1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
22 * http://www.chelsio.com *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
27 * Maintainers: maintainers@chelsio.com *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
38 ****************************************************************************/
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
52 #include <linux/tcp.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
63 /* This belongs in if_ether.h */
64 #define ETH_P_CPL5 0xf
67 #define SGE_FREELQ_N 2
68 #define SGE_CMDQ0_E_N 1024
69 #define SGE_CMDQ1_E_N 128
70 #define SGE_FREEL_SIZE 4096
71 #define SGE_JUMBO_FREEL_SIZE 512
72 #define SGE_FREEL_REFILL_THRESH 16
73 #define SGE_RESPQ_E_N 1024
74 #define SGE_INTRTIMER_NRES 1000
75 #define SGE_RX_SM_BUF_SIZE 1536
76 #define SGE_TX_DESC_MAX_PLEN 16384
78 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81 * Period of the TX buffer reclaim timer. This timer does not need to run
82 * frequently as TX buffers are usually reclaimed by new TX packets.
84 #define TX_RECLAIM_PERIOD (HZ / 4)
86 #define M_CMD_LEN 0x7fffffff
87 #define V_CMD_LEN(v) (v)
88 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
89 #define V_CMD_GEN1(v) ((v) << 31)
90 #define V_CMD_GEN2(v) (v)
91 #define F_CMD_DATAVALID (1 << 1)
92 #define F_CMD_SOP (1 << 2)
93 #define V_CMD_EOP(v) ((v) << 3)
96 * Command queue, receive buffer list, and response queue descriptors.
98 #if defined(__BIG_ENDIAN_BITFIELD)
115 u32 Cmdq1CreditReturn
: 5;
116 u32 Cmdq1DmaComplete
: 5;
117 u32 Cmdq0CreditReturn
: 5;
118 u32 Cmdq0DmaComplete
: 5;
125 u32 GenerationBit
: 1;
128 #elif defined(__LITTLE_ENDIAN_BITFIELD)
145 u32 GenerationBit
: 1;
152 u32 Cmdq0DmaComplete
: 5;
153 u32 Cmdq0CreditReturn
: 5;
154 u32 Cmdq1DmaComplete
: 5;
155 u32 Cmdq1CreditReturn
: 5;
161 * SW Context Command and Freelist Queue Descriptors
165 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
166 DEFINE_DMA_UNMAP_LEN(dma_len
);
171 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
172 DEFINE_DMA_UNMAP_LEN(dma_len
);
176 * SW command, freelist and response rings
179 unsigned long status
; /* HW DMA fetch status */
180 unsigned int in_use
; /* # of in-use command descriptors */
181 unsigned int size
; /* # of descriptors */
182 unsigned int processed
; /* total # of descs HW has processed */
183 unsigned int cleaned
; /* total # of descs SW has reclaimed */
184 unsigned int stop_thres
; /* SW TX queue suspend threshold */
185 u16 pidx
; /* producer index (SW) */
186 u16 cidx
; /* consumer index (HW) */
187 u8 genbit
; /* current generation (=valid) bit */
188 u8 sop
; /* is next entry start of packet? */
189 struct cmdQ_e
*entries
; /* HW command descriptor Q */
190 struct cmdQ_ce
*centries
; /* SW command context descriptor Q */
191 dma_addr_t dma_addr
; /* DMA addr HW command descriptor Q */
192 spinlock_t lock
; /* Lock to protect cmdQ enqueuing */
196 unsigned int credits
; /* # of available RX buffers */
197 unsigned int size
; /* free list capacity */
198 u16 pidx
; /* producer index (SW) */
199 u16 cidx
; /* consumer index (HW) */
200 u16 rx_buffer_size
; /* Buffer size on this free list */
201 u16 dma_offset
; /* DMA offset to align IP headers */
202 u16 recycleq_idx
; /* skb recycle q to use */
203 u8 genbit
; /* current generation (=valid) bit */
204 struct freelQ_e
*entries
; /* HW freelist descriptor Q */
205 struct freelQ_ce
*centries
; /* SW freelist context descriptor Q */
206 dma_addr_t dma_addr
; /* DMA addr HW freelist descriptor Q */
210 unsigned int credits
; /* credits to be returned to SGE */
211 unsigned int size
; /* # of response Q descriptors */
212 u16 cidx
; /* consumer index (SW) */
213 u8 genbit
; /* current generation(=valid) bit */
214 struct respQ_e
*entries
; /* HW response descriptor Q */
215 dma_addr_t dma_addr
; /* DMA addr HW response descriptor Q */
218 /* Bit flags for cmdQ.status */
220 CMDQ_STAT_RUNNING
= 1, /* fetch engine is running */
221 CMDQ_STAT_LAST_PKT_DB
= 2 /* last packet rung the doorbell */
224 /* T204 TX SW scheduler */
226 /* Per T204 TX port */
228 unsigned int avail
; /* available bits - quota */
229 unsigned int drain_bits_per_1024ns
; /* drain rate */
230 unsigned int speed
; /* drain rate, mbps */
231 unsigned int mtu
; /* mtu size */
232 struct sk_buff_head skbq
; /* pending skbs */
235 /* Per T204 device */
237 ktime_t last_updated
; /* last time quotas were computed */
238 unsigned int max_avail
; /* max bits to be sent to any port */
239 unsigned int port
; /* port index (round robin ports) */
240 unsigned int num
; /* num skbs in per port queues */
241 struct sched_port p
[MAX_NPORTS
];
242 struct tasklet_struct sched_tsk
;/* tasklet used to run scheduler */
244 static void restart_sched(unsigned long);
248 * Main SGE data structure
250 * Interrupts are handled by a single CPU and it is likely that on a MP system
251 * the application is migrated to another CPU. In that scenario, we try to
252 * separate the RX(in irq context) and TX state in order to decrease memory
256 struct adapter
*adapter
; /* adapter backpointer */
257 struct net_device
*netdev
; /* netdevice backpointer */
258 struct freelQ freelQ
[SGE_FREELQ_N
]; /* buffer free lists */
259 struct respQ respQ
; /* response Q */
260 unsigned long stopped_tx_queues
; /* bitmap of suspended Tx queues */
261 unsigned int rx_pkt_pad
; /* RX padding for L2 packets */
262 unsigned int jumbo_fl
; /* jumbo freelist Q index */
263 unsigned int intrtimer_nres
; /* no-resource interrupt timer */
264 unsigned int fixed_intrtimer
;/* non-adaptive interrupt timer */
265 struct timer_list tx_reclaim_timer
; /* reclaims TX buffers */
266 struct timer_list espibug_timer
;
267 unsigned long espibug_timeout
;
268 struct sk_buff
*espibug_skb
[MAX_NPORTS
];
269 u32 sge_control
; /* shadow value of sge control reg */
270 struct sge_intr_counts stats
;
271 struct sge_port_stats __percpu
*port_stats
[MAX_NPORTS
];
272 struct sched
*tx_sched
;
273 struct cmdQ cmdQ
[SGE_CMDQ_N
] ____cacheline_aligned_in_smp
;
276 static const u8 ch_mac_addr
[ETH_ALEN
] = {
277 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
281 * stop tasklet and free all pending skb's
283 static void tx_sched_stop(struct sge
*sge
)
285 struct sched
*s
= sge
->tx_sched
;
288 tasklet_kill(&s
->sched_tsk
);
290 for (i
= 0; i
< MAX_NPORTS
; i
++)
291 __skb_queue_purge(&s
->p
[s
->port
].skbq
);
295 * t1_sched_update_parms() is called when the MTU or link speed changes. It
296 * re-computes scheduler parameters to scope with the change.
298 unsigned int t1_sched_update_parms(struct sge
*sge
, unsigned int port
,
299 unsigned int mtu
, unsigned int speed
)
301 struct sched
*s
= sge
->tx_sched
;
302 struct sched_port
*p
= &s
->p
[port
];
303 unsigned int max_avail_segs
;
305 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu
, speed
);
312 unsigned long long drain
= 1024ULL * p
->speed
* (p
->mtu
- 40);
313 do_div(drain
, (p
->mtu
+ 50) * 1000);
314 p
->drain_bits_per_1024ns
= (unsigned int) drain
;
317 p
->drain_bits_per_1024ns
=
318 90 * p
->drain_bits_per_1024ns
/ 100;
321 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
) {
322 p
->drain_bits_per_1024ns
-= 16;
323 s
->max_avail
= max(4096U, p
->mtu
+ 16 + 14 + 4);
324 max_avail_segs
= max(1U, 4096 / (p
->mtu
- 40));
326 s
->max_avail
= 16384;
327 max_avail_segs
= max(1U, 9000 / (p
->mtu
- 40));
330 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
331 "max_avail_segs %u drain_bits_per_1024ns %u\n", p
->mtu
,
332 p
->speed
, s
->max_avail
, max_avail_segs
,
333 p
->drain_bits_per_1024ns
);
335 return max_avail_segs
* (p
->mtu
- 40);
341 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
342 * data that can be pushed per port.
344 void t1_sched_set_max_avail_bytes(struct sge
*sge
, unsigned int val
)
346 struct sched
*s
= sge
->tx_sched
;
350 for (i
= 0; i
< MAX_NPORTS
; i
++)
351 t1_sched_update_parms(sge
, i
, 0, 0);
355 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
358 void t1_sched_set_drain_bits_per_us(struct sge
*sge
, unsigned int port
,
361 struct sched
*s
= sge
->tx_sched
;
362 struct sched_port
*p
= &s
->p
[port
];
363 p
->drain_bits_per_1024ns
= val
* 1024 / 1000;
364 t1_sched_update_parms(sge
, port
, 0, 0);
371 * get_clock() implements a ns clock (see ktime_get)
373 static inline ktime_t
get_clock(void)
378 return timespec_to_ktime(ts
);
382 * tx_sched_init() allocates resources and does basic initialization.
384 static int tx_sched_init(struct sge
*sge
)
389 s
= kzalloc(sizeof (struct sched
), GFP_KERNEL
);
393 pr_debug("tx_sched_init\n");
394 tasklet_init(&s
->sched_tsk
, restart_sched
, (unsigned long) sge
);
397 for (i
= 0; i
< MAX_NPORTS
; i
++) {
398 skb_queue_head_init(&s
->p
[i
].skbq
);
399 t1_sched_update_parms(sge
, i
, 1500, 1000);
406 * sched_update_avail() computes the delta since the last time it was called
407 * and updates the per port quota (number of bits that can be sent to the any
410 static inline int sched_update_avail(struct sge
*sge
)
412 struct sched
*s
= sge
->tx_sched
;
413 ktime_t now
= get_clock();
415 long long delta_time_ns
;
417 delta_time_ns
= ktime_to_ns(ktime_sub(now
, s
->last_updated
));
419 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns
);
420 if (delta_time_ns
< 15000)
423 for (i
= 0; i
< MAX_NPORTS
; i
++) {
424 struct sched_port
*p
= &s
->p
[i
];
425 unsigned int delta_avail
;
427 delta_avail
= (p
->drain_bits_per_1024ns
* delta_time_ns
) >> 13;
428 p
->avail
= min(p
->avail
+ delta_avail
, s
->max_avail
);
431 s
->last_updated
= now
;
437 * sched_skb() is called from two different places. In the tx path, any
438 * packet generating load on an output port will call sched_skb()
439 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
440 * context (skb == NULL).
441 * The scheduler only returns a skb (which will then be sent) if the
442 * length of the skb is <= the current quota of the output port.
444 static struct sk_buff
*sched_skb(struct sge
*sge
, struct sk_buff
*skb
,
445 unsigned int credits
)
447 struct sched
*s
= sge
->tx_sched
;
448 struct sk_buff_head
*skbq
;
449 unsigned int i
, len
, update
= 1;
451 pr_debug("sched_skb %p\n", skb
);
456 skbq
= &s
->p
[skb
->dev
->if_port
].skbq
;
457 __skb_queue_tail(skbq
, skb
);
462 if (credits
< MAX_SKB_FRAGS
+ 1)
466 for (i
= 0; i
< MAX_NPORTS
; i
++) {
467 s
->port
= (s
->port
+ 1) & (MAX_NPORTS
- 1);
468 skbq
= &s
->p
[s
->port
].skbq
;
470 skb
= skb_peek(skbq
);
476 if (len
<= s
->p
[s
->port
].avail
) {
477 s
->p
[s
->port
].avail
-= len
;
479 __skb_unlink(skb
, skbq
);
485 if (update
-- && sched_update_avail(sge
))
489 /* If there are more pending skbs, we use the hardware to schedule us
492 if (s
->num
&& !skb
) {
493 struct cmdQ
*q
= &sge
->cmdQ
[0];
494 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
495 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
496 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
497 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
500 pr_debug("sched_skb ret %p\n", skb
);
506 * PIO to indicate that memory mapped Q contains valid descriptor(s).
508 static inline void doorbell_pio(struct adapter
*adapter
, u32 val
)
511 writel(val
, adapter
->regs
+ A_SG_DOORBELL
);
515 * Frees all RX buffers on the freelist Q. The caller must make sure that
516 * the SGE is turned off before calling this function.
518 static void free_freelQ_buffers(struct pci_dev
*pdev
, struct freelQ
*q
)
520 unsigned int cidx
= q
->cidx
;
522 while (q
->credits
--) {
523 struct freelQ_ce
*ce
= &q
->centries
[cidx
];
525 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
526 dma_unmap_len(ce
, dma_len
),
528 dev_kfree_skb(ce
->skb
);
530 if (++cidx
== q
->size
)
536 * Free RX free list and response queue resources.
538 static void free_rx_resources(struct sge
*sge
)
540 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
541 unsigned int size
, i
;
543 if (sge
->respQ
.entries
) {
544 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
545 pci_free_consistent(pdev
, size
, sge
->respQ
.entries
,
546 sge
->respQ
.dma_addr
);
549 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
550 struct freelQ
*q
= &sge
->freelQ
[i
];
553 free_freelQ_buffers(pdev
, q
);
557 size
= sizeof(struct freelQ_e
) * q
->size
;
558 pci_free_consistent(pdev
, size
, q
->entries
,
565 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
568 static int alloc_rx_resources(struct sge
*sge
, struct sge_params
*p
)
570 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
571 unsigned int size
, i
;
573 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
574 struct freelQ
*q
= &sge
->freelQ
[i
];
577 q
->size
= p
->freelQ_size
[i
];
578 q
->dma_offset
= sge
->rx_pkt_pad
? 0 : NET_IP_ALIGN
;
579 size
= sizeof(struct freelQ_e
) * q
->size
;
580 q
->entries
= pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
584 size
= sizeof(struct freelQ_ce
) * q
->size
;
585 q
->centries
= kzalloc(size
, GFP_KERNEL
);
591 * Calculate the buffer sizes for the two free lists. FL0 accommodates
592 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
593 * including all the sk_buff overhead.
595 * Note: For T2 FL0 and FL1 are reversed.
597 sge
->freelQ
[!sge
->jumbo_fl
].rx_buffer_size
= SGE_RX_SM_BUF_SIZE
+
598 sizeof(struct cpl_rx_data
) +
599 sge
->freelQ
[!sge
->jumbo_fl
].dma_offset
;
602 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
604 sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
= size
;
607 * Setup which skb recycle Q should be used when recycling buffers from
610 sge
->freelQ
[!sge
->jumbo_fl
].recycleq_idx
= 0;
611 sge
->freelQ
[sge
->jumbo_fl
].recycleq_idx
= 1;
613 sge
->respQ
.genbit
= 1;
614 sge
->respQ
.size
= SGE_RESPQ_E_N
;
615 sge
->respQ
.credits
= 0;
616 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
618 pci_alloc_consistent(pdev
, size
, &sge
->respQ
.dma_addr
);
619 if (!sge
->respQ
.entries
)
624 free_rx_resources(sge
);
629 * Reclaims n TX descriptors and frees the buffers associated with them.
631 static void free_cmdQ_buffers(struct sge
*sge
, struct cmdQ
*q
, unsigned int n
)
634 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
635 unsigned int cidx
= q
->cidx
;
638 ce
= &q
->centries
[cidx
];
640 if (likely(dma_unmap_len(ce
, dma_len
))) {
641 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
642 dma_unmap_len(ce
, dma_len
),
648 dev_kfree_skb_any(ce
->skb
);
652 if (++cidx
== q
->size
) {
663 * Assumes that SGE is stopped and all interrupts are disabled.
665 static void free_tx_resources(struct sge
*sge
)
667 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
668 unsigned int size
, i
;
670 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
671 struct cmdQ
*q
= &sge
->cmdQ
[i
];
675 free_cmdQ_buffers(sge
, q
, q
->in_use
);
679 size
= sizeof(struct cmdQ_e
) * q
->size
;
680 pci_free_consistent(pdev
, size
, q
->entries
,
687 * Allocates basic TX resources, consisting of memory mapped command Qs.
689 static int alloc_tx_resources(struct sge
*sge
, struct sge_params
*p
)
691 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
692 unsigned int size
, i
;
694 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
695 struct cmdQ
*q
= &sge
->cmdQ
[i
];
699 q
->size
= p
->cmdQ_size
[i
];
702 q
->processed
= q
->cleaned
= 0;
704 spin_lock_init(&q
->lock
);
705 size
= sizeof(struct cmdQ_e
) * q
->size
;
706 q
->entries
= pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
710 size
= sizeof(struct cmdQ_ce
) * q
->size
;
711 q
->centries
= kzalloc(size
, GFP_KERNEL
);
717 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
718 * only. For queue 0 set the stop threshold so we can handle one more
719 * packet from each port, plus reserve an additional 24 entries for
720 * Ethernet packets only. Queue 1 never suspends nor do we reserve
721 * space for Ethernet packets.
723 sge
->cmdQ
[0].stop_thres
= sge
->adapter
->params
.nports
*
728 free_tx_resources(sge
);
732 static inline void setup_ring_params(struct adapter
*adapter
, u64 addr
,
733 u32 size
, int base_reg_lo
,
734 int base_reg_hi
, int size_reg
)
736 writel((u32
)addr
, adapter
->regs
+ base_reg_lo
);
737 writel(addr
>> 32, adapter
->regs
+ base_reg_hi
);
738 writel(size
, adapter
->regs
+ size_reg
);
742 * Enable/disable VLAN acceleration.
744 void t1_set_vlan_accel(struct adapter
*adapter
, int on_off
)
746 struct sge
*sge
= adapter
->sge
;
748 sge
->sge_control
&= ~F_VLAN_XTRACT
;
750 sge
->sge_control
|= F_VLAN_XTRACT
;
751 if (adapter
->open_device_map
) {
752 writel(sge
->sge_control
, adapter
->regs
+ A_SG_CONTROL
);
753 readl(adapter
->regs
+ A_SG_CONTROL
); /* flush */
758 * Programs the various SGE registers. However, the engine is not yet enabled,
759 * but sge->sge_control is setup and ready to go.
761 static void configure_sge(struct sge
*sge
, struct sge_params
*p
)
763 struct adapter
*ap
= sge
->adapter
;
765 writel(0, ap
->regs
+ A_SG_CONTROL
);
766 setup_ring_params(ap
, sge
->cmdQ
[0].dma_addr
, sge
->cmdQ
[0].size
,
767 A_SG_CMD0BASELWR
, A_SG_CMD0BASEUPR
, A_SG_CMD0SIZE
);
768 setup_ring_params(ap
, sge
->cmdQ
[1].dma_addr
, sge
->cmdQ
[1].size
,
769 A_SG_CMD1BASELWR
, A_SG_CMD1BASEUPR
, A_SG_CMD1SIZE
);
770 setup_ring_params(ap
, sge
->freelQ
[0].dma_addr
,
771 sge
->freelQ
[0].size
, A_SG_FL0BASELWR
,
772 A_SG_FL0BASEUPR
, A_SG_FL0SIZE
);
773 setup_ring_params(ap
, sge
->freelQ
[1].dma_addr
,
774 sge
->freelQ
[1].size
, A_SG_FL1BASELWR
,
775 A_SG_FL1BASEUPR
, A_SG_FL1SIZE
);
777 /* The threshold comparison uses <. */
778 writel(SGE_RX_SM_BUF_SIZE
+ 1, ap
->regs
+ A_SG_FLTHRESHOLD
);
780 setup_ring_params(ap
, sge
->respQ
.dma_addr
, sge
->respQ
.size
,
781 A_SG_RSPBASELWR
, A_SG_RSPBASEUPR
, A_SG_RSPSIZE
);
782 writel((u32
)sge
->respQ
.size
- 1, ap
->regs
+ A_SG_RSPQUEUECREDIT
);
784 sge
->sge_control
= F_CMDQ0_ENABLE
| F_CMDQ1_ENABLE
| F_FL0_ENABLE
|
785 F_FL1_ENABLE
| F_CPL_ENABLE
| F_RESPONSE_QUEUE_ENABLE
|
786 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS
| F_ISCSI_COALESCE
|
787 V_RX_PKT_OFFSET(sge
->rx_pkt_pad
);
789 #if defined(__BIG_ENDIAN_BITFIELD)
790 sge
->sge_control
|= F_ENABLE_BIG_ENDIAN
;
793 /* Initialize no-resource timer */
794 sge
->intrtimer_nres
= SGE_INTRTIMER_NRES
* core_ticks_per_usec(ap
);
796 t1_sge_set_coalesce_params(sge
, p
);
800 * Return the payload capacity of the jumbo free-list buffers.
802 static inline unsigned int jumbo_payload_capacity(const struct sge
*sge
)
804 return sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
-
805 sge
->freelQ
[sge
->jumbo_fl
].dma_offset
-
806 sizeof(struct cpl_rx_data
);
810 * Frees all SGE related resources and the sge structure itself
812 void t1_sge_destroy(struct sge
*sge
)
816 for_each_port(sge
->adapter
, i
)
817 free_percpu(sge
->port_stats
[i
]);
819 kfree(sge
->tx_sched
);
820 free_tx_resources(sge
);
821 free_rx_resources(sge
);
826 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
827 * context Q) until the Q is full or alloc_skb fails.
829 * It is possible that the generation bits already match, indicating that the
830 * buffer is already valid and nothing needs to be done. This happens when we
831 * copied a received buffer into a new sk_buff during the interrupt processing.
833 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
834 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
837 static void refill_free_list(struct sge
*sge
, struct freelQ
*q
)
839 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
840 struct freelQ_ce
*ce
= &q
->centries
[q
->pidx
];
841 struct freelQ_e
*e
= &q
->entries
[q
->pidx
];
842 unsigned int dma_len
= q
->rx_buffer_size
- q
->dma_offset
;
844 while (q
->credits
< q
->size
) {
848 skb
= alloc_skb(q
->rx_buffer_size
, GFP_ATOMIC
);
852 skb_reserve(skb
, q
->dma_offset
);
853 mapping
= pci_map_single(pdev
, skb
->data
, dma_len
,
855 skb_reserve(skb
, sge
->rx_pkt_pad
);
858 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
859 dma_unmap_len_set(ce
, dma_len
, dma_len
);
860 e
->addr_lo
= (u32
)mapping
;
861 e
->addr_hi
= (u64
)mapping
>> 32;
862 e
->len_gen
= V_CMD_LEN(dma_len
) | V_CMD_GEN1(q
->genbit
);
864 e
->gen2
= V_CMD_GEN2(q
->genbit
);
868 if (++q
->pidx
== q
->size
) {
879 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
880 * of both rings, we go into 'few interrupt mode' in order to give the system
881 * time to free up resources.
883 static void freelQs_empty(struct sge
*sge
)
885 struct adapter
*adapter
= sge
->adapter
;
886 u32 irq_reg
= readl(adapter
->regs
+ A_SG_INT_ENABLE
);
889 refill_free_list(sge
, &sge
->freelQ
[0]);
890 refill_free_list(sge
, &sge
->freelQ
[1]);
892 if (sge
->freelQ
[0].credits
> (sge
->freelQ
[0].size
>> 2) &&
893 sge
->freelQ
[1].credits
> (sge
->freelQ
[1].size
>> 2)) {
894 irq_reg
|= F_FL_EXHAUSTED
;
895 irqholdoff_reg
= sge
->fixed_intrtimer
;
897 /* Clear the F_FL_EXHAUSTED interrupts for now */
898 irq_reg
&= ~F_FL_EXHAUSTED
;
899 irqholdoff_reg
= sge
->intrtimer_nres
;
901 writel(irqholdoff_reg
, adapter
->regs
+ A_SG_INTRTIMER
);
902 writel(irq_reg
, adapter
->regs
+ A_SG_INT_ENABLE
);
904 /* We reenable the Qs to force a freelist GTS interrupt later */
905 doorbell_pio(adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
908 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
909 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
910 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
911 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
914 * Disable SGE Interrupts
916 void t1_sge_intr_disable(struct sge
*sge
)
918 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
920 writel(val
& ~SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
921 writel(0, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
925 * Enable SGE interrupts.
927 void t1_sge_intr_enable(struct sge
*sge
)
929 u32 en
= SGE_INT_ENABLE
;
930 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
932 if (sge
->adapter
->flags
& TSO_CAPABLE
)
933 en
&= ~F_PACKET_TOO_BIG
;
934 writel(en
, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
935 writel(val
| SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
939 * Clear SGE interrupts.
941 void t1_sge_intr_clear(struct sge
*sge
)
943 writel(SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_CAUSE
);
944 writel(0xffffffff, sge
->adapter
->regs
+ A_SG_INT_CAUSE
);
948 * SGE 'Error' interrupt handler
950 int t1_sge_intr_error_handler(struct sge
*sge
)
952 struct adapter
*adapter
= sge
->adapter
;
953 u32 cause
= readl(adapter
->regs
+ A_SG_INT_CAUSE
);
955 if (adapter
->flags
& TSO_CAPABLE
)
956 cause
&= ~F_PACKET_TOO_BIG
;
957 if (cause
& F_RESPQ_EXHAUSTED
)
958 sge
->stats
.respQ_empty
++;
959 if (cause
& F_RESPQ_OVERFLOW
) {
960 sge
->stats
.respQ_overflow
++;
961 pr_alert("%s: SGE response queue overflow\n",
964 if (cause
& F_FL_EXHAUSTED
) {
965 sge
->stats
.freelistQ_empty
++;
968 if (cause
& F_PACKET_TOO_BIG
) {
969 sge
->stats
.pkt_too_big
++;
970 pr_alert("%s: SGE max packet size exceeded\n",
973 if (cause
& F_PACKET_MISMATCH
) {
974 sge
->stats
.pkt_mismatch
++;
975 pr_alert("%s: SGE packet mismatch\n", adapter
->name
);
977 if (cause
& SGE_INT_FATAL
)
978 t1_fatal_err(adapter
);
980 writel(cause
, adapter
->regs
+ A_SG_INT_CAUSE
);
984 const struct sge_intr_counts
*t1_sge_get_intr_counts(const struct sge
*sge
)
989 void t1_sge_get_port_stats(const struct sge
*sge
, int port
,
990 struct sge_port_stats
*ss
)
994 memset(ss
, 0, sizeof(*ss
));
995 for_each_possible_cpu(cpu
) {
996 struct sge_port_stats
*st
= per_cpu_ptr(sge
->port_stats
[port
], cpu
);
998 ss
->rx_cso_good
+= st
->rx_cso_good
;
999 ss
->tx_cso
+= st
->tx_cso
;
1000 ss
->tx_tso
+= st
->tx_tso
;
1001 ss
->tx_need_hdrroom
+= st
->tx_need_hdrroom
;
1002 ss
->vlan_xtract
+= st
->vlan_xtract
;
1003 ss
->vlan_insert
+= st
->vlan_insert
;
1008 * recycle_fl_buf - recycle a free list buffer
1009 * @fl: the free list
1010 * @idx: index of buffer to recycle
1012 * Recycles the specified buffer on the given free list by adding it at
1013 * the next available slot on the list.
1015 static void recycle_fl_buf(struct freelQ
*fl
, int idx
)
1017 struct freelQ_e
*from
= &fl
->entries
[idx
];
1018 struct freelQ_e
*to
= &fl
->entries
[fl
->pidx
];
1020 fl
->centries
[fl
->pidx
] = fl
->centries
[idx
];
1021 to
->addr_lo
= from
->addr_lo
;
1022 to
->addr_hi
= from
->addr_hi
;
1023 to
->len_gen
= G_CMD_LEN(from
->len_gen
) | V_CMD_GEN1(fl
->genbit
);
1025 to
->gen2
= V_CMD_GEN2(fl
->genbit
);
1028 if (++fl
->pidx
== fl
->size
) {
1034 static int copybreak __read_mostly
= 256;
1035 module_param(copybreak
, int, 0);
1036 MODULE_PARM_DESC(copybreak
, "Receive copy threshold");
1039 * get_packet - return the next ingress packet buffer
1040 * @pdev: the PCI device that received the packet
1041 * @fl: the SGE free list holding the packet
1042 * @len: the actual packet length, excluding any SGE padding
1044 * Get the next packet from a free list and complete setup of the
1045 * sk_buff. If the packet is small we make a copy and recycle the
1046 * original buffer, otherwise we use the original buffer itself. If a
1047 * positive drop threshold is supplied packets are dropped and their
1048 * buffers recycled if (a) the number of remaining buffers is under the
1049 * threshold and the packet is too big to copy, or (b) the packet should
1050 * be copied but there is no memory for the copy.
1052 static inline struct sk_buff
*get_packet(struct pci_dev
*pdev
,
1053 struct freelQ
*fl
, unsigned int len
)
1055 struct sk_buff
*skb
;
1056 const struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1058 if (len
< copybreak
) {
1059 skb
= alloc_skb(len
+ 2, GFP_ATOMIC
);
1063 skb_reserve(skb
, 2); /* align IP header */
1065 pci_dma_sync_single_for_cpu(pdev
,
1066 dma_unmap_addr(ce
, dma_addr
),
1067 dma_unmap_len(ce
, dma_len
),
1068 PCI_DMA_FROMDEVICE
);
1069 skb_copy_from_linear_data(ce
->skb
, skb
->data
, len
);
1070 pci_dma_sync_single_for_device(pdev
,
1071 dma_unmap_addr(ce
, dma_addr
),
1072 dma_unmap_len(ce
, dma_len
),
1073 PCI_DMA_FROMDEVICE
);
1074 recycle_fl_buf(fl
, fl
->cidx
);
1079 if (fl
->credits
< 2) {
1080 recycle_fl_buf(fl
, fl
->cidx
);
1084 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
1085 dma_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1087 prefetch(skb
->data
);
1094 * unexpected_offload - handle an unexpected offload packet
1095 * @adapter: the adapter
1096 * @fl: the free list that received the packet
1098 * Called when we receive an unexpected offload packet (e.g., the TOE
1099 * function is disabled or the card is a NIC). Prints a message and
1100 * recycles the buffer.
1102 static void unexpected_offload(struct adapter
*adapter
, struct freelQ
*fl
)
1104 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1105 struct sk_buff
*skb
= ce
->skb
;
1107 pci_dma_sync_single_for_cpu(adapter
->pdev
, dma_unmap_addr(ce
, dma_addr
),
1108 dma_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1109 pr_err("%s: unexpected offload packet, cmd %u\n",
1110 adapter
->name
, *skb
->data
);
1111 recycle_fl_buf(fl
, fl
->cidx
);
1115 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1116 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1117 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1118 * Note that the *_large_page_tx_descs stuff will be optimized out when
1119 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1121 * compute_large_page_descs() computes how many additional descriptors are
1122 * required to break down the stack's request.
1124 static inline unsigned int compute_large_page_tx_descs(struct sk_buff
*skb
)
1126 unsigned int count
= 0;
1128 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1129 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
1130 unsigned int i
, len
= skb_headlen(skb
);
1131 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1133 len
-= SGE_TX_DESC_MAX_PLEN
;
1135 for (i
= 0; nfrags
--; i
++) {
1136 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1138 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1140 len
-= SGE_TX_DESC_MAX_PLEN
;
1148 * Write a cmdQ entry.
1150 * Since this function writes the 'flags' field, it must not be used to
1151 * write the first cmdQ entry.
1153 static inline void write_tx_desc(struct cmdQ_e
*e
, dma_addr_t mapping
,
1154 unsigned int len
, unsigned int gen
,
1157 BUG_ON(len
> SGE_TX_DESC_MAX_PLEN
);
1159 e
->addr_lo
= (u32
)mapping
;
1160 e
->addr_hi
= (u64
)mapping
>> 32;
1161 e
->len_gen
= V_CMD_LEN(len
) | V_CMD_GEN1(gen
);
1162 e
->flags
= F_CMD_DATAVALID
| V_CMD_EOP(eop
) | V_CMD_GEN2(gen
);
1166 * See comment for previous function.
1168 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1169 * *desc_len exceeds HW's capability.
1171 static inline unsigned int write_large_page_tx_descs(unsigned int pidx
,
1173 struct cmdQ_ce
**ce
,
1175 dma_addr_t
*desc_mapping
,
1176 unsigned int *desc_len
,
1177 unsigned int nfrags
,
1180 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1181 struct cmdQ_e
*e1
= *e
;
1182 struct cmdQ_ce
*ce1
= *ce
;
1184 while (*desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1185 *desc_len
-= SGE_TX_DESC_MAX_PLEN
;
1186 write_tx_desc(e1
, *desc_mapping
, SGE_TX_DESC_MAX_PLEN
,
1187 *gen
, nfrags
== 0 && *desc_len
== 0);
1189 dma_unmap_len_set(ce1
, dma_len
, 0);
1190 *desc_mapping
+= SGE_TX_DESC_MAX_PLEN
;
1194 if (++pidx
== q
->size
) {
1209 * Write the command descriptors to transmit the given skb starting at
1210 * descriptor pidx with the given generation.
1212 static inline void write_tx_descs(struct adapter
*adapter
, struct sk_buff
*skb
,
1213 unsigned int pidx
, unsigned int gen
,
1216 dma_addr_t mapping
, desc_mapping
;
1217 struct cmdQ_e
*e
, *e1
;
1219 unsigned int i
, flags
, first_desc_len
, desc_len
,
1220 nfrags
= skb_shinfo(skb
)->nr_frags
;
1222 e
= e1
= &q
->entries
[pidx
];
1223 ce
= &q
->centries
[pidx
];
1225 mapping
= pci_map_single(adapter
->pdev
, skb
->data
,
1226 skb_headlen(skb
), PCI_DMA_TODEVICE
);
1228 desc_mapping
= mapping
;
1229 desc_len
= skb_headlen(skb
);
1231 flags
= F_CMD_DATAVALID
| F_CMD_SOP
|
1232 V_CMD_EOP(nfrags
== 0 && desc_len
<= SGE_TX_DESC_MAX_PLEN
) |
1234 first_desc_len
= (desc_len
<= SGE_TX_DESC_MAX_PLEN
) ?
1235 desc_len
: SGE_TX_DESC_MAX_PLEN
;
1236 e
->addr_lo
= (u32
)desc_mapping
;
1237 e
->addr_hi
= (u64
)desc_mapping
>> 32;
1238 e
->len_gen
= V_CMD_LEN(first_desc_len
) | V_CMD_GEN1(gen
);
1240 dma_unmap_len_set(ce
, dma_len
, 0);
1242 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
&&
1243 desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1244 desc_mapping
+= first_desc_len
;
1245 desc_len
-= first_desc_len
;
1248 if (++pidx
== q
->size
) {
1254 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1255 &desc_mapping
, &desc_len
,
1258 if (likely(desc_len
))
1259 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1264 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1265 dma_unmap_len_set(ce
, dma_len
, skb_headlen(skb
));
1267 for (i
= 0; nfrags
--; i
++) {
1268 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1271 if (++pidx
== q
->size
) {
1278 mapping
= pci_map_page(adapter
->pdev
, frag
->page
,
1279 frag
->page_offset
, frag
->size
,
1281 desc_mapping
= mapping
;
1282 desc_len
= frag
->size
;
1284 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1285 &desc_mapping
, &desc_len
,
1287 if (likely(desc_len
))
1288 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1291 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1292 dma_unmap_len_set(ce
, dma_len
, frag
->size
);
1300 * Clean up completed Tx buffers.
1302 static inline void reclaim_completed_tx(struct sge
*sge
, struct cmdQ
*q
)
1304 unsigned int reclaim
= q
->processed
- q
->cleaned
;
1307 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1308 q
->processed
, q
->cleaned
);
1309 free_cmdQ_buffers(sge
, q
, reclaim
);
1310 q
->cleaned
+= reclaim
;
1315 * Called from tasklet. Checks the scheduler for any
1316 * pending skbs that can be sent.
1318 static void restart_sched(unsigned long arg
)
1320 struct sge
*sge
= (struct sge
*) arg
;
1321 struct adapter
*adapter
= sge
->adapter
;
1322 struct cmdQ
*q
= &sge
->cmdQ
[0];
1323 struct sk_buff
*skb
;
1324 unsigned int credits
, queued_skb
= 0;
1326 spin_lock(&q
->lock
);
1327 reclaim_completed_tx(sge
, q
);
1329 credits
= q
->size
- q
->in_use
;
1330 pr_debug("restart_sched credits=%d\n", credits
);
1331 while ((skb
= sched_skb(sge
, NULL
, credits
)) != NULL
) {
1332 unsigned int genbit
, pidx
, count
;
1333 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1334 count
+= compute_large_page_tx_descs(skb
);
1339 if (q
->pidx
>= q
->size
) {
1343 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1344 credits
= q
->size
- q
->in_use
;
1349 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1350 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1351 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1352 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1355 spin_unlock(&q
->lock
);
1359 * sge_rx - process an ingress ethernet packet
1360 * @sge: the sge structure
1361 * @fl: the free list that contains the packet buffer
1362 * @len: the packet length
1364 * Process an ingress ethernet pakcet and deliver it to the stack.
1366 static void sge_rx(struct sge
*sge
, struct freelQ
*fl
, unsigned int len
)
1368 struct sk_buff
*skb
;
1369 const struct cpl_rx_pkt
*p
;
1370 struct adapter
*adapter
= sge
->adapter
;
1371 struct sge_port_stats
*st
;
1373 skb
= get_packet(adapter
->pdev
, fl
, len
- sge
->rx_pkt_pad
);
1374 if (unlikely(!skb
)) {
1375 sge
->stats
.rx_drops
++;
1379 p
= (const struct cpl_rx_pkt
*) skb
->data
;
1380 if (p
->iff
>= adapter
->params
.nports
) {
1384 __skb_pull(skb
, sizeof(*p
));
1386 st
= this_cpu_ptr(sge
->port_stats
[p
->iff
]);
1388 skb
->protocol
= eth_type_trans(skb
, adapter
->port
[p
->iff
].dev
);
1389 if ((adapter
->flags
& RX_CSUM_ENABLED
) && p
->csum
== 0xffff &&
1390 skb
->protocol
== htons(ETH_P_IP
) &&
1391 (skb
->data
[9] == IPPROTO_TCP
|| skb
->data
[9] == IPPROTO_UDP
)) {
1393 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1395 skb_checksum_none_assert(skb
);
1397 if (unlikely(adapter
->vlan_grp
&& p
->vlan_valid
)) {
1399 vlan_hwaccel_receive_skb(skb
, adapter
->vlan_grp
,
1402 netif_receive_skb(skb
);
1406 * Returns true if a command queue has enough available descriptors that
1407 * we can resume Tx operation after temporarily disabling its packet queue.
1409 static inline int enough_free_Tx_descs(const struct cmdQ
*q
)
1411 unsigned int r
= q
->processed
- q
->cleaned
;
1413 return q
->in_use
- r
< (q
->size
>> 1);
1417 * Called when sufficient space has become available in the SGE command queues
1418 * after the Tx packet schedulers have been suspended to restart the Tx path.
1420 static void restart_tx_queues(struct sge
*sge
)
1422 struct adapter
*adap
= sge
->adapter
;
1425 if (!enough_free_Tx_descs(&sge
->cmdQ
[0]))
1428 for_each_port(adap
, i
) {
1429 struct net_device
*nd
= adap
->port
[i
].dev
;
1431 if (test_and_clear_bit(nd
->if_port
, &sge
->stopped_tx_queues
) &&
1432 netif_running(nd
)) {
1433 sge
->stats
.cmdQ_restarted
[2]++;
1434 netif_wake_queue(nd
);
1440 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1443 static unsigned int update_tx_info(struct adapter
*adapter
,
1447 struct sge
*sge
= adapter
->sge
;
1448 struct cmdQ
*cmdq
= &sge
->cmdQ
[0];
1450 cmdq
->processed
+= pr0
;
1451 if (flags
& (F_FL0_ENABLE
| F_FL1_ENABLE
)) {
1453 flags
&= ~(F_FL0_ENABLE
| F_FL1_ENABLE
);
1455 if (flags
& F_CMDQ0_ENABLE
) {
1456 clear_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1458 if (cmdq
->cleaned
+ cmdq
->in_use
!= cmdq
->processed
&&
1459 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB
, &cmdq
->status
)) {
1460 set_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1461 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1464 tasklet_hi_schedule(&sge
->tx_sched
->sched_tsk
);
1466 flags
&= ~F_CMDQ0_ENABLE
;
1469 if (unlikely(sge
->stopped_tx_queues
!= 0))
1470 restart_tx_queues(sge
);
1476 * Process SGE responses, up to the supplied budget. Returns the number of
1477 * responses processed. A negative budget is effectively unlimited.
1479 static int process_responses(struct adapter
*adapter
, int budget
)
1481 struct sge
*sge
= adapter
->sge
;
1482 struct respQ
*q
= &sge
->respQ
;
1483 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1485 unsigned int flags
= 0;
1486 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1488 while (done
< budget
&& e
->GenerationBit
== q
->genbit
) {
1489 flags
|= e
->Qsleeping
;
1491 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1492 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1494 /* We batch updates to the TX side to avoid cacheline
1495 * ping-pong of TX state information on MP where the sender
1496 * might run on a different CPU than this function...
1498 if (unlikely((flags
& F_CMDQ0_ENABLE
) || cmdq_processed
[0] > 64)) {
1499 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1500 cmdq_processed
[0] = 0;
1503 if (unlikely(cmdq_processed
[1] > 16)) {
1504 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1505 cmdq_processed
[1] = 0;
1508 if (likely(e
->DataValid
)) {
1509 struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1511 BUG_ON(!e
->Sop
|| !e
->Eop
);
1512 if (unlikely(e
->Offload
))
1513 unexpected_offload(adapter
, fl
);
1515 sge_rx(sge
, fl
, e
->BufferLength
);
1520 * Note: this depends on each packet consuming a
1521 * single free-list buffer; cf. the BUG above.
1523 if (++fl
->cidx
== fl
->size
)
1525 prefetch(fl
->centries
[fl
->cidx
].skb
);
1527 if (unlikely(--fl
->credits
<
1528 fl
->size
- SGE_FREEL_REFILL_THRESH
))
1529 refill_free_list(sge
, fl
);
1531 sge
->stats
.pure_rsps
++;
1534 if (unlikely(++q
->cidx
== q
->size
)) {
1541 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1542 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1547 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1548 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1553 static inline int responses_pending(const struct adapter
*adapter
)
1555 const struct respQ
*Q
= &adapter
->sge
->respQ
;
1556 const struct respQ_e
*e
= &Q
->entries
[Q
->cidx
];
1558 return e
->GenerationBit
== Q
->genbit
;
1562 * A simpler version of process_responses() that handles only pure (i.e.,
1563 * non data-carrying) responses. Such respones are too light-weight to justify
1564 * calling a softirq when using NAPI, so we handle them specially in hard
1565 * interrupt context. The function is called with a pointer to a response,
1566 * which the caller must ensure is a valid pure response. Returns 1 if it
1567 * encounters a valid data-carrying response, 0 otherwise.
1569 static int process_pure_responses(struct adapter
*adapter
)
1571 struct sge
*sge
= adapter
->sge
;
1572 struct respQ
*q
= &sge
->respQ
;
1573 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1574 const struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1575 unsigned int flags
= 0;
1576 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1578 prefetch(fl
->centries
[fl
->cidx
].skb
);
1583 flags
|= e
->Qsleeping
;
1585 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1586 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1589 if (unlikely(++q
->cidx
== q
->size
)) {
1596 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1597 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1600 sge
->stats
.pure_rsps
++;
1601 } while (e
->GenerationBit
== q
->genbit
&& !e
->DataValid
);
1603 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1604 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1606 return e
->GenerationBit
== q
->genbit
;
1610 * Handler for new data events when using NAPI. This does not need any locking
1611 * or protection from interrupts as data interrupts are off at this point and
1612 * other adapter interrupts do not interfere.
1614 int t1_poll(struct napi_struct
*napi
, int budget
)
1616 struct adapter
*adapter
= container_of(napi
, struct adapter
, napi
);
1617 int work_done
= process_responses(adapter
, budget
);
1619 if (likely(work_done
< budget
)) {
1620 napi_complete(napi
);
1621 writel(adapter
->sge
->respQ
.cidx
,
1622 adapter
->regs
+ A_SG_SLEEPING
);
1627 irqreturn_t
t1_interrupt(int irq
, void *data
)
1629 struct adapter
*adapter
= data
;
1630 struct sge
*sge
= adapter
->sge
;
1633 if (likely(responses_pending(adapter
))) {
1634 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1636 if (napi_schedule_prep(&adapter
->napi
)) {
1637 if (process_pure_responses(adapter
))
1638 __napi_schedule(&adapter
->napi
);
1640 /* no data, no NAPI needed */
1641 writel(sge
->respQ
.cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1642 /* undo schedule_prep */
1643 napi_enable(&adapter
->napi
);
1649 spin_lock(&adapter
->async_lock
);
1650 handled
= t1_slow_intr_handler(adapter
);
1651 spin_unlock(&adapter
->async_lock
);
1654 sge
->stats
.unhandled_irqs
++;
1656 return IRQ_RETVAL(handled
!= 0);
1660 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1662 * The code figures out how many entries the sk_buff will require in the
1663 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1664 * has complete. Then, it doesn't access the global structure anymore, but
1665 * uses the corresponding fields on the stack. In conjunction with a spinlock
1666 * around that code, we can make the function reentrant without holding the
1667 * lock when we actually enqueue (which might be expensive, especially on
1668 * architectures with IO MMUs).
1670 * This runs with softirqs disabled.
1672 static int t1_sge_tx(struct sk_buff
*skb
, struct adapter
*adapter
,
1673 unsigned int qid
, struct net_device
*dev
)
1675 struct sge
*sge
= adapter
->sge
;
1676 struct cmdQ
*q
= &sge
->cmdQ
[qid
];
1677 unsigned int credits
, pidx
, genbit
, count
, use_sched_skb
= 0;
1679 if (!spin_trylock(&q
->lock
))
1680 return NETDEV_TX_LOCKED
;
1682 reclaim_completed_tx(sge
, q
);
1685 credits
= q
->size
- q
->in_use
;
1686 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1687 count
+= compute_large_page_tx_descs(skb
);
1689 /* Ethernet packet */
1690 if (unlikely(credits
< count
)) {
1691 if (!netif_queue_stopped(dev
)) {
1692 netif_stop_queue(dev
);
1693 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1694 sge
->stats
.cmdQ_full
[2]++;
1695 pr_err("%s: Tx ring full while queue awake!\n",
1698 spin_unlock(&q
->lock
);
1699 return NETDEV_TX_BUSY
;
1702 if (unlikely(credits
- count
< q
->stop_thres
)) {
1703 netif_stop_queue(dev
);
1704 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1705 sge
->stats
.cmdQ_full
[2]++;
1708 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1709 * through the scheduler.
1711 if (sge
->tx_sched
&& !qid
&& skb
->dev
) {
1714 /* Note that the scheduler might return a different skb than
1715 * the one passed in.
1717 skb
= sched_skb(sge
, skb
, credits
);
1719 spin_unlock(&q
->lock
);
1720 return NETDEV_TX_OK
;
1723 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1724 count
+= compute_large_page_tx_descs(skb
);
1731 if (q
->pidx
>= q
->size
) {
1735 spin_unlock(&q
->lock
);
1737 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1740 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1741 * the doorbell if the Q is asleep. There is a natural race, where
1742 * the hardware is going to sleep just after we checked, however,
1743 * then the interrupt handler will detect the outstanding TX packet
1744 * and ring the doorbell for us.
1747 doorbell_pio(adapter
, F_CMDQ1_ENABLE
);
1749 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1750 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1751 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1752 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1756 if (use_sched_skb
) {
1757 if (spin_trylock(&q
->lock
)) {
1758 credits
= q
->size
- q
->in_use
;
1763 return NETDEV_TX_OK
;
1766 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1769 * eth_hdr_len - return the length of an Ethernet header
1770 * @data: pointer to the start of the Ethernet header
1772 * Returns the length of an Ethernet header, including optional VLAN tag.
1774 static inline int eth_hdr_len(const void *data
)
1776 const struct ethhdr
*e
= data
;
1778 return e
->h_proto
== htons(ETH_P_8021Q
) ? VLAN_ETH_HLEN
: ETH_HLEN
;
1782 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1784 netdev_tx_t
t1_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1786 struct adapter
*adapter
= dev
->ml_priv
;
1787 struct sge
*sge
= adapter
->sge
;
1788 struct sge_port_stats
*st
= this_cpu_ptr(sge
->port_stats
[dev
->if_port
]);
1789 struct cpl_tx_pkt
*cpl
;
1790 struct sk_buff
*orig_skb
= skb
;
1793 if (skb
->protocol
== htons(ETH_P_CPL5
))
1797 * We are using a non-standard hard_header_len.
1798 * Allocate more header room in the rare cases it is not big enough.
1800 if (unlikely(skb_headroom(skb
) < dev
->hard_header_len
- ETH_HLEN
)) {
1801 skb
= skb_realloc_headroom(skb
, sizeof(struct cpl_tx_pkt_lso
));
1802 ++st
->tx_need_hdrroom
;
1803 dev_kfree_skb_any(orig_skb
);
1805 return NETDEV_TX_OK
;
1808 if (skb_shinfo(skb
)->gso_size
) {
1810 struct cpl_tx_pkt_lso
*hdr
;
1814 eth_type
= skb_network_offset(skb
) == ETH_HLEN
?
1815 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1817 hdr
= (struct cpl_tx_pkt_lso
*)skb_push(skb
, sizeof(*hdr
));
1818 hdr
->opcode
= CPL_TX_PKT_LSO
;
1819 hdr
->ip_csum_dis
= hdr
->l4_csum_dis
= 0;
1820 hdr
->ip_hdr_words
= ip_hdr(skb
)->ihl
;
1821 hdr
->tcp_hdr_words
= tcp_hdr(skb
)->doff
;
1822 hdr
->eth_type_mss
= htons(MK_ETH_TYPE_MSS(eth_type
,
1823 skb_shinfo(skb
)->gso_size
));
1824 hdr
->len
= htonl(skb
->len
- sizeof(*hdr
));
1825 cpl
= (struct cpl_tx_pkt
*)hdr
;
1828 * Packets shorter than ETH_HLEN can break the MAC, drop them
1829 * early. Also, we may get oversized packets because some
1830 * parts of the kernel don't handle our unusual hard_header_len
1831 * right, drop those too.
1833 if (unlikely(skb
->len
< ETH_HLEN
||
1834 skb
->len
> dev
->mtu
+ eth_hdr_len(skb
->data
))) {
1835 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev
->name
,
1836 skb
->len
, eth_hdr_len(skb
->data
), dev
->mtu
);
1837 dev_kfree_skb_any(skb
);
1838 return NETDEV_TX_OK
;
1841 if (!(adapter
->flags
& UDP_CSUM_CAPABLE
) &&
1842 skb
->ip_summed
== CHECKSUM_PARTIAL
&&
1843 ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1844 if (unlikely(skb_checksum_help(skb
))) {
1845 pr_debug("%s: unable to do udp checksum\n", dev
->name
);
1846 dev_kfree_skb_any(skb
);
1847 return NETDEV_TX_OK
;
1851 /* Hmmm, assuming to catch the gratious arp... and we'll use
1852 * it to flush out stuck espi packets...
1854 if ((unlikely(!adapter
->sge
->espibug_skb
[dev
->if_port
]))) {
1855 if (skb
->protocol
== htons(ETH_P_ARP
) &&
1856 arp_hdr(skb
)->ar_op
== htons(ARPOP_REQUEST
)) {
1857 adapter
->sge
->espibug_skb
[dev
->if_port
] = skb
;
1858 /* We want to re-use this skb later. We
1859 * simply bump the reference count and it
1860 * will not be freed...
1866 cpl
= (struct cpl_tx_pkt
*)__skb_push(skb
, sizeof(*cpl
));
1867 cpl
->opcode
= CPL_TX_PKT
;
1868 cpl
->ip_csum_dis
= 1; /* SW calculates IP csum */
1869 cpl
->l4_csum_dis
= skb
->ip_summed
== CHECKSUM_PARTIAL
? 0 : 1;
1870 /* the length field isn't used so don't bother setting it */
1872 st
->tx_cso
+= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
1874 cpl
->iff
= dev
->if_port
;
1876 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1877 if (vlan_tx_tag_present(skb
)) {
1878 cpl
->vlan_valid
= 1;
1879 cpl
->vlan
= htons(vlan_tx_tag_get(skb
));
1883 cpl
->vlan_valid
= 0;
1886 ret
= t1_sge_tx(skb
, adapter
, 0, dev
);
1888 /* If transmit busy, and we reallocated skb's due to headroom limit,
1889 * then silently discard to avoid leak.
1891 if (unlikely(ret
!= NETDEV_TX_OK
&& skb
!= orig_skb
)) {
1892 dev_kfree_skb_any(skb
);
1899 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1901 static void sge_tx_reclaim_cb(unsigned long data
)
1904 struct sge
*sge
= (struct sge
*)data
;
1906 for (i
= 0; i
< SGE_CMDQ_N
; ++i
) {
1907 struct cmdQ
*q
= &sge
->cmdQ
[i
];
1909 if (!spin_trylock(&q
->lock
))
1912 reclaim_completed_tx(sge
, q
);
1913 if (i
== 0 && q
->in_use
) { /* flush pending credits */
1914 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
1916 spin_unlock(&q
->lock
);
1918 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1922 * Propagate changes of the SGE coalescing parameters to the HW.
1924 int t1_sge_set_coalesce_params(struct sge
*sge
, struct sge_params
*p
)
1926 sge
->fixed_intrtimer
= p
->rx_coalesce_usecs
*
1927 core_ticks_per_usec(sge
->adapter
);
1928 writel(sge
->fixed_intrtimer
, sge
->adapter
->regs
+ A_SG_INTRTIMER
);
1933 * Allocates both RX and TX resources and configures the SGE. However,
1934 * the hardware is not enabled yet.
1936 int t1_sge_configure(struct sge
*sge
, struct sge_params
*p
)
1938 if (alloc_rx_resources(sge
, p
))
1940 if (alloc_tx_resources(sge
, p
)) {
1941 free_rx_resources(sge
);
1944 configure_sge(sge
, p
);
1947 * Now that we have sized the free lists calculate the payload
1948 * capacity of the large buffers. Other parts of the driver use
1949 * this to set the max offload coalescing size so that RX packets
1950 * do not overflow our large buffers.
1952 p
->large_buf_capacity
= jumbo_payload_capacity(sge
);
1957 * Disables the DMA engine.
1959 void t1_sge_stop(struct sge
*sge
)
1962 writel(0, sge
->adapter
->regs
+ A_SG_CONTROL
);
1963 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1965 if (is_T2(sge
->adapter
))
1966 del_timer_sync(&sge
->espibug_timer
);
1968 del_timer_sync(&sge
->tx_reclaim_timer
);
1972 for (i
= 0; i
< MAX_NPORTS
; i
++)
1973 kfree_skb(sge
->espibug_skb
[i
]);
1977 * Enables the DMA engine.
1979 void t1_sge_start(struct sge
*sge
)
1981 refill_free_list(sge
, &sge
->freelQ
[0]);
1982 refill_free_list(sge
, &sge
->freelQ
[1]);
1984 writel(sge
->sge_control
, sge
->adapter
->regs
+ A_SG_CONTROL
);
1985 doorbell_pio(sge
->adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
1986 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1988 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1990 if (is_T2(sge
->adapter
))
1991 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
1995 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1997 static void espibug_workaround_t204(unsigned long data
)
1999 struct adapter
*adapter
= (struct adapter
*)data
;
2000 struct sge
*sge
= adapter
->sge
;
2001 unsigned int nports
= adapter
->params
.nports
;
2002 u32 seop
[MAX_NPORTS
];
2004 if (adapter
->open_device_map
& PORT_MASK
) {
2007 if (t1_espi_get_mon_t204(adapter
, &(seop
[0]), 0) < 0)
2010 for (i
= 0; i
< nports
; i
++) {
2011 struct sk_buff
*skb
= sge
->espibug_skb
[i
];
2013 if (!netif_running(adapter
->port
[i
].dev
) ||
2014 netif_queue_stopped(adapter
->port
[i
].dev
) ||
2015 !seop
[i
] || ((seop
[i
] & 0xfff) != 0) || !skb
)
2019 skb_copy_to_linear_data_offset(skb
,
2020 sizeof(struct cpl_tx_pkt
),
2023 skb_copy_to_linear_data_offset(skb
,
2030 /* bump the reference count to avoid freeing of
2031 * the skb once the DMA has completed.
2034 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[i
].dev
);
2037 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2040 static void espibug_workaround(unsigned long data
)
2042 struct adapter
*adapter
= (struct adapter
*)data
;
2043 struct sge
*sge
= adapter
->sge
;
2045 if (netif_running(adapter
->port
[0].dev
)) {
2046 struct sk_buff
*skb
= sge
->espibug_skb
[0];
2047 u32 seop
= t1_espi_get_mon(adapter
, 0x930, 0);
2049 if ((seop
& 0xfff0fff) == 0xfff && skb
) {
2051 skb_copy_to_linear_data_offset(skb
,
2052 sizeof(struct cpl_tx_pkt
),
2055 skb_copy_to_linear_data_offset(skb
,
2062 /* bump the reference count to avoid freeing of the
2063 * skb once the DMA has completed.
2066 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[0].dev
);
2069 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2073 * Creates a t1_sge structure and returns suggested resource parameters.
2075 struct sge
* __devinit
t1_sge_create(struct adapter
*adapter
,
2076 struct sge_params
*p
)
2078 struct sge
*sge
= kzalloc(sizeof(*sge
), GFP_KERNEL
);
2084 sge
->adapter
= adapter
;
2085 sge
->netdev
= adapter
->port
[0].dev
;
2086 sge
->rx_pkt_pad
= t1_is_T1B(adapter
) ? 0 : 2;
2087 sge
->jumbo_fl
= t1_is_T1B(adapter
) ? 1 : 0;
2089 for_each_port(adapter
, i
) {
2090 sge
->port_stats
[i
] = alloc_percpu(struct sge_port_stats
);
2091 if (!sge
->port_stats
[i
])
2095 init_timer(&sge
->tx_reclaim_timer
);
2096 sge
->tx_reclaim_timer
.data
= (unsigned long)sge
;
2097 sge
->tx_reclaim_timer
.function
= sge_tx_reclaim_cb
;
2099 if (is_T2(sge
->adapter
)) {
2100 init_timer(&sge
->espibug_timer
);
2102 if (adapter
->params
.nports
> 1) {
2104 sge
->espibug_timer
.function
= espibug_workaround_t204
;
2106 sge
->espibug_timer
.function
= espibug_workaround
;
2107 sge
->espibug_timer
.data
= (unsigned long)sge
->adapter
;
2109 sge
->espibug_timeout
= 1;
2110 /* for T204, every 10ms */
2111 if (adapter
->params
.nports
> 1)
2112 sge
->espibug_timeout
= HZ
/100;
2116 p
->cmdQ_size
[0] = SGE_CMDQ0_E_N
;
2117 p
->cmdQ_size
[1] = SGE_CMDQ1_E_N
;
2118 p
->freelQ_size
[!sge
->jumbo_fl
] = SGE_FREEL_SIZE
;
2119 p
->freelQ_size
[sge
->jumbo_fl
] = SGE_JUMBO_FREEL_SIZE
;
2120 if (sge
->tx_sched
) {
2121 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
)
2122 p
->rx_coalesce_usecs
= 15;
2124 p
->rx_coalesce_usecs
= 50;
2126 p
->rx_coalesce_usecs
= 50;
2128 p
->coalesce_enable
= 0;
2129 p
->sample_interval_usecs
= 0;
2134 free_percpu(sge
->port_stats
[i
]);