1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
15 #include <linux/spinlock.h>
17 /**************************************************************************
21 **************************************************************************
23 * Notes on locking strategy:
25 * Most CSRs are 128-bit (oword) and therefore cannot be read or
26 * written atomically. Access from the host is buffered by the Bus
27 * Interface Unit (BIU). Whenever the host reads from the lowest
28 * address of such a register, or from the address of a different such
29 * register, the BIU latches the register's value. Subsequent reads
30 * from higher addresses of the same register will read the latched
31 * value. Whenever the host writes part of such a register, the BIU
32 * collects the written value and does not write to the underlying
33 * register until all 4 dwords have been written. A similar buffering
34 * scheme applies to host access to the NIC's 64-bit SRAM.
36 * Access to different CSRs and 64-bit SRAM words must be serialised,
37 * since interleaved access can result in lost writes or lost
38 * information from read-to-clear fields. We use efx_nic::biu_lock
39 * for this. (We could use separate locks for read and write, but
40 * this is not normally a performance bottleneck.)
42 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
43 * 128-bit but are special-cased in the BIU to avoid the need for
44 * locking in the host:
46 * - They are write-only.
47 * - The semantics of writing to these registers are such that
48 * replacing the low 96 bits with zero does not affect functionality.
49 * - If the host writes to the last dword address of such a register
50 * (i.e. the high 32 bits) the underlying register will always be
51 * written. If the collector and the current write together do not
52 * provide values for all 128 bits of the register, the low 96 bits
53 * will be written as zero.
54 * - If the host writes to the address of any other part of such a
55 * register while the collector already holds values for some other
56 * register, the write is discarded and the collector maintains its
60 #if BITS_PER_LONG == 64
61 #define EFX_USE_QWORD_IO 1
64 #ifdef EFX_USE_QWORD_IO
65 static inline void _efx_writeq(struct efx_nic
*efx
, __le64 value
,
68 __raw_writeq((__force u64
)value
, efx
->membase
+ reg
);
70 static inline __le64
_efx_readq(struct efx_nic
*efx
, unsigned int reg
)
72 return (__force __le64
)__raw_readq(efx
->membase
+ reg
);
76 static inline void _efx_writed(struct efx_nic
*efx
, __le32 value
,
79 __raw_writel((__force u32
)value
, efx
->membase
+ reg
);
81 static inline __le32
_efx_readd(struct efx_nic
*efx
, unsigned int reg
)
83 return (__force __le32
)__raw_readl(efx
->membase
+ reg
);
86 /* Write a normal 128-bit CSR, locking as appropriate. */
87 static inline void efx_writeo(struct efx_nic
*efx
, efx_oword_t
*value
,
90 unsigned long flags
__attribute__ ((unused
));
92 netif_vdbg(efx
, hw
, efx
->net_dev
,
93 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
94 EFX_OWORD_VAL(*value
));
96 spin_lock_irqsave(&efx
->biu_lock
, flags
);
97 #ifdef EFX_USE_QWORD_IO
98 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
99 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
101 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
102 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
103 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
104 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
108 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
111 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
112 static inline void efx_sram_writeq(struct efx_nic
*efx
, void __iomem
*membase
,
113 efx_qword_t
*value
, unsigned int index
)
115 unsigned int addr
= index
* sizeof(*value
);
116 unsigned long flags
__attribute__ ((unused
));
118 netif_vdbg(efx
, hw
, efx
->net_dev
,
119 "writing SRAM address %x with " EFX_QWORD_FMT
"\n",
120 addr
, EFX_QWORD_VAL(*value
));
122 spin_lock_irqsave(&efx
->biu_lock
, flags
);
123 #ifdef EFX_USE_QWORD_IO
124 __raw_writeq((__force u64
)value
->u64
[0], membase
+ addr
);
126 __raw_writel((__force u32
)value
->u32
[0], membase
+ addr
);
127 __raw_writel((__force u32
)value
->u32
[1], membase
+ addr
+ 4);
131 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
134 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
135 static inline void efx_writed(struct efx_nic
*efx
, efx_dword_t
*value
,
138 netif_vdbg(efx
, hw
, efx
->net_dev
,
139 "writing register %x with "EFX_DWORD_FMT
"\n",
140 reg
, EFX_DWORD_VAL(*value
));
142 /* No lock required */
143 _efx_writed(efx
, value
->u32
[0], reg
);
147 /* Read a 128-bit CSR, locking as appropriate. */
148 static inline void efx_reado(struct efx_nic
*efx
, efx_oword_t
*value
,
151 unsigned long flags
__attribute__ ((unused
));
153 spin_lock_irqsave(&efx
->biu_lock
, flags
);
154 value
->u32
[0] = _efx_readd(efx
, reg
+ 0);
156 value
->u32
[1] = _efx_readd(efx
, reg
+ 4);
157 value
->u32
[2] = _efx_readd(efx
, reg
+ 8);
158 value
->u32
[3] = _efx_readd(efx
, reg
+ 12);
159 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
161 netif_vdbg(efx
, hw
, efx
->net_dev
,
162 "read from register %x, got " EFX_OWORD_FMT
"\n", reg
,
163 EFX_OWORD_VAL(*value
));
166 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
167 static inline void efx_sram_readq(struct efx_nic
*efx
, void __iomem
*membase
,
168 efx_qword_t
*value
, unsigned int index
)
170 unsigned int addr
= index
* sizeof(*value
);
171 unsigned long flags
__attribute__ ((unused
));
173 spin_lock_irqsave(&efx
->biu_lock
, flags
);
174 #ifdef EFX_USE_QWORD_IO
175 value
->u64
[0] = (__force __le64
)__raw_readq(membase
+ addr
);
177 value
->u32
[0] = (__force __le32
)__raw_readl(membase
+ addr
);
179 value
->u32
[1] = (__force __le32
)__raw_readl(membase
+ addr
+ 4);
181 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
183 netif_vdbg(efx
, hw
, efx
->net_dev
,
184 "read from SRAM address %x, got "EFX_QWORD_FMT
"\n",
185 addr
, EFX_QWORD_VAL(*value
));
188 /* Read a 32-bit CSR or SRAM */
189 static inline void efx_readd(struct efx_nic
*efx
, efx_dword_t
*value
,
192 value
->u32
[0] = _efx_readd(efx
, reg
);
193 netif_vdbg(efx
, hw
, efx
->net_dev
,
194 "read from register %x, got "EFX_DWORD_FMT
"\n",
195 reg
, EFX_DWORD_VAL(*value
));
198 /* Write a 128-bit CSR forming part of a table */
199 static inline void efx_writeo_table(struct efx_nic
*efx
, efx_oword_t
*value
,
200 unsigned int reg
, unsigned int index
)
202 efx_writeo(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
205 /* Read a 128-bit CSR forming part of a table */
206 static inline void efx_reado_table(struct efx_nic
*efx
, efx_oword_t
*value
,
207 unsigned int reg
, unsigned int index
)
209 efx_reado(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
212 /* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */
213 static inline void efx_writed_table(struct efx_nic
*efx
, efx_dword_t
*value
,
214 unsigned int reg
, unsigned int index
)
216 efx_writed(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
219 /* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */
220 static inline void efx_readd_table(struct efx_nic
*efx
, efx_dword_t
*value
,
221 unsigned int reg
, unsigned int index
)
223 efx_readd(efx
, value
, reg
+ index
* sizeof(efx_dword_t
));
226 /* Page-mapped register block size */
227 #define EFX_PAGE_BLOCK_SIZE 0x2000
229 /* Calculate offset to page-mapped register block */
230 #define EFX_PAGED_REG(page, reg) \
231 ((page) * EFX_PAGE_BLOCK_SIZE + (reg))
233 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
234 static inline void _efx_writeo_page(struct efx_nic
*efx
, efx_oword_t
*value
,
235 unsigned int reg
, unsigned int page
)
237 reg
= EFX_PAGED_REG(page
, reg
);
239 netif_vdbg(efx
, hw
, efx
->net_dev
,
240 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
241 EFX_OWORD_VAL(*value
));
243 #ifdef EFX_USE_QWORD_IO
244 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
245 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
247 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
248 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
249 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
250 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
254 #define efx_writeo_page(efx, value, reg, page) \
255 _efx_writeo_page(efx, value, \
257 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
260 /* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
261 * RX_DESC_UPD or TX_DESC_UPD)
263 static inline void _efx_writed_page(struct efx_nic
*efx
, efx_dword_t
*value
,
264 unsigned int reg
, unsigned int page
)
266 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
268 #define efx_writed_page(efx, value, reg, page) \
269 _efx_writed_page(efx, value, \
271 BUILD_BUG_ON_ZERO((reg) != 0x400 && (reg) != 0x83c \
272 && (reg) != 0xa1c), \
275 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
276 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
277 * collector register.
279 static inline void _efx_writed_page_locked(struct efx_nic
*efx
,
284 unsigned long flags
__attribute__ ((unused
));
287 spin_lock_irqsave(&efx
->biu_lock
, flags
);
288 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
289 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
291 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
294 #define efx_writed_page_locked(efx, value, reg, page) \
295 _efx_writed_page_locked(efx, value, \
296 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
299 #endif /* EFX_IO_H */