2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
51 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
52 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
54 STATIC
void xlog_recover_check_summary(xlog_t
*);
56 #define xlog_recover_check_summary(log)
61 * Sector aligned buffer routines for buffer create/read/write/access
64 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
65 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
66 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
67 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
74 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
75 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
76 XFS_ERROR_REPORT("xlog_get_bp(1)",
77 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
81 if (log
->l_sectbb_log
) {
83 nbblks
+= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
84 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
86 return xfs_buf_get_noaddr(BBTOB(nbblks
), log
->l_mp
->m_logdev_targp
);
105 if (!log
->l_sectbb_log
)
106 return XFS_BUF_PTR(bp
);
108 ptr
= XFS_BUF_PTR(bp
) + BBTOB((int)blk_no
& log
->l_sectbb_mask
);
109 ASSERT(XFS_BUF_SIZE(bp
) >=
110 BBTOB(nbblks
+ (blk_no
& log
->l_sectbb_mask
)));
116 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
127 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
128 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
129 XFS_ERROR_REPORT("xlog_bread(1)",
130 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
134 if (log
->l_sectbb_log
) {
135 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
136 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
140 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
143 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
146 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
147 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
149 xfsbdstrat(log
->l_mp
, bp
);
150 error
= xfs_iowait(bp
);
152 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
153 bp
, XFS_BUF_ADDR(bp
));
167 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
171 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
176 * Write out the buffer at the given block for the given number of blocks.
177 * The buffer is kept locked across the write and is returned locked.
178 * This can only be used for synchronous log writes.
189 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
190 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
191 XFS_ERROR_REPORT("xlog_bwrite(1)",
192 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
196 if (log
->l_sectbb_log
) {
197 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
198 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
202 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
204 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
205 XFS_BUF_ZEROFLAGS(bp
);
208 XFS_BUF_PSEMA(bp
, PRIBIO
);
209 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
210 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
212 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
213 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
214 bp
, XFS_BUF_ADDR(bp
));
220 * dump debug superblock and log record information
223 xlog_header_check_dump(
225 xlog_rec_header_t
*head
)
227 cmn_err(CE_DEBUG
, "%s: SB : uuid = %pU, fmt = %d\n",
228 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
229 cmn_err(CE_DEBUG
, " log : uuid = %pU, fmt = %d\n",
230 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
233 #define xlog_header_check_dump(mp, head)
237 * check log record header for recovery
240 xlog_header_check_recover(
242 xlog_rec_header_t
*head
)
244 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
247 * IRIX doesn't write the h_fmt field and leaves it zeroed
248 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
249 * a dirty log created in IRIX.
251 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
253 "XFS: dirty log written in incompatible format - can't recover");
254 xlog_header_check_dump(mp
, head
);
255 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
256 XFS_ERRLEVEL_HIGH
, mp
);
257 return XFS_ERROR(EFSCORRUPTED
);
258 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
260 "XFS: dirty log entry has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp
, head
);
262 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
263 XFS_ERRLEVEL_HIGH
, mp
);
264 return XFS_ERROR(EFSCORRUPTED
);
270 * read the head block of the log and check the header
273 xlog_header_check_mount(
275 xlog_rec_header_t
*head
)
277 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
279 if (uuid_is_nil(&head
->h_fs_uuid
)) {
281 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
282 * h_fs_uuid is nil, we assume this log was last mounted
283 * by IRIX and continue.
285 xlog_warn("XFS: nil uuid in log - IRIX style log");
286 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
287 xlog_warn("XFS: log has mismatched uuid - can't recover");
288 xlog_header_check_dump(mp
, head
);
289 XFS_ERROR_REPORT("xlog_header_check_mount",
290 XFS_ERRLEVEL_HIGH
, mp
);
291 return XFS_ERROR(EFSCORRUPTED
);
300 if (XFS_BUF_GETERROR(bp
)) {
302 * We're not going to bother about retrying
303 * this during recovery. One strike!
305 xfs_ioerror_alert("xlog_recover_iodone",
306 bp
->b_mount
, bp
, XFS_BUF_ADDR(bp
));
307 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
310 XFS_BUF_CLR_IODONE_FUNC(bp
);
315 * This routine finds (to an approximation) the first block in the physical
316 * log which contains the given cycle. It uses a binary search algorithm.
317 * Note that the algorithm can not be perfect because the disk will not
318 * necessarily be perfect.
321 xlog_find_cycle_start(
324 xfs_daddr_t first_blk
,
325 xfs_daddr_t
*last_blk
,
333 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
334 while (mid_blk
!= first_blk
&& mid_blk
!= *last_blk
) {
335 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
338 mid_cycle
= xlog_get_cycle(offset
);
339 if (mid_cycle
== cycle
) {
341 /* last_half_cycle == mid_cycle */
344 /* first_half_cycle == mid_cycle */
346 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
348 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == *last_blk
) ||
349 (mid_blk
== *last_blk
&& mid_blk
-1 == first_blk
));
355 * Check that the range of blocks does not contain the cycle number
356 * given. The scan needs to occur from front to back and the ptr into the
357 * region must be updated since a later routine will need to perform another
358 * test. If the region is completely good, we end up returning the same
361 * Set blkno to -1 if we encounter no errors. This is an invalid block number
362 * since we don't ever expect logs to get this large.
365 xlog_find_verify_cycle(
367 xfs_daddr_t start_blk
,
369 uint stop_on_cycle_no
,
370 xfs_daddr_t
*new_blk
)
376 xfs_caddr_t buf
= NULL
;
379 bufblks
= 1 << ffs(nbblks
);
381 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
382 /* can't get enough memory to do everything in one big buffer */
384 if (bufblks
<= log
->l_sectbb_log
)
388 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
391 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
393 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
397 for (j
= 0; j
< bcount
; j
++) {
398 cycle
= xlog_get_cycle(buf
);
399 if (cycle
== stop_on_cycle_no
) {
416 * Potentially backup over partial log record write.
418 * In the typical case, last_blk is the number of the block directly after
419 * a good log record. Therefore, we subtract one to get the block number
420 * of the last block in the given buffer. extra_bblks contains the number
421 * of blocks we would have read on a previous read. This happens when the
422 * last log record is split over the end of the physical log.
424 * extra_bblks is the number of blocks potentially verified on a previous
425 * call to this routine.
428 xlog_find_verify_log_record(
430 xfs_daddr_t start_blk
,
431 xfs_daddr_t
*last_blk
,
436 xfs_caddr_t offset
= NULL
;
437 xlog_rec_header_t
*head
= NULL
;
440 int num_blks
= *last_blk
- start_blk
;
443 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
445 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
446 if (!(bp
= xlog_get_bp(log
, 1)))
450 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
453 offset
+= ((num_blks
- 1) << BBSHIFT
);
456 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
458 /* valid log record not found */
460 "XFS: Log inconsistent (didn't find previous header)");
462 error
= XFS_ERROR(EIO
);
467 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
472 head
= (xlog_rec_header_t
*)offset
;
474 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
482 * We hit the beginning of the physical log & still no header. Return
483 * to caller. If caller can handle a return of -1, then this routine
484 * will be called again for the end of the physical log.
492 * We have the final block of the good log (the first block
493 * of the log record _before_ the head. So we check the uuid.
495 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
499 * We may have found a log record header before we expected one.
500 * last_blk will be the 1st block # with a given cycle #. We may end
501 * up reading an entire log record. In this case, we don't want to
502 * reset last_blk. Only when last_blk points in the middle of a log
503 * record do we update last_blk.
505 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
506 uint h_size
= be32_to_cpu(head
->h_size
);
508 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
509 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
515 if (*last_blk
- i
+ extra_bblks
!=
516 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
525 * Head is defined to be the point of the log where the next log write
526 * write could go. This means that incomplete LR writes at the end are
527 * eliminated when calculating the head. We aren't guaranteed that previous
528 * LR have complete transactions. We only know that a cycle number of
529 * current cycle number -1 won't be present in the log if we start writing
530 * from our current block number.
532 * last_blk contains the block number of the first block with a given
535 * Return: zero if normal, non-zero if error.
540 xfs_daddr_t
*return_head_blk
)
544 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
546 uint first_half_cycle
, last_half_cycle
;
548 int error
, log_bbnum
= log
->l_logBBsize
;
550 /* Is the end of the log device zeroed? */
551 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
552 *return_head_blk
= first_blk
;
554 /* Is the whole lot zeroed? */
556 /* Linux XFS shouldn't generate totally zeroed logs -
557 * mkfs etc write a dummy unmount record to a fresh
558 * log so we can store the uuid in there
560 xlog_warn("XFS: totally zeroed log");
565 xlog_warn("XFS: empty log check failed");
569 first_blk
= 0; /* get cycle # of 1st block */
570 bp
= xlog_get_bp(log
, 1);
574 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
578 first_half_cycle
= xlog_get_cycle(offset
);
580 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
581 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
585 last_half_cycle
= xlog_get_cycle(offset
);
586 ASSERT(last_half_cycle
!= 0);
589 * If the 1st half cycle number is equal to the last half cycle number,
590 * then the entire log is stamped with the same cycle number. In this
591 * case, head_blk can't be set to zero (which makes sense). The below
592 * math doesn't work out properly with head_blk equal to zero. Instead,
593 * we set it to log_bbnum which is an invalid block number, but this
594 * value makes the math correct. If head_blk doesn't changed through
595 * all the tests below, *head_blk is set to zero at the very end rather
596 * than log_bbnum. In a sense, log_bbnum and zero are the same block
597 * in a circular file.
599 if (first_half_cycle
== last_half_cycle
) {
601 * In this case we believe that the entire log should have
602 * cycle number last_half_cycle. We need to scan backwards
603 * from the end verifying that there are no holes still
604 * containing last_half_cycle - 1. If we find such a hole,
605 * then the start of that hole will be the new head. The
606 * simple case looks like
607 * x | x ... | x - 1 | x
608 * Another case that fits this picture would be
609 * x | x + 1 | x ... | x
610 * In this case the head really is somewhere at the end of the
611 * log, as one of the latest writes at the beginning was
614 * x | x + 1 | x ... | x - 1 | x
615 * This is really the combination of the above two cases, and
616 * the head has to end up at the start of the x-1 hole at the
619 * In the 256k log case, we will read from the beginning to the
620 * end of the log and search for cycle numbers equal to x-1.
621 * We don't worry about the x+1 blocks that we encounter,
622 * because we know that they cannot be the head since the log
625 head_blk
= log_bbnum
;
626 stop_on_cycle
= last_half_cycle
- 1;
629 * In this case we want to find the first block with cycle
630 * number matching last_half_cycle. We expect the log to be
633 * The first block with cycle number x (last_half_cycle) will
634 * be where the new head belongs. First we do a binary search
635 * for the first occurrence of last_half_cycle. The binary
636 * search may not be totally accurate, so then we scan back
637 * from there looking for occurrences of last_half_cycle before
638 * us. If that backwards scan wraps around the beginning of
639 * the log, then we look for occurrences of last_half_cycle - 1
640 * at the end of the log. The cases we're looking for look
642 * x + 1 ... | x | x + 1 | x ...
643 * ^ binary search stopped here
645 * x + 1 ... | x ... | x - 1 | x
646 * <---------> less than scan distance
648 stop_on_cycle
= last_half_cycle
;
649 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
650 &head_blk
, last_half_cycle
)))
655 * Now validate the answer. Scan back some number of maximum possible
656 * blocks and make sure each one has the expected cycle number. The
657 * maximum is determined by the total possible amount of buffering
658 * in the in-core log. The following number can be made tighter if
659 * we actually look at the block size of the filesystem.
661 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
662 if (head_blk
>= num_scan_bblks
) {
664 * We are guaranteed that the entire check can be performed
667 start_blk
= head_blk
- num_scan_bblks
;
668 if ((error
= xlog_find_verify_cycle(log
,
669 start_blk
, num_scan_bblks
,
670 stop_on_cycle
, &new_blk
)))
674 } else { /* need to read 2 parts of log */
676 * We are going to scan backwards in the log in two parts.
677 * First we scan the physical end of the log. In this part
678 * of the log, we are looking for blocks with cycle number
679 * last_half_cycle - 1.
680 * If we find one, then we know that the log starts there, as
681 * we've found a hole that didn't get written in going around
682 * the end of the physical log. The simple case for this is
683 * x + 1 ... | x ... | x - 1 | x
684 * <---------> less than scan distance
685 * If all of the blocks at the end of the log have cycle number
686 * last_half_cycle, then we check the blocks at the start of
687 * the log looking for occurrences of last_half_cycle. If we
688 * find one, then our current estimate for the location of the
689 * first occurrence of last_half_cycle is wrong and we move
690 * back to the hole we've found. This case looks like
691 * x + 1 ... | x | x + 1 | x ...
692 * ^ binary search stopped here
693 * Another case we need to handle that only occurs in 256k
695 * x + 1 ... | x ... | x+1 | x ...
696 * ^ binary search stops here
697 * In a 256k log, the scan at the end of the log will see the
698 * x + 1 blocks. We need to skip past those since that is
699 * certainly not the head of the log. By searching for
700 * last_half_cycle-1 we accomplish that.
702 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
703 ASSERT(head_blk
<= INT_MAX
&&
704 (xfs_daddr_t
) num_scan_bblks
- head_blk
>= 0);
705 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
706 num_scan_bblks
- (int)head_blk
,
707 (stop_on_cycle
- 1), &new_blk
)))
715 * Scan beginning of log now. The last part of the physical
716 * log is good. This scan needs to verify that it doesn't find
717 * the last_half_cycle.
720 ASSERT(head_blk
<= INT_MAX
);
721 if ((error
= xlog_find_verify_cycle(log
,
722 start_blk
, (int)head_blk
,
723 stop_on_cycle
, &new_blk
)))
731 * Now we need to make sure head_blk is not pointing to a block in
732 * the middle of a log record.
734 num_scan_bblks
= XLOG_REC_SHIFT(log
);
735 if (head_blk
>= num_scan_bblks
) {
736 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
738 /* start ptr at last block ptr before head_blk */
739 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
740 &head_blk
, 0)) == -1) {
741 error
= XFS_ERROR(EIO
);
747 ASSERT(head_blk
<= INT_MAX
);
748 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
749 &head_blk
, 0)) == -1) {
750 /* We hit the beginning of the log during our search */
751 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
753 ASSERT(start_blk
<= INT_MAX
&&
754 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
755 ASSERT(head_blk
<= INT_MAX
);
756 if ((error
= xlog_find_verify_log_record(log
,
758 (int)head_blk
)) == -1) {
759 error
= XFS_ERROR(EIO
);
763 if (new_blk
!= log_bbnum
)
770 if (head_blk
== log_bbnum
)
771 *return_head_blk
= 0;
773 *return_head_blk
= head_blk
;
775 * When returning here, we have a good block number. Bad block
776 * means that during a previous crash, we didn't have a clean break
777 * from cycle number N to cycle number N-1. In this case, we need
778 * to find the first block with cycle number N-1.
786 xlog_warn("XFS: failed to find log head");
791 * Find the sync block number or the tail of the log.
793 * This will be the block number of the last record to have its
794 * associated buffers synced to disk. Every log record header has
795 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
796 * to get a sync block number. The only concern is to figure out which
797 * log record header to believe.
799 * The following algorithm uses the log record header with the largest
800 * lsn. The entire log record does not need to be valid. We only care
801 * that the header is valid.
803 * We could speed up search by using current head_blk buffer, but it is not
809 xfs_daddr_t
*head_blk
,
810 xfs_daddr_t
*tail_blk
)
812 xlog_rec_header_t
*rhead
;
813 xlog_op_header_t
*op_head
;
814 xfs_caddr_t offset
= NULL
;
817 xfs_daddr_t umount_data_blk
;
818 xfs_daddr_t after_umount_blk
;
825 * Find previous log record
827 if ((error
= xlog_find_head(log
, head_blk
)))
830 bp
= xlog_get_bp(log
, 1);
833 if (*head_blk
== 0) { /* special case */
834 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
838 if (xlog_get_cycle(offset
) == 0) {
840 /* leave all other log inited values alone */
846 * Search backwards looking for log record header block
848 ASSERT(*head_blk
< INT_MAX
);
849 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
850 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
854 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
860 * If we haven't found the log record header block, start looking
861 * again from the end of the physical log. XXXmiken: There should be
862 * a check here to make sure we didn't search more than N blocks in
866 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
867 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
871 if (XLOG_HEADER_MAGIC_NUM
==
872 be32_to_cpu(*(__be32
*)offset
)) {
879 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
881 return XFS_ERROR(EIO
);
884 /* find blk_no of tail of log */
885 rhead
= (xlog_rec_header_t
*)offset
;
886 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
889 * Reset log values according to the state of the log when we
890 * crashed. In the case where head_blk == 0, we bump curr_cycle
891 * one because the next write starts a new cycle rather than
892 * continuing the cycle of the last good log record. At this
893 * point we have guaranteed that all partial log records have been
894 * accounted for. Therefore, we know that the last good log record
895 * written was complete and ended exactly on the end boundary
896 * of the physical log.
898 log
->l_prev_block
= i
;
899 log
->l_curr_block
= (int)*head_blk
;
900 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
903 log
->l_tail_lsn
= be64_to_cpu(rhead
->h_tail_lsn
);
904 log
->l_last_sync_lsn
= be64_to_cpu(rhead
->h_lsn
);
905 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
906 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
907 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
908 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
911 * Look for unmount record. If we find it, then we know there
912 * was a clean unmount. Since 'i' could be the last block in
913 * the physical log, we convert to a log block before comparing
916 * Save the current tail lsn to use to pass to
917 * xlog_clear_stale_blocks() below. We won't want to clear the
918 * unmount record if there is one, so we pass the lsn of the
919 * unmount record rather than the block after it.
921 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
922 int h_size
= be32_to_cpu(rhead
->h_size
);
923 int h_version
= be32_to_cpu(rhead
->h_version
);
925 if ((h_version
& XLOG_VERSION_2
) &&
926 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
927 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
928 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
936 after_umount_blk
= (i
+ hblks
+ (int)
937 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
938 tail_lsn
= log
->l_tail_lsn
;
939 if (*head_blk
== after_umount_blk
&&
940 be32_to_cpu(rhead
->h_num_logops
) == 1) {
941 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
942 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
946 op_head
= (xlog_op_header_t
*)offset
;
947 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
949 * Set tail and last sync so that newly written
950 * log records will point recovery to after the
951 * current unmount record.
954 xlog_assign_lsn(log
->l_curr_cycle
,
956 log
->l_last_sync_lsn
=
957 xlog_assign_lsn(log
->l_curr_cycle
,
959 *tail_blk
= after_umount_blk
;
962 * Note that the unmount was clean. If the unmount
963 * was not clean, we need to know this to rebuild the
964 * superblock counters from the perag headers if we
965 * have a filesystem using non-persistent counters.
967 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
972 * Make sure that there are no blocks in front of the head
973 * with the same cycle number as the head. This can happen
974 * because we allow multiple outstanding log writes concurrently,
975 * and the later writes might make it out before earlier ones.
977 * We use the lsn from before modifying it so that we'll never
978 * overwrite the unmount record after a clean unmount.
980 * Do this only if we are going to recover the filesystem
982 * NOTE: This used to say "if (!readonly)"
983 * However on Linux, we can & do recover a read-only filesystem.
984 * We only skip recovery if NORECOVERY is specified on mount,
985 * in which case we would not be here.
987 * But... if the -device- itself is readonly, just skip this.
988 * We can't recover this device anyway, so it won't matter.
990 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
991 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
999 xlog_warn("XFS: failed to locate log tail");
1004 * Is the log zeroed at all?
1006 * The last binary search should be changed to perform an X block read
1007 * once X becomes small enough. You can then search linearly through
1008 * the X blocks. This will cut down on the number of reads we need to do.
1010 * If the log is partially zeroed, this routine will pass back the blkno
1011 * of the first block with cycle number 0. It won't have a complete LR
1015 * 0 => the log is completely written to
1016 * -1 => use *blk_no as the first block of the log
1017 * >0 => error has occurred
1022 xfs_daddr_t
*blk_no
)
1026 uint first_cycle
, last_cycle
;
1027 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1028 xfs_daddr_t num_scan_bblks
;
1029 int error
, log_bbnum
= log
->l_logBBsize
;
1033 /* check totally zeroed log */
1034 bp
= xlog_get_bp(log
, 1);
1037 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1041 first_cycle
= xlog_get_cycle(offset
);
1042 if (first_cycle
== 0) { /* completely zeroed log */
1048 /* check partially zeroed log */
1049 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1053 last_cycle
= xlog_get_cycle(offset
);
1054 if (last_cycle
!= 0) { /* log completely written to */
1057 } else if (first_cycle
!= 1) {
1059 * If the cycle of the last block is zero, the cycle of
1060 * the first block must be 1. If it's not, maybe we're
1061 * not looking at a log... Bail out.
1063 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1064 return XFS_ERROR(EINVAL
);
1067 /* we have a partially zeroed log */
1068 last_blk
= log_bbnum
-1;
1069 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1073 * Validate the answer. Because there is no way to guarantee that
1074 * the entire log is made up of log records which are the same size,
1075 * we scan over the defined maximum blocks. At this point, the maximum
1076 * is not chosen to mean anything special. XXXmiken
1078 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1079 ASSERT(num_scan_bblks
<= INT_MAX
);
1081 if (last_blk
< num_scan_bblks
)
1082 num_scan_bblks
= last_blk
;
1083 start_blk
= last_blk
- num_scan_bblks
;
1086 * We search for any instances of cycle number 0 that occur before
1087 * our current estimate of the head. What we're trying to detect is
1088 * 1 ... | 0 | 1 | 0...
1089 * ^ binary search ends here
1091 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1092 (int)num_scan_bblks
, 0, &new_blk
)))
1098 * Potentially backup over partial log record write. We don't need
1099 * to search the end of the log because we know it is zero.
1101 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1102 &last_blk
, 0)) == -1) {
1103 error
= XFS_ERROR(EIO
);
1117 * These are simple subroutines used by xlog_clear_stale_blocks() below
1118 * to initialize a buffer full of empty log record headers and write
1119 * them into the log.
1130 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1132 memset(buf
, 0, BBSIZE
);
1133 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1134 recp
->h_cycle
= cpu_to_be32(cycle
);
1135 recp
->h_version
= cpu_to_be32(
1136 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1137 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1138 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1139 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1140 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1144 xlog_write_log_records(
1155 int sectbb
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
1156 int end_block
= start_block
+ blocks
;
1161 bufblks
= 1 << ffs(blocks
);
1162 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1164 if (bufblks
<= log
->l_sectbb_log
)
1168 /* We may need to do a read at the start to fill in part of
1169 * the buffer in the starting sector not covered by the first
1172 balign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, start_block
);
1173 if (balign
!= start_block
) {
1174 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1178 j
= start_block
- balign
;
1181 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1182 int bcount
, endcount
;
1184 bcount
= min(bufblks
, end_block
- start_block
);
1185 endcount
= bcount
- j
;
1187 /* We may need to do a read at the end to fill in part of
1188 * the buffer in the final sector not covered by the write.
1189 * If this is the same sector as the above read, skip it.
1191 ealign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, end_block
);
1192 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1193 offset
= XFS_BUF_PTR(bp
);
1194 balign
= BBTOB(ealign
- start_block
);
1195 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1200 error
= xlog_bread_noalign(log
, ealign
, sectbb
, bp
);
1204 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1209 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1210 for (; j
< endcount
; j
++) {
1211 xlog_add_record(log
, offset
, cycle
, i
+j
,
1212 tail_cycle
, tail_block
);
1215 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1218 start_block
+= endcount
;
1228 * This routine is called to blow away any incomplete log writes out
1229 * in front of the log head. We do this so that we won't become confused
1230 * if we come up, write only a little bit more, and then crash again.
1231 * If we leave the partial log records out there, this situation could
1232 * cause us to think those partial writes are valid blocks since they
1233 * have the current cycle number. We get rid of them by overwriting them
1234 * with empty log records with the old cycle number rather than the
1237 * The tail lsn is passed in rather than taken from
1238 * the log so that we will not write over the unmount record after a
1239 * clean unmount in a 512 block log. Doing so would leave the log without
1240 * any valid log records in it until a new one was written. If we crashed
1241 * during that time we would not be able to recover.
1244 xlog_clear_stale_blocks(
1248 int tail_cycle
, head_cycle
;
1249 int tail_block
, head_block
;
1250 int tail_distance
, max_distance
;
1254 tail_cycle
= CYCLE_LSN(tail_lsn
);
1255 tail_block
= BLOCK_LSN(tail_lsn
);
1256 head_cycle
= log
->l_curr_cycle
;
1257 head_block
= log
->l_curr_block
;
1260 * Figure out the distance between the new head of the log
1261 * and the tail. We want to write over any blocks beyond the
1262 * head that we may have written just before the crash, but
1263 * we don't want to overwrite the tail of the log.
1265 if (head_cycle
== tail_cycle
) {
1267 * The tail is behind the head in the physical log,
1268 * so the distance from the head to the tail is the
1269 * distance from the head to the end of the log plus
1270 * the distance from the beginning of the log to the
1273 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1274 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1275 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1276 return XFS_ERROR(EFSCORRUPTED
);
1278 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1281 * The head is behind the tail in the physical log,
1282 * so the distance from the head to the tail is just
1283 * the tail block minus the head block.
1285 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1286 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1287 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1288 return XFS_ERROR(EFSCORRUPTED
);
1290 tail_distance
= tail_block
- head_block
;
1294 * If the head is right up against the tail, we can't clear
1297 if (tail_distance
<= 0) {
1298 ASSERT(tail_distance
== 0);
1302 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1304 * Take the smaller of the maximum amount of outstanding I/O
1305 * we could have and the distance to the tail to clear out.
1306 * We take the smaller so that we don't overwrite the tail and
1307 * we don't waste all day writing from the head to the tail
1310 max_distance
= MIN(max_distance
, tail_distance
);
1312 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1314 * We can stomp all the blocks we need to without
1315 * wrapping around the end of the log. Just do it
1316 * in a single write. Use the cycle number of the
1317 * current cycle minus one so that the log will look like:
1320 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1321 head_block
, max_distance
, tail_cycle
,
1327 * We need to wrap around the end of the physical log in
1328 * order to clear all the blocks. Do it in two separate
1329 * I/Os. The first write should be from the head to the
1330 * end of the physical log, and it should use the current
1331 * cycle number minus one just like above.
1333 distance
= log
->l_logBBsize
- head_block
;
1334 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1335 head_block
, distance
, tail_cycle
,
1342 * Now write the blocks at the start of the physical log.
1343 * This writes the remainder of the blocks we want to clear.
1344 * It uses the current cycle number since we're now on the
1345 * same cycle as the head so that we get:
1346 * n ... n ... | n - 1 ...
1347 * ^^^^^ blocks we're writing
1349 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1350 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1351 tail_cycle
, tail_block
);
1359 /******************************************************************************
1361 * Log recover routines
1363 ******************************************************************************
1366 STATIC xlog_recover_t
*
1367 xlog_recover_find_tid(
1368 struct hlist_head
*head
,
1371 xlog_recover_t
*trans
;
1372 struct hlist_node
*n
;
1374 hlist_for_each_entry(trans
, n
, head
, r_list
) {
1375 if (trans
->r_log_tid
== tid
)
1382 xlog_recover_new_tid(
1383 struct hlist_head
*head
,
1387 xlog_recover_t
*trans
;
1389 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1390 trans
->r_log_tid
= tid
;
1392 INIT_LIST_HEAD(&trans
->r_itemq
);
1394 INIT_HLIST_NODE(&trans
->r_list
);
1395 hlist_add_head(&trans
->r_list
, head
);
1399 xlog_recover_add_item(
1400 struct list_head
*head
)
1402 xlog_recover_item_t
*item
;
1404 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1405 INIT_LIST_HEAD(&item
->ri_list
);
1406 list_add_tail(&item
->ri_list
, head
);
1410 xlog_recover_add_to_cont_trans(
1411 xlog_recover_t
*trans
,
1415 xlog_recover_item_t
*item
;
1416 xfs_caddr_t ptr
, old_ptr
;
1419 if (list_empty(&trans
->r_itemq
)) {
1420 /* finish copying rest of trans header */
1421 xlog_recover_add_item(&trans
->r_itemq
);
1422 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1423 sizeof(xfs_trans_header_t
) - len
;
1424 memcpy(ptr
, dp
, len
); /* d, s, l */
1427 /* take the tail entry */
1428 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1430 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1431 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1433 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1434 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1435 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1436 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1441 * The next region to add is the start of a new region. It could be
1442 * a whole region or it could be the first part of a new region. Because
1443 * of this, the assumption here is that the type and size fields of all
1444 * format structures fit into the first 32 bits of the structure.
1446 * This works because all regions must be 32 bit aligned. Therefore, we
1447 * either have both fields or we have neither field. In the case we have
1448 * neither field, the data part of the region is zero length. We only have
1449 * a log_op_header and can throw away the header since a new one will appear
1450 * later. If we have at least 4 bytes, then we can determine how many regions
1451 * will appear in the current log item.
1454 xlog_recover_add_to_trans(
1455 xlog_recover_t
*trans
,
1459 xfs_inode_log_format_t
*in_f
; /* any will do */
1460 xlog_recover_item_t
*item
;
1465 if (list_empty(&trans
->r_itemq
)) {
1466 /* we need to catch log corruptions here */
1467 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1468 xlog_warn("XFS: xlog_recover_add_to_trans: "
1469 "bad header magic number");
1471 return XFS_ERROR(EIO
);
1473 if (len
== sizeof(xfs_trans_header_t
))
1474 xlog_recover_add_item(&trans
->r_itemq
);
1475 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1479 ptr
= kmem_alloc(len
, KM_SLEEP
);
1480 memcpy(ptr
, dp
, len
);
1481 in_f
= (xfs_inode_log_format_t
*)ptr
;
1483 /* take the tail entry */
1484 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1485 if (item
->ri_total
!= 0 &&
1486 item
->ri_total
== item
->ri_cnt
) {
1487 /* tail item is in use, get a new one */
1488 xlog_recover_add_item(&trans
->r_itemq
);
1489 item
= list_entry(trans
->r_itemq
.prev
,
1490 xlog_recover_item_t
, ri_list
);
1493 if (item
->ri_total
== 0) { /* first region to be added */
1494 if (in_f
->ilf_size
== 0 ||
1495 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1497 "XFS: bad number of regions (%d) in inode log format",
1500 return XFS_ERROR(EIO
);
1503 item
->ri_total
= in_f
->ilf_size
;
1505 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1508 ASSERT(item
->ri_total
> item
->ri_cnt
);
1509 /* Description region is ri_buf[0] */
1510 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1511 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1517 * Sort the log items in the transaction. Cancelled buffers need
1518 * to be put first so they are processed before any items that might
1519 * modify the buffers. If they are cancelled, then the modifications
1520 * don't need to be replayed.
1523 xlog_recover_reorder_trans(
1524 xlog_recover_t
*trans
)
1526 xlog_recover_item_t
*item
, *n
;
1527 LIST_HEAD(sort_list
);
1529 list_splice_init(&trans
->r_itemq
, &sort_list
);
1530 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1531 xfs_buf_log_format_t
*buf_f
;
1533 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
1535 switch (ITEM_TYPE(item
)) {
1537 if (!(buf_f
->blf_flags
& XFS_BLI_CANCEL
)) {
1538 list_move(&item
->ri_list
, &trans
->r_itemq
);
1543 case XFS_LI_QUOTAOFF
:
1546 list_move_tail(&item
->ri_list
, &trans
->r_itemq
);
1550 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1552 return XFS_ERROR(EIO
);
1555 ASSERT(list_empty(&sort_list
));
1560 * Build up the table of buf cancel records so that we don't replay
1561 * cancelled data in the second pass. For buffer records that are
1562 * not cancel records, there is nothing to do here so we just return.
1564 * If we get a cancel record which is already in the table, this indicates
1565 * that the buffer was cancelled multiple times. In order to ensure
1566 * that during pass 2 we keep the record in the table until we reach its
1567 * last occurrence in the log, we keep a reference count in the cancel
1568 * record in the table to tell us how many times we expect to see this
1569 * record during the second pass.
1572 xlog_recover_do_buffer_pass1(
1574 xfs_buf_log_format_t
*buf_f
)
1576 xfs_buf_cancel_t
*bcp
;
1577 xfs_buf_cancel_t
*nextp
;
1578 xfs_buf_cancel_t
*prevp
;
1579 xfs_buf_cancel_t
**bucket
;
1580 xfs_daddr_t blkno
= 0;
1584 switch (buf_f
->blf_type
) {
1586 blkno
= buf_f
->blf_blkno
;
1587 len
= buf_f
->blf_len
;
1588 flags
= buf_f
->blf_flags
;
1593 * If this isn't a cancel buffer item, then just return.
1595 if (!(flags
& XFS_BLI_CANCEL
))
1599 * Insert an xfs_buf_cancel record into the hash table of
1600 * them. If there is already an identical record, bump
1601 * its reference count.
1603 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1604 XLOG_BC_TABLE_SIZE
];
1606 * If the hash bucket is empty then just insert a new record into
1609 if (*bucket
== NULL
) {
1610 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1612 bcp
->bc_blkno
= blkno
;
1614 bcp
->bc_refcount
= 1;
1615 bcp
->bc_next
= NULL
;
1621 * The hash bucket is not empty, so search for duplicates of our
1622 * record. If we find one them just bump its refcount. If not
1623 * then add us at the end of the list.
1627 while (nextp
!= NULL
) {
1628 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1629 nextp
->bc_refcount
++;
1633 nextp
= nextp
->bc_next
;
1635 ASSERT(prevp
!= NULL
);
1636 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1638 bcp
->bc_blkno
= blkno
;
1640 bcp
->bc_refcount
= 1;
1641 bcp
->bc_next
= NULL
;
1642 prevp
->bc_next
= bcp
;
1646 * Check to see whether the buffer being recovered has a corresponding
1647 * entry in the buffer cancel record table. If it does then return 1
1648 * so that it will be cancelled, otherwise return 0. If the buffer is
1649 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1650 * the refcount on the entry in the table and remove it from the table
1651 * if this is the last reference.
1653 * We remove the cancel record from the table when we encounter its
1654 * last occurrence in the log so that if the same buffer is re-used
1655 * again after its last cancellation we actually replay the changes
1656 * made at that point.
1659 xlog_check_buffer_cancelled(
1665 xfs_buf_cancel_t
*bcp
;
1666 xfs_buf_cancel_t
*prevp
;
1667 xfs_buf_cancel_t
**bucket
;
1669 if (log
->l_buf_cancel_table
== NULL
) {
1671 * There is nothing in the table built in pass one,
1672 * so this buffer must not be cancelled.
1674 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1678 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1679 XLOG_BC_TABLE_SIZE
];
1683 * There is no corresponding entry in the table built
1684 * in pass one, so this buffer has not been cancelled.
1686 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1691 * Search for an entry in the buffer cancel table that
1692 * matches our buffer.
1695 while (bcp
!= NULL
) {
1696 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1698 * We've go a match, so return 1 so that the
1699 * recovery of this buffer is cancelled.
1700 * If this buffer is actually a buffer cancel
1701 * log item, then decrement the refcount on the
1702 * one in the table and remove it if this is the
1705 if (flags
& XFS_BLI_CANCEL
) {
1707 if (bcp
->bc_refcount
== 0) {
1708 if (prevp
== NULL
) {
1709 *bucket
= bcp
->bc_next
;
1711 prevp
->bc_next
= bcp
->bc_next
;
1722 * We didn't find a corresponding entry in the table, so
1723 * return 0 so that the buffer is NOT cancelled.
1725 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1730 xlog_recover_do_buffer_pass2(
1732 xfs_buf_log_format_t
*buf_f
)
1734 xfs_daddr_t blkno
= 0;
1738 switch (buf_f
->blf_type
) {
1740 blkno
= buf_f
->blf_blkno
;
1741 flags
= buf_f
->blf_flags
;
1742 len
= buf_f
->blf_len
;
1746 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1750 * Perform recovery for a buffer full of inodes. In these buffers,
1751 * the only data which should be recovered is that which corresponds
1752 * to the di_next_unlinked pointers in the on disk inode structures.
1753 * The rest of the data for the inodes is always logged through the
1754 * inodes themselves rather than the inode buffer and is recovered
1755 * in xlog_recover_do_inode_trans().
1757 * The only time when buffers full of inodes are fully recovered is
1758 * when the buffer is full of newly allocated inodes. In this case
1759 * the buffer will not be marked as an inode buffer and so will be
1760 * sent to xlog_recover_do_reg_buffer() below during recovery.
1763 xlog_recover_do_inode_buffer(
1765 xlog_recover_item_t
*item
,
1767 xfs_buf_log_format_t
*buf_f
)
1775 int next_unlinked_offset
;
1777 xfs_agino_t
*logged_nextp
;
1778 xfs_agino_t
*buffer_nextp
;
1779 unsigned int *data_map
= NULL
;
1780 unsigned int map_size
= 0;
1782 switch (buf_f
->blf_type
) {
1784 data_map
= buf_f
->blf_data_map
;
1785 map_size
= buf_f
->blf_map_size
;
1789 * Set the variables corresponding to the current region to
1790 * 0 so that we'll initialize them on the first pass through
1798 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1799 for (i
= 0; i
< inodes_per_buf
; i
++) {
1800 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1801 offsetof(xfs_dinode_t
, di_next_unlinked
);
1803 while (next_unlinked_offset
>=
1804 (reg_buf_offset
+ reg_buf_bytes
)) {
1806 * The next di_next_unlinked field is beyond
1807 * the current logged region. Find the next
1808 * logged region that contains or is beyond
1809 * the current di_next_unlinked field.
1812 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1815 * If there are no more logged regions in the
1816 * buffer, then we're done.
1822 nbits
= xfs_contig_bits(data_map
, map_size
,
1825 reg_buf_offset
= bit
<< XFS_BLI_SHIFT
;
1826 reg_buf_bytes
= nbits
<< XFS_BLI_SHIFT
;
1831 * If the current logged region starts after the current
1832 * di_next_unlinked field, then move on to the next
1833 * di_next_unlinked field.
1835 if (next_unlinked_offset
< reg_buf_offset
) {
1839 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1840 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLI_CHUNK
) == 0);
1841 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1844 * The current logged region contains a copy of the
1845 * current di_next_unlinked field. Extract its value
1846 * and copy it to the buffer copy.
1848 logged_nextp
= (xfs_agino_t
*)
1849 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1850 (next_unlinked_offset
- reg_buf_offset
));
1851 if (unlikely(*logged_nextp
== 0)) {
1852 xfs_fs_cmn_err(CE_ALERT
, mp
,
1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 XFS_ERRLEVEL_LOW
, mp
);
1857 return XFS_ERROR(EFSCORRUPTED
);
1860 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1861 next_unlinked_offset
);
1862 *buffer_nextp
= *logged_nextp
;
1869 * Perform a 'normal' buffer recovery. Each logged region of the
1870 * buffer should be copied over the corresponding region in the
1871 * given buffer. The bitmap in the buf log format structure indicates
1872 * where to place the logged data.
1876 xlog_recover_do_reg_buffer(
1877 xlog_recover_item_t
*item
,
1879 xfs_buf_log_format_t
*buf_f
)
1884 unsigned int *data_map
= NULL
;
1885 unsigned int map_size
= 0;
1888 switch (buf_f
->blf_type
) {
1890 data_map
= buf_f
->blf_data_map
;
1891 map_size
= buf_f
->blf_map_size
;
1895 i
= 1; /* 0 is the buf format structure */
1897 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1900 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1902 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1903 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLI_CHUNK
== 0);
1904 ASSERT(XFS_BUF_COUNT(bp
) >=
1905 ((uint
)bit
<< XFS_BLI_SHIFT
)+(nbits
<<XFS_BLI_SHIFT
));
1908 * Do a sanity check if this is a dquot buffer. Just checking
1909 * the first dquot in the buffer should do. XXXThis is
1910 * probably a good thing to do for other buf types also.
1913 if (buf_f
->blf_flags
&
1914 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
1915 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1917 "XFS: NULL dquot in %s.", __func__
);
1920 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
1922 "XFS: dquot too small (%d) in %s.",
1923 item
->ri_buf
[i
].i_len
, __func__
);
1926 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1927 item
->ri_buf
[i
].i_addr
,
1928 -1, 0, XFS_QMOPT_DOWARN
,
1929 "dquot_buf_recover");
1934 memcpy(xfs_buf_offset(bp
,
1935 (uint
)bit
<< XFS_BLI_SHIFT
), /* dest */
1936 item
->ri_buf
[i
].i_addr
, /* source */
1937 nbits
<<XFS_BLI_SHIFT
); /* length */
1943 /* Shouldn't be any more regions */
1944 ASSERT(i
== item
->ri_total
);
1948 * Do some primitive error checking on ondisk dquot data structures.
1952 xfs_disk_dquot_t
*ddq
,
1954 uint type
, /* used only when IO_dorepair is true */
1958 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1962 * We can encounter an uninitialized dquot buffer for 2 reasons:
1963 * 1. If we crash while deleting the quotainode(s), and those blks got
1964 * used for user data. This is because we take the path of regular
1965 * file deletion; however, the size field of quotainodes is never
1966 * updated, so all the tricks that we play in itruncate_finish
1967 * don't quite matter.
1969 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1970 * But the allocation will be replayed so we'll end up with an
1971 * uninitialized quota block.
1973 * This is all fine; things are still consistent, and we haven't lost
1974 * any quota information. Just don't complain about bad dquot blks.
1976 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
1977 if (flags
& XFS_QMOPT_DOWARN
)
1979 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1980 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1983 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1984 if (flags
& XFS_QMOPT_DOWARN
)
1986 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1987 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1991 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1992 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1993 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1994 if (flags
& XFS_QMOPT_DOWARN
)
1996 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1997 str
, id
, ddq
->d_flags
);
2001 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
2002 if (flags
& XFS_QMOPT_DOWARN
)
2004 "%s : ondisk-dquot 0x%p, ID mismatch: "
2005 "0x%x expected, found id 0x%x",
2006 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2010 if (!errs
&& ddq
->d_id
) {
2011 if (ddq
->d_blk_softlimit
&&
2012 be64_to_cpu(ddq
->d_bcount
) >=
2013 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2014 if (!ddq
->d_btimer
) {
2015 if (flags
& XFS_QMOPT_DOWARN
)
2017 "%s : Dquot ID 0x%x (0x%p) "
2018 "BLK TIMER NOT STARTED",
2019 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2023 if (ddq
->d_ino_softlimit
&&
2024 be64_to_cpu(ddq
->d_icount
) >=
2025 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2026 if (!ddq
->d_itimer
) {
2027 if (flags
& XFS_QMOPT_DOWARN
)
2029 "%s : Dquot ID 0x%x (0x%p) "
2030 "INODE TIMER NOT STARTED",
2031 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2035 if (ddq
->d_rtb_softlimit
&&
2036 be64_to_cpu(ddq
->d_rtbcount
) >=
2037 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2038 if (!ddq
->d_rtbtimer
) {
2039 if (flags
& XFS_QMOPT_DOWARN
)
2041 "%s : Dquot ID 0x%x (0x%p) "
2042 "RTBLK TIMER NOT STARTED",
2043 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2049 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2052 if (flags
& XFS_QMOPT_DOWARN
)
2053 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2056 * Typically, a repair is only requested by quotacheck.
2059 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2060 memset(d
, 0, sizeof(xfs_dqblk_t
));
2062 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2063 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2064 d
->dd_diskdq
.d_flags
= type
;
2065 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2071 * Perform a dquot buffer recovery.
2072 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2073 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2074 * Else, treat it as a regular buffer and do recovery.
2077 xlog_recover_do_dquot_buffer(
2080 xlog_recover_item_t
*item
,
2082 xfs_buf_log_format_t
*buf_f
)
2087 * Filesystems are required to send in quota flags at mount time.
2089 if (mp
->m_qflags
== 0) {
2094 if (buf_f
->blf_flags
& XFS_BLI_UDQUOT_BUF
)
2095 type
|= XFS_DQ_USER
;
2096 if (buf_f
->blf_flags
& XFS_BLI_PDQUOT_BUF
)
2097 type
|= XFS_DQ_PROJ
;
2098 if (buf_f
->blf_flags
& XFS_BLI_GDQUOT_BUF
)
2099 type
|= XFS_DQ_GROUP
;
2101 * This type of quotas was turned off, so ignore this buffer
2103 if (log
->l_quotaoffs_flag
& type
)
2106 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2110 * This routine replays a modification made to a buffer at runtime.
2111 * There are actually two types of buffer, regular and inode, which
2112 * are handled differently. Inode buffers are handled differently
2113 * in that we only recover a specific set of data from them, namely
2114 * the inode di_next_unlinked fields. This is because all other inode
2115 * data is actually logged via inode records and any data we replay
2116 * here which overlaps that may be stale.
2118 * When meta-data buffers are freed at run time we log a buffer item
2119 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2120 * of the buffer in the log should not be replayed at recovery time.
2121 * This is so that if the blocks covered by the buffer are reused for
2122 * file data before we crash we don't end up replaying old, freed
2123 * meta-data into a user's file.
2125 * To handle the cancellation of buffer log items, we make two passes
2126 * over the log during recovery. During the first we build a table of
2127 * those buffers which have been cancelled, and during the second we
2128 * only replay those buffers which do not have corresponding cancel
2129 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2130 * for more details on the implementation of the table of cancel records.
2133 xlog_recover_do_buffer_trans(
2135 xlog_recover_item_t
*item
,
2138 xfs_buf_log_format_t
*buf_f
;
2148 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2150 if (pass
== XLOG_RECOVER_PASS1
) {
2152 * In this pass we're only looking for buf items
2153 * with the XFS_BLI_CANCEL bit set.
2155 xlog_recover_do_buffer_pass1(log
, buf_f
);
2159 * In this pass we want to recover all the buffers
2160 * which have not been cancelled and are not
2161 * cancellation buffers themselves. The routine
2162 * we call here will tell us whether or not to
2163 * continue with the replay of this buffer.
2165 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2170 switch (buf_f
->blf_type
) {
2172 blkno
= buf_f
->blf_blkno
;
2173 len
= buf_f
->blf_len
;
2174 flags
= buf_f
->blf_flags
;
2177 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2178 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2179 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2180 log
->l_mp
->m_logname
: "internal");
2181 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2182 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2183 return XFS_ERROR(EFSCORRUPTED
);
2187 buf_flags
= XBF_LOCK
;
2188 if (!(flags
& XFS_BLI_INODE_BUF
))
2189 buf_flags
|= XBF_MAPPED
;
2191 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, buf_flags
);
2192 if (XFS_BUF_ISERROR(bp
)) {
2193 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2195 error
= XFS_BUF_GETERROR(bp
);
2201 if (flags
& XFS_BLI_INODE_BUF
) {
2202 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2204 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
2205 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2207 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2210 return XFS_ERROR(error
);
2213 * Perform delayed write on the buffer. Asynchronous writes will be
2214 * slower when taking into account all the buffers to be flushed.
2216 * Also make sure that only inode buffers with good sizes stay in
2217 * the buffer cache. The kernel moves inodes in buffers of 1 block
2218 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2219 * buffers in the log can be a different size if the log was generated
2220 * by an older kernel using unclustered inode buffers or a newer kernel
2221 * running with a different inode cluster size. Regardless, if the
2222 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2223 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2224 * the buffer out of the buffer cache so that the buffer won't
2225 * overlap with future reads of those inodes.
2227 if (XFS_DINODE_MAGIC
==
2228 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2229 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2230 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2232 error
= xfs_bwrite(mp
, bp
);
2234 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2236 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2237 xfs_bdwrite(mp
, bp
);
2244 xlog_recover_do_inode_trans(
2246 xlog_recover_item_t
*item
,
2249 xfs_inode_log_format_t
*in_f
;
2260 xfs_icdinode_t
*dicp
;
2263 if (pass
== XLOG_RECOVER_PASS1
) {
2267 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2268 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2270 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2271 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2273 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2277 ino
= in_f
->ilf_ino
;
2281 * Inode buffers can be freed, look out for it,
2282 * and do not replay the inode.
2284 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2285 in_f
->ilf_len
, 0)) {
2290 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
,
2292 if (XFS_BUF_ISERROR(bp
)) {
2293 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2294 bp
, in_f
->ilf_blkno
);
2295 error
= XFS_BUF_GETERROR(bp
);
2300 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2301 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2304 * Make sure the place we're flushing out to really looks
2307 if (unlikely(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
)) {
2309 xfs_fs_cmn_err(CE_ALERT
, mp
,
2310 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2312 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2313 XFS_ERRLEVEL_LOW
, mp
);
2314 error
= EFSCORRUPTED
;
2317 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2318 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2320 xfs_fs_cmn_err(CE_ALERT
, mp
,
2321 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2323 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2324 XFS_ERRLEVEL_LOW
, mp
);
2325 error
= EFSCORRUPTED
;
2329 /* Skip replay when the on disk inode is newer than the log one */
2330 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2332 * Deal with the wrap case, DI_MAX_FLUSH is less
2333 * than smaller numbers
2335 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2336 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2344 /* Take the opportunity to reset the flush iteration count */
2345 dicp
->di_flushiter
= 0;
2347 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2348 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2349 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2350 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2351 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2353 xfs_fs_cmn_err(CE_ALERT
, mp
,
2354 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2355 item
, dip
, bp
, ino
);
2356 error
= EFSCORRUPTED
;
2359 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2360 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2361 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2362 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2363 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2364 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2366 xfs_fs_cmn_err(CE_ALERT
, mp
,
2367 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2368 item
, dip
, bp
, ino
);
2369 error
= EFSCORRUPTED
;
2373 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2374 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2375 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2377 xfs_fs_cmn_err(CE_ALERT
, mp
,
2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2380 dicp
->di_nextents
+ dicp
->di_anextents
,
2382 error
= EFSCORRUPTED
;
2385 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2386 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2387 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2389 xfs_fs_cmn_err(CE_ALERT
, mp
,
2390 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2391 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2392 error
= EFSCORRUPTED
;
2395 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2396 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2397 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2399 xfs_fs_cmn_err(CE_ALERT
, mp
,
2400 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2401 item
->ri_buf
[1].i_len
, item
);
2402 error
= EFSCORRUPTED
;
2406 /* The core is in in-core format */
2407 xfs_dinode_to_disk(dip
, (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2409 /* the rest is in on-disk format */
2410 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2411 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2412 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2413 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2416 fields
= in_f
->ilf_fields
;
2417 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2419 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2422 memcpy(XFS_DFORK_DPTR(dip
),
2423 &in_f
->ilf_u
.ilfu_uuid
,
2428 if (in_f
->ilf_size
== 2)
2429 goto write_inode_buffer
;
2430 len
= item
->ri_buf
[2].i_len
;
2431 src
= item
->ri_buf
[2].i_addr
;
2432 ASSERT(in_f
->ilf_size
<= 4);
2433 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2434 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2435 (len
== in_f
->ilf_dsize
));
2437 switch (fields
& XFS_ILOG_DFORK
) {
2438 case XFS_ILOG_DDATA
:
2440 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2443 case XFS_ILOG_DBROOT
:
2444 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2445 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2446 XFS_DFORK_DSIZE(dip
, mp
));
2451 * There are no data fork flags set.
2453 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2458 * If we logged any attribute data, recover it. There may or
2459 * may not have been any other non-core data logged in this
2462 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2463 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2468 len
= item
->ri_buf
[attr_index
].i_len
;
2469 src
= item
->ri_buf
[attr_index
].i_addr
;
2470 ASSERT(len
== in_f
->ilf_asize
);
2472 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2473 case XFS_ILOG_ADATA
:
2475 dest
= XFS_DFORK_APTR(dip
);
2476 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2477 memcpy(dest
, src
, len
);
2480 case XFS_ILOG_ABROOT
:
2481 dest
= XFS_DFORK_APTR(dip
);
2482 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2483 len
, (xfs_bmdr_block_t
*)dest
,
2484 XFS_DFORK_ASIZE(dip
, mp
));
2488 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2497 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2499 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2500 xfs_bdwrite(mp
, bp
);
2504 return XFS_ERROR(error
);
2508 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2509 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2513 xlog_recover_do_quotaoff_trans(
2515 xlog_recover_item_t
*item
,
2518 xfs_qoff_logformat_t
*qoff_f
;
2520 if (pass
== XLOG_RECOVER_PASS2
) {
2524 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2528 * The logitem format's flag tells us if this was user quotaoff,
2529 * group/project quotaoff or both.
2531 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2532 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2533 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2534 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2535 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2536 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2542 * Recover a dquot record
2545 xlog_recover_do_dquot_trans(
2547 xlog_recover_item_t
*item
,
2552 struct xfs_disk_dquot
*ddq
, *recddq
;
2554 xfs_dq_logformat_t
*dq_f
;
2557 if (pass
== XLOG_RECOVER_PASS1
) {
2563 * Filesystems are required to send in quota flags at mount time.
2565 if (mp
->m_qflags
== 0)
2568 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2570 if (item
->ri_buf
[1].i_addr
== NULL
) {
2572 "XFS: NULL dquot in %s.", __func__
);
2573 return XFS_ERROR(EIO
);
2575 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2577 "XFS: dquot too small (%d) in %s.",
2578 item
->ri_buf
[1].i_len
, __func__
);
2579 return XFS_ERROR(EIO
);
2583 * This type of quotas was turned off, so ignore this record.
2585 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2587 if (log
->l_quotaoffs_flag
& type
)
2591 * At this point we know that quota was _not_ turned off.
2592 * Since the mount flags are not indicating to us otherwise, this
2593 * must mean that quota is on, and the dquot needs to be replayed.
2594 * Remember that we may not have fully recovered the superblock yet,
2595 * so we can't do the usual trick of looking at the SB quota bits.
2597 * The other possibility, of course, is that the quota subsystem was
2598 * removed since the last mount - ENOSYS.
2600 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2602 if ((error
= xfs_qm_dqcheck(recddq
,
2604 0, XFS_QMOPT_DOWARN
,
2605 "xlog_recover_do_dquot_trans (log copy)"))) {
2606 return XFS_ERROR(EIO
);
2608 ASSERT(dq_f
->qlf_len
== 1);
2610 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2612 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2615 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2616 bp
, dq_f
->qlf_blkno
);
2620 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2623 * At least the magic num portion should be on disk because this
2624 * was among a chunk of dquots created earlier, and we did some
2625 * minimal initialization then.
2627 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2628 "xlog_recover_do_dquot_trans")) {
2630 return XFS_ERROR(EIO
);
2633 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2635 ASSERT(dq_f
->qlf_size
== 2);
2636 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2638 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2639 xfs_bdwrite(mp
, bp
);
2645 * This routine is called to create an in-core extent free intent
2646 * item from the efi format structure which was logged on disk.
2647 * It allocates an in-core efi, copies the extents from the format
2648 * structure into it, and adds the efi to the AIL with the given
2652 xlog_recover_do_efi_trans(
2654 xlog_recover_item_t
*item
,
2660 xfs_efi_log_item_t
*efip
;
2661 xfs_efi_log_format_t
*efi_formatp
;
2663 if (pass
== XLOG_RECOVER_PASS1
) {
2667 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2670 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2671 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2672 &(efip
->efi_format
)))) {
2673 xfs_efi_item_free(efip
);
2676 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2677 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2679 spin_lock(&log
->l_ailp
->xa_lock
);
2681 * xfs_trans_ail_update() drops the AIL lock.
2683 xfs_trans_ail_update(log
->l_ailp
, (xfs_log_item_t
*)efip
, lsn
);
2689 * This routine is called when an efd format structure is found in
2690 * a committed transaction in the log. It's purpose is to cancel
2691 * the corresponding efi if it was still in the log. To do this
2692 * it searches the AIL for the efi with an id equal to that in the
2693 * efd format structure. If we find it, we remove the efi from the
2697 xlog_recover_do_efd_trans(
2699 xlog_recover_item_t
*item
,
2702 xfs_efd_log_format_t
*efd_formatp
;
2703 xfs_efi_log_item_t
*efip
= NULL
;
2704 xfs_log_item_t
*lip
;
2706 struct xfs_ail_cursor cur
;
2707 struct xfs_ail
*ailp
= log
->l_ailp
;
2709 if (pass
== XLOG_RECOVER_PASS1
) {
2713 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2714 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2715 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2716 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2717 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2718 efi_id
= efd_formatp
->efd_efi_id
;
2721 * Search for the efi with the id in the efd format structure
2724 spin_lock(&ailp
->xa_lock
);
2725 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2726 while (lip
!= NULL
) {
2727 if (lip
->li_type
== XFS_LI_EFI
) {
2728 efip
= (xfs_efi_log_item_t
*)lip
;
2729 if (efip
->efi_format
.efi_id
== efi_id
) {
2731 * xfs_trans_ail_delete() drops the
2734 xfs_trans_ail_delete(ailp
, lip
);
2735 xfs_efi_item_free(efip
);
2736 spin_lock(&ailp
->xa_lock
);
2740 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2742 xfs_trans_ail_cursor_done(ailp
, &cur
);
2743 spin_unlock(&ailp
->xa_lock
);
2747 * Perform the transaction
2749 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2750 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2753 xlog_recover_do_trans(
2755 xlog_recover_t
*trans
,
2759 xlog_recover_item_t
*item
;
2761 error
= xlog_recover_reorder_trans(trans
);
2765 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
2766 switch (ITEM_TYPE(item
)) {
2768 error
= xlog_recover_do_buffer_trans(log
, item
, pass
);
2771 error
= xlog_recover_do_inode_trans(log
, item
, pass
);
2774 error
= xlog_recover_do_efi_trans(log
, item
,
2775 trans
->r_lsn
, pass
);
2778 xlog_recover_do_efd_trans(log
, item
, pass
);
2782 error
= xlog_recover_do_dquot_trans(log
, item
, pass
);
2784 case XFS_LI_QUOTAOFF
:
2785 error
= xlog_recover_do_quotaoff_trans(log
, item
,
2790 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item
));
2792 error
= XFS_ERROR(EIO
);
2804 * Free up any resources allocated by the transaction
2806 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2809 xlog_recover_free_trans(
2810 xlog_recover_t
*trans
)
2812 xlog_recover_item_t
*item
, *n
;
2815 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
2816 /* Free the regions in the item. */
2817 list_del(&item
->ri_list
);
2818 for (i
= 0; i
< item
->ri_cnt
; i
++)
2819 kmem_free(item
->ri_buf
[i
].i_addr
);
2820 /* Free the item itself */
2821 kmem_free(item
->ri_buf
);
2824 /* Free the transaction recover structure */
2829 xlog_recover_commit_trans(
2831 xlog_recover_t
*trans
,
2836 hlist_del(&trans
->r_list
);
2837 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2839 xlog_recover_free_trans(trans
); /* no error */
2844 xlog_recover_unmount_trans(
2845 xlog_recover_t
*trans
)
2847 /* Do nothing now */
2848 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2853 * There are two valid states of the r_state field. 0 indicates that the
2854 * transaction structure is in a normal state. We have either seen the
2855 * start of the transaction or the last operation we added was not a partial
2856 * operation. If the last operation we added to the transaction was a
2857 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2859 * NOTE: skip LRs with 0 data length.
2862 xlog_recover_process_data(
2864 struct hlist_head rhash
[],
2865 xlog_rec_header_t
*rhead
,
2871 xlog_op_header_t
*ohead
;
2872 xlog_recover_t
*trans
;
2878 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2879 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2881 /* check the log format matches our own - else we can't recover */
2882 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2883 return (XFS_ERROR(EIO
));
2885 while ((dp
< lp
) && num_logops
) {
2886 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2887 ohead
= (xlog_op_header_t
*)dp
;
2888 dp
+= sizeof(xlog_op_header_t
);
2889 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2890 ohead
->oh_clientid
!= XFS_LOG
) {
2892 "XFS: xlog_recover_process_data: bad clientid");
2894 return (XFS_ERROR(EIO
));
2896 tid
= be32_to_cpu(ohead
->oh_tid
);
2897 hash
= XLOG_RHASH(tid
);
2898 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
2899 if (trans
== NULL
) { /* not found; add new tid */
2900 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2901 xlog_recover_new_tid(&rhash
[hash
], tid
,
2902 be64_to_cpu(rhead
->h_lsn
));
2904 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2906 "XFS: xlog_recover_process_data: bad length");
2908 return (XFS_ERROR(EIO
));
2910 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2911 if (flags
& XLOG_WAS_CONT_TRANS
)
2912 flags
&= ~XLOG_CONTINUE_TRANS
;
2914 case XLOG_COMMIT_TRANS
:
2915 error
= xlog_recover_commit_trans(log
,
2918 case XLOG_UNMOUNT_TRANS
:
2919 error
= xlog_recover_unmount_trans(trans
);
2921 case XLOG_WAS_CONT_TRANS
:
2922 error
= xlog_recover_add_to_cont_trans(trans
,
2923 dp
, be32_to_cpu(ohead
->oh_len
));
2925 case XLOG_START_TRANS
:
2927 "XFS: xlog_recover_process_data: bad transaction");
2929 error
= XFS_ERROR(EIO
);
2932 case XLOG_CONTINUE_TRANS
:
2933 error
= xlog_recover_add_to_trans(trans
,
2934 dp
, be32_to_cpu(ohead
->oh_len
));
2938 "XFS: xlog_recover_process_data: bad flag");
2940 error
= XFS_ERROR(EIO
);
2946 dp
+= be32_to_cpu(ohead
->oh_len
);
2953 * Process an extent free intent item that was recovered from
2954 * the log. We need to free the extents that it describes.
2957 xlog_recover_process_efi(
2959 xfs_efi_log_item_t
*efip
)
2961 xfs_efd_log_item_t
*efdp
;
2966 xfs_fsblock_t startblock_fsb
;
2968 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
2971 * First check the validity of the extents described by the
2972 * EFI. If any are bad, then assume that all are bad and
2973 * just toss the EFI.
2975 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2976 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2977 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2978 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2979 if ((startblock_fsb
== 0) ||
2980 (extp
->ext_len
== 0) ||
2981 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
2982 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
2984 * This will pull the EFI from the AIL and
2985 * free the memory associated with it.
2987 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
2988 return XFS_ERROR(EIO
);
2992 tp
= xfs_trans_alloc(mp
, 0);
2993 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
2996 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
2998 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2999 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3000 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3003 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3007 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3008 error
= xfs_trans_commit(tp
, 0);
3012 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3017 * When this is called, all of the EFIs which did not have
3018 * corresponding EFDs should be in the AIL. What we do now
3019 * is free the extents associated with each one.
3021 * Since we process the EFIs in normal transactions, they
3022 * will be removed at some point after the commit. This prevents
3023 * us from just walking down the list processing each one.
3024 * We'll use a flag in the EFI to skip those that we've already
3025 * processed and use the AIL iteration mechanism's generation
3026 * count to try to speed this up at least a bit.
3028 * When we start, we know that the EFIs are the only things in
3029 * the AIL. As we process them, however, other items are added
3030 * to the AIL. Since everything added to the AIL must come after
3031 * everything already in the AIL, we stop processing as soon as
3032 * we see something other than an EFI in the AIL.
3035 xlog_recover_process_efis(
3038 xfs_log_item_t
*lip
;
3039 xfs_efi_log_item_t
*efip
;
3041 struct xfs_ail_cursor cur
;
3042 struct xfs_ail
*ailp
;
3045 spin_lock(&ailp
->xa_lock
);
3046 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3047 while (lip
!= NULL
) {
3049 * We're done when we see something other than an EFI.
3050 * There should be no EFIs left in the AIL now.
3052 if (lip
->li_type
!= XFS_LI_EFI
) {
3054 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3055 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3061 * Skip EFIs that we've already processed.
3063 efip
= (xfs_efi_log_item_t
*)lip
;
3064 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3065 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3069 spin_unlock(&ailp
->xa_lock
);
3070 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3071 spin_lock(&ailp
->xa_lock
);
3074 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3077 xfs_trans_ail_cursor_done(ailp
, &cur
);
3078 spin_unlock(&ailp
->xa_lock
);
3083 * This routine performs a transaction to null out a bad inode pointer
3084 * in an agi unlinked inode hash bucket.
3087 xlog_recover_clear_agi_bucket(
3089 xfs_agnumber_t agno
,
3098 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3099 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3104 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3108 agi
= XFS_BUF_TO_AGI(agibp
);
3109 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3110 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3111 (sizeof(xfs_agino_t
) * bucket
);
3112 xfs_trans_log_buf(tp
, agibp
, offset
,
3113 (offset
+ sizeof(xfs_agino_t
) - 1));
3115 error
= xfs_trans_commit(tp
, 0);
3121 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3123 xfs_fs_cmn_err(CE_WARN
, mp
, "xlog_recover_clear_agi_bucket: "
3124 "failed to clear agi %d. Continuing.", agno
);
3129 xlog_recover_process_one_iunlink(
3130 struct xfs_mount
*mp
,
3131 xfs_agnumber_t agno
,
3135 struct xfs_buf
*ibp
;
3136 struct xfs_dinode
*dip
;
3137 struct xfs_inode
*ip
;
3141 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3142 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3147 * Get the on disk inode to find the next inode in the bucket.
3149 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XBF_LOCK
);
3153 ASSERT(ip
->i_d
.di_nlink
== 0);
3154 ASSERT(ip
->i_d
.di_mode
!= 0);
3156 /* setup for the next pass */
3157 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3161 * Prevent any DMAPI event from being sent when the reference on
3162 * the inode is dropped.
3164 ip
->i_d
.di_dmevmask
= 0;
3173 * We can't read in the inode this bucket points to, or this inode
3174 * is messed up. Just ditch this bucket of inodes. We will lose
3175 * some inodes and space, but at least we won't hang.
3177 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3178 * clear the inode pointer in the bucket.
3180 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3185 * xlog_iunlink_recover
3187 * This is called during recovery to process any inodes which
3188 * we unlinked but not freed when the system crashed. These
3189 * inodes will be on the lists in the AGI blocks. What we do
3190 * here is scan all the AGIs and fully truncate and free any
3191 * inodes found on the lists. Each inode is removed from the
3192 * lists when it has been fully truncated and is freed. The
3193 * freeing of the inode and its removal from the list must be
3197 xlog_recover_process_iunlinks(
3201 xfs_agnumber_t agno
;
3212 * Prevent any DMAPI event from being sent while in this function.
3214 mp_dmevmask
= mp
->m_dmevmask
;
3217 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3219 * Find the agi for this ag.
3221 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3224 * AGI is b0rked. Don't process it.
3226 * We should probably mark the filesystem as corrupt
3227 * after we've recovered all the ag's we can....
3231 agi
= XFS_BUF_TO_AGI(agibp
);
3233 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3234 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3235 while (agino
!= NULLAGINO
) {
3237 * Release the agi buffer so that it can
3238 * be acquired in the normal course of the
3239 * transaction to truncate and free the inode.
3241 xfs_buf_relse(agibp
);
3243 agino
= xlog_recover_process_one_iunlink(mp
,
3244 agno
, agino
, bucket
);
3247 * Reacquire the agibuffer and continue around
3248 * the loop. This should never fail as we know
3249 * the buffer was good earlier on.
3251 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3253 agi
= XFS_BUF_TO_AGI(agibp
);
3258 * Release the buffer for the current agi so we can
3259 * go on to the next one.
3261 xfs_buf_relse(agibp
);
3264 mp
->m_dmevmask
= mp_dmevmask
;
3270 xlog_pack_data_checksum(
3272 xlog_in_core_t
*iclog
,
3279 up
= (__be32
*)iclog
->ic_datap
;
3280 /* divide length by 4 to get # words */
3281 for (i
= 0; i
< (size
>> 2); i
++) {
3282 chksum
^= be32_to_cpu(*up
);
3285 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3288 #define xlog_pack_data_checksum(log, iclog, size)
3292 * Stamp cycle number in every block
3297 xlog_in_core_t
*iclog
,
3301 int size
= iclog
->ic_offset
+ roundoff
;
3305 xlog_pack_data_checksum(log
, iclog
, size
);
3307 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3309 dp
= iclog
->ic_datap
;
3310 for (i
= 0; i
< BTOBB(size
) &&
3311 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3312 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3313 *(__be32
*)dp
= cycle_lsn
;
3317 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3318 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3320 for ( ; i
< BTOBB(size
); i
++) {
3321 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3322 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3323 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3324 *(__be32
*)dp
= cycle_lsn
;
3328 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3329 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3334 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3336 xlog_unpack_data_checksum(
3337 xlog_rec_header_t
*rhead
,
3341 __be32
*up
= (__be32
*)dp
;
3345 /* divide length by 4 to get # words */
3346 for (i
=0; i
< be32_to_cpu(rhead
->h_len
) >> 2; i
++) {
3347 chksum
^= be32_to_cpu(*up
);
3350 if (chksum
!= be32_to_cpu(rhead
->h_chksum
)) {
3351 if (rhead
->h_chksum
||
3352 ((log
->l_flags
& XLOG_CHKSUM_MISMATCH
) == 0)) {
3354 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3355 be32_to_cpu(rhead
->h_chksum
), chksum
);
3357 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3358 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3360 "XFS: LogR this is a LogV2 filesystem\n");
3362 log
->l_flags
|= XLOG_CHKSUM_MISMATCH
;
3367 #define xlog_unpack_data_checksum(rhead, dp, log)
3372 xlog_rec_header_t
*rhead
,
3378 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3379 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3380 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3384 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3385 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3386 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3387 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3388 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3389 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3394 xlog_unpack_data_checksum(rhead
, dp
, log
);
3398 xlog_valid_rec_header(
3400 xlog_rec_header_t
*rhead
,
3405 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3406 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3407 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3408 return XFS_ERROR(EFSCORRUPTED
);
3411 (!rhead
->h_version
||
3412 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3413 xlog_warn("XFS: %s: unrecognised log version (%d).",
3414 __func__
, be32_to_cpu(rhead
->h_version
));
3415 return XFS_ERROR(EIO
);
3418 /* LR body must have data or it wouldn't have been written */
3419 hlen
= be32_to_cpu(rhead
->h_len
);
3420 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3421 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3422 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3423 return XFS_ERROR(EFSCORRUPTED
);
3425 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3426 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3427 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3428 return XFS_ERROR(EFSCORRUPTED
);
3434 * Read the log from tail to head and process the log records found.
3435 * Handle the two cases where the tail and head are in the same cycle
3436 * and where the active portion of the log wraps around the end of
3437 * the physical log separately. The pass parameter is passed through
3438 * to the routines called to process the data and is not looked at
3442 xlog_do_recovery_pass(
3444 xfs_daddr_t head_blk
,
3445 xfs_daddr_t tail_blk
,
3448 xlog_rec_header_t
*rhead
;
3451 xfs_buf_t
*hbp
, *dbp
;
3452 int error
= 0, h_size
;
3453 int bblks
, split_bblks
;
3454 int hblks
, split_hblks
, wrapped_hblks
;
3455 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3457 ASSERT(head_blk
!= tail_blk
);
3460 * Read the header of the tail block and get the iclog buffer size from
3461 * h_size. Use this to tell how many sectors make up the log header.
3463 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3465 * When using variable length iclogs, read first sector of
3466 * iclog header and extract the header size from it. Get a
3467 * new hbp that is the correct size.
3469 hbp
= xlog_get_bp(log
, 1);
3473 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3477 rhead
= (xlog_rec_header_t
*)offset
;
3478 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3481 h_size
= be32_to_cpu(rhead
->h_size
);
3482 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3483 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3484 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3485 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3488 hbp
= xlog_get_bp(log
, hblks
);
3493 ASSERT(log
->l_sectbb_log
== 0);
3495 hbp
= xlog_get_bp(log
, 1);
3496 h_size
= XLOG_BIG_RECORD_BSIZE
;
3501 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3507 memset(rhash
, 0, sizeof(rhash
));
3508 if (tail_blk
<= head_blk
) {
3509 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3510 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3514 rhead
= (xlog_rec_header_t
*)offset
;
3515 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3519 /* blocks in data section */
3520 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3521 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3526 xlog_unpack_data(rhead
, offset
, log
);
3527 if ((error
= xlog_recover_process_data(log
,
3528 rhash
, rhead
, offset
, pass
)))
3530 blk_no
+= bblks
+ hblks
;
3534 * Perform recovery around the end of the physical log.
3535 * When the head is not on the same cycle number as the tail,
3536 * we can't do a sequential recovery as above.
3539 while (blk_no
< log
->l_logBBsize
) {
3541 * Check for header wrapping around physical end-of-log
3543 offset
= XFS_BUF_PTR(hbp
);
3546 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3547 /* Read header in one read */
3548 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3553 /* This LR is split across physical log end */
3554 if (blk_no
!= log
->l_logBBsize
) {
3555 /* some data before physical log end */
3556 ASSERT(blk_no
<= INT_MAX
);
3557 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3558 ASSERT(split_hblks
> 0);
3559 error
= xlog_bread(log
, blk_no
,
3567 * Note: this black magic still works with
3568 * large sector sizes (non-512) only because:
3569 * - we increased the buffer size originally
3570 * by 1 sector giving us enough extra space
3571 * for the second read;
3572 * - the log start is guaranteed to be sector
3574 * - we read the log end (LR header start)
3575 * _first_, then the log start (LR header end)
3576 * - order is important.
3578 wrapped_hblks
= hblks
- split_hblks
;
3579 error
= XFS_BUF_SET_PTR(hbp
,
3580 offset
+ BBTOB(split_hblks
),
3581 BBTOB(hblks
- split_hblks
));
3585 error
= xlog_bread_noalign(log
, 0,
3586 wrapped_hblks
, hbp
);
3590 error
= XFS_BUF_SET_PTR(hbp
, offset
,
3595 rhead
= (xlog_rec_header_t
*)offset
;
3596 error
= xlog_valid_rec_header(log
, rhead
,
3597 split_hblks
? blk_no
: 0);
3601 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3604 /* Read in data for log record */
3605 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3606 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3611 /* This log record is split across the
3612 * physical end of log */
3613 offset
= XFS_BUF_PTR(dbp
);
3615 if (blk_no
!= log
->l_logBBsize
) {
3616 /* some data is before the physical
3618 ASSERT(!wrapped_hblks
);
3619 ASSERT(blk_no
<= INT_MAX
);
3621 log
->l_logBBsize
- (int)blk_no
;
3622 ASSERT(split_bblks
> 0);
3623 error
= xlog_bread(log
, blk_no
,
3631 * Note: this black magic still works with
3632 * large sector sizes (non-512) only because:
3633 * - we increased the buffer size originally
3634 * by 1 sector giving us enough extra space
3635 * for the second read;
3636 * - the log start is guaranteed to be sector
3638 * - we read the log end (LR header start)
3639 * _first_, then the log start (LR header end)
3640 * - order is important.
3642 error
= XFS_BUF_SET_PTR(dbp
,
3643 offset
+ BBTOB(split_bblks
),
3644 BBTOB(bblks
- split_bblks
));
3648 error
= xlog_bread_noalign(log
, wrapped_hblks
,
3649 bblks
- split_bblks
,
3654 error
= XFS_BUF_SET_PTR(dbp
, offset
, h_size
);
3658 xlog_unpack_data(rhead
, offset
, log
);
3659 if ((error
= xlog_recover_process_data(log
, rhash
,
3660 rhead
, offset
, pass
)))
3665 ASSERT(blk_no
>= log
->l_logBBsize
);
3666 blk_no
-= log
->l_logBBsize
;
3668 /* read first part of physical log */
3669 while (blk_no
< head_blk
) {
3670 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3674 rhead
= (xlog_rec_header_t
*)offset
;
3675 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3679 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3680 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3685 xlog_unpack_data(rhead
, offset
, log
);
3686 if ((error
= xlog_recover_process_data(log
, rhash
,
3687 rhead
, offset
, pass
)))
3689 blk_no
+= bblks
+ hblks
;
3701 * Do the recovery of the log. We actually do this in two phases.
3702 * The two passes are necessary in order to implement the function
3703 * of cancelling a record written into the log. The first pass
3704 * determines those things which have been cancelled, and the
3705 * second pass replays log items normally except for those which
3706 * have been cancelled. The handling of the replay and cancellations
3707 * takes place in the log item type specific routines.
3709 * The table of items which have cancel records in the log is allocated
3710 * and freed at this level, since only here do we know when all of
3711 * the log recovery has been completed.
3714 xlog_do_log_recovery(
3716 xfs_daddr_t head_blk
,
3717 xfs_daddr_t tail_blk
)
3721 ASSERT(head_blk
!= tail_blk
);
3724 * First do a pass to find all of the cancelled buf log items.
3725 * Store them in the buf_cancel_table for use in the second pass.
3727 log
->l_buf_cancel_table
=
3728 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3729 sizeof(xfs_buf_cancel_t
*),
3731 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3732 XLOG_RECOVER_PASS1
);
3734 kmem_free(log
->l_buf_cancel_table
);
3735 log
->l_buf_cancel_table
= NULL
;
3739 * Then do a second pass to actually recover the items in the log.
3740 * When it is complete free the table of buf cancel items.
3742 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3743 XLOG_RECOVER_PASS2
);
3748 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3749 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3753 kmem_free(log
->l_buf_cancel_table
);
3754 log
->l_buf_cancel_table
= NULL
;
3760 * Do the actual recovery
3765 xfs_daddr_t head_blk
,
3766 xfs_daddr_t tail_blk
)
3773 * First replay the images in the log.
3775 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3780 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3783 * If IO errors happened during recovery, bail out.
3785 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3790 * We now update the tail_lsn since much of the recovery has completed
3791 * and there may be space available to use. If there were no extent
3792 * or iunlinks, we can free up the entire log and set the tail_lsn to
3793 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3794 * lsn of the last known good LR on disk. If there are extent frees
3795 * or iunlinks they will have some entries in the AIL; so we look at
3796 * the AIL to determine how to set the tail_lsn.
3798 xlog_assign_tail_lsn(log
->l_mp
);
3801 * Now that we've finished replaying all buffer and inode
3802 * updates, re-read in the superblock.
3804 bp
= xfs_getsb(log
->l_mp
, 0);
3806 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3807 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3809 XFS_BUF_UNASYNC(bp
);
3810 xfsbdstrat(log
->l_mp
, bp
);
3811 error
= xfs_iowait(bp
);
3813 xfs_ioerror_alert("xlog_do_recover",
3814 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3820 /* Convert superblock from on-disk format */
3821 sbp
= &log
->l_mp
->m_sb
;
3822 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3823 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3824 ASSERT(xfs_sb_good_version(sbp
));
3827 /* We've re-read the superblock so re-initialize per-cpu counters */
3828 xfs_icsb_reinit_counters(log
->l_mp
);
3830 xlog_recover_check_summary(log
);
3832 /* Normal transactions can now occur */
3833 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3838 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3840 * Return error or zero.
3846 xfs_daddr_t head_blk
, tail_blk
;
3849 /* find the tail of the log */
3850 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3853 if (tail_blk
!= head_blk
) {
3854 /* There used to be a comment here:
3856 * disallow recovery on read-only mounts. note -- mount
3857 * checks for ENOSPC and turns it into an intelligent
3859 * ...but this is no longer true. Now, unless you specify
3860 * NORECOVERY (in which case this function would never be
3861 * called), we just go ahead and recover. We do this all
3862 * under the vfs layer, so we can get away with it unless
3863 * the device itself is read-only, in which case we fail.
3865 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3870 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3871 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3872 log
->l_mp
->m_logname
: "internal");
3874 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3875 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3881 * In the first part of recovery we replay inodes and buffers and build
3882 * up the list of extent free items which need to be processed. Here
3883 * we process the extent free items and clean up the on disk unlinked
3884 * inode lists. This is separated from the first part of recovery so
3885 * that the root and real-time bitmap inodes can be read in from disk in
3886 * between the two stages. This is necessary so that we can free space
3887 * in the real-time portion of the file system.
3890 xlog_recover_finish(
3894 * Now we're ready to do the transactions needed for the
3895 * rest of recovery. Start with completing all the extent
3896 * free intent records and then process the unlinked inode
3897 * lists. At this point, we essentially run in normal mode
3898 * except that we're still performing recovery actions
3899 * rather than accepting new requests.
3901 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3903 error
= xlog_recover_process_efis(log
);
3906 "Failed to recover EFIs on filesystem: %s",
3907 log
->l_mp
->m_fsname
);
3911 * Sync the log to get all the EFIs out of the AIL.
3912 * This isn't absolutely necessary, but it helps in
3913 * case the unlink transactions would have problems
3914 * pushing the EFIs out of the way.
3916 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3918 xlog_recover_process_iunlinks(log
);
3920 xlog_recover_check_summary(log
);
3923 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3924 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3925 log
->l_mp
->m_logname
: "internal");
3926 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3929 "!Ending clean XFS mount for filesystem: %s\n",
3930 log
->l_mp
->m_fsname
);
3938 * Read all of the agf and agi counters and check that they
3939 * are consistent with the superblock counters.
3942 xlog_recover_check_summary(
3950 #ifdef XFS_LOUD_RECOVERY
3953 xfs_agnumber_t agno
;
3954 __uint64_t freeblks
;
3964 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3965 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3967 xfs_fs_cmn_err(CE_ALERT
, mp
,
3968 "xlog_recover_check_summary(agf)"
3969 "agf read failed agno %d error %d",
3972 agfp
= XFS_BUF_TO_AGF(agfbp
);
3973 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3974 be32_to_cpu(agfp
->agf_flcount
);
3975 xfs_buf_relse(agfbp
);
3978 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3980 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3982 itotal
+= be32_to_cpu(agi
->agi_count
);
3983 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3984 xfs_buf_relse(agibp
);
3988 sbbp
= xfs_getsb(mp
, 0);
3989 #ifdef XFS_LOUD_RECOVERY
3991 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(sbbp
));
3993 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3994 sbp
->sb_icount
, itotal
);
3996 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
3997 sbp
->sb_ifree
, ifree
);
3999 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4000 sbp
->sb_fdblocks
, freeblks
);
4003 * This is turned off until I account for the allocation
4004 * btree blocks which live in free space.
4006 ASSERT(sbp
->sb_icount
== itotal
);
4007 ASSERT(sbp
->sb_ifree
== ifree
);
4008 ASSERT(sbp
->sb_fdblocks
== freeblks
);
4011 xfs_buf_relse(sbbp
);