stop_on_cycle, &new_blk)))
724 goto bp_err;
725 if (new_blk != -1)
726 head_blk = new_blk;
729 bad_blk:
731 * Now we need to make sure head_blk is not pointing to a block in
732 * the middle of a log record.
734 num_scan_bblks = XLOG_REC_SHIFT(log);
735 if (head_blk >= num_scan_bblks) {
736 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
738 /* start ptr at last block ptr before head_blk */
739 if ((error = xlog_find_verify_log_record(log, start_blk,
740 &head_blk, 0)) == -1) {
741 error = XFS_ERROR(EIO);
742 goto bp_err;
743 } else if (error)
744 goto bp_err;
745 } else {
746 start_blk = 0;
747 ASSERT(head_blk <= INT_MAX);
748 if ((error = xlog_find_verify_log_record(log, start_blk,
749 &head_blk, 0)) == -1) {
750 /* We hit the beginning of the log during our search */
751 start_blk = log_bbnum - num_scan_bblks + head_blk;
752 new_blk = log_bbnum;
753 ASSERT(start_blk <= INT_MAX &&
754 (xfs_daddr_t) log_bbnum-start_blk >= 0);
755 ASSERT(head_blk <= INT_MAX);
756 if ((error = xlog_find_verify_log_record(log,
757 start_blk, &new_blk,
758 (int)head_blk)) == -1) {
759 error = XFS_ERROR(EIO);
760 goto bp_err;
761 } else if (error)
762 goto bp_err;
763 if (new_blk != log_bbnum)
764 head_blk = new_blk;
765 } else if (error)
766 goto bp_err;
769 xlog_put_bp(bp);
770 if (head_blk == log_bbnum)
771 *return_head_blk = 0;
772 else
773 *return_head_blk = head_blk;
775 * When returning here, we have a good block number. Bad block
776 * means that during a previous crash, we didn't have a clean break
777 * from cycle number N to cycle number N-1. In this case, we need
778 * to find the first block with cycle number N-1.
780 return 0;
782 bp_err:
783 xlog_put_bp(bp);
785 if (error)
786 xlog_warn("XFS: failed to find log head");
787 return error;
791 * Find the sync block number or the tail of the log.
793 * This will be the block number of the last record to have its
794 * associated buffers synced to disk. Every log record header has
795 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
796 * to get a sync block number. The only concern is to figure out which
797 * log record header to believe.
799 * The following algorithm uses the log record header with the largest
800 * lsn. The entire log record does not need to be valid. We only care
801 * that the header is valid.
803 * We could speed up search by using current head_blk buffer, but it is not
804 * available.
806 STATIC int
807 xlog_find_tail(
808 xlog_t *log,
809 xfs_daddr_t *head_blk,
810 xfs_daddr_t *tail_blk)
812 xlog_rec_header_t *rhead;
813 xlog_op_header_t *op_head;
814 xfs_caddr_t offset = NULL;
815 xfs_buf_t *bp;
816 int error, i, found;
817 xfs_daddr_t umount_data_blk;
818 xfs_daddr_t after_umount_blk;
819 xfs_lsn_t tail_lsn;
820 int hblks;
822 found = 0;
825 * Find previous log record
827 if ((error = xlog_find_head(log, head_blk)))
828 return error;
830 bp = xlog_get_bp(log, 1);
831 if (!bp)
832 return ENOMEM;
833 if (*head_blk == 0) { /* special case */
834 error = xlog_bread(log, 0, 1, bp, &offset);
835 if (error)
836 goto bread_err;
838 if (xlog_get_cycle(offset) == 0) {
839 *tail_blk = 0;
840 /* leave all other log inited values alone */
841 goto exit;
846 * Search backwards looking for log record header block
848 ASSERT(*head_blk < INT_MAX);
849 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
850 error = xlog_bread(log, i, 1, bp, &offset);
851 if (error)
852 goto bread_err;
854 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
855 found = 1;
856 break;
860 * If we haven't found the log record header block, start looking
861 * again from the end of the physical log. XXXmiken: There should be
862 * a check here to make sure we didn't search more than N blocks in
863 * the previous code.
865 if (!found) {
866 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
867 error = xlog_bread(log, i, 1, bp, &offset);
868 if (error)
869 goto bread_err;
871 if (XLOG_HEADER_MAGIC_NUM ==
872 be32_to_cpu(*(__be32 *)offset)) {
873 found = 2;
874 break;
878 if (!found) {
879 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
880 ASSERT(0);
881 return XFS_ERROR(EIO);
884 /* find blk_no of tail of log */
885 rhead = (xlog_rec_header_t *)offset;
886 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
889 * Reset log values according to the state of the log when we
890 * crashed. In the case where head_blk == 0, we bump curr_cycle
891 * one because the next write starts a new cycle rather than
892 * continuing the cycle of the last good log record. At this
893 * point we have guaranteed that all partial log records have been
894 * accounted for. Therefore, we know that the last good log record
895 * written was complete and ended exactly on the end boundary
896 * of the physical log.
898 log->l_prev_block = i;
899 log->l_curr_block = (int)*head_blk;
900 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
901 if (found == 2)
902 log->l_curr_cycle++;
903 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
904 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
905 log->l_grant_reserve_cycle = log->l_curr_cycle;
906 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
907 log->l_grant_write_cycle = log->l_curr_cycle;
908 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
911 * Look for unmount record. If we find it, then we know there
912 * was a clean unmount. Since 'i' could be the last block in
913 * the physical log, we convert to a log block before comparing
914 * to the head_blk.
916 * Save the current tail lsn to use to pass to
917 * xlog_clear_stale_blocks() below. We won't want to clear the
918 * unmount record if there is one, so we pass the lsn of the
919 * unmount record rather than the block after it.
921 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
922 int h_size = be32_to_cpu(rhead->h_size);
923 int h_version = be32_to_cpu(rhead->h_version);
925 if ((h_version & XLOG_VERSION_2) &&
926 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
927 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
928 if (h_size % XLOG_HEADER_CYCLE_SIZE)
929 hblks++;
930 } else {
931 hblks = 1;
933 } else {
934 hblks = 1;
936 after_umount_blk = (i + hblks + (int)
937 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
938 tail_lsn = log->l_tail_lsn;
939 if (*head_blk == after_umount_blk &&
940 be32_to_cpu(rhead->h_num_logops) == 1) {
941 umount_data_blk = (i + hblks) % log->l_logBBsize;
942 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
943 if (error)
944 goto bread_err;
946 op_head = (xlog_op_header_t *)offset;
947 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
949 * Set tail and last sync so that newly written
950 * log records will point recovery to after the
951 * current unmount record.
953 log->l_tail_lsn =
954 xlog_assign_lsn(log->l_curr_cycle,
955 after_umount_blk);
956 log->l_last_sync_lsn =
957 xlog_assign_lsn(log->l_curr_cycle,
958 after_umount_blk);
959 *tail_blk = after_umount_blk;
962 * Note that the unmount was clean. If the unmount
963 * was not clean, we need to know this to rebuild the
964 * superblock counters from the perag headers if we
965 * have a filesystem using non-persistent counters.
967 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
972 * Make sure that there are no blocks in front of the head
973 * with the same cycle number as the head. This can happen
974 * because we allow multiple outstanding log writes concurrently,
975 * and the later writes might make it out before earlier ones.
977 * We use the lsn from before modifying it so that we'll never
978 * overwrite the unmount record after a clean unmount.
980 * Do this only if we are going to recover the filesystem
982 * NOTE: This used to say "if (!readonly)"
983 * However on Linux, we can & do recover a read-only filesystem.
984 * We only skip recovery if NORECOVERY is specified on mount,
985 * in which case we would not be here.
987 * But... if the -device- itself is readonly, just skip this.
988 * We can't recover this device anyway, so it won't matter.
990 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
991 error = xlog_clear_stale_blocks(log, tail_lsn);
994 bread_err:
995 exit:
996 xlog_put_bp(bp);
998 if (error)
999 xlog_warn("XFS: failed to locate log tail");
1000 return error;
1004 * Is the log zeroed at all?
1006 * The last binary search should be changed to perform an X block read
1007 * once X becomes small enough. You can then search linearly through
1008 * the X blocks. This will cut down on the number of reads we need to do.
1010 * If the log is partially zeroed, this routine will pass back the blkno
1011 * of the first block with cycle number 0. It won't have a complete LR
1012 * preceding it.
1014 * Return:
1015 * 0 => the log is completely written to
1016 * -1 => use *blk_no as the first block of the log
1017 * >0 => error has occurred
1019 STATIC int
1020 xlog_find_zeroed(
1021 xlog_t *log,
1022 xfs_daddr_t *blk_no)
1024 xfs_buf_t *bp;
1025 xfs_caddr_t offset;
1026 uint first_cycle, last_cycle;
1027 xfs_daddr_t new_blk, last_blk, start_blk;
1028 xfs_daddr_t num_scan_bblks;
1029 int error, log_bbnum = log->l_logBBsize;
1031 *blk_no = 0;
1033 /* check totally zeroed log */
1034 bp = xlog_get_bp(log, 1);
1035 if (!bp)
1036 return ENOMEM;
1037 error = xlog_bread(log, 0, 1, bp, &offset);
1038 if (error)
1039 goto bp_err;
1041 first_cycle = xlog_get_cycle(offset);
1042 if (first_cycle == 0) { /* completely zeroed log */
1043 *blk_no = 0;
1044 xlog_put_bp(bp);
1045 return -1;
1048 /* check partially zeroed log */
1049 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1050 if (error)
1051 goto bp_err;
1053 last_cycle = xlog_get_cycle(offset);
1054 if (last_cycle != 0) { /* log completely written to */
1055 xlog_put_bp(bp);
1056 return 0;
1057 } else if (first_cycle != 1) {
1059 * If the cycle of the last block is zero, the cycle of
1060 * the first block must be 1. If it's not, maybe we're
1061 * not looking at a log... Bail out.
1063 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1064 return XFS_ERROR(EINVAL);
1067 /* we have a partially zeroed log */
1068 last_blk = log_bbnum-1;
1069 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1070 goto bp_err;
1073 * Validate the answer. Because there is no way to guarantee that
1074 * the entire log is made up of log records which are the same size,
1075 * we scan over the defined maximum blocks. At this point, the maximum
1076 * is not chosen to mean anything special. XXXmiken
1078 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1079 ASSERT(num_scan_bblks <= INT_MAX);
1081 if (last_blk < num_scan_bblks)
1082 num_scan_bblks = last_blk;
1083 start_blk = last_blk - num_scan_bblks;
1086 * We search for any instances of cycle number 0 that occur before
1087 * our current estimate of the head. What we're trying to detect is
1088 * 1 ... | 0 | 1 | 0...
1089 * ^ binary search ends here
1091 if ((error = xlog_find_verify_cycle(log, start_blk,
1092 (int)num_scan_bblks, 0, &new_blk)))
1093 goto bp_err;
1094 if (new_blk != -1)
1095 last_blk = new_blk;
1098 * Potentially backup over partial log record write. We don't need
1099 * to search the end of the log because we know it is zero.
1101 if ((error = xlog_find_verify_log_record(log, start_blk,
1102 &last_blk, 0)) == -1) {
1103 error = XFS_ERROR(EIO);
1104 goto bp_err;
1105 } else if (error)
1106 goto bp_err;
1108 *blk_no = last_blk;
1109 bp_err:
1110 xlog_put_bp(bp);
1111 if (error)
1112 return error;
1113 return -1;
1117 * These are simple subroutines used by xlog_clear_stale_blocks() below
1118 * to initialize a buffer full of empty log record headers and write
1119 * them into the log.
1121 STATIC void
1122 xlog_add_record(
1123 xlog_t *log,
1124 xfs_caddr_t buf,
1125 int cycle,
1126 int block,
1127 int tail_cycle,
1128 int tail_block)
1130 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1132 memset(buf, 0, BBSIZE);
1133 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1134 recp->h_cycle = cpu_to_be32(cycle);
1135 recp->h_version = cpu_to_be32(
1136 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1137 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1138 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1139 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1140 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1143 STATIC int
1144 xlog_write_log_records(
1145 xlog_t *log,
1146 int cycle,
1147 int start_block,
1148 int blocks,
1149 int tail_cycle,
1150 int tail_block)
1152 xfs_caddr_t offset;
1153 xfs_buf_t *bp;
1154 int balign, ealign;
1155 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1156 int end_block = start_block + blocks;
1157 int bufblks;
1158 int error = 0;
1159 int i, j = 0;
1161 bufblks = 1 << ffs(blocks);
1162 while (!(bp = xlog_get_bp(log, bufblks))) {
1163 bufblks >>= 1;
1164 if (bufblks <= log->l_sectbb_log)
1165 return ENOMEM;
1168 /* We may need to do a read at the start to fill in part of
1169 * the buffer in the starting sector not covered by the first
1170 * write below.
1172 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1173 if (balign != start_block) {
1174 error = xlog_bread_noalign(log, start_block, 1, bp);
1175 if (error)
1176 goto out_put_bp;
1178 j = start_block - balign;
1181 for (i = start_block; i < end_block; i += bufblks) {
1182 int bcount, endcount;
1184 bcount = min(bufblks, end_block - start_block);
1185 endcount = bcount - j;
1187 /* We may need to do a read at the end to fill in part of
1188 * the buffer in the final sector not covered by the write.
1189 * If this is the same sector as the above read, skip it.
1191 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1192 if (j == 0 && (start_block + endcount > ealign)) {
1193 offset = XFS_BUF_PTR(bp);
1194 balign = BBTOB(ealign - start_block);
1195 error = XFS_BUF_SET_PTR(bp, offset + balign,
1196 BBTOB(sectbb));
1197 if (error)
1198 break;
1200 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1201 if (error)
1202 break;
1204 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1205 if (error)
1206 break;
1209 offset = xlog_align(log, start_block, endcount, bp);
1210 for (; j < endcount; j++) {
1211 xlog_add_record(log, offset, cycle, i+j,
1212 tail_cycle, tail_block);
1213 offset += BBSIZE;
1215 error = xlog_bwrite(log, start_block, endcount, bp);
1216 if (error)
1217 break;
1218 start_block += endcount;
1219 j = 0;
1222 out_put_bp:
1223 xlog_put_bp(bp);
1224 return error;
1228 * This routine is called to blow away any incomplete log writes out
1229 * in front of the log head. We do this so that we won't become confused
1230 * if we come up, write only a little bit more, and then crash again.
1231 * If we leave the partial log records out there, this situation could
1232 * cause us to think those partial writes are valid blocks since they
1233 * have the current cycle number. We get rid of them by overwriting them
1234 * with empty log records with the old cycle number rather than the
1235 * current one.
1237 * The tail lsn is passed in rather than taken from
1238 * the log so that we will not write over the unmount record after a
1239 * clean unmount in a 512 block log. Doing so would leave the log without
1240 * any valid log records in it until a new one was written. If we crashed
1241 * during that time we would not be able to recover.
1243 STATIC int
1244 xlog_clear_stale_blocks(
1245 xlog_t *log,
1246 xfs_lsn_t tail_lsn)
1248 int tail_cycle, head_cycle;
1249 int tail_block, head_block;
1250 int tail_distance, max_distance;
1251 int distance;
1252 int error;
1254 tail_cycle = CYCLE_LSN(tail_lsn);
1255 tail_block = BLOCK_LSN(tail_lsn);
1256 head_cycle = log->l_curr_cycle;
1257 head_block = log->l_curr_block;
1260 * Figure out the distance between the new head of the log
1261 * and the tail. We want to write over any blocks beyond the
1262 * head that we may have written just before the crash, but
1263 * we don't want to overwrite the tail of the log.
1265 if (head_cycle == tail_cycle) {
1267 * The tail is behind the head in the physical log,
1268 * so the distance from the head to the tail is the
1269 * distance from the head to the end of the log plus
1270 * the distance from the beginning of the log to the
1271 * tail.
1273 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1274 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1275 XFS_ERRLEVEL_LOW, log->l_mp);
1276 return XFS_ERROR(EFSCORRUPTED);
1278 tail_distance = tail_block + (log->l_logBBsize - head_block);
1279 } else {
1281 * The head is behind the tail in the physical log,
1282 * so the distance from the head to the tail is just
1283 * the tail block minus the head block.
1285 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1286 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1287 XFS_ERRLEVEL_LOW, log->l_mp);
1288 return XFS_ERROR(EFSCORRUPTED);
1290 tail_distance = tail_block - head_block;
1294 * If the head is right up against the tail, we can't clear
1295 * anything.
1297 if (tail_distance <= 0) {
1298 ASSERT(tail_distance == 0);
1299 return 0;
1302 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1304 * Take the smaller of the maximum amount of outstanding I/O
1305 * we could have and the distance to the tail to clear out.
1306 * We take the smaller so that we don't overwrite the tail and
1307 * we don't waste all day writing from the head to the tail
1308 * for no reason.
1310 max_distance = MIN(max_distance, tail_distance);
1312 if ((head_block + max_distance) <= log->l_logBBsize) {
1314 * We can stomp all the blocks we need to without
1315 * wrapping around the end of the log. Just do it
1316 * in a single write. Use the cycle number of the
1317 * current cycle minus one so that the log will look like:
1318 * n ... | n - 1 ...
1320 error = xlog_write_log_records(log, (head_cycle - 1),
1321 head_block, max_distance, tail_cycle,
1322 tail_block);
1323 if (error)
1324 return error;
1325 } else {
1327 * We need to wrap around the end of the physical log in
1328 * order to clear all the blocks. Do it in two separate
1329 * I/Os. The first write should be from the head to the
1330 * end of the physical log, and it should use the current
1331 * cycle number minus one just like above.
1333 distance = log->l_logBBsize - head_block;
1334 error = xlog_write_log_records(log, (head_cycle - 1),
1335 head_block, distance, tail_cycle,
1336 tail_block);
1338 if (error)
1339 return error;
1342 * Now write the blocks at the start of the physical log.
1343 * This writes the remainder of the blocks we want to clear.
1344 * It uses the current cycle number since we're now on the
1345 * same cycle as the head so that we get:
1346 * n ... n ... | n - 1 ...
1347 * ^^^^^ blocks we're writing
1349 distance = max_distance - (log->l_logBBsize - head_block);
1350 error = xlog_write_log_records(log, head_cycle, 0, distance,
1351 tail_cycle, tail_block);
1352 if (error)
1353 return error;
1356 return 0;
1359 /******************************************************************************
1361 * Log recover routines
1363 ******************************************************************************
1366 STATIC xlog_recover_t *
1367 xlog_recover_find_tid(
1368 struct hlist_head *head,
1369 xlog_tid_t tid)
1371 xlog_recover_t *trans;
1372 struct hlist_node *n;
1374 hlist_for_each_entry(trans, n, head, r_list) {
1375 if (trans->r_log_tid == tid)
1376 return trans;
1378 return NULL;
1381 STATIC void
1382 xlog_recover_new_tid(
1383 struct hlist_head *head,
1384 xlog_tid_t tid,
1385 xfs_lsn_t lsn)
1387 xlog_recover_t *trans;
1389 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1390 trans->r_log_tid = tid;
1391 trans->r_lsn = lsn;
1392 INIT_LIST_HEAD(&trans->r_itemq);
1394 INIT_HLIST_NODE(&trans->r_list);
1395 hlist_add_head(&trans->r_list, head);
1398 STATIC void
1399 xlog_recover_add_item(
1400 struct list_head *head)
1402 xlog_recover_item_t *item;
1404 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1405 INIT_LIST_HEAD(&item->ri_list);
1406 list_add_tail(&item->ri_list, head);
1409 STATIC int
1410 xlog_recover_add_to_cont_trans(
1411 xlog_recover_t *trans,
1412 xfs_caddr_t dp,
1413 int len)
1415 xlog_recover_item_t *item;
1416 xfs_caddr_t ptr, old_ptr;
1417 int old_len;
1419 if (list_empty(&trans->r_itemq)) {
1420 /* finish copying rest of trans header */
1421 xlog_recover_add_item(&trans->r_itemq);
1422 ptr = (xfs_caddr_t) &trans->r_theader +
1423 sizeof(xfs_trans_header_t) - len;
1424 memcpy(ptr, dp, len); /* d, s, l */
1425 return 0;
1427 /* take the tail entry */
1428 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1430 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1431 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1433 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1434 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1435 item->ri_buf[item->ri_cnt-1].i_len += len;
1436 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1437 return 0;
1441 * The next region to add is the start of a new region. It could be
1442 * a whole region or it could be the first part of a new region. Because
1443 * of this, the assumption here is that the type and size fields of all
1444 * format structures fit into the first 32 bits of the structure.
1446 * This works because all regions must be 32 bit aligned. Therefore, we
1447 * either have both fields or we have neither field. In the case we have
1448 * neither field, the data part of the region is zero length. We only have
1449 * a log_op_header and can throw away the header since a new one will appear
1450 * later. If we have at least 4 bytes, then we can determine how many regions
1451 * will appear in the current log item.
1453 STATIC int
1454 xlog_recover_add_to_trans(
1455 xlog_recover_t *trans,
1456 xfs_caddr_t dp,
1457 int len)
1459 xfs_inode_log_format_t *in_f; /* any will do */
1460 xlog_recover_item_t *item;
1461 xfs_caddr_t ptr;
1463 if (!len)
1464 return 0;
1465 if (list_empty(&trans->r_itemq)) {
1466 /* we need to catch log corruptions here */
1467 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1468 xlog_warn("XFS: xlog_recover_add_to_trans: "
1469 "bad header magic number");
1470 ASSERT(0);
1471 return XFS_ERROR(EIO);
1473 if (len == sizeof(xfs_trans_header_t))
1474 xlog_recover_add_item(&trans->r_itemq);
1475 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1476 return 0;
1479 ptr = kmem_alloc(len, KM_SLEEP);
1480 memcpy(ptr, dp, len);
1481 in_f = (xfs_inode_log_format_t *)ptr;
1483 /* take the tail entry */
1484 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1485 if (item->ri_total != 0 &&
1486 item->ri_total == item->ri_cnt) {
1487 /* tail item is in use, get a new one */
1488 xlog_recover_add_item(&trans->r_itemq);
1489 item = list_entry(trans->r_itemq.prev,
1490 xlog_recover_item_t, ri_list);
1493 if (item->ri_total == 0) { /* first region to be added */
1494 if (in_f->ilf_size == 0 ||
1495 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1496 xlog_warn(
1497 "XFS: bad number of regions (%d) in inode log format",
1498 in_f->ilf_size);
1499 ASSERT(0);
1500 return XFS_ERROR(EIO);
1503 item->ri_total = in_f->ilf_size;
1504 item->ri_buf =
1505 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1506 KM_SLEEP);
1508 ASSERT(item->ri_total > item->ri_cnt);
1509 /* Description region is ri_buf[0] */
1510 item->ri_buf[item->ri_cnt].i_addr = ptr;
1511 item->ri_buf[item->ri_cnt].i_len = len;
1512 item->ri_cnt++;
1513 return 0;
1517 * Sort the log items in the transaction. Cancelled buffers need
1518 * to be put first so they are processed before any items that might
1519 * modify the buffers. If they are cancelled, then the modifications
1520 * don't need to be replayed.
1522 STATIC int
1523 xlog_recover_reorder_trans(
1524 xlog_recover_t *trans)
1526 xlog_recover_item_t *item, *n;
1527 LIST_HEAD(sort_list);
1529 list_splice_init(&trans->r_itemq, &sort_list);
1530 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1531 xfs_buf_log_format_t *buf_f;
1533 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1535 switch (ITEM_TYPE(item)) {
1536 case XFS_LI_BUF:
1537 if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
1538 list_move(&item->ri_list, &trans->r_itemq);
1539 break;
1541 case XFS_LI_INODE:
1542 case XFS_LI_DQUOT:
1543 case XFS_LI_QUOTAOFF:
1544 case XFS_LI_EFD:
1545 case XFS_LI_EFI:
1546 list_move_tail(&item->ri_list, &trans->r_itemq);
1547 break;
1548 default:
1549 xlog_warn(
1550 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1551 ASSERT(0);
1552 return XFS_ERROR(EIO);
1555 ASSERT(list_empty(&sort_list));
1556 return 0;
1560 * Build up the table of buf cancel records so that we don't replay
1561 * cancelled data in the second pass. For buffer records that are
1562 * not cancel records, there is nothing to do here so we just return.
1564 * If we get a cancel record which is already in the table, this indicates
1565 * that the buffer was cancelled multiple times. In order to ensure
1566 * that during pass 2 we keep the record in the table until we reach its
1567 * last occurrence in the log, we keep a reference count in the cancel
1568 * record in the table to tell us how many times we expect to see this
1569 * record during the second pass.
1571 STATIC void
1572 xlog_recover_do_buffer_pass1(
1573 xlog_t *log,
1574 xfs_buf_log_format_t *buf_f)
1576 xfs_buf_cancel_t *bcp;
1577 xfs_buf_cancel_t *nextp;
1578 xfs_buf_cancel_t *prevp;
1579 xfs_buf_cancel_t **bucket;
1580 xfs_daddr_t blkno = 0;
1581 uint len = 0;
1582 ushort flags = 0;
1584 switch (buf_f->blf_type) {
1585 case XFS_LI_BUF:
1586 blkno = buf_f->blf_blkno;
1587 len = buf_f->blf_len;
1588 flags = buf_f->blf_flags;
1589 break;
1593 * If this isn't a cancel buffer item, then just return.
1595 if (!(flags & XFS_BLI_CANCEL))
1596 return;
1599 * Insert an xfs_buf_cancel record into the hash table of
1600 * them. If there is already an identical record, bump
1601 * its reference count.
1603 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1604 XLOG_BC_TABLE_SIZE];
1606 * If the hash bucket is empty then just insert a new record into
1607 * the bucket.
1609 if (*bucket == NULL) {
1610 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1611 KM_SLEEP);
1612 bcp->bc_blkno = blkno;
1613 bcp->bc_len = len;
1614 bcp->bc_refcount = 1;
1615 bcp->bc_next = NULL;
1616 *bucket = bcp;
1617 return;
1621 * The hash bucket is not empty, so search for duplicates of our
1622 * record. If we find one them just bump its refcount. If not
1623 * then add us at the end of the list.
1625 prevp = NULL;
1626 nextp = *bucket;
1627 while (nextp != NULL) {
1628 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1629 nextp->bc_refcount++;
1630 return;
1632 prevp = nextp;
1633 nextp = nextp->bc_next;
1635 ASSERT(prevp != NULL);
1636 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1637 KM_SLEEP);
1638 bcp->bc_blkno = blkno;
1639 bcp->bc_len = len;
1640 bcp->bc_refcount = 1;
1641 bcp->bc_next = NULL;
1642 prevp->bc_next = bcp;
1646 * Check to see whether the buffer being recovered has a corresponding
1647 * entry in the buffer cancel record table. If it does then return 1
1648 * so that it will be cancelled, otherwise return 0. If the buffer is
1649 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1650 * the refcount on the entry in the table and remove it from the table
1651 * if this is the last reference.
1653 * We remove the cancel record from the table when we encounter its
1654 * last occurrence in the log so that if the same buffer is re-used
1655 * again after its last cancellation we actually replay the changes
1656 * made at that point.
1658 STATIC int
1659 xlog_check_buffer_cancelled(
1660 xlog_t *log,
1661 xfs_daddr_t blkno,
1662 uint len,
1663 ushort flags)
1665 xfs_buf_cancel_t *bcp;
1666 xfs_buf_cancel_t *prevp;
1667 xfs_buf_cancel_t **bucket;
1669 if (log->l_buf_cancel_table == NULL) {
1671 * There is nothing in the table built in pass one,
1672 * so this buffer must not be cancelled.
1674 ASSERT(!(flags & XFS_BLI_CANCEL));
1675 return 0;
1678 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1679 XLOG_BC_TABLE_SIZE];
1680 bcp = *bucket;
1681 if (bcp == NULL) {
1683 * There is no corresponding entry in the table built
1684 * in pass one, so this buffer has not been cancelled.
1686 ASSERT(!(flags & XFS_BLI_CANCEL));
1687 return 0;
1691 * Search for an entry in the buffer cancel table that
1692 * matches our buffer.
1694 prevp = NULL;
1695 while (bcp != NULL) {
1696 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1698 * We've go a match, so return 1 so that the
1699 * recovery of this buffer is cancelled.
1700 * If this buffer is actually a buffer cancel
1701 * log item, then decrement the refcount on the
1702 * one in the table and remove it if this is the
1703 * last reference.
1705 if (flags & XFS_BLI_CANCEL) {
1706 bcp->bc_refcount--;
1707 if (bcp->bc_refcount == 0) {
1708 if (prevp == NULL) {
1709 *bucket = bcp->bc_next;
1710 } else {
1711 prevp->bc_next = bcp->bc_next;
1713 kmem_free(bcp);
1716 return 1;
1718 prevp = bcp;
1719 bcp = bcp->bc_next;
1722 * We didn't find a corresponding entry in the table, so
1723 * return 0 so that the buffer is NOT cancelled.
1725 ASSERT(!(flags & XFS_BLI_CANCEL));
1726 return 0;
1729 STATIC int
1730 xlog_recover_do_buffer_pass2(
1731 xlog_t *log,
1732 xfs_buf_log_format_t *buf_f)
1734 xfs_daddr_t blkno = 0;
1735 ushort flags = 0;
1736 uint len = 0;
1738 switch (buf_f->blf_type) {
1739 case XFS_LI_BUF:
1740 blkno = buf_f->blf_blkno;
1741 flags = buf_f->blf_flags;
1742 len = buf_f->blf_len;
1743 break;
1746 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1750 * Perform recovery for a buffer full of inodes. In these buffers,
1751 * the only data which should be recovered is that which corresponds
1752 * to the di_next_unlinked pointers in the on disk inode structures.
1753 * The rest of the data for the inodes is always logged through the
1754 * inodes themselves rather than the inode buffer and is recovered
1755 * in xlog_recover_do_inode_trans().
1757 * The only time when buffers full of inodes are fully recovered is
1758 * when the buffer is full of newly allocated inodes. In this case
1759 * the buffer will not be marked as an inode buffer and so will be
1760 * sent to xlog_recover_do_reg_buffer() below during recovery.
1762 STATIC int
1763 xlog_recover_do_inode_buffer(
1764 xfs_mount_t *mp,
1765 xlog_recover_item_t *item,
1766 xfs_buf_t *bp,
1767 xfs_buf_log_format_t *buf_f)
1769 int i;
1770 int item_index;
1771 int bit;
1772 int nbits;
1773 int reg_buf_offset;
1774 int reg_buf_bytes;
1775 int next_unlinked_offset;
1776 int inodes_per_buf;
1777 xfs_agino_t *logged_nextp;
1778 xfs_agino_t *buffer_nextp;
1779 unsigned int *data_map = NULL;
1780 unsigned int map_size = 0;
1782 switch (buf_f->blf_type) {
1783 case XFS_LI_BUF:
1784 data_map = buf_f->blf_data_map;
1785 map_size = buf_f->blf_map_size;
1786 break;
1789 * Set the variables corresponding to the current region to
1790 * 0 so that we'll initialize them on the first pass through
1791 * the loop.
1793 reg_buf_offset = 0;
1794 reg_buf_bytes = 0;
1795 bit = 0;
1796 nbits = 0;
1797 item_index = 0;
1798 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1799 for (i = 0; i < inodes_per_buf; i++) {
1800 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1801 offsetof(xfs_dinode_t, di_next_unlinked);
1803 while (next_unlinked_offset >=
1804 (reg_buf_offset + reg_buf_bytes)) {
1806 * The next di_next_unlinked field is beyond
1807 * the current logged region. Find the next
1808 * logged region that contains or is beyond
1809 * the current di_next_unlinked field.
1811 bit += nbits;
1812 bit = xfs_next_bit(data_map, map_size, bit);
1815 * If there are no more logged regions in the
1816 * buffer, then we're done.
1818 if (bit == -1) {
1819 return 0;
1822 nbits = xfs_contig_bits(data_map, map_size,
1823 bit);
1824 ASSERT(nbits > 0);
1825 reg_buf_offset = bit << XFS_BLI_SHIFT;
1826 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1827 item_index++;
1831 * If the current logged region starts after the current
1832 * di_next_unlinked field, then move on to the next
1833 * di_next_unlinked field.
1835 if (next_unlinked_offset < reg_buf_offset) {
1836 continue;
1839 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1841 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1844 * The current logged region contains a copy of the
1845 * current di_next_unlinked field. Extract its value
1846 * and copy it to the buffer copy.
1848 logged_nextp = (xfs_agino_t *)
1849 ((char *)(item->ri_buf[item_index].i_addr) +
1850 (next_unlinked_offset - reg_buf_offset));
1851 if (unlikely(*logged_nextp == 0)) {
1852 xfs_fs_cmn_err(CE_ALERT, mp,
1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1854 item, bp);
1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 XFS_ERRLEVEL_LOW, mp);
1857 return XFS_ERROR(EFSCORRUPTED);
1860 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1861 next_unlinked_offset);
1862 *buffer_nextp = *logged_nextp;
1865 return 0;
1869 * Perform a 'normal' buffer recovery. Each logged region of the
1870 * buffer should be copied over the corresponding region in the
1871 * given buffer. The bitmap in the buf log format structure indicates
1872 * where to place the logged data.
1874 /*ARGSUSED*/
1875 STATIC void
1876 xlog_recover_do_reg_buffer(
1877 xlog_recover_item_t *item,
1878 xfs_buf_t *bp,
1879 xfs_buf_log_format_t *buf_f)
1881 int i;
1882 int bit;
1883 int nbits;
1884 unsigned int *data_map = NULL;
1885 unsigned int map_size = 0;
1886 int error;
1888 switch (buf_f->blf_type) {
1889 case XFS_LI_BUF:
1890 data_map = buf_f->blf_data_map;
1891 map_size = buf_f->blf_map_size;
1892 break;
1894 bit = 0;
1895 i = 1; /* 0 is the buf format structure */
1896 while (1) {
1897 bit = xfs_next_bit(data_map, map_size, bit);
1898 if (bit == -1)
1899 break;
1900 nbits = xfs_contig_bits(data_map, map_size, bit);
1901 ASSERT(nbits > 0);
1902 ASSERT(item->ri_buf[i].i_addr != NULL);
1903 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1904 ASSERT(XFS_BUF_COUNT(bp) >=
1905 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1908 * Do a sanity check if this is a dquot buffer. Just checking
1909 * the first dquot in the buffer should do. XXXThis is
1910 * probably a good thing to do for other buf types also.
1912 error = 0;
1913 if (buf_f->blf_flags &
1914 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1915 if (item->ri_buf[i].i_addr == NULL) {
1916 cmn_err(CE_ALERT,
1917 "XFS: NULL dquot in %s.", __func__);
1918 goto next;
1920 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1921 cmn_err(CE_ALERT,
1922 "XFS: dquot too small (%d) in %s.",
1923 item->ri_buf[i].i_len, __func__);
1924 goto next;
1926 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1927 item->ri_buf[i].i_addr,
1928 -1, 0, XFS_QMOPT_DOWARN,
1929 "dquot_buf_recover");
1930 if (error)
1931 goto next;
1934 memcpy(xfs_buf_offset(bp,
1935 (uint)bit << XFS_BLI_SHIFT), /* dest */
1936 item->ri_buf[i].i_addr, /* source */
1937 nbits<<XFS_BLI_SHIFT); /* length */
1938 next:
1939 i++;
1940 bit += nbits;
1943 /* Shouldn't be any more regions */
1944 ASSERT(i == item->ri_total);
1948 * Do some primitive error checking on ondisk dquot data structures.
1951 xfs_qm_dqcheck(
1952 xfs_disk_dquot_t *ddq,
1953 xfs_dqid_t id,
1954 uint type, /* used only when IO_dorepair is true */
1955 uint flags,
1956 char *str)
1958 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1959 int errs = 0;
1962 * We can encounter an uninitialized dquot buffer for 2 reasons:
1963 * 1. If we crash while deleting the quotainode(s), and those blks got
1964 * used for user data. This is because we take the path of regular
1965 * file deletion; however, the size field of quotainodes is never
1966 * updated, so all the tricks that we play in itruncate_finish
1967 * don't quite matter.
1969 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1970 * But the allocation will be replayed so we'll end up with an
1971 * uninitialized quota block.
1973 * This is all fine; things are still consistent, and we haven't lost
1974 * any quota information. Just don't complain about bad dquot blks.
1976 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1977 if (flags & XFS_QMOPT_DOWARN)
1978 cmn_err(CE_ALERT,
1979 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1980 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1981 errs++;
1983 if (ddq->d_version != XFS_DQUOT_VERSION) {
1984 if (flags & XFS_QMOPT_DOWARN)
1985 cmn_err(CE_ALERT,
1986 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1987 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1988 errs++;
1991 if (ddq->d_flags != XFS_DQ_USER &&
1992 ddq->d_flags != XFS_DQ_PROJ &&
1993 ddq->d_flags != XFS_DQ_GROUP) {
1994 if (flags & XFS_QMOPT_DOWARN)
1995 cmn_err(CE_ALERT,
1996 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1997 str, id, ddq->d_flags);
1998 errs++;
2001 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2002 if (flags & XFS_QMOPT_DOWARN)
2003 cmn_err(CE_ALERT,
2004 "%s : ondisk-dquot 0x%p, ID mismatch: "
2005 "0x%x expected, found id 0x%x",
2006 str, ddq, id, be32_to_cpu(ddq->d_id));
2007 errs++;
2010 if (!errs && ddq->d_id) {
2011 if (ddq->d_blk_softlimit &&
2012 be64_to_cpu(ddq->d_bcount) >=
2013 be64_to_cpu(ddq->d_blk_softlimit)) {
2014 if (!ddq->d_btimer) {
2015 if (flags & XFS_QMOPT_DOWARN)
2016 cmn_err(CE_ALERT,
2017 "%s : Dquot ID 0x%x (0x%p) "
2018 "BLK TIMER NOT STARTED",
2019 str, (int)be32_to_cpu(ddq->d_id), ddq);
2020 errs++;
2023 if (ddq->d_ino_softlimit &&
2024 be64_to_cpu(ddq->d_icount) >=
2025 be64_to_cpu(ddq->d_ino_softlimit)) {
2026 if (!ddq->d_itimer) {
2027 if (flags & XFS_QMOPT_DOWARN)
2028 cmn_err(CE_ALERT,
2029 "%s : Dquot ID 0x%x (0x%p) "
2030 "INODE TIMER NOT STARTED",
2031 str, (int)be32_to_cpu(ddq->d_id), ddq);
2032 errs++;
2035 if (ddq->d_rtb_softlimit &&
2036 be64_to_cpu(ddq->d_rtbcount) >=
2037 be64_to_cpu(ddq->d_rtb_softlimit)) {
2038 if (!ddq->d_rtbtimer) {
2039 if (flags & XFS_QMOPT_DOWARN)
2040 cmn_err(CE_ALERT,
2041 "%s : Dquot ID 0x%x (0x%p) "
2042 "RTBLK TIMER NOT STARTED",
2043 str, (int)be32_to_cpu(ddq->d_id), ddq);
2044 errs++;
2049 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2050 return errs;
2052 if (flags & XFS_QMOPT_DOWARN)
2053 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2056 * Typically, a repair is only requested by quotacheck.
2058 ASSERT(id != -1);
2059 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2060 memset(d, 0, sizeof(xfs_dqblk_t));
2062 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2063 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2064 d->dd_diskdq.d_flags = type;
2065 d->dd_diskdq.d_id = cpu_to_be32(id);
2067 return errs;
2071 * Perform a dquot buffer recovery.
2072 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2073 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2074 * Else, treat it as a regular buffer and do recovery.
2076 STATIC void
2077 xlog_recover_do_dquot_buffer(
2078 xfs_mount_t *mp,
2079 xlog_t *log,
2080 xlog_recover_item_t *item,
2081 xfs_buf_t *bp,
2082 xfs_buf_log_format_t *buf_f)
2084 uint type;
2087 * Filesystems are required to send in quota flags at mount time.
2089 if (mp->m_qflags == 0) {
2090 return;
2093 type = 0;
2094 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2095 type |= XFS_DQ_USER;
2096 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2097 type |= XFS_DQ_PROJ;
2098 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2099 type |= XFS_DQ_GROUP;
2101 * This type of quotas was turned off, so ignore this buffer
2103 if (log->l_quotaoffs_flag & type)
2104 return;
2106 xlog_recover_do_reg_buffer(item, bp, buf_f);
2110 * This routine replays a modification made to a buffer at runtime.
2111 * There are actually two types of buffer, regular and inode, which
2112 * are handled differently. Inode buffers are handled differently
2113 * in that we only recover a specific set of data from them, namely
2114 * the inode di_next_unlinked fields. This is because all other inode
2115 * data is actually logged via inode records and any data we replay
2116 * here which overlaps that may be stale.
2118 * When meta-data buffers are freed at run time we log a buffer item
2119 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2120 * of the buffer in the log should not be replayed at recovery time.
2121 * This is so that if the blocks covered by the buffer are reused for
2122 * file data before we crash we don't end up replaying old, freed
2123 * meta-data into a user's file.
2125 * To handle the cancellation of buffer log items, we make two passes
2126 * over the log during recovery. During the first we build a table of
2127 * those buffers which have been cancelled, and during the second we
2128 * only replay those buffers which do not have corresponding cancel
2129 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2130 * for more details on the implementation of the table of cancel records.
2132 STATIC int
2133 xlog_recover_do_buffer_trans(
2134 xlog_t *log,
2135 xlog_recover_item_t *item,
2136 int pass)
2138 xfs_buf_log_format_t *buf_f;
2139 xfs_mount_t *mp;
2140 xfs_buf_t *bp;
2141 int error;
2142 int cancel;
2143 xfs_daddr_t blkno;
2144 int len;
2145 ushort flags;
2146 uint buf_flags;
2148 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2150 if (pass == XLOG_RECOVER_PASS1) {
2152 * In this pass we're only looking for buf items
2153 * with the XFS_BLI_CANCEL bit set.
2155 xlog_recover_do_buffer_pass1(log, buf_f);
2156 return 0;
2157 } else {
2159 * In this pass we want to recover all the buffers
2160 * which have not been cancelled and are not
2161 * cancellation buffers themselves. The routine
2162 * we call here will tell us whether or not to
2163 * continue with the replay of this buffer.
2165 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2166 if (cancel) {
2167 return 0;
2170 switch (buf_f->blf_type) {
2171 case XFS_LI_BUF:
2172 blkno = buf_f->blf_blkno;
2173 len = buf_f->blf_len;
2174 flags = buf_f->blf_flags;
2175 break;
2176 default:
2177 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2178 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2179 buf_f->blf_type, log->l_mp->m_logname ?
2180 log->l_mp->m_logname : "internal");
2181 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2182 XFS_ERRLEVEL_LOW, log->l_mp);
2183 return XFS_ERROR(EFSCORRUPTED);
2186 mp = log->l_mp;
2187 buf_flags = XBF_LOCK;
2188 if (!(flags & XFS_BLI_INODE_BUF))
2189 buf_flags |= XBF_MAPPED;
2191 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2192 if (XFS_BUF_ISERROR(bp)) {
2193 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2194 bp, blkno);
2195 error = XFS_BUF_GETERROR(bp);
2196 xfs_buf_relse(bp);
2197 return error;
2200 error = 0;
2201 if (flags & XFS_BLI_INODE_BUF) {
2202 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2203 } else if (flags &
2204 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2205 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2206 } else {
2207 xlog_recover_do_reg_buffer(item, bp, buf_f);
2209 if (error)
2210 return XFS_ERROR(error);
2213 * Perform delayed write on the buffer. Asynchronous writes will be
2214 * slower when taking into account all the buffers to be flushed.
2216 * Also make sure that only inode buffers with good sizes stay in
2217 * the buffer cache. The kernel moves inodes in buffers of 1 block
2218 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2219 * buffers in the log can be a different size if the log was generated
2220 * by an older kernel using unclustered inode buffers or a newer kernel
2221 * running with a different inode cluster size. Regardless, if the
2222 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2223 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2224 * the buffer out of the buffer cache so that the buffer won't
2225 * overlap with future reads of those inodes.
2227 if (XFS_DINODE_MAGIC ==
2228 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2229 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2230 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2231 XFS_BUF_STALE(bp);
2232 error = xfs_bwrite(mp, bp);
2233 } else {
2234 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2235 bp->b_mount = mp;
2236 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2237 xfs_bdwrite(mp, bp);
2240 return (error);
2243 STATIC int
2244 xlog_recover_do_inode_trans(
2245 xlog_t *log,
2246 xlog_recover_item_t *item,
2247 int pass)
2249 xfs_inode_log_format_t *in_f;
2250 xfs_mount_t *mp;
2251 xfs_buf_t *bp;
2252 xfs_dinode_t *dip;
2253 xfs_ino_t ino;
2254 int len;
2255 xfs_caddr_t src;
2256 xfs_caddr_t dest;
2257 int error;
2258 int attr_index;
2259 uint fields;
2260 xfs_icdinode_t *dicp;
2261 int need_free = 0;
2263 if (pass == XLOG_RECOVER_PASS1) {
2264 return 0;
2267 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2268 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2269 } else {
2270 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2271 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2272 need_free = 1;
2273 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2274 if (error)
2275 goto error;
2277 ino = in_f->ilf_ino;
2278 mp = log->l_mp;
2281 * Inode buffers can be freed, look out for it,
2282 * and do not replay the inode.
2284 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2285 in_f->ilf_len, 0)) {
2286 error = 0;
2287 goto error;
2290 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2291 XBF_LOCK);
2292 if (XFS_BUF_ISERROR(bp)) {
2293 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2294 bp, in_f->ilf_blkno);
2295 error = XFS_BUF_GETERROR(bp);
2296 xfs_buf_relse(bp);
2297 goto error;
2299 error = 0;
2300 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2301 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2304 * Make sure the place we're flushing out to really looks
2305 * like an inode!
2307 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2308 xfs_buf_relse(bp);
2309 xfs_fs_cmn_err(CE_ALERT, mp,
2310 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2311 dip, bp, ino);
2312 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2313 XFS_ERRLEVEL_LOW, mp);
2314 error = EFSCORRUPTED;
2315 goto error;
2317 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2318 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2319 xfs_buf_relse(bp);
2320 xfs_fs_cmn_err(CE_ALERT, mp,
2321 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2322 item, ino);
2323 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2324 XFS_ERRLEVEL_LOW, mp);
2325 error = EFSCORRUPTED;
2326 goto error;
2329 /* Skip replay when the on disk inode is newer than the log one */
2330 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2332 * Deal with the wrap case, DI_MAX_FLUSH is less
2333 * than smaller numbers
2335 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2336 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2337 /* do nothing */
2338 } else {
2339 xfs_buf_relse(bp);
2340 error = 0;
2341 goto error;
2344 /* Take the opportunity to reset the flush iteration count */
2345 dicp->di_flushiter = 0;
2347 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2348 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2349 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2350 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2351 XFS_ERRLEVEL_LOW, mp, dicp);
2352 xfs_buf_relse(bp);
2353 xfs_fs_cmn_err(CE_ALERT, mp,
2354 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2355 item, dip, bp, ino);
2356 error = EFSCORRUPTED;
2357 goto error;
2359 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2360 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2361 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2362 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2363 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2364 XFS_ERRLEVEL_LOW, mp, dicp);
2365 xfs_buf_relse(bp);
2366 xfs_fs_cmn_err(CE_ALERT, mp,
2367 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2368 item, dip, bp, ino);
2369 error = EFSCORRUPTED;
2370 goto error;
2373 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2374 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2375 XFS_ERRLEVEL_LOW, mp, dicp);
2376 xfs_buf_relse(bp);
2377 xfs_fs_cmn_err(CE_ALERT, mp,
2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2379 item, dip, bp, ino,
2380 dicp->di_nextents + dicp->di_anextents,
2381 dicp->di_nblocks);
2382 error = EFSCORRUPTED;
2383 goto error;
2385 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2386 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2387 XFS_ERRLEVEL_LOW, mp, dicp);
2388 xfs_buf_relse(bp);
2389 xfs_fs_cmn_err(CE_ALERT, mp,
2390 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2391 item, dip, bp, ino, dicp->di_forkoff);
2392 error = EFSCORRUPTED;
2393 goto error;
2395 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2396 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2397 XFS_ERRLEVEL_LOW, mp, dicp);
2398 xfs_buf_relse(bp);
2399 xfs_fs_cmn_err(CE_ALERT, mp,
2400 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2401 item->ri_buf[1].i_len, item);
2402 error = EFSCORRUPTED;
2403 goto error;
2406 /* The core is in in-core format */
2407 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2409 /* the rest is in on-disk format */
2410 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2411 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2412 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2413 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2416 fields = in_f->ilf_fields;
2417 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2418 case XFS_ILOG_DEV:
2419 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2420 break;
2421 case XFS_ILOG_UUID:
2422 memcpy(XFS_DFORK_DPTR(dip),
2423 &in_f->ilf_u.ilfu_uuid,
2424 sizeof(uuid_t));
2425 break;
2428 if (in_f->ilf_size == 2)
2429 goto write_inode_buffer;
2430 len = item->ri_buf[2].i_len;
2431 src = item->ri_buf[2].i_addr;
2432 ASSERT(in_f->ilf_size <= 4);
2433 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2434 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2435 (len == in_f->ilf_dsize));
2437 switch (fields & XFS_ILOG_DFORK) {
2438 case XFS_ILOG_DDATA:
2439 case XFS_ILOG_DEXT:
2440 memcpy(XFS_DFORK_DPTR(dip), src, len);
2441 break;
2443 case XFS_ILOG_DBROOT:
2444 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2445 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2446 XFS_DFORK_DSIZE(dip, mp));
2447 break;
2449 default:
2451 * There are no data fork flags set.
2453 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2454 break;
2458 * If we logged any attribute data, recover it. There may or
2459 * may not have been any other non-core data logged in this
2460 * transaction.
2462 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2463 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2464 attr_index = 3;
2465 } else {
2466 attr_index = 2;
2468 len = item->ri_buf[attr_index].i_len;
2469 src = item->ri_buf[attr_index].i_addr;
2470 ASSERT(len == in_f->ilf_asize);
2472 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2473 case XFS_ILOG_ADATA:
2474 case XFS_ILOG_AEXT:
2475 dest = XFS_DFORK_APTR(dip);
2476 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2477 memcpy(dest, src, len);
2478 break;
2480 case XFS_ILOG_ABROOT:
2481 dest = XFS_DFORK_APTR(dip);
2482 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2483 len, (xfs_bmdr_block_t*)dest,
2484 XFS_DFORK_ASIZE(dip, mp));
2485 break;
2487 default:
2488 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2489 ASSERT(0);
2490 xfs_buf_relse(bp);
2491 error = EIO;
2492 goto error;
2496 write_inode_buffer:
2497 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2498 bp->b_mount = mp;
2499 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2500 xfs_bdwrite(mp, bp);
2501 error:
2502 if (need_free)
2503 kmem_free(in_f);
2504 return XFS_ERROR(error);
2508 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2509 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2510 * of that type.
2512 STATIC int
2513 xlog_recover_do_quotaoff_trans(
2514 xlog_t *log,
2515 xlog_recover_item_t *item,
2516 int pass)
2518 xfs_qoff_logformat_t *qoff_f;
2520 if (pass == XLOG_RECOVER_PASS2) {
2521 return (0);
2524 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2525 ASSERT(qoff_f);
2528 * The logitem format's flag tells us if this was user quotaoff,
2529 * group/project quotaoff or both.
2531 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2532 log->l_quotaoffs_flag |= XFS_DQ_USER;
2533 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2534 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2535 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2536 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2538 return (0);
2542 * Recover a dquot record
2544 STATIC int
2545 xlog_recover_do_dquot_trans(
2546 xlog_t *log,
2547 xlog_recover_item_t *item,
2548 int pass)
2550 xfs_mount_t *mp;
2551 xfs_buf_t *bp;
2552 struct xfs_disk_dquot *ddq, *recddq;
2553 int error;
2554 xfs_dq_logformat_t *dq_f;
2555 uint type;
2557 if (pass == XLOG_RECOVER_PASS1) {
2558 return 0;
2560 mp = log->l_mp;
2563 * Filesystems are required to send in quota flags at mount time.
2565 if (mp->m_qflags == 0)
2566 return (0);
2568 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2570 if (item->ri_buf[1].i_addr == NULL) {
2571 cmn_err(CE_ALERT,
2572 "XFS: NULL dquot in %s.", __func__);
2573 return XFS_ERROR(EIO);
2575 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2576 cmn_err(CE_ALERT,
2577 "XFS: dquot too small (%d) in %s.",
2578 item->ri_buf[1].i_len, __func__);
2579 return XFS_ERROR(EIO);
2583 * This type of quotas was turned off, so ignore this record.
2585 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2586 ASSERT(type);
2587 if (log->l_quotaoffs_flag & type)
2588 return (0);
2591 * At this point we know that quota was _not_ turned off.
2592 * Since the mount flags are not indicating to us otherwise, this
2593 * must mean that quota is on, and the dquot needs to be replayed.
2594 * Remember that we may not have fully recovered the superblock yet,
2595 * so we can't do the usual trick of looking at the SB quota bits.
2597 * The other possibility, of course, is that the quota subsystem was
2598 * removed since the last mount - ENOSYS.
2600 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2601 ASSERT(dq_f);
2602 if ((error = xfs_qm_dqcheck(recddq,
2603 dq_f->qlf_id,
2604 0, XFS_QMOPT_DOWARN,
2605 "xlog_recover_do_dquot_trans (log copy)"))) {
2606 return XFS_ERROR(EIO);
2608 ASSERT(dq_f->qlf_len == 1);
2610 error = xfs_read_buf(mp, mp->m_ddev_targp,
2611 dq_f->qlf_blkno,
2612 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2613 0, &bp);
2614 if (error) {
2615 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2616 bp, dq_f->qlf_blkno);
2617 return error;
2619 ASSERT(bp);
2620 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2623 * At least the magic num portion should be on disk because this
2624 * was among a chunk of dquots created earlier, and we did some
2625 * minimal initialization then.
2627 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2628 "xlog_recover_do_dquot_trans")) {
2629 xfs_buf_relse(bp);
2630 return XFS_ERROR(EIO);
2633 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2635 ASSERT(dq_f->qlf_size == 2);
2636 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2637 bp->b_mount = mp;
2638 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2639 xfs_bdwrite(mp, bp);
2641 return (0);
2645 * This routine is called to create an in-core extent free intent
2646 * item from the efi format structure which was logged on disk.
2647 * It allocates an in-core efi, copies the extents from the format
2648 * structure into it, and adds the efi to the AIL with the given
2649 * LSN.
2651 STATIC int
2652 xlog_recover_do_efi_trans(
2653 xlog_t *log,
2654 xlog_recover_item_t *item,
2655 xfs_lsn_t lsn,
2656 int pass)
2658 int error;
2659 xfs_mount_t *mp;
2660 xfs_efi_log_item_t *efip;
2661 xfs_efi_log_format_t *efi_formatp;
2663 if (pass == XLOG_RECOVER_PASS1) {
2664 return 0;
2667 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2669 mp = log->l_mp;
2670 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2671 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2672 &(efip->efi_format)))) {
2673 xfs_efi_item_free(efip);
2674 return error;
2676 efip->efi_next_extent = efi_formatp->efi_nextents;
2677 efip->efi_flags |= XFS_EFI_COMMITTED;
2679 spin_lock(&log->l_ailp->xa_lock);
2681 * xfs_trans_ail_update() drops the AIL lock.
2683 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2684 return 0;
2689 * This routine is called when an efd format structure is found in
2690 * a committed transaction in the log. It's purpose is to cancel
2691 * the corresponding efi if it was still in the log. To do this
2692 * it searches the AIL for the efi with an id equal to that in the
2693 * efd format structure. If we find it, we remove the efi from the
2694 * AIL and free it.
2696 STATIC void
2697 xlog_recover_do_efd_trans(
2698 xlog_t *log,
2699 xlog_recover_item_t *item,
2700 int pass)
2702 xfs_efd_log_format_t *efd_formatp;
2703 xfs_efi_log_item_t *efip = NULL;
2704 xfs_log_item_t *lip;
2705 __uint64_t efi_id;
2706 struct xfs_ail_cursor cur;
2707 struct xfs_ail *ailp = log->l_ailp;
2709 if (pass == XLOG_RECOVER_PASS1) {
2710 return;
2713 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2714 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2715 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2716 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2717 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2718 efi_id = efd_formatp->efd_efi_id;
2721 * Search for the efi with the id in the efd format structure
2722 * in the AIL.
2724 spin_lock(&ailp->xa_lock);
2725 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2726 while (lip != NULL) {
2727 if (lip->li_type == XFS_LI_EFI) {
2728 efip = (xfs_efi_log_item_t *)lip;
2729 if (efip->efi_format.efi_id == efi_id) {
2731 * xfs_trans_ail_delete() drops the
2732 * AIL lock.
2734 xfs_trans_ail_delete(ailp, lip);
2735 xfs_efi_item_free(efip);
2736 spin_lock(&ailp->xa_lock);
2737 break;
2740 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2742 xfs_trans_ail_cursor_done(ailp, &cur);
2743 spin_unlock(&ailp->xa_lock);
2747 * Perform the transaction
2749 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2750 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2752 STATIC int
2753 xlog_recover_do_trans(
2754 xlog_t *log,
2755 xlog_recover_t *trans,
2756 int pass)
2758 int error = 0;
2759 xlog_recover_item_t *item;
2761 error = xlog_recover_reorder_trans(trans);
2762 if (error)
2763 return error;
2765 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2766 switch (ITEM_TYPE(item)) {
2767 case XFS_LI_BUF:
2768 error = xlog_recover_do_buffer_trans(log, item, pass);
2769 break;
2770 case XFS_LI_INODE:
2771 error = xlog_recover_do_inode_trans(log, item, pass);
2772 break;
2773 case XFS_LI_EFI:
2774 error = xlog_recover_do_efi_trans(log, item,
2775 trans->r_lsn, pass);
2776 break;
2777 case XFS_LI_EFD:
2778 xlog_recover_do_efd_trans(log, item, pass);
2779 error = 0;
2780 break;
2781 case XFS_LI_DQUOT:
2782 error = xlog_recover_do_dquot_trans(log, item, pass);
2783 break;
2784 case XFS_LI_QUOTAOFF:
2785 error = xlog_recover_do_quotaoff_trans(log, item,
2786 pass);
2787 break;
2788 default:
2789 xlog_warn(
2790 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2791 ASSERT(0);
2792 error = XFS_ERROR(EIO);
2793 break;
2796 if (error)
2797 return error;
2800 return 0;
2804 * Free up any resources allocated by the transaction
2806 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2808 STATIC void
2809 xlog_recover_free_trans(
2810 xlog_recover_t *trans)
2812 xlog_recover_item_t *item, *n;
2813 int i;
2815 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2816 /* Free the regions in the item. */
2817 list_del(&item->ri_list);
2818 for (i = 0; i < item->ri_cnt; i++)
2819 kmem_free(item->ri_buf[i].i_addr);
2820 /* Free the item itself */
2821 kmem_free(item->ri_buf);
2822 kmem_free(item);
2824 /* Free the transaction recover structure */
2825 kmem_free(trans);
2828 STATIC int
2829 xlog_recover_commit_trans(
2830 xlog_t *log,
2831 xlog_recover_t *trans,
2832 int pass)
2834 int error;
2836 hlist_del(&trans->r_list);
2837 if ((error = xlog_recover_do_trans(log, trans, pass)))
2838 return error;
2839 xlog_recover_free_trans(trans); /* no error */
2840 return 0;
2843 STATIC int
2844 xlog_recover_unmount_trans(
2845 xlog_recover_t *trans)
2847 /* Do nothing now */
2848 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2849 return 0;
2853 * There are two valid states of the r_state field. 0 indicates that the
2854 * transaction structure is in a normal state. We have either seen the
2855 * start of the transaction or the last operation we added was not a partial
2856 * operation. If the last operation we added to the transaction was a
2857 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2859 * NOTE: skip LRs with 0 data length.
2861 STATIC int
2862 xlog_recover_process_data(
2863 xlog_t *log,
2864 struct hlist_head rhash[],
2865 xlog_rec_header_t *rhead,
2866 xfs_caddr_t dp,
2867 int pass)
2869 xfs_caddr_t lp;
2870 int num_logops;
2871 xlog_op_header_t *ohead;
2872 xlog_recover_t *trans;
2873 xlog_tid_t tid;
2874 int error;
2875 unsigned long hash;
2876 uint flags;
2878 lp = dp + be32_to_cpu(rhead->h_len);
2879 num_logops = be32_to_cpu(rhead->h_num_logops);
2881 /* check the log format matches our own - else we can't recover */
2882 if (xlog_header_check_recover(log->l_mp, rhead))
2883 return (XFS_ERROR(EIO));
2885 while ((dp < lp) && num_logops) {
2886 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2887 ohead = (xlog_op_header_t *)dp;
2888 dp += sizeof(xlog_op_header_t);
2889 if (ohead->oh_clientid != XFS_TRANSACTION &&
2890 ohead->oh_clientid != XFS_LOG) {
2891 xlog_warn(
2892 "XFS: xlog_recover_process_data: bad clientid");
2893 ASSERT(0);
2894 return (XFS_ERROR(EIO));
2896 tid = be32_to_cpu(ohead->oh_tid);
2897 hash = XLOG_RHASH(tid);
2898 trans = xlog_recover_find_tid(&rhash[hash], tid);
2899 if (trans == NULL) { /* not found; add new tid */
2900 if (ohead->oh_flags & XLOG_START_TRANS)
2901 xlog_recover_new_tid(&rhash[hash], tid,
2902 be64_to_cpu(rhead->h_lsn));
2903 } else {
2904 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2905 xlog_warn(
2906 "XFS: xlog_recover_process_data: bad length");
2907 WARN_ON(1);
2908 return (XFS_ERROR(EIO));
2910 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2911 if (flags & XLOG_WAS_CONT_TRANS)
2912 flags &= ~XLOG_CONTINUE_TRANS;
2913 switch (flags) {
2914 case XLOG_COMMIT_TRANS:
2915 error = xlog_recover_commit_trans(log,
2916 trans, pass);
2917 break;
2918 case XLOG_UNMOUNT_TRANS:
2919 error = xlog_recover_unmount_trans(trans);
2920 break;
2921 case XLOG_WAS_CONT_TRANS:
2922 error = xlog_recover_add_to_cont_trans(trans,
2923 dp, be32_to_cpu(ohead->oh_len));
2924 break;
2925 case XLOG_START_TRANS:
2926 xlog_warn(
2927 "XFS: xlog_recover_process_data: bad transaction");
2928 ASSERT(0);
2929 error = XFS_ERROR(EIO);
2930 break;
2931 case 0:
2932 case XLOG_CONTINUE_TRANS:
2933 error = xlog_recover_add_to_trans(trans,
2934 dp, be32_to_cpu(ohead->oh_len));
2935 break;
2936 default:
2937 xlog_warn(
2938 "XFS: xlog_recover_process_data: bad flag");
2939 ASSERT(0);
2940 error = XFS_ERROR(EIO);
2941 break;
2943 if (error)
2944 return error;
2946 dp += be32_to_cpu(ohead->oh_len);
2947 num_logops--;
2949 return 0;
2953 * Process an extent free intent item that was recovered from
2954 * the log. We need to free the extents that it describes.
2956 STATIC int
2957 xlog_recover_process_efi(
2958 xfs_mount_t *mp,
2959 xfs_efi_log_item_t *efip)
2961 xfs_efd_log_item_t *efdp;
2962 xfs_trans_t *tp;
2963 int i;
2964 int error = 0;
2965 xfs_extent_t *extp;
2966 xfs_fsblock_t startblock_fsb;
2968 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2971 * First check the validity of the extents described by the
2972 * EFI. If any are bad, then assume that all are bad and
2973 * just toss the EFI.
2975 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2976 extp = &(efip->efi_format.efi_extents[i]);
2977 startblock_fsb = XFS_BB_TO_FSB(mp,
2978 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2979 if ((startblock_fsb == 0) ||
2980 (extp->ext_len == 0) ||
2981 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2982 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2984 * This will pull the EFI from the AIL and
2985 * free the memory associated with it.
2987 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2988 return XFS_ERROR(EIO);
2992 tp = xfs_trans_alloc(mp, 0);
2993 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2994 if (error)
2995 goto abort_error;
2996 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2998 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2999 extp = &(efip->efi_format.efi_extents[i]);
3000 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3001 if (error)
3002 goto abort_error;
3003 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3004 extp->ext_len);
3007 efip->efi_flags |= XFS_EFI_RECOVERED;
3008 error = xfs_trans_commit(tp, 0);
3009 return error;
3011 abort_error:
3012 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3013 return error;
3017 * When this is called, all of the EFIs which did not have
3018 * corresponding EFDs should be in the AIL. What we do now
3019 * is free the extents associated with each one.
3021 * Since we process the EFIs in normal transactions, they
3022 * will be removed at some point after the commit. This prevents
3023 * us from just walking down the list processing each one.
3024 * We'll use a flag in the EFI to skip those that we've already
3025 * processed and use the AIL iteration mechanism's generation
3026 * count to try to speed this up at least a bit.
3028 * When we start, we know that the EFIs are the only things in
3029 * the AIL. As we process them, however, other items are added
3030 * to the AIL. Since everything added to the AIL must come after
3031 * everything already in the AIL, we stop processing as soon as
3032 * we see something other than an EFI in the AIL.
3034 STATIC int
3035 xlog_recover_process_efis(
3036 xlog_t *log)
3038 xfs_log_item_t *lip;
3039 xfs_efi_log_item_t *efip;
3040 int error = 0;
3041 struct xfs_ail_cursor cur;
3042 struct xfs_ail *ailp;
3044 ailp = log->l_ailp;
3045 spin_lock(&ailp->xa_lock);
3046 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3047 while (lip != NULL) {
3049 * We're done when we see something other than an EFI.
3050 * There should be no EFIs left in the AIL now.
3052 if (lip->li_type != XFS_LI_EFI) {
3053 #ifdef DEBUG
3054 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3055 ASSERT(lip->li_type != XFS_LI_EFI);
3056 #endif
3057 break;
3061 * Skip EFIs that we've already processed.
3063 efip = (xfs_efi_log_item_t *)lip;
3064 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3065 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3066 continue;
3069 spin_unlock(&ailp->xa_lock);
3070 error = xlog_recover_process_efi(log->l_mp, efip);
3071 spin_lock(&ailp->xa_lock);
3072 if (error)
3073 goto out;
3074 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3076 out:
3077 xfs_trans_ail_cursor_done(ailp, &cur);
3078 spin_unlock(&ailp->xa_lock);
3079 return error;
3083 * This routine performs a transaction to null out a bad inode pointer
3084 * in an agi unlinked inode hash bucket.
3086 STATIC void
3087 xlog_recover_clear_agi_bucket(
3088 xfs_mount_t *mp,
3089 xfs_agnumber_t agno,
3090 int bucket)
3092 xfs_trans_t *tp;
3093 xfs_agi_t *agi;
3094 xfs_buf_t *agibp;
3095 int offset;
3096 int error;
3098 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3099 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3100 0, 0, 0);
3101 if (error)
3102 goto out_abort;
3104 error = xfs_read_agi(mp, tp, agno, &agibp);
3105 if (error)
3106 goto out_abort;
3108 agi = XFS_BUF_TO_AGI(agibp);
3109 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3110 offset = offsetof(xfs_agi_t, agi_unlinked) +
3111 (sizeof(xfs_agino_t) * bucket);
3112 xfs_trans_log_buf(tp, agibp, offset,
3113 (offset + sizeof(xfs_agino_t) - 1));
3115 error = xfs_trans_commit(tp, 0);
3116 if (error)
3117 goto out_error;
3118 return;
3120 out_abort:
3121 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3122 out_error:
3123 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3124 "failed to clear agi %d. Continuing.", agno);
3125 return;
3128 STATIC xfs_agino_t
3129 xlog_recover_process_one_iunlink(
3130 struct xfs_mount *mp,
3131 xfs_agnumber_t agno,
3132 xfs_agino_t agino,
3133 int bucket)
3135 struct xfs_buf *ibp;
3136 struct xfs_dinode *dip;
3137 struct xfs_inode *ip;
3138 xfs_ino_t ino;
3139 int error;
3141 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3142 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3143 if (error)
3144 goto fail;
3147 * Get the on disk inode to find the next inode in the bucket.
3149 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3150 if (error)
3151 goto fail_iput;
3153 ASSERT(ip->i_d.di_nlink == 0);
3154 ASSERT(ip->i_d.di_mode != 0);
3156 /* setup for the next pass */
3157 agino = be32_to_cpu(dip->di_next_unlinked);
3158 xfs_buf_relse(ibp);
3161 * Prevent any DMAPI event from being sent when the reference on
3162 * the inode is dropped.
3164 ip->i_d.di_dmevmask = 0;
3166 IRELE(ip);
3167 return agino;
3169 fail_iput:
3170 IRELE(ip);
3171 fail:
3173 * We can't read in the inode this bucket points to, or this inode
3174 * is messed up. Just ditch this bucket of inodes. We will lose
3175 * some inodes and space, but at least we won't hang.
3177 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3178 * clear the inode pointer in the bucket.
3180 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3181 return NULLAGINO;
3185 * xlog_iunlink_recover
3187 * This is called during recovery to process any inodes which
3188 * we unlinked but not freed when the system crashed. These
3189 * inodes will be on the lists in the AGI blocks. What we do
3190 * here is scan all the AGIs and fully truncate and free any
3191 * inodes found on the lists. Each inode is removed from the
3192 * lists when it has been fully truncated and is freed. The
3193 * freeing of the inode and its removal from the list must be
3194 * atomic.
3196 STATIC void
3197 xlog_recover_process_iunlinks(
3198 xlog_t *log)
3200 xfs_mount_t *mp;
3201 xfs_agnumber_t agno;
3202 xfs_agi_t *agi;
3203 xfs_buf_t *agibp;
3204 xfs_agino_t agino;
3205 int bucket;
3206 int error;
3207 uint mp_dmevmask;
3209 mp = log->l_mp;
3212 * Prevent any DMAPI event from being sent while in this function.
3214 mp_dmevmask = mp->m_dmevmask;
3215 mp->m_dmevmask = 0;
3217 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3219 * Find the agi for this ag.
3221 error = xfs_read_agi(mp, NULL, agno, &agibp);
3222 if (error) {
3224 * AGI is b0rked. Don't process it.
3226 * We should probably mark the filesystem as corrupt
3227 * after we've recovered all the ag's we can....
3229 continue;
3231 agi = XFS_BUF_TO_AGI(agibp);
3233 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3234 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3235 while (agino != NULLAGINO) {
3237 * Release the agi buffer so that it can
3238 * be acquired in the normal course of the
3239 * transaction to truncate and free the inode.
3241 xfs_buf_relse(agibp);
3243 agino = xlog_recover_process_one_iunlink(mp,
3244 agno, agino, bucket);
3247 * Reacquire the agibuffer and continue around
3248 * the loop. This should never fail as we know
3249 * the buffer was good earlier on.
3251 error = xfs_read_agi(mp, NULL, agno, &agibp);
3252 ASSERT(error == 0);
3253 agi = XFS_BUF_TO_AGI(agibp);
3258 * Release the buffer for the current agi so we can
3259 * go on to the next one.
3261 xfs_buf_relse(agibp);
3264 mp->m_dmevmask = mp_dmevmask;
3268 #ifdef DEBUG
3269 STATIC void
3270 xlog_pack_data_checksum(
3271 xlog_t *log,
3272 xlog_in_core_t *iclog,
3273 int size)
3275 int i;
3276 __be32 *up;
3277 uint chksum = 0;
3279 up = (__be32 *)iclog->ic_datap;
3280 /* divide length by 4 to get # words */
3281 for (i = 0; i < (size >> 2); i++) {
3282 chksum ^= be32_to_cpu(*up);
3283 up++;
3285 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3287 #else
3288 #define xlog_pack_data_checksum(log, iclog, size)
3289 #endif
3292 * Stamp cycle number in every block
3294 void
3295 xlog_pack_data(
3296 xlog_t *log,
3297 xlog_in_core_t *iclog,
3298 int roundoff)
3300 int i, j, k;
3301 int size = iclog->ic_offset + roundoff;
3302 __be32 cycle_lsn;
3303 xfs_caddr_t dp;
3305 xlog_pack_data_checksum(log, iclog, size);
3307 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3309 dp = iclog->ic_datap;
3310 for (i = 0; i < BTOBB(size) &&
3311 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3312 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3313 *(__be32 *)dp = cycle_lsn;
3314 dp += BBSIZE;
3317 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3318 xlog_in_core_2_t *xhdr = iclog->ic_data;
3320 for ( ; i < BTOBB(size); i++) {
3321 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3322 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3323 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3324 *(__be32 *)dp = cycle_lsn;
3325 dp += BBSIZE;
3328 for (i = 1; i < log->l_iclog_heads; i++) {
3329 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3334 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3335 STATIC void
3336 xlog_unpack_data_checksum(
3337 xlog_rec_header_t *rhead,
3338 xfs_caddr_t dp,
3339 xlog_t *log)
3341 __be32 *up = (__be32 *)dp;
3342 uint chksum = 0;
3343 int i;
3345 /* divide length by 4 to get # words */
3346 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3347 chksum ^= be32_to_cpu(*up);
3348 up++;
3350 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3351 if (rhead->h_chksum ||
3352 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3353 cmn_err(CE_DEBUG,
3354 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3355 be32_to_cpu(rhead->h_chksum), chksum);
3356 cmn_err(CE_DEBUG,
3357 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3358 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3359 cmn_err(CE_DEBUG,
3360 "XFS: LogR this is a LogV2 filesystem\n");
3362 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3366 #else
3367 #define xlog_unpack_data_checksum(rhead, dp, log)
3368 #endif
3370 STATIC void
3371 xlog_unpack_data(
3372 xlog_rec_header_t *rhead,
3373 xfs_caddr_t dp,
3374 xlog_t *log)
3376 int i, j, k;
3378 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3379 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3380 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3381 dp += BBSIZE;
3384 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3385 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3386 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3387 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3388 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3389 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3390 dp += BBSIZE;
3394 xlog_unpack_data_checksum(rhead, dp, log);
3397 STATIC int
3398 xlog_valid_rec_header(
3399 xlog_t *log,
3400 xlog_rec_header_t *rhead,
3401 xfs_daddr_t blkno)
3403 int hlen;
3405 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3406 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3407 XFS_ERRLEVEL_LOW, log->l_mp);
3408 return XFS_ERROR(EFSCORRUPTED);
3410 if (unlikely(
3411 (!rhead->h_version ||
3412 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3413 xlog_warn("XFS: %s: unrecognised log version (%d).",
3414 __func__, be32_to_cpu(rhead->h_version));
3415 return XFS_ERROR(EIO);
3418 /* LR body must have data or it wouldn't have been written */
3419 hlen = be32_to_cpu(rhead->h_len);
3420 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3421 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3422 XFS_ERRLEVEL_LOW, log->l_mp);
3423 return XFS_ERROR(EFSCORRUPTED);
3425 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3426 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3427 XFS_ERRLEVEL_LOW, log->l_mp);
3428 return XFS_ERROR(EFSCORRUPTED);
3430 return 0;
3434 * Read the log from tail to head and process the log records found.
3435 * Handle the two cases where the tail and head are in the same cycle
3436 * and where the active portion of the log wraps around the end of
3437 * the physical log separately. The pass parameter is passed through
3438 * to the routines called to process the data and is not looked at
3439 * here.
3441 STATIC int
3442 xlog_do_recovery_pass(
3443 xlog_t *log,
3444 xfs_daddr_t head_blk,
3445 xfs_daddr_t tail_blk,
3446 int pass)
3448 xlog_rec_header_t *rhead;
3449 xfs_daddr_t blk_no;
3450 xfs_caddr_t offset;
3451 xfs_buf_t *hbp, *dbp;
3452 int error = 0, h_size;
3453 int bblks, split_bblks;
3454 int hblks, split_hblks, wrapped_hblks;
3455 struct hlist_head rhash[XLOG_RHASH_SIZE];
3457 ASSERT(head_blk != tail_blk);
3460 * Read the header of the tail block and get the iclog buffer size from
3461 * h_size. Use this to tell how many sectors make up the log header.
3463 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3465 * When using variable length iclogs, read first sector of
3466 * iclog header and extract the header size from it. Get a
3467 * new hbp that is the correct size.
3469 hbp = xlog_get_bp(log, 1);
3470 if (!hbp)
3471 return ENOMEM;
3473 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3474 if (error)
3475 goto bread_err1;
3477 rhead = (xlog_rec_header_t *)offset;
3478 error = xlog_valid_rec_header(log, rhead, tail_blk);
3479 if (error)
3480 goto bread_err1;
3481 h_size = be32_to_cpu(rhead->h_size);
3482 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3483 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3484 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3485 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3486 hblks++;
3487 xlog_put_bp(hbp);
3488 hbp = xlog_get_bp(log, hblks);
3489 } else {
3490 hblks = 1;
3492 } else {
3493 ASSERT(log->l_sectbb_log == 0);
3494 hblks = 1;
3495 hbp = xlog_get_bp(log, 1);
3496 h_size = XLOG_BIG_RECORD_BSIZE;
3499 if (!hbp)
3500 return ENOMEM;
3501 dbp = xlog_get_bp(log, BTOBB(h_size));
3502 if (!dbp) {
3503 xlog_put_bp(hbp);
3504 return ENOMEM;
3507 memset(rhash, 0, sizeof(rhash));
3508 if (tail_blk <= head_blk) {
3509 for (blk_no = tail_blk; blk_no < head_blk; ) {
3510 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3511 if (error)
3512 goto bread_err2;
3514 rhead = (xlog_rec_header_t *)offset;
3515 error = xlog_valid_rec_header(log, rhead, blk_no);
3516 if (error)
3517 goto bread_err2;
3519 /* blocks in data section */
3520 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3521 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3522 &offset);
3523 if (error)
3524 goto bread_err2;
3526 xlog_unpack_data(rhead, offset, log);
3527 if ((error = xlog_recover_process_data(log,
3528 rhash, rhead, offset, pass)))
3529 goto bread_err2;
3530 blk_no += bblks + hblks;
3532 } else {
3534 * Perform recovery around the end of the physical log.
3535 * When the head is not on the same cycle number as the tail,
3536 * we can't do a sequential recovery as above.
3538 blk_no = tail_blk;
3539 while (blk_no < log->l_logBBsize) {
3541 * Check for header wrapping around physical end-of-log
3543 offset = XFS_BUF_PTR(hbp);
3544 split_hblks = 0;
3545 wrapped_hblks = 0;
3546 if (blk_no + hblks <= log->l_logBBsize) {
3547 /* Read header in one read */
3548 error = xlog_bread(log, blk_no, hblks, hbp,
3549 &offset);
3550 if (error)
3551 goto bread_err2;
3552 } else {
3553 /* This LR is split across physical log end */
3554 if (blk_no != log->l_logBBsize) {
3555 /* some data before physical log end */
3556 ASSERT(blk_no <= INT_MAX);
3557 split_hblks = log->l_logBBsize - (int)blk_no;
3558 ASSERT(split_hblks > 0);
3559 error = xlog_bread(log, blk_no,
3560 split_hblks, hbp,
3561 &offset);
3562 if (error)
3563 goto bread_err2;
3567 * Note: this black magic still works with
3568 * large sector sizes (non-512) only because:
3569 * - we increased the buffer size originally
3570 * by 1 sector giving us enough extra space
3571 * for the second read;
3572 * - the log start is guaranteed to be sector
3573 * aligned;
3574 * - we read the log end (LR header start)
3575 * _first_, then the log start (LR header end)
3576 * - order is important.
3578 wrapped_hblks = hblks - split_hblks;
3579 error = XFS_BUF_SET_PTR(hbp,
3580 offset + BBTOB(split_hblks),
3581 BBTOB(hblks - split_hblks));
3582 if (error)
3583 goto bread_err2;
3585 error = xlog_bread_noalign(log, 0,
3586 wrapped_hblks, hbp);
3587 if (error)
3588 goto bread_err2;
3590 error = XFS_BUF_SET_PTR(hbp, offset,
3591 BBTOB(hblks));
3592 if (error)
3593 goto bread_err2;
3595 rhead = (xlog_rec_header_t *)offset;
3596 error = xlog_valid_rec_header(log, rhead,
3597 split_hblks ? blk_no : 0);
3598 if (error)
3599 goto bread_err2;
3601 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3602 blk_no += hblks;
3604 /* Read in data for log record */
3605 if (blk_no + bblks <= log->l_logBBsize) {
3606 error = xlog_bread(log, blk_no, bblks, dbp,
3607 &offset);
3608 if (error)
3609 goto bread_err2;
3610 } else {
3611 /* This log record is split across the
3612 * physical end of log */
3613 offset = XFS_BUF_PTR(dbp);
3614 split_bblks = 0;
3615 if (blk_no != log->l_logBBsize) {
3616 /* some data is before the physical
3617 * end of log */
3618 ASSERT(!wrapped_hblks);
3619 ASSERT(blk_no <= INT_MAX);
3620 split_bblks =
3621 log->l_logBBsize - (int)blk_no;
3622 ASSERT(split_bblks > 0);
3623 error = xlog_bread(log, blk_no,
3624 split_bblks, dbp,
3625 &offset);
3626 if (error)
3627 goto bread_err2;
3631 * Note: this black magic still works with
3632 * large sector sizes (non-512) only because:
3633 * - we increased the buffer size originally
3634 * by 1 sector giving us enough extra space
3635 * for the second read;
3636 * - the log start is guaranteed to be sector
3637 * aligned;
3638 * - we read the log end (LR header start)
3639 * _first_, then the log start (LR header end)
3640 * - order is important.
3642 error = XFS_BUF_SET_PTR(dbp,
3643 offset + BBTOB(split_bblks),
3644 BBTOB(bblks - split_bblks));
3645 if (error)
3646 goto bread_err2;
3648 error = xlog_bread_noalign(log, wrapped_hblks,
3649 bblks - split_bblks,
3650 dbp);
3651 if (error)
3652 goto bread_err2;
3654 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3655 if (error)
3656 goto bread_err2;
3658 xlog_unpack_data(rhead, offset, log);
3659 if ((error = xlog_recover_process_data(log, rhash,
3660 rhead, offset, pass)))
3661 goto bread_err2;
3662 blk_no += bblks;
3665 ASSERT(blk_no >= log->l_logBBsize);
3666 blk_no -= log->l_logBBsize;
3668 /* read first part of physical log */
3669 while (blk_no < head_blk) {
3670 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3671 if (error)
3672 goto bread_err2;
3674 rhead = (xlog_rec_header_t *)offset;
3675 error = xlog_valid_rec_header(log, rhead, blk_no);
3676 if (error)
3677 goto bread_err2;
3679 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3680 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3681 &offset);
3682 if (error)
3683 goto bread_err2;
3685 xlog_unpack_data(rhead, offset, log);
3686 if ((error = xlog_recover_process_data(log, rhash,
3687 rhead, offset, pass)))
3688 goto bread_err2;
3689 blk_no += bblks + hblks;
3693 bread_err2:
3694 xlog_put_bp(dbp);
3695 bread_err1:
3696 xlog_put_bp(hbp);
3697 return error;
3701 * Do the recovery of the log. We actually do this in two phases.
3702 * The two passes are necessary in order to implement the function
3703 * of cancelling a record written into the log. The first pass
3704 * determines those things which have been cancelled, and the
3705 * second pass replays log items normally except for those which
3706 * have been cancelled. The handling of the replay and cancellations
3707 * takes place in the log item type specific routines.
3709 * The table of items which have cancel records in the log is allocated
3710 * and freed at this level, since only here do we know when all of
3711 * the log recovery has been completed.
3713 STATIC int
3714 xlog_do_log_recovery(
3715 xlog_t *log,
3716 xfs_daddr_t head_blk,
3717 xfs_daddr_t tail_blk)
3719 int error;
3721 ASSERT(head_blk != tail_blk);
3724 * First do a pass to find all of the cancelled buf log items.
3725 * Store them in the buf_cancel_table for use in the second pass.
3727 log->l_buf_cancel_table =
3728 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3729 sizeof(xfs_buf_cancel_t*),
3730 KM_SLEEP);
3731 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3732 XLOG_RECOVER_PASS1);
3733 if (error != 0) {
3734 kmem_free(log->l_buf_cancel_table);
3735 log->l_buf_cancel_table = NULL;
3736 return error;
3739 * Then do a second pass to actually recover the items in the log.
3740 * When it is complete free the table of buf cancel items.
3742 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3743 XLOG_RECOVER_PASS2);
3744 #ifdef DEBUG
3745 if (!error) {
3746 int i;
3748 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3749 ASSERT(log->l_buf_cancel_table[i] == NULL);
3751 #endif /* DEBUG */
3753 kmem_free(log->l_buf_cancel_table);
3754 log->l_buf_cancel_table = NULL;
3756 return error;
3760 * Do the actual recovery
3762 STATIC int
3763 xlog_do_recover(
3764 xlog_t *log,
3765 xfs_daddr_t head_blk,
3766 xfs_daddr_t tail_blk)
3768 int error;
3769 xfs_buf_t *bp;
3770 xfs_sb_t *sbp;
3773 * First replay the images in the log.
3775 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3776 if (error) {
3777 return error;
3780 XFS_bflush(log->l_mp->m_ddev_targp);
3783 * If IO errors happened during recovery, bail out.
3785 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3786 return (EIO);
3790 * We now update the tail_lsn since much of the recovery has completed
3791 * and there may be space available to use. If there were no extent
3792 * or iunlinks, we can free up the entire log and set the tail_lsn to
3793 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3794 * lsn of the last known good LR on disk. If there are extent frees
3795 * or iunlinks they will have some entries in the AIL; so we look at
3796 * the AIL to determine how to set the tail_lsn.
3798 xlog_assign_tail_lsn(log->l_mp);
3801 * Now that we've finished replaying all buffer and inode
3802 * updates, re-read in the superblock.
3804 bp = xfs_getsb(log->l_mp, 0);
3805 XFS_BUF_UNDONE(bp);
3806 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3807 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3808 XFS_BUF_READ(bp);
3809 XFS_BUF_UNASYNC(bp);
3810 xfsbdstrat(log->l_mp, bp);
3811 error = xfs_iowait(bp);
3812 if (error) {
3813 xfs_ioerror_alert("xlog_do_recover",
3814 log->l_mp, bp, XFS_BUF_ADDR(bp));
3815 ASSERT(0);
3816 xfs_buf_relse(bp);
3817 return error;
3820 /* Convert superblock from on-disk format */
3821 sbp = &log->l_mp->m_sb;
3822 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3823 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3824 ASSERT(xfs_sb_good_version(sbp));
3825 xfs_buf_relse(bp);
3827 /* We've re-read the superblock so re-initialize per-cpu counters */
3828 xfs_icsb_reinit_counters(log->l_mp);
3830 xlog_recover_check_summary(log);
3832 /* Normal transactions can now occur */
3833 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3834 return 0;
3838 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3840 * Return error or zero.
3843 xlog_recover(
3844 xlog_t *log)
3846 xfs_daddr_t head_blk, tail_blk;
3847 int error;
3849 /* find the tail of the log */
3850 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3851 return error;
3853 if (tail_blk != head_blk) {
3854 /* There used to be a comment here:
3856 * disallow recovery on read-only mounts. note -- mount
3857 * checks for ENOSPC and turns it into an intelligent
3858 * error message.
3859 * ...but this is no longer true. Now, unless you specify
3860 * NORECOVERY (in which case this function would never be
3861 * called), we just go ahead and recover. We do this all
3862 * under the vfs layer, so we can get away with it unless
3863 * the device itself is read-only, in which case we fail.
3865 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3866 return error;
3869 cmn_err(CE_NOTE,
3870 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3871 log->l_mp->m_fsname, log->l_mp->m_logname ?
3872 log->l_mp->m_logname : "internal");
3874 error = xlog_do_recover(log, head_blk, tail_blk);
3875 log->l_flags |= XLOG_RECOVERY_NEEDED;
3877 return error;
3881 * In the first part of recovery we replay inodes and buffers and build
3882 * up the list of extent free items which need to be processed. Here
3883 * we process the extent free items and clean up the on disk unlinked
3884 * inode lists. This is separated from the first part of recovery so
3885 * that the root and real-time bitmap inodes can be read in from disk in
3886 * between the two stages. This is necessary so that we can free space
3887 * in the real-time portion of the file system.
3890 xlog_recover_finish(
3891 xlog_t *log)
3894 * Now we're ready to do the transactions needed for the
3895 * rest of recovery. Start with completing all the extent
3896 * free intent records and then process the unlinked inode
3897 * lists. At this point, we essentially run in normal mode
3898 * except that we're still performing recovery actions
3899 * rather than accepting new requests.
3901 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3902 int error;
3903 error = xlog_recover_process_efis(log);
3904 if (error) {
3905 cmn_err(CE_ALERT,
3906 "Failed to recover EFIs on filesystem: %s",
3907 log->l_mp->m_fsname);
3908 return error;
3911 * Sync the log to get all the EFIs out of the AIL.
3912 * This isn't absolutely necessary, but it helps in
3913 * case the unlink transactions would have problems
3914 * pushing the EFIs out of the way.
3916 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3918 xlog_recover_process_iunlinks(log);
3920 xlog_recover_check_summary(log);
3922 cmn_err(CE_NOTE,
3923 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3924 log->l_mp->m_fsname, log->l_mp->m_logname ?
3925 log->l_mp->m_logname : "internal");
3926 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3927 } else {
3928 cmn_err(CE_DEBUG,
3929 "!Ending clean XFS mount for filesystem: %s\n",
3930 log->l_mp->m_fsname);
3932 return 0;
3936 #if defined(DEBUG)
3938 * Read all of the agf and agi counters and check that they
3939 * are consistent with the superblock counters.
3941 void
3942 xlog_recover_check_summary(
3943 xlog_t *log)
3945 xfs_mount_t *mp;
3946 xfs_agf_t *agfp;
3947 xfs_buf_t *agfbp;
3948 xfs_buf_t *agibp;
3949 xfs_buf_t *sbbp;
3950 #ifdef XFS_LOUD_RECOVERY
3951 xfs_sb_t *sbp;
3952 #endif
3953 xfs_agnumber_t agno;
3954 __uint64_t freeblks;
3955 __uint64_t itotal;
3956 __uint64_t ifree;
3957 int error;
3959 mp = log->l_mp;
3961 freeblks = 0LL;
3962 itotal = 0LL;
3963 ifree = 0LL;
3964 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3965 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3966 if (error) {
3967 xfs_fs_cmn_err(CE_ALERT, mp,
3968 "xlog_recover_check_summary(agf)"
3969 "agf read failed agno %d error %d",
3970 agno, error);
3971 } else {
3972 agfp = XFS_BUF_TO_AGF(agfbp);
3973 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3974 be32_to_cpu(agfp->agf_flcount);
3975 xfs_buf_relse(agfbp);
3978 error = xfs_read_agi(mp, NULL, agno, &agibp);
3979 if (!error) {
3980 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3982 itotal += be32_to_cpu(agi->agi_count);
3983 ifree += be32_to_cpu(agi->agi_freecount);
3984 xfs_buf_relse(agibp);
3988 sbbp = xfs_getsb(mp, 0);
3989 #ifdef XFS_LOUD_RECOVERY
3990 sbp = &mp->m_sb;
3991 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
3992 cmn_err(CE_NOTE,
3993 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3994 sbp->sb_icount, itotal);
3995 cmn_err(CE_NOTE,
3996 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
3997 sbp->sb_ifree, ifree);
3998 cmn_err(CE_NOTE,
3999 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4000 sbp->sb_fdblocks, freeblks);
4001 #if 0
4003 * This is turned off until I account for the allocation
4004 * btree blocks which live in free space.
4006 ASSERT(sbp->sb_icount == itotal);
4007 ASSERT(sbp->sb_ifree == ifree);
4008 ASSERT(sbp->sb_fdblocks == freeblks);
4009 #endif
4010 #endif
4011 xfs_buf_relse(sbbp);
4013 #endif /* DEBUG */