[SCSI] qla4xxx: Reset seconds_since_last_heartbeat correctly.
[linux-2.6/linux-mips.git] / drivers / cpufreq / cpufreq_ondemand.c
blob7b5093664e49ba4d2172cd208c5d6ae7b7b419ee
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
44 * rate.
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct *work);
58 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59 unsigned int event);
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62 static
63 #endif
64 struct cpufreq_governor cpufreq_gov_ondemand = {
65 .name = "ondemand",
66 .governor = cpufreq_governor_dbs,
67 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68 .owner = THIS_MODULE,
71 /* Sampling types */
72 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
74 struct cpu_dbs_info_s {
75 cputime64_t prev_cpu_idle;
76 cputime64_t prev_cpu_iowait;
77 cputime64_t prev_cpu_wall;
78 cputime64_t prev_cpu_nice;
79 struct cpufreq_policy *cur_policy;
80 struct delayed_work work;
81 struct cpufreq_frequency_table *freq_table;
82 unsigned int freq_lo;
83 unsigned int freq_lo_jiffies;
84 unsigned int freq_hi_jiffies;
85 int cpu;
86 unsigned int sample_type:1;
88 * percpu mutex that serializes governor limit change with
89 * do_dbs_timer invocation. We do not want do_dbs_timer to run
90 * when user is changing the governor or limits.
92 struct mutex timer_mutex;
94 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
96 static unsigned int dbs_enable; /* number of CPUs using this policy */
99 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
100 * different CPUs. It protects dbs_enable in governor start/stop.
102 static DEFINE_MUTEX(dbs_mutex);
104 static struct workqueue_struct *kondemand_wq;
106 static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int powersave_bias;
112 unsigned int io_is_busy;
113 } dbs_tuners_ins = {
114 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
115 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
116 .ignore_nice = 0,
117 .powersave_bias = 0,
120 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
121 cputime64_t *wall)
123 cputime64_t idle_time;
124 cputime64_t cur_wall_time;
125 cputime64_t busy_time;
127 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
128 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
129 kstat_cpu(cpu).cpustat.system);
131 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
132 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
134 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
136 idle_time = cputime64_sub(cur_wall_time, busy_time);
137 if (wall)
138 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
140 return (cputime64_t)jiffies_to_usecs(idle_time);
143 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
145 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
147 if (idle_time == -1ULL)
148 return get_cpu_idle_time_jiffy(cpu, wall);
150 return idle_time;
153 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
155 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
157 if (iowait_time == -1ULL)
158 return 0;
160 return iowait_time;
164 * Find right freq to be set now with powersave_bias on.
165 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
166 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
168 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
169 unsigned int freq_next,
170 unsigned int relation)
172 unsigned int freq_req, freq_reduc, freq_avg;
173 unsigned int freq_hi, freq_lo;
174 unsigned int index = 0;
175 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
176 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
177 policy->cpu);
179 if (!dbs_info->freq_table) {
180 dbs_info->freq_lo = 0;
181 dbs_info->freq_lo_jiffies = 0;
182 return freq_next;
185 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
186 relation, &index);
187 freq_req = dbs_info->freq_table[index].frequency;
188 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
189 freq_avg = freq_req - freq_reduc;
191 /* Find freq bounds for freq_avg in freq_table */
192 index = 0;
193 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
194 CPUFREQ_RELATION_H, &index);
195 freq_lo = dbs_info->freq_table[index].frequency;
196 index = 0;
197 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
198 CPUFREQ_RELATION_L, &index);
199 freq_hi = dbs_info->freq_table[index].frequency;
201 /* Find out how long we have to be in hi and lo freqs */
202 if (freq_hi == freq_lo) {
203 dbs_info->freq_lo = 0;
204 dbs_info->freq_lo_jiffies = 0;
205 return freq_lo;
207 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
208 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
209 jiffies_hi += ((freq_hi - freq_lo) / 2);
210 jiffies_hi /= (freq_hi - freq_lo);
211 jiffies_lo = jiffies_total - jiffies_hi;
212 dbs_info->freq_lo = freq_lo;
213 dbs_info->freq_lo_jiffies = jiffies_lo;
214 dbs_info->freq_hi_jiffies = jiffies_hi;
215 return freq_hi;
218 static void ondemand_powersave_bias_init_cpu(int cpu)
220 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
221 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
222 dbs_info->freq_lo = 0;
225 static void ondemand_powersave_bias_init(void)
227 int i;
228 for_each_online_cpu(i) {
229 ondemand_powersave_bias_init_cpu(i);
233 /************************** sysfs interface ************************/
235 static ssize_t show_sampling_rate_max(struct kobject *kobj,
236 struct attribute *attr, char *buf)
238 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
239 "sysfs file is deprecated - used by: %s\n", current->comm);
240 return sprintf(buf, "%u\n", -1U);
243 static ssize_t show_sampling_rate_min(struct kobject *kobj,
244 struct attribute *attr, char *buf)
246 return sprintf(buf, "%u\n", min_sampling_rate);
249 define_one_global_ro(sampling_rate_max);
250 define_one_global_ro(sampling_rate_min);
252 /* cpufreq_ondemand Governor Tunables */
253 #define show_one(file_name, object) \
254 static ssize_t show_##file_name \
255 (struct kobject *kobj, struct attribute *attr, char *buf) \
257 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
259 show_one(sampling_rate, sampling_rate);
260 show_one(io_is_busy, io_is_busy);
261 show_one(up_threshold, up_threshold);
262 show_one(ignore_nice_load, ignore_nice);
263 show_one(powersave_bias, powersave_bias);
265 /*** delete after deprecation time ***/
267 #define DEPRECATION_MSG(file_name) \
268 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
269 "interface is deprecated - " #file_name "\n");
271 #define show_one_old(file_name) \
272 static ssize_t show_##file_name##_old \
273 (struct cpufreq_policy *unused, char *buf) \
275 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
276 "interface is deprecated - " #file_name "\n"); \
277 return show_##file_name(NULL, NULL, buf); \
279 show_one_old(sampling_rate);
280 show_one_old(up_threshold);
281 show_one_old(ignore_nice_load);
282 show_one_old(powersave_bias);
283 show_one_old(sampling_rate_min);
284 show_one_old(sampling_rate_max);
286 cpufreq_freq_attr_ro_old(sampling_rate_min);
287 cpufreq_freq_attr_ro_old(sampling_rate_max);
289 /*** delete after deprecation time ***/
291 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
292 const char *buf, size_t count)
294 unsigned int input;
295 int ret;
296 ret = sscanf(buf, "%u", &input);
297 if (ret != 1)
298 return -EINVAL;
300 mutex_lock(&dbs_mutex);
301 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
302 mutex_unlock(&dbs_mutex);
304 return count;
307 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
308 const char *buf, size_t count)
310 unsigned int input;
311 int ret;
313 ret = sscanf(buf, "%u", &input);
314 if (ret != 1)
315 return -EINVAL;
317 mutex_lock(&dbs_mutex);
318 dbs_tuners_ins.io_is_busy = !!input;
319 mutex_unlock(&dbs_mutex);
321 return count;
324 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
325 const char *buf, size_t count)
327 unsigned int input;
328 int ret;
329 ret = sscanf(buf, "%u", &input);
331 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
332 input < MIN_FREQUENCY_UP_THRESHOLD) {
333 return -EINVAL;
336 mutex_lock(&dbs_mutex);
337 dbs_tuners_ins.up_threshold = input;
338 mutex_unlock(&dbs_mutex);
340 return count;
343 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
344 const char *buf, size_t count)
346 unsigned int input;
347 int ret;
349 unsigned int j;
351 ret = sscanf(buf, "%u", &input);
352 if (ret != 1)
353 return -EINVAL;
355 if (input > 1)
356 input = 1;
358 mutex_lock(&dbs_mutex);
359 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
360 mutex_unlock(&dbs_mutex);
361 return count;
363 dbs_tuners_ins.ignore_nice = input;
365 /* we need to re-evaluate prev_cpu_idle */
366 for_each_online_cpu(j) {
367 struct cpu_dbs_info_s *dbs_info;
368 dbs_info = &per_cpu(od_cpu_dbs_info, j);
369 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
370 &dbs_info->prev_cpu_wall);
371 if (dbs_tuners_ins.ignore_nice)
372 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
375 mutex_unlock(&dbs_mutex);
377 return count;
380 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
381 const char *buf, size_t count)
383 unsigned int input;
384 int ret;
385 ret = sscanf(buf, "%u", &input);
387 if (ret != 1)
388 return -EINVAL;
390 if (input > 1000)
391 input = 1000;
393 mutex_lock(&dbs_mutex);
394 dbs_tuners_ins.powersave_bias = input;
395 ondemand_powersave_bias_init();
396 mutex_unlock(&dbs_mutex);
398 return count;
401 define_one_global_rw(sampling_rate);
402 define_one_global_rw(io_is_busy);
403 define_one_global_rw(up_threshold);
404 define_one_global_rw(ignore_nice_load);
405 define_one_global_rw(powersave_bias);
407 static struct attribute *dbs_attributes[] = {
408 &sampling_rate_max.attr,
409 &sampling_rate_min.attr,
410 &sampling_rate.attr,
411 &up_threshold.attr,
412 &ignore_nice_load.attr,
413 &powersave_bias.attr,
414 &io_is_busy.attr,
415 NULL
418 static struct attribute_group dbs_attr_group = {
419 .attrs = dbs_attributes,
420 .name = "ondemand",
423 /*** delete after deprecation time ***/
425 #define write_one_old(file_name) \
426 static ssize_t store_##file_name##_old \
427 (struct cpufreq_policy *unused, const char *buf, size_t count) \
429 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
430 "interface is deprecated - " #file_name "\n"); \
431 return store_##file_name(NULL, NULL, buf, count); \
433 write_one_old(sampling_rate);
434 write_one_old(up_threshold);
435 write_one_old(ignore_nice_load);
436 write_one_old(powersave_bias);
438 cpufreq_freq_attr_rw_old(sampling_rate);
439 cpufreq_freq_attr_rw_old(up_threshold);
440 cpufreq_freq_attr_rw_old(ignore_nice_load);
441 cpufreq_freq_attr_rw_old(powersave_bias);
443 static struct attribute *dbs_attributes_old[] = {
444 &sampling_rate_max_old.attr,
445 &sampling_rate_min_old.attr,
446 &sampling_rate_old.attr,
447 &up_threshold_old.attr,
448 &ignore_nice_load_old.attr,
449 &powersave_bias_old.attr,
450 NULL
453 static struct attribute_group dbs_attr_group_old = {
454 .attrs = dbs_attributes_old,
455 .name = "ondemand",
458 /*** delete after deprecation time ***/
460 /************************** sysfs end ************************/
462 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
464 if (dbs_tuners_ins.powersave_bias)
465 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
466 else if (p->cur == p->max)
467 return;
469 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
470 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
473 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
475 unsigned int max_load_freq;
477 struct cpufreq_policy *policy;
478 unsigned int j;
480 this_dbs_info->freq_lo = 0;
481 policy = this_dbs_info->cur_policy;
484 * Every sampling_rate, we check, if current idle time is less
485 * than 20% (default), then we try to increase frequency
486 * Every sampling_rate, we look for a the lowest
487 * frequency which can sustain the load while keeping idle time over
488 * 30%. If such a frequency exist, we try to decrease to this frequency.
490 * Any frequency increase takes it to the maximum frequency.
491 * Frequency reduction happens at minimum steps of
492 * 5% (default) of current frequency
495 /* Get Absolute Load - in terms of freq */
496 max_load_freq = 0;
498 for_each_cpu(j, policy->cpus) {
499 struct cpu_dbs_info_s *j_dbs_info;
500 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
501 unsigned int idle_time, wall_time, iowait_time;
502 unsigned int load, load_freq;
503 int freq_avg;
505 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
507 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
508 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
510 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
511 j_dbs_info->prev_cpu_wall);
512 j_dbs_info->prev_cpu_wall = cur_wall_time;
514 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
515 j_dbs_info->prev_cpu_idle);
516 j_dbs_info->prev_cpu_idle = cur_idle_time;
518 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
519 j_dbs_info->prev_cpu_iowait);
520 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
522 if (dbs_tuners_ins.ignore_nice) {
523 cputime64_t cur_nice;
524 unsigned long cur_nice_jiffies;
526 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
527 j_dbs_info->prev_cpu_nice);
529 * Assumption: nice time between sampling periods will
530 * be less than 2^32 jiffies for 32 bit sys
532 cur_nice_jiffies = (unsigned long)
533 cputime64_to_jiffies64(cur_nice);
535 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
536 idle_time += jiffies_to_usecs(cur_nice_jiffies);
540 * For the purpose of ondemand, waiting for disk IO is an
541 * indication that you're performance critical, and not that
542 * the system is actually idle. So subtract the iowait time
543 * from the cpu idle time.
546 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
547 idle_time -= iowait_time;
549 if (unlikely(!wall_time || wall_time < idle_time))
550 continue;
552 load = 100 * (wall_time - idle_time) / wall_time;
554 freq_avg = __cpufreq_driver_getavg(policy, j);
555 if (freq_avg <= 0)
556 freq_avg = policy->cur;
558 load_freq = load * freq_avg;
559 if (load_freq > max_load_freq)
560 max_load_freq = load_freq;
563 /* Check for frequency increase */
564 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
565 dbs_freq_increase(policy, policy->max);
566 return;
569 /* Check for frequency decrease */
570 /* if we cannot reduce the frequency anymore, break out early */
571 if (policy->cur == policy->min)
572 return;
575 * The optimal frequency is the frequency that is the lowest that
576 * can support the current CPU usage without triggering the up
577 * policy. To be safe, we focus 10 points under the threshold.
579 if (max_load_freq <
580 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
581 policy->cur) {
582 unsigned int freq_next;
583 freq_next = max_load_freq /
584 (dbs_tuners_ins.up_threshold -
585 dbs_tuners_ins.down_differential);
587 if (freq_next < policy->min)
588 freq_next = policy->min;
590 if (!dbs_tuners_ins.powersave_bias) {
591 __cpufreq_driver_target(policy, freq_next,
592 CPUFREQ_RELATION_L);
593 } else {
594 int freq = powersave_bias_target(policy, freq_next,
595 CPUFREQ_RELATION_L);
596 __cpufreq_driver_target(policy, freq,
597 CPUFREQ_RELATION_L);
602 static void do_dbs_timer(struct work_struct *work)
604 struct cpu_dbs_info_s *dbs_info =
605 container_of(work, struct cpu_dbs_info_s, work.work);
606 unsigned int cpu = dbs_info->cpu;
607 int sample_type = dbs_info->sample_type;
609 /* We want all CPUs to do sampling nearly on same jiffy */
610 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
612 if (num_online_cpus() > 1)
613 delay -= jiffies % delay;
615 mutex_lock(&dbs_info->timer_mutex);
617 /* Common NORMAL_SAMPLE setup */
618 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
619 if (!dbs_tuners_ins.powersave_bias ||
620 sample_type == DBS_NORMAL_SAMPLE) {
621 dbs_check_cpu(dbs_info);
622 if (dbs_info->freq_lo) {
623 /* Setup timer for SUB_SAMPLE */
624 dbs_info->sample_type = DBS_SUB_SAMPLE;
625 delay = dbs_info->freq_hi_jiffies;
627 } else {
628 __cpufreq_driver_target(dbs_info->cur_policy,
629 dbs_info->freq_lo, CPUFREQ_RELATION_H);
631 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
632 mutex_unlock(&dbs_info->timer_mutex);
635 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
637 /* We want all CPUs to do sampling nearly on same jiffy */
638 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
640 if (num_online_cpus() > 1)
641 delay -= jiffies % delay;
643 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
644 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
645 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
646 delay);
649 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
651 cancel_delayed_work_sync(&dbs_info->work);
655 * Not all CPUs want IO time to be accounted as busy; this dependson how
656 * efficient idling at a higher frequency/voltage is.
657 * Pavel Machek says this is not so for various generations of AMD and old
658 * Intel systems.
659 * Mike Chan (androidlcom) calis this is also not true for ARM.
660 * Because of this, whitelist specific known (series) of CPUs by default, and
661 * leave all others up to the user.
663 static int should_io_be_busy(void)
665 #if defined(CONFIG_X86)
667 * For Intel, Core 2 (model 15) andl later have an efficient idle.
669 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
670 boot_cpu_data.x86 == 6 &&
671 boot_cpu_data.x86_model >= 15)
672 return 1;
673 #endif
674 return 0;
677 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
678 unsigned int event)
680 unsigned int cpu = policy->cpu;
681 struct cpu_dbs_info_s *this_dbs_info;
682 unsigned int j;
683 int rc;
685 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
687 switch (event) {
688 case CPUFREQ_GOV_START:
689 if ((!cpu_online(cpu)) || (!policy->cur))
690 return -EINVAL;
692 mutex_lock(&dbs_mutex);
694 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
695 if (rc) {
696 mutex_unlock(&dbs_mutex);
697 return rc;
700 dbs_enable++;
701 for_each_cpu(j, policy->cpus) {
702 struct cpu_dbs_info_s *j_dbs_info;
703 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
704 j_dbs_info->cur_policy = policy;
706 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
707 &j_dbs_info->prev_cpu_wall);
708 if (dbs_tuners_ins.ignore_nice) {
709 j_dbs_info->prev_cpu_nice =
710 kstat_cpu(j).cpustat.nice;
713 this_dbs_info->cpu = cpu;
714 ondemand_powersave_bias_init_cpu(cpu);
716 * Start the timerschedule work, when this governor
717 * is used for first time
719 if (dbs_enable == 1) {
720 unsigned int latency;
722 rc = sysfs_create_group(cpufreq_global_kobject,
723 &dbs_attr_group);
724 if (rc) {
725 mutex_unlock(&dbs_mutex);
726 return rc;
729 /* policy latency is in nS. Convert it to uS first */
730 latency = policy->cpuinfo.transition_latency / 1000;
731 if (latency == 0)
732 latency = 1;
733 /* Bring kernel and HW constraints together */
734 min_sampling_rate = max(min_sampling_rate,
735 MIN_LATENCY_MULTIPLIER * latency);
736 dbs_tuners_ins.sampling_rate =
737 max(min_sampling_rate,
738 latency * LATENCY_MULTIPLIER);
739 dbs_tuners_ins.io_is_busy = should_io_be_busy();
741 mutex_unlock(&dbs_mutex);
743 mutex_init(&this_dbs_info->timer_mutex);
744 dbs_timer_init(this_dbs_info);
745 break;
747 case CPUFREQ_GOV_STOP:
748 dbs_timer_exit(this_dbs_info);
750 mutex_lock(&dbs_mutex);
751 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
752 mutex_destroy(&this_dbs_info->timer_mutex);
753 dbs_enable--;
754 mutex_unlock(&dbs_mutex);
755 if (!dbs_enable)
756 sysfs_remove_group(cpufreq_global_kobject,
757 &dbs_attr_group);
759 break;
761 case CPUFREQ_GOV_LIMITS:
762 mutex_lock(&this_dbs_info->timer_mutex);
763 if (policy->max < this_dbs_info->cur_policy->cur)
764 __cpufreq_driver_target(this_dbs_info->cur_policy,
765 policy->max, CPUFREQ_RELATION_H);
766 else if (policy->min > this_dbs_info->cur_policy->cur)
767 __cpufreq_driver_target(this_dbs_info->cur_policy,
768 policy->min, CPUFREQ_RELATION_L);
769 mutex_unlock(&this_dbs_info->timer_mutex);
770 break;
772 return 0;
775 static int __init cpufreq_gov_dbs_init(void)
777 int err;
778 cputime64_t wall;
779 u64 idle_time;
780 int cpu = get_cpu();
782 idle_time = get_cpu_idle_time_us(cpu, &wall);
783 put_cpu();
784 if (idle_time != -1ULL) {
785 /* Idle micro accounting is supported. Use finer thresholds */
786 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
787 dbs_tuners_ins.down_differential =
788 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
790 * In no_hz/micro accounting case we set the minimum frequency
791 * not depending on HZ, but fixed (very low). The deferred
792 * timer might skip some samples if idle/sleeping as needed.
794 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
795 } else {
796 /* For correct statistics, we need 10 ticks for each measure */
797 min_sampling_rate =
798 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
801 kondemand_wq = create_workqueue("kondemand");
802 if (!kondemand_wq) {
803 printk(KERN_ERR "Creation of kondemand failed\n");
804 return -EFAULT;
806 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
807 if (err)
808 destroy_workqueue(kondemand_wq);
810 return err;
813 static void __exit cpufreq_gov_dbs_exit(void)
815 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
816 destroy_workqueue(kondemand_wq);
820 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
821 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
822 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
823 "Low Latency Frequency Transition capable processors");
824 MODULE_LICENSE("GPL");
826 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
827 fs_initcall(cpufreq_gov_dbs_init);
828 #else
829 module_init(cpufreq_gov_dbs_init);
830 #endif
831 module_exit(cpufreq_gov_dbs_exit);