4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <asm/div64.h>
39 #include "cifsproto.h"
40 #include "cifs_unicode.h"
41 #include "cifs_debug.h"
42 #include "cifs_fs_sb.h"
45 static inline int cifs_convert_flags(unsigned int flags
)
47 if ((flags
& O_ACCMODE
) == O_RDONLY
)
49 else if ((flags
& O_ACCMODE
) == O_WRONLY
)
51 else if ((flags
& O_ACCMODE
) == O_RDWR
) {
52 /* GENERIC_ALL is too much permission to request
53 can cause unnecessary access denied on create */
54 /* return GENERIC_ALL; */
55 return (GENERIC_READ
| GENERIC_WRITE
);
58 return (READ_CONTROL
| FILE_WRITE_ATTRIBUTES
| FILE_READ_ATTRIBUTES
|
59 FILE_WRITE_EA
| FILE_APPEND_DATA
| FILE_WRITE_DATA
|
63 static u32
cifs_posix_convert_flags(unsigned int flags
)
67 if ((flags
& O_ACCMODE
) == O_RDONLY
)
68 posix_flags
= SMB_O_RDONLY
;
69 else if ((flags
& O_ACCMODE
) == O_WRONLY
)
70 posix_flags
= SMB_O_WRONLY
;
71 else if ((flags
& O_ACCMODE
) == O_RDWR
)
72 posix_flags
= SMB_O_RDWR
;
75 posix_flags
|= SMB_O_CREAT
;
77 posix_flags
|= SMB_O_EXCL
;
79 posix_flags
|= SMB_O_TRUNC
;
80 /* be safe and imply O_SYNC for O_DSYNC */
82 posix_flags
|= SMB_O_SYNC
;
83 if (flags
& O_DIRECTORY
)
84 posix_flags
|= SMB_O_DIRECTORY
;
85 if (flags
& O_NOFOLLOW
)
86 posix_flags
|= SMB_O_NOFOLLOW
;
88 posix_flags
|= SMB_O_DIRECT
;
93 static inline int cifs_get_disposition(unsigned int flags
)
95 if ((flags
& (O_CREAT
| O_EXCL
)) == (O_CREAT
| O_EXCL
))
97 else if ((flags
& (O_CREAT
| O_TRUNC
)) == (O_CREAT
| O_TRUNC
))
98 return FILE_OVERWRITE_IF
;
99 else if ((flags
& O_CREAT
) == O_CREAT
)
101 else if ((flags
& O_TRUNC
) == O_TRUNC
)
102 return FILE_OVERWRITE
;
107 int cifs_posix_open(char *full_path
, struct inode
**pinode
,
108 struct super_block
*sb
, int mode
, unsigned int f_flags
,
109 __u32
*poplock
, __u16
*pnetfid
, int xid
)
112 FILE_UNIX_BASIC_INFO
*presp_data
;
113 __u32 posix_flags
= 0;
114 struct cifs_sb_info
*cifs_sb
= CIFS_SB(sb
);
115 struct cifs_fattr fattr
;
116 struct tcon_link
*tlink
;
117 struct cifsTconInfo
*tcon
;
119 cFYI(1, "posix open %s", full_path
);
121 presp_data
= kzalloc(sizeof(FILE_UNIX_BASIC_INFO
), GFP_KERNEL
);
122 if (presp_data
== NULL
)
125 tlink
= cifs_sb_tlink(cifs_sb
);
131 tcon
= tlink_tcon(tlink
);
132 mode
&= ~current_umask();
134 posix_flags
= cifs_posix_convert_flags(f_flags
);
135 rc
= CIFSPOSIXCreate(xid
, tcon
, posix_flags
, mode
, pnetfid
, presp_data
,
136 poplock
, full_path
, cifs_sb
->local_nls
,
137 cifs_sb
->mnt_cifs_flags
&
138 CIFS_MOUNT_MAP_SPECIAL_CHR
);
139 cifs_put_tlink(tlink
);
144 if (presp_data
->Type
== cpu_to_le32(-1))
145 goto posix_open_ret
; /* open ok, caller does qpathinfo */
148 goto posix_open_ret
; /* caller does not need info */
150 cifs_unix_basic_to_fattr(&fattr
, presp_data
, cifs_sb
);
152 /* get new inode and set it up */
153 if (*pinode
== NULL
) {
154 cifs_fill_uniqueid(sb
, &fattr
);
155 *pinode
= cifs_iget(sb
, &fattr
);
161 cifs_fattr_to_inode(*pinode
, &fattr
);
170 cifs_nt_open(char *full_path
, struct inode
*inode
, struct cifs_sb_info
*cifs_sb
,
171 struct cifsTconInfo
*tcon
, unsigned int f_flags
, __u32
*poplock
,
172 __u16
*pnetfid
, int xid
)
179 desiredAccess
= cifs_convert_flags(f_flags
);
181 /*********************************************************************
182 * open flag mapping table:
184 * POSIX Flag CIFS Disposition
185 * ---------- ----------------
186 * O_CREAT FILE_OPEN_IF
187 * O_CREAT | O_EXCL FILE_CREATE
188 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
189 * O_TRUNC FILE_OVERWRITE
190 * none of the above FILE_OPEN
192 * Note that there is not a direct match between disposition
193 * FILE_SUPERSEDE (ie create whether or not file exists although
194 * O_CREAT | O_TRUNC is similar but truncates the existing
195 * file rather than creating a new file as FILE_SUPERSEDE does
196 * (which uses the attributes / metadata passed in on open call)
198 *? O_SYNC is a reasonable match to CIFS writethrough flag
199 *? and the read write flags match reasonably. O_LARGEFILE
200 *? is irrelevant because largefile support is always used
201 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
202 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
203 *********************************************************************/
205 disposition
= cifs_get_disposition(f_flags
);
207 /* BB pass O_SYNC flag through on file attributes .. BB */
209 buf
= kmalloc(sizeof(FILE_ALL_INFO
), GFP_KERNEL
);
213 if (tcon
->ses
->capabilities
& CAP_NT_SMBS
)
214 rc
= CIFSSMBOpen(xid
, tcon
, full_path
, disposition
,
215 desiredAccess
, CREATE_NOT_DIR
, pnetfid
, poplock
, buf
,
216 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
217 & CIFS_MOUNT_MAP_SPECIAL_CHR
);
219 rc
= SMBLegacyOpen(xid
, tcon
, full_path
, disposition
,
220 desiredAccess
, CREATE_NOT_DIR
, pnetfid
, poplock
, buf
,
221 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR
);
228 rc
= cifs_get_inode_info_unix(&inode
, full_path
, inode
->i_sb
,
231 rc
= cifs_get_inode_info(&inode
, full_path
, buf
, inode
->i_sb
,
239 struct cifsFileInfo
*
240 cifs_new_fileinfo(__u16 fileHandle
, struct file
*file
,
241 struct tcon_link
*tlink
, __u32 oplock
)
243 struct dentry
*dentry
= file
->f_path
.dentry
;
244 struct inode
*inode
= dentry
->d_inode
;
245 struct cifsInodeInfo
*pCifsInode
= CIFS_I(inode
);
246 struct cifsFileInfo
*pCifsFile
;
248 pCifsFile
= kzalloc(sizeof(struct cifsFileInfo
), GFP_KERNEL
);
249 if (pCifsFile
== NULL
)
252 pCifsFile
->count
= 1;
253 pCifsFile
->netfid
= fileHandle
;
254 pCifsFile
->pid
= current
->tgid
;
255 pCifsFile
->uid
= current_fsuid();
256 pCifsFile
->dentry
= dget(dentry
);
257 pCifsFile
->f_flags
= file
->f_flags
;
258 pCifsFile
->invalidHandle
= false;
259 pCifsFile
->tlink
= cifs_get_tlink(tlink
);
260 mutex_init(&pCifsFile
->fh_mutex
);
261 mutex_init(&pCifsFile
->lock_mutex
);
262 INIT_LIST_HEAD(&pCifsFile
->llist
);
263 INIT_WORK(&pCifsFile
->oplock_break
, cifs_oplock_break
);
265 spin_lock(&cifs_file_list_lock
);
266 list_add(&pCifsFile
->tlist
, &(tlink_tcon(tlink
)->openFileList
));
267 /* if readable file instance put first in list*/
268 if (file
->f_mode
& FMODE_READ
)
269 list_add(&pCifsFile
->flist
, &pCifsInode
->openFileList
);
271 list_add_tail(&pCifsFile
->flist
, &pCifsInode
->openFileList
);
272 spin_unlock(&cifs_file_list_lock
);
274 cifs_set_oplock_level(pCifsInode
, oplock
);
276 file
->private_data
= pCifsFile
;
281 * Release a reference on the file private data. This may involve closing
282 * the filehandle out on the server. Must be called without holding
283 * cifs_file_list_lock.
285 void cifsFileInfo_put(struct cifsFileInfo
*cifs_file
)
287 struct inode
*inode
= cifs_file
->dentry
->d_inode
;
288 struct cifsTconInfo
*tcon
= tlink_tcon(cifs_file
->tlink
);
289 struct cifsInodeInfo
*cifsi
= CIFS_I(inode
);
290 struct cifs_sb_info
*cifs_sb
= CIFS_SB(inode
->i_sb
);
291 struct cifsLockInfo
*li
, *tmp
;
293 spin_lock(&cifs_file_list_lock
);
294 if (--cifs_file
->count
> 0) {
295 spin_unlock(&cifs_file_list_lock
);
299 /* remove it from the lists */
300 list_del(&cifs_file
->flist
);
301 list_del(&cifs_file
->tlist
);
303 if (list_empty(&cifsi
->openFileList
)) {
304 cFYI(1, "closing last open instance for inode %p",
305 cifs_file
->dentry
->d_inode
);
307 /* in strict cache mode we need invalidate mapping on the last
308 close because it may cause a error when we open this file
309 again and get at least level II oplock */
310 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_STRICT_IO
)
311 CIFS_I(inode
)->invalid_mapping
= true;
313 cifs_set_oplock_level(cifsi
, 0);
315 spin_unlock(&cifs_file_list_lock
);
317 if (!tcon
->need_reconnect
&& !cifs_file
->invalidHandle
) {
321 rc
= CIFSSMBClose(xid
, tcon
, cifs_file
->netfid
);
325 /* Delete any outstanding lock records. We'll lose them when the file
328 mutex_lock(&cifs_file
->lock_mutex
);
329 list_for_each_entry_safe(li
, tmp
, &cifs_file
->llist
, llist
) {
330 list_del(&li
->llist
);
333 mutex_unlock(&cifs_file
->lock_mutex
);
335 cifs_put_tlink(cifs_file
->tlink
);
336 dput(cifs_file
->dentry
);
340 int cifs_open(struct inode
*inode
, struct file
*file
)
345 struct cifs_sb_info
*cifs_sb
;
346 struct cifsTconInfo
*tcon
;
347 struct tcon_link
*tlink
;
348 struct cifsFileInfo
*pCifsFile
= NULL
;
349 char *full_path
= NULL
;
350 bool posix_open_ok
= false;
355 cifs_sb
= CIFS_SB(inode
->i_sb
);
356 tlink
= cifs_sb_tlink(cifs_sb
);
359 return PTR_ERR(tlink
);
361 tcon
= tlink_tcon(tlink
);
363 full_path
= build_path_from_dentry(file
->f_path
.dentry
);
364 if (full_path
== NULL
) {
369 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
370 inode
, file
->f_flags
, full_path
);
377 if (!tcon
->broken_posix_open
&& tcon
->unix_ext
&&
378 (tcon
->ses
->capabilities
& CAP_UNIX
) &&
379 (CIFS_UNIX_POSIX_PATH_OPS_CAP
&
380 le64_to_cpu(tcon
->fsUnixInfo
.Capability
))) {
381 /* can not refresh inode info since size could be stale */
382 rc
= cifs_posix_open(full_path
, &inode
, inode
->i_sb
,
383 cifs_sb
->mnt_file_mode
/* ignored */,
384 file
->f_flags
, &oplock
, &netfid
, xid
);
386 cFYI(1, "posix open succeeded");
387 posix_open_ok
= true;
388 } else if ((rc
== -EINVAL
) || (rc
== -EOPNOTSUPP
)) {
389 if (tcon
->ses
->serverNOS
)
390 cERROR(1, "server %s of type %s returned"
391 " unexpected error on SMB posix open"
392 ", disabling posix open support."
393 " Check if server update available.",
394 tcon
->ses
->serverName
,
395 tcon
->ses
->serverNOS
);
396 tcon
->broken_posix_open
= true;
397 } else if ((rc
!= -EIO
) && (rc
!= -EREMOTE
) &&
398 (rc
!= -EOPNOTSUPP
)) /* path not found or net err */
400 /* else fallthrough to retry open the old way on network i/o
404 if (!posix_open_ok
) {
405 rc
= cifs_nt_open(full_path
, inode
, cifs_sb
, tcon
,
406 file
->f_flags
, &oplock
, &netfid
, xid
);
411 pCifsFile
= cifs_new_fileinfo(netfid
, file
, tlink
, oplock
);
412 if (pCifsFile
== NULL
) {
413 CIFSSMBClose(xid
, tcon
, netfid
);
418 cifs_fscache_set_inode_cookie(inode
, file
);
420 if ((oplock
& CIFS_CREATE_ACTION
) && !posix_open_ok
&& tcon
->unix_ext
) {
421 /* time to set mode which we can not set earlier due to
422 problems creating new read-only files */
423 struct cifs_unix_set_info_args args
= {
424 .mode
= inode
->i_mode
,
427 .ctime
= NO_CHANGE_64
,
428 .atime
= NO_CHANGE_64
,
429 .mtime
= NO_CHANGE_64
,
432 CIFSSMBUnixSetFileInfo(xid
, tcon
, &args
, netfid
,
439 cifs_put_tlink(tlink
);
443 /* Try to reacquire byte range locks that were released when session */
444 /* to server was lost */
445 static int cifs_relock_file(struct cifsFileInfo
*cifsFile
)
449 /* BB list all locks open on this file and relock */
454 static int cifs_reopen_file(struct cifsFileInfo
*pCifsFile
, bool can_flush
)
459 struct cifs_sb_info
*cifs_sb
;
460 struct cifsTconInfo
*tcon
;
461 struct cifsInodeInfo
*pCifsInode
;
463 char *full_path
= NULL
;
465 int disposition
= FILE_OPEN
;
469 mutex_lock(&pCifsFile
->fh_mutex
);
470 if (!pCifsFile
->invalidHandle
) {
471 mutex_unlock(&pCifsFile
->fh_mutex
);
477 inode
= pCifsFile
->dentry
->d_inode
;
478 cifs_sb
= CIFS_SB(inode
->i_sb
);
479 tcon
= tlink_tcon(pCifsFile
->tlink
);
481 /* can not grab rename sem here because various ops, including
482 those that already have the rename sem can end up causing writepage
483 to get called and if the server was down that means we end up here,
484 and we can never tell if the caller already has the rename_sem */
485 full_path
= build_path_from_dentry(pCifsFile
->dentry
);
486 if (full_path
== NULL
) {
488 mutex_unlock(&pCifsFile
->fh_mutex
);
493 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
494 inode
, pCifsFile
->f_flags
, full_path
);
501 if (tcon
->unix_ext
&& (tcon
->ses
->capabilities
& CAP_UNIX
) &&
502 (CIFS_UNIX_POSIX_PATH_OPS_CAP
&
503 le64_to_cpu(tcon
->fsUnixInfo
.Capability
))) {
506 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
507 * original open. Must mask them off for a reopen.
509 unsigned int oflags
= pCifsFile
->f_flags
&
510 ~(O_CREAT
| O_EXCL
| O_TRUNC
);
512 rc
= cifs_posix_open(full_path
, NULL
, inode
->i_sb
,
513 cifs_sb
->mnt_file_mode
/* ignored */,
514 oflags
, &oplock
, &netfid
, xid
);
516 cFYI(1, "posix reopen succeeded");
519 /* fallthrough to retry open the old way on errors, especially
520 in the reconnect path it is important to retry hard */
523 desiredAccess
= cifs_convert_flags(pCifsFile
->f_flags
);
525 /* Can not refresh inode by passing in file_info buf to be returned
526 by SMBOpen and then calling get_inode_info with returned buf
527 since file might have write behind data that needs to be flushed
528 and server version of file size can be stale. If we knew for sure
529 that inode was not dirty locally we could do this */
531 rc
= CIFSSMBOpen(xid
, tcon
, full_path
, disposition
, desiredAccess
,
532 CREATE_NOT_DIR
, &netfid
, &oplock
, NULL
,
533 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
&
534 CIFS_MOUNT_MAP_SPECIAL_CHR
);
536 mutex_unlock(&pCifsFile
->fh_mutex
);
537 cFYI(1, "cifs_open returned 0x%x", rc
);
538 cFYI(1, "oplock: %d", oplock
);
539 goto reopen_error_exit
;
543 pCifsFile
->netfid
= netfid
;
544 pCifsFile
->invalidHandle
= false;
545 mutex_unlock(&pCifsFile
->fh_mutex
);
546 pCifsInode
= CIFS_I(inode
);
549 rc
= filemap_write_and_wait(inode
->i_mapping
);
550 mapping_set_error(inode
->i_mapping
, rc
);
553 rc
= cifs_get_inode_info_unix(&inode
,
554 full_path
, inode
->i_sb
, xid
);
556 rc
= cifs_get_inode_info(&inode
,
557 full_path
, NULL
, inode
->i_sb
,
559 } /* else we are writing out data to server already
560 and could deadlock if we tried to flush data, and
561 since we do not know if we have data that would
562 invalidate the current end of file on the server
563 we can not go to the server to get the new inod
566 cifs_set_oplock_level(pCifsInode
, oplock
);
568 cifs_relock_file(pCifsFile
);
576 int cifs_close(struct inode
*inode
, struct file
*file
)
578 if (file
->private_data
!= NULL
) {
579 cifsFileInfo_put(file
->private_data
);
580 file
->private_data
= NULL
;
583 /* return code from the ->release op is always ignored */
587 int cifs_closedir(struct inode
*inode
, struct file
*file
)
591 struct cifsFileInfo
*pCFileStruct
= file
->private_data
;
594 cFYI(1, "Closedir inode = 0x%p", inode
);
599 struct cifsTconInfo
*pTcon
= tlink_tcon(pCFileStruct
->tlink
);
601 cFYI(1, "Freeing private data in close dir");
602 spin_lock(&cifs_file_list_lock
);
603 if (!pCFileStruct
->srch_inf
.endOfSearch
&&
604 !pCFileStruct
->invalidHandle
) {
605 pCFileStruct
->invalidHandle
= true;
606 spin_unlock(&cifs_file_list_lock
);
607 rc
= CIFSFindClose(xid
, pTcon
, pCFileStruct
->netfid
);
608 cFYI(1, "Closing uncompleted readdir with rc %d",
610 /* not much we can do if it fails anyway, ignore rc */
613 spin_unlock(&cifs_file_list_lock
);
614 ptmp
= pCFileStruct
->srch_inf
.ntwrk_buf_start
;
616 cFYI(1, "closedir free smb buf in srch struct");
617 pCFileStruct
->srch_inf
.ntwrk_buf_start
= NULL
;
618 if (pCFileStruct
->srch_inf
.smallBuf
)
619 cifs_small_buf_release(ptmp
);
621 cifs_buf_release(ptmp
);
623 cifs_put_tlink(pCFileStruct
->tlink
);
624 kfree(file
->private_data
);
625 file
->private_data
= NULL
;
627 /* BB can we lock the filestruct while this is going on? */
632 static int store_file_lock(struct cifsFileInfo
*fid
, __u64 len
,
633 __u64 offset
, __u8 lockType
)
635 struct cifsLockInfo
*li
=
636 kmalloc(sizeof(struct cifsLockInfo
), GFP_KERNEL
);
642 mutex_lock(&fid
->lock_mutex
);
643 list_add(&li
->llist
, &fid
->llist
);
644 mutex_unlock(&fid
->lock_mutex
);
648 int cifs_lock(struct file
*file
, int cmd
, struct file_lock
*pfLock
)
654 bool wait_flag
= false;
655 struct cifs_sb_info
*cifs_sb
;
656 struct cifsTconInfo
*tcon
;
658 __u8 lockType
= LOCKING_ANDX_LARGE_FILES
;
659 bool posix_locking
= 0;
661 length
= 1 + pfLock
->fl_end
- pfLock
->fl_start
;
665 cFYI(1, "Lock parm: 0x%x flockflags: "
666 "0x%x flocktype: 0x%x start: %lld end: %lld",
667 cmd
, pfLock
->fl_flags
, pfLock
->fl_type
, pfLock
->fl_start
,
670 if (pfLock
->fl_flags
& FL_POSIX
)
672 if (pfLock
->fl_flags
& FL_FLOCK
)
674 if (pfLock
->fl_flags
& FL_SLEEP
) {
675 cFYI(1, "Blocking lock");
678 if (pfLock
->fl_flags
& FL_ACCESS
)
679 cFYI(1, "Process suspended by mandatory locking - "
680 "not implemented yet");
681 if (pfLock
->fl_flags
& FL_LEASE
)
682 cFYI(1, "Lease on file - not implemented yet");
683 if (pfLock
->fl_flags
&
684 (~(FL_POSIX
| FL_FLOCK
| FL_SLEEP
| FL_ACCESS
| FL_LEASE
)))
685 cFYI(1, "Unknown lock flags 0x%x", pfLock
->fl_flags
);
687 if (pfLock
->fl_type
== F_WRLCK
) {
690 } else if (pfLock
->fl_type
== F_UNLCK
) {
693 /* Check if unlock includes more than
695 } else if (pfLock
->fl_type
== F_RDLCK
) {
697 lockType
|= LOCKING_ANDX_SHARED_LOCK
;
699 } else if (pfLock
->fl_type
== F_EXLCK
) {
702 } else if (pfLock
->fl_type
== F_SHLCK
) {
704 lockType
|= LOCKING_ANDX_SHARED_LOCK
;
707 cFYI(1, "Unknown type of lock");
709 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
710 tcon
= tlink_tcon(((struct cifsFileInfo
*)file
->private_data
)->tlink
);
711 netfid
= ((struct cifsFileInfo
*)file
->private_data
)->netfid
;
713 if ((tcon
->ses
->capabilities
& CAP_UNIX
) &&
714 (CIFS_UNIX_FCNTL_CAP
& le64_to_cpu(tcon
->fsUnixInfo
.Capability
)) &&
715 ((cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOPOSIXBRL
) == 0))
717 /* BB add code here to normalize offset and length to
718 account for negative length which we can not accept over the
723 if (lockType
& LOCKING_ANDX_SHARED_LOCK
)
724 posix_lock_type
= CIFS_RDLCK
;
726 posix_lock_type
= CIFS_WRLCK
;
727 rc
= CIFSSMBPosixLock(xid
, tcon
, netfid
, 1 /* get */,
729 posix_lock_type
, wait_flag
);
734 /* BB we could chain these into one lock request BB */
735 rc
= CIFSSMBLock(xid
, tcon
, netfid
, length
, pfLock
->fl_start
,
736 0, 1, lockType
, 0 /* wait flag */, 0);
738 rc
= CIFSSMBLock(xid
, tcon
, netfid
, length
,
739 pfLock
->fl_start
, 1 /* numUnlock */ ,
740 0 /* numLock */ , lockType
,
741 0 /* wait flag */, 0);
742 pfLock
->fl_type
= F_UNLCK
;
744 cERROR(1, "Error unlocking previously locked "
745 "range %d during test of lock", rc
);
749 /* if rc == ERR_SHARING_VIOLATION ? */
752 if (lockType
& LOCKING_ANDX_SHARED_LOCK
) {
753 pfLock
->fl_type
= F_WRLCK
;
755 rc
= CIFSSMBLock(xid
, tcon
, netfid
, length
,
756 pfLock
->fl_start
, 0, 1,
757 lockType
| LOCKING_ANDX_SHARED_LOCK
,
758 0 /* wait flag */, 0);
760 rc
= CIFSSMBLock(xid
, tcon
, netfid
,
761 length
, pfLock
->fl_start
, 1, 0,
763 LOCKING_ANDX_SHARED_LOCK
,
764 0 /* wait flag */, 0);
765 pfLock
->fl_type
= F_RDLCK
;
767 cERROR(1, "Error unlocking "
768 "previously locked range %d "
769 "during test of lock", rc
);
772 pfLock
->fl_type
= F_WRLCK
;
782 if (!numLock
&& !numUnlock
) {
783 /* if no lock or unlock then nothing
784 to do since we do not know what it is */
791 if (lockType
& LOCKING_ANDX_SHARED_LOCK
)
792 posix_lock_type
= CIFS_RDLCK
;
794 posix_lock_type
= CIFS_WRLCK
;
797 posix_lock_type
= CIFS_UNLCK
;
799 rc
= CIFSSMBPosixLock(xid
, tcon
, netfid
, 0 /* set */,
801 posix_lock_type
, wait_flag
);
803 struct cifsFileInfo
*fid
= file
->private_data
;
806 rc
= CIFSSMBLock(xid
, tcon
, netfid
, length
,
807 pfLock
->fl_start
, 0, numLock
, lockType
,
811 /* For Windows locks we must store them. */
812 rc
= store_file_lock(fid
, length
,
813 pfLock
->fl_start
, lockType
);
815 } else if (numUnlock
) {
816 /* For each stored lock that this unlock overlaps
817 completely, unlock it. */
819 struct cifsLockInfo
*li
, *tmp
;
822 mutex_lock(&fid
->lock_mutex
);
823 list_for_each_entry_safe(li
, tmp
, &fid
->llist
, llist
) {
824 if (pfLock
->fl_start
<= li
->offset
&&
825 (pfLock
->fl_start
+ length
) >=
826 (li
->offset
+ li
->length
)) {
827 stored_rc
= CIFSSMBLock(xid
, tcon
,
834 list_del(&li
->llist
);
839 mutex_unlock(&fid
->lock_mutex
);
843 if (pfLock
->fl_flags
& FL_POSIX
)
844 posix_lock_file_wait(file
, pfLock
);
849 /* update the file size (if needed) after a write */
851 cifs_update_eof(struct cifsInodeInfo
*cifsi
, loff_t offset
,
852 unsigned int bytes_written
)
854 loff_t end_of_write
= offset
+ bytes_written
;
856 if (end_of_write
> cifsi
->server_eof
)
857 cifsi
->server_eof
= end_of_write
;
860 ssize_t
cifs_user_write(struct file
*file
, const char __user
*write_data
,
861 size_t write_size
, loff_t
*poffset
)
863 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
865 unsigned int bytes_written
= 0;
866 unsigned int total_written
;
867 struct cifs_sb_info
*cifs_sb
;
868 struct cifsTconInfo
*pTcon
;
870 struct cifsFileInfo
*open_file
;
871 struct cifsInodeInfo
*cifsi
= CIFS_I(inode
);
873 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
875 /* cFYI(1, " write %d bytes to offset %lld of %s", write_size,
876 *poffset, file->f_path.dentry->d_name.name); */
878 if (file
->private_data
== NULL
)
881 open_file
= file
->private_data
;
882 pTcon
= tlink_tcon(open_file
->tlink
);
884 rc
= generic_write_checks(file
, poffset
, &write_size
, 0);
890 for (total_written
= 0; write_size
> total_written
;
891 total_written
+= bytes_written
) {
893 while (rc
== -EAGAIN
) {
894 if (file
->private_data
== NULL
) {
895 /* file has been closed on us */
897 /* if we have gotten here we have written some data
898 and blocked, and the file has been freed on us while
899 we blocked so return what we managed to write */
900 return total_written
;
902 if (open_file
->invalidHandle
) {
903 /* we could deadlock if we called
904 filemap_fdatawait from here so tell
905 reopen_file not to flush data to server
907 rc
= cifs_reopen_file(open_file
, false);
912 rc
= CIFSSMBWrite(xid
, pTcon
,
914 min_t(const int, cifs_sb
->wsize
,
915 write_size
- total_written
),
916 *poffset
, &bytes_written
,
917 NULL
, write_data
+ total_written
, 0);
919 if (rc
|| (bytes_written
== 0)) {
927 cifs_update_eof(cifsi
, *poffset
, bytes_written
);
928 *poffset
+= bytes_written
;
932 cifs_stats_bytes_written(pTcon
, total_written
);
934 /* Do not update local mtime - server will set its actual value on write
935 * inode->i_ctime = inode->i_mtime =
936 * current_fs_time(inode->i_sb);*/
937 if (total_written
> 0) {
938 spin_lock(&inode
->i_lock
);
939 if (*poffset
> inode
->i_size
)
940 i_size_write(inode
, *poffset
);
941 spin_unlock(&inode
->i_lock
);
943 mark_inode_dirty_sync(inode
);
946 return total_written
;
949 static ssize_t
cifs_write(struct cifsFileInfo
*open_file
,
950 const char *write_data
, size_t write_size
,
954 unsigned int bytes_written
= 0;
955 unsigned int total_written
;
956 struct cifs_sb_info
*cifs_sb
;
957 struct cifsTconInfo
*pTcon
;
959 struct dentry
*dentry
= open_file
->dentry
;
960 struct cifsInodeInfo
*cifsi
= CIFS_I(dentry
->d_inode
);
962 cifs_sb
= CIFS_SB(dentry
->d_sb
);
964 cFYI(1, "write %zd bytes to offset %lld of %s", write_size
,
965 *poffset
, dentry
->d_name
.name
);
967 pTcon
= tlink_tcon(open_file
->tlink
);
971 for (total_written
= 0; write_size
> total_written
;
972 total_written
+= bytes_written
) {
974 while (rc
== -EAGAIN
) {
978 if (open_file
->invalidHandle
) {
979 /* we could deadlock if we called
980 filemap_fdatawait from here so tell
981 reopen_file not to flush data to
983 rc
= cifs_reopen_file(open_file
, false);
988 len
= min((size_t)cifs_sb
->wsize
,
989 write_size
- total_written
);
990 /* iov[0] is reserved for smb header */
991 iov
[1].iov_base
= (char *)write_data
+ total_written
;
992 iov
[1].iov_len
= len
;
993 rc
= CIFSSMBWrite2(xid
, pTcon
, open_file
->netfid
, len
,
994 *poffset
, &bytes_written
, iov
, 1, 0);
996 if (rc
|| (bytes_written
== 0)) {
1004 cifs_update_eof(cifsi
, *poffset
, bytes_written
);
1005 *poffset
+= bytes_written
;
1009 cifs_stats_bytes_written(pTcon
, total_written
);
1011 if (total_written
> 0) {
1012 spin_lock(&dentry
->d_inode
->i_lock
);
1013 if (*poffset
> dentry
->d_inode
->i_size
)
1014 i_size_write(dentry
->d_inode
, *poffset
);
1015 spin_unlock(&dentry
->d_inode
->i_lock
);
1017 mark_inode_dirty_sync(dentry
->d_inode
);
1019 return total_written
;
1022 struct cifsFileInfo
*find_readable_file(struct cifsInodeInfo
*cifs_inode
,
1025 struct cifsFileInfo
*open_file
= NULL
;
1026 struct cifs_sb_info
*cifs_sb
= CIFS_SB(cifs_inode
->vfs_inode
.i_sb
);
1028 /* only filter by fsuid on multiuser mounts */
1029 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_MULTIUSER
))
1032 spin_lock(&cifs_file_list_lock
);
1033 /* we could simply get the first_list_entry since write-only entries
1034 are always at the end of the list but since the first entry might
1035 have a close pending, we go through the whole list */
1036 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
1037 if (fsuid_only
&& open_file
->uid
!= current_fsuid())
1039 if (OPEN_FMODE(open_file
->f_flags
) & FMODE_READ
) {
1040 if (!open_file
->invalidHandle
) {
1041 /* found a good file */
1042 /* lock it so it will not be closed on us */
1043 cifsFileInfo_get(open_file
);
1044 spin_unlock(&cifs_file_list_lock
);
1046 } /* else might as well continue, and look for
1047 another, or simply have the caller reopen it
1048 again rather than trying to fix this handle */
1049 } else /* write only file */
1050 break; /* write only files are last so must be done */
1052 spin_unlock(&cifs_file_list_lock
);
1056 struct cifsFileInfo
*find_writable_file(struct cifsInodeInfo
*cifs_inode
,
1059 struct cifsFileInfo
*open_file
;
1060 struct cifs_sb_info
*cifs_sb
;
1061 bool any_available
= false;
1064 /* Having a null inode here (because mapping->host was set to zero by
1065 the VFS or MM) should not happen but we had reports of on oops (due to
1066 it being zero) during stress testcases so we need to check for it */
1068 if (cifs_inode
== NULL
) {
1069 cERROR(1, "Null inode passed to cifs_writeable_file");
1074 cifs_sb
= CIFS_SB(cifs_inode
->vfs_inode
.i_sb
);
1076 /* only filter by fsuid on multiuser mounts */
1077 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_MULTIUSER
))
1080 spin_lock(&cifs_file_list_lock
);
1082 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
1083 if (!any_available
&& open_file
->pid
!= current
->tgid
)
1085 if (fsuid_only
&& open_file
->uid
!= current_fsuid())
1087 if (OPEN_FMODE(open_file
->f_flags
) & FMODE_WRITE
) {
1088 cifsFileInfo_get(open_file
);
1090 if (!open_file
->invalidHandle
) {
1091 /* found a good writable file */
1092 spin_unlock(&cifs_file_list_lock
);
1096 spin_unlock(&cifs_file_list_lock
);
1098 /* Had to unlock since following call can block */
1099 rc
= cifs_reopen_file(open_file
, false);
1103 /* if it fails, try another handle if possible */
1104 cFYI(1, "wp failed on reopen file");
1105 cifsFileInfo_put(open_file
);
1107 spin_lock(&cifs_file_list_lock
);
1109 /* else we simply continue to the next entry. Thus
1110 we do not loop on reopen errors. If we
1111 can not reopen the file, for example if we
1112 reconnected to a server with another client
1113 racing to delete or lock the file we would not
1114 make progress if we restarted before the beginning
1115 of the loop here. */
1118 /* couldn't find useable FH with same pid, try any available */
1119 if (!any_available
) {
1120 any_available
= true;
1121 goto refind_writable
;
1123 spin_unlock(&cifs_file_list_lock
);
1127 static int cifs_partialpagewrite(struct page
*page
, unsigned from
, unsigned to
)
1129 struct address_space
*mapping
= page
->mapping
;
1130 loff_t offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1133 int bytes_written
= 0;
1134 struct inode
*inode
;
1135 struct cifsFileInfo
*open_file
;
1137 if (!mapping
|| !mapping
->host
)
1140 inode
= page
->mapping
->host
;
1142 offset
+= (loff_t
)from
;
1143 write_data
= kmap(page
);
1146 if ((to
> PAGE_CACHE_SIZE
) || (from
> to
)) {
1151 /* racing with truncate? */
1152 if (offset
> mapping
->host
->i_size
) {
1154 return 0; /* don't care */
1157 /* check to make sure that we are not extending the file */
1158 if (mapping
->host
->i_size
- offset
< (loff_t
)to
)
1159 to
= (unsigned)(mapping
->host
->i_size
- offset
);
1161 open_file
= find_writable_file(CIFS_I(mapping
->host
), false);
1163 bytes_written
= cifs_write(open_file
, write_data
,
1164 to
- from
, &offset
);
1165 cifsFileInfo_put(open_file
);
1166 /* Does mm or vfs already set times? */
1167 inode
->i_atime
= inode
->i_mtime
= current_fs_time(inode
->i_sb
);
1168 if ((bytes_written
> 0) && (offset
))
1170 else if (bytes_written
< 0)
1173 cFYI(1, "No writeable filehandles for inode");
1181 static int cifs_writepages(struct address_space
*mapping
,
1182 struct writeback_control
*wbc
)
1184 unsigned int bytes_to_write
;
1185 unsigned int bytes_written
;
1186 struct cifs_sb_info
*cifs_sb
;
1190 int range_whole
= 0;
1197 struct cifsFileInfo
*open_file
;
1198 struct cifsTconInfo
*tcon
;
1199 struct cifsInodeInfo
*cifsi
= CIFS_I(mapping
->host
);
1201 struct pagevec pvec
;
1206 cifs_sb
= CIFS_SB(mapping
->host
->i_sb
);
1209 * If wsize is smaller that the page cache size, default to writing
1210 * one page at a time via cifs_writepage
1212 if (cifs_sb
->wsize
< PAGE_CACHE_SIZE
)
1213 return generic_writepages(mapping
, wbc
);
1215 iov
= kmalloc(32 * sizeof(struct kvec
), GFP_KERNEL
);
1217 return generic_writepages(mapping
, wbc
);
1220 * if there's no open file, then this is likely to fail too,
1221 * but it'll at least handle the return. Maybe it should be
1224 open_file
= find_writable_file(CIFS_I(mapping
->host
), false);
1227 return generic_writepages(mapping
, wbc
);
1230 tcon
= tlink_tcon(open_file
->tlink
);
1231 cifsFileInfo_put(open_file
);
1235 pagevec_init(&pvec
, 0);
1236 if (wbc
->range_cyclic
) {
1237 index
= mapping
->writeback_index
; /* Start from prev offset */
1240 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1241 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1242 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1247 while (!done
&& (index
<= end
) &&
1248 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1249 PAGECACHE_TAG_DIRTY
,
1250 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1))) {
1259 for (i
= 0; i
< nr_pages
; i
++) {
1260 page
= pvec
.pages
[i
];
1262 * At this point we hold neither mapping->tree_lock nor
1263 * lock on the page itself: the page may be truncated or
1264 * invalidated (changing page->mapping to NULL), or even
1265 * swizzled back from swapper_space to tmpfs file
1271 else if (!trylock_page(page
))
1274 if (unlikely(page
->mapping
!= mapping
)) {
1279 if (!wbc
->range_cyclic
&& page
->index
> end
) {
1285 if (next
&& (page
->index
!= next
)) {
1286 /* Not next consecutive page */
1291 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1292 wait_on_page_writeback(page
);
1294 if (PageWriteback(page
) ||
1295 !clear_page_dirty_for_io(page
)) {
1301 * This actually clears the dirty bit in the radix tree.
1302 * See cifs_writepage() for more commentary.
1304 set_page_writeback(page
);
1306 if (page_offset(page
) >= mapping
->host
->i_size
) {
1309 end_page_writeback(page
);
1314 * BB can we get rid of this? pages are held by pvec
1316 page_cache_get(page
);
1318 len
= min(mapping
->host
->i_size
- page_offset(page
),
1319 (loff_t
)PAGE_CACHE_SIZE
);
1321 /* reserve iov[0] for the smb header */
1323 iov
[n_iov
].iov_base
= kmap(page
);
1324 iov
[n_iov
].iov_len
= len
;
1325 bytes_to_write
+= len
;
1329 offset
= page_offset(page
);
1331 next
= page
->index
+ 1;
1332 if (bytes_to_write
+ PAGE_CACHE_SIZE
> cifs_sb
->wsize
)
1337 open_file
= find_writable_file(CIFS_I(mapping
->host
),
1340 cERROR(1, "No writable handles for inode");
1343 rc
= CIFSSMBWrite2(xid
, tcon
, open_file
->netfid
,
1344 bytes_to_write
, offset
,
1345 &bytes_written
, iov
, n_iov
,
1347 cifsFileInfo_put(open_file
);
1350 cFYI(1, "Write2 rc=%d, wrote=%u", rc
, bytes_written
);
1353 * For now, treat a short write as if nothing got
1354 * written. A zero length write however indicates
1355 * ENOSPC or EFBIG. We have no way to know which
1356 * though, so call it ENOSPC for now. EFBIG would
1357 * get translated to AS_EIO anyway.
1359 * FIXME: make it take into account the data that did
1363 if (bytes_written
== 0)
1365 else if (bytes_written
< bytes_to_write
)
1369 /* retry on data-integrity flush */
1370 if (wbc
->sync_mode
== WB_SYNC_ALL
&& rc
== -EAGAIN
)
1373 /* fix the stats and EOF */
1374 if (bytes_written
> 0) {
1375 cifs_stats_bytes_written(tcon
, bytes_written
);
1376 cifs_update_eof(cifsi
, offset
, bytes_written
);
1379 for (i
= 0; i
< n_iov
; i
++) {
1380 page
= pvec
.pages
[first
+ i
];
1381 /* on retryable write error, redirty page */
1383 redirty_page_for_writepage(wbc
, page
);
1388 end_page_writeback(page
);
1389 page_cache_release(page
);
1393 mapping_set_error(mapping
, rc
);
1397 if ((wbc
->nr_to_write
-= n_iov
) <= 0)
1401 /* Need to re-find the pages we skipped */
1402 index
= pvec
.pages
[0]->index
+ 1;
1404 pagevec_release(&pvec
);
1406 if (!scanned
&& !done
) {
1408 * We hit the last page and there is more work to be done: wrap
1409 * back to the start of the file
1415 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1416 mapping
->writeback_index
= index
;
1423 static int cifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1429 /* BB add check for wbc flags */
1430 page_cache_get(page
);
1431 if (!PageUptodate(page
))
1432 cFYI(1, "ppw - page not up to date");
1435 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1437 * A writepage() implementation always needs to do either this,
1438 * or re-dirty the page with "redirty_page_for_writepage()" in
1439 * the case of a failure.
1441 * Just unlocking the page will cause the radix tree tag-bits
1442 * to fail to update with the state of the page correctly.
1444 set_page_writeback(page
);
1445 rc
= cifs_partialpagewrite(page
, 0, PAGE_CACHE_SIZE
);
1446 SetPageUptodate(page
); /* BB add check for error and Clearuptodate? */
1448 end_page_writeback(page
);
1449 page_cache_release(page
);
1454 static int cifs_write_end(struct file
*file
, struct address_space
*mapping
,
1455 loff_t pos
, unsigned len
, unsigned copied
,
1456 struct page
*page
, void *fsdata
)
1459 struct inode
*inode
= mapping
->host
;
1461 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1464 if (PageChecked(page
)) {
1466 SetPageUptodate(page
);
1467 ClearPageChecked(page
);
1468 } else if (!PageUptodate(page
) && copied
== PAGE_CACHE_SIZE
)
1469 SetPageUptodate(page
);
1471 if (!PageUptodate(page
)) {
1473 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1477 /* this is probably better than directly calling
1478 partialpage_write since in this function the file handle is
1479 known which we might as well leverage */
1480 /* BB check if anything else missing out of ppw
1481 such as updating last write time */
1482 page_data
= kmap(page
);
1483 rc
= cifs_write(file
->private_data
, page_data
+ offset
,
1485 /* if (rc < 0) should we set writebehind rc? */
1492 set_page_dirty(page
);
1496 spin_lock(&inode
->i_lock
);
1497 if (pos
> inode
->i_size
)
1498 i_size_write(inode
, pos
);
1499 spin_unlock(&inode
->i_lock
);
1503 page_cache_release(page
);
1508 int cifs_strict_fsync(struct file
*file
, int datasync
)
1512 struct cifsTconInfo
*tcon
;
1513 struct cifsFileInfo
*smbfile
= file
->private_data
;
1514 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1515 struct cifs_sb_info
*cifs_sb
= CIFS_SB(inode
->i_sb
);
1519 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1520 file
->f_path
.dentry
->d_name
.name
, datasync
);
1522 if (!CIFS_I(inode
)->clientCanCacheRead
)
1523 cifs_invalidate_mapping(inode
);
1525 tcon
= tlink_tcon(smbfile
->tlink
);
1526 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOSSYNC
))
1527 rc
= CIFSSMBFlush(xid
, tcon
, smbfile
->netfid
);
1533 int cifs_fsync(struct file
*file
, int datasync
)
1537 struct cifsTconInfo
*tcon
;
1538 struct cifsFileInfo
*smbfile
= file
->private_data
;
1539 struct cifs_sb_info
*cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1543 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1544 file
->f_path
.dentry
->d_name
.name
, datasync
);
1546 tcon
= tlink_tcon(smbfile
->tlink
);
1547 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOSSYNC
))
1548 rc
= CIFSSMBFlush(xid
, tcon
, smbfile
->netfid
);
1555 * As file closes, flush all cached write data for this inode checking
1556 * for write behind errors.
1558 int cifs_flush(struct file
*file
, fl_owner_t id
)
1560 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1563 if (file
->f_mode
& FMODE_WRITE
)
1564 rc
= filemap_write_and_wait(inode
->i_mapping
);
1566 cFYI(1, "Flush inode %p file %p rc %d", inode
, file
, rc
);
1572 cifs_write_allocate_pages(struct page
**pages
, unsigned long num_pages
)
1577 for (i
= 0; i
< num_pages
; i
++) {
1578 pages
[i
] = alloc_page(__GFP_HIGHMEM
);
1581 * save number of pages we have already allocated and
1582 * return with ENOMEM error
1593 for (i
= 0; i
< num_pages
; i
++)
1599 size_t get_numpages(const size_t wsize
, const size_t len
, size_t *cur_len
)
1604 clen
= min_t(const size_t, len
, wsize
);
1605 num_pages
= clen
/ PAGE_CACHE_SIZE
;
1606 if (clen
% PAGE_CACHE_SIZE
)
1616 cifs_iovec_write(struct file
*file
, const struct iovec
*iov
,
1617 unsigned long nr_segs
, loff_t
*poffset
)
1619 unsigned int written
;
1620 unsigned long num_pages
, npages
, i
;
1621 size_t copied
, len
, cur_len
;
1622 ssize_t total_written
= 0;
1623 struct kvec
*to_send
;
1624 struct page
**pages
;
1626 struct inode
*inode
;
1627 struct cifsFileInfo
*open_file
;
1628 struct cifsTconInfo
*pTcon
;
1629 struct cifs_sb_info
*cifs_sb
;
1632 len
= iov_length(iov
, nr_segs
);
1636 rc
= generic_write_checks(file
, poffset
, &len
, 0);
1640 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1641 num_pages
= get_numpages(cifs_sb
->wsize
, len
, &cur_len
);
1643 pages
= kmalloc(sizeof(struct pages
*)*num_pages
, GFP_KERNEL
);
1647 to_send
= kmalloc(sizeof(struct kvec
)*(num_pages
+ 1), GFP_KERNEL
);
1653 rc
= cifs_write_allocate_pages(pages
, num_pages
);
1661 open_file
= file
->private_data
;
1662 pTcon
= tlink_tcon(open_file
->tlink
);
1663 inode
= file
->f_path
.dentry
->d_inode
;
1665 iov_iter_init(&it
, iov
, nr_segs
, len
, 0);
1669 size_t save_len
= cur_len
;
1670 for (i
= 0; i
< npages
; i
++) {
1671 copied
= min_t(const size_t, cur_len
, PAGE_CACHE_SIZE
);
1672 copied
= iov_iter_copy_from_user(pages
[i
], &it
, 0,
1675 iov_iter_advance(&it
, copied
);
1676 to_send
[i
+1].iov_base
= kmap(pages
[i
]);
1677 to_send
[i
+1].iov_len
= copied
;
1680 cur_len
= save_len
- cur_len
;
1683 if (open_file
->invalidHandle
) {
1684 rc
= cifs_reopen_file(open_file
, false);
1688 rc
= CIFSSMBWrite2(xid
, pTcon
, open_file
->netfid
,
1689 cur_len
, *poffset
, &written
,
1690 to_send
, npages
, 0);
1691 } while (rc
== -EAGAIN
);
1693 for (i
= 0; i
< npages
; i
++)
1698 total_written
+= written
;
1699 cifs_update_eof(CIFS_I(inode
), *poffset
, written
);
1700 *poffset
+= written
;
1701 } else if (rc
< 0) {
1707 /* get length and number of kvecs of the next write */
1708 npages
= get_numpages(cifs_sb
->wsize
, len
, &cur_len
);
1711 if (total_written
> 0) {
1712 spin_lock(&inode
->i_lock
);
1713 if (*poffset
> inode
->i_size
)
1714 i_size_write(inode
, *poffset
);
1715 spin_unlock(&inode
->i_lock
);
1718 cifs_stats_bytes_written(pTcon
, total_written
);
1719 mark_inode_dirty_sync(inode
);
1721 for (i
= 0; i
< num_pages
; i
++)
1726 return total_written
;
1729 static ssize_t
cifs_user_writev(struct kiocb
*iocb
, const struct iovec
*iov
,
1730 unsigned long nr_segs
, loff_t pos
)
1733 struct inode
*inode
;
1735 inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
1738 * BB - optimize the way when signing is disabled. We can drop this
1739 * extra memory-to-memory copying and use iovec buffers for constructing
1743 written
= cifs_iovec_write(iocb
->ki_filp
, iov
, nr_segs
, &pos
);
1745 CIFS_I(inode
)->invalid_mapping
= true;
1752 ssize_t
cifs_strict_writev(struct kiocb
*iocb
, const struct iovec
*iov
,
1753 unsigned long nr_segs
, loff_t pos
)
1755 struct inode
*inode
;
1757 inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
1759 if (CIFS_I(inode
)->clientCanCacheAll
)
1760 return generic_file_aio_write(iocb
, iov
, nr_segs
, pos
);
1763 * In strict cache mode we need to write the data to the server exactly
1764 * from the pos to pos+len-1 rather than flush all affected pages
1765 * because it may cause a error with mandatory locks on these pages but
1766 * not on the region from pos to ppos+len-1.
1769 return cifs_user_writev(iocb
, iov
, nr_segs
, pos
);
1773 cifs_iovec_read(struct file
*file
, const struct iovec
*iov
,
1774 unsigned long nr_segs
, loff_t
*poffset
)
1779 unsigned int bytes_read
= 0;
1780 size_t len
, cur_len
;
1782 struct cifs_sb_info
*cifs_sb
;
1783 struct cifsTconInfo
*pTcon
;
1784 struct cifsFileInfo
*open_file
;
1785 struct smb_com_read_rsp
*pSMBr
;
1791 len
= iov_length(iov
, nr_segs
);
1796 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1798 open_file
= file
->private_data
;
1799 pTcon
= tlink_tcon(open_file
->tlink
);
1801 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
)
1802 cFYI(1, "attempting read on write only file instance");
1804 for (total_read
= 0; total_read
< len
; total_read
+= bytes_read
) {
1805 cur_len
= min_t(const size_t, len
- total_read
, cifs_sb
->rsize
);
1809 while (rc
== -EAGAIN
) {
1810 int buf_type
= CIFS_NO_BUFFER
;
1811 if (open_file
->invalidHandle
) {
1812 rc
= cifs_reopen_file(open_file
, true);
1816 rc
= CIFSSMBRead(xid
, pTcon
, open_file
->netfid
,
1817 cur_len
, *poffset
, &bytes_read
,
1818 &read_data
, &buf_type
);
1819 pSMBr
= (struct smb_com_read_rsp
*)read_data
;
1821 char *data_offset
= read_data
+ 4 +
1822 le16_to_cpu(pSMBr
->DataOffset
);
1823 if (memcpy_toiovecend(iov
, data_offset
,
1824 iov_offset
, bytes_read
))
1826 if (buf_type
== CIFS_SMALL_BUFFER
)
1827 cifs_small_buf_release(read_data
);
1828 else if (buf_type
== CIFS_LARGE_BUFFER
)
1829 cifs_buf_release(read_data
);
1831 iov_offset
+= bytes_read
;
1835 if (rc
|| (bytes_read
== 0)) {
1843 cifs_stats_bytes_read(pTcon
, bytes_read
);
1844 *poffset
+= bytes_read
;
1852 ssize_t
cifs_user_read(struct file
*file
, char __user
*read_data
,
1853 size_t read_size
, loff_t
*poffset
)
1856 iov
.iov_base
= read_data
;
1857 iov
.iov_len
= read_size
;
1859 return cifs_iovec_read(file
, &iov
, 1, poffset
);
1862 static ssize_t
cifs_user_readv(struct kiocb
*iocb
, const struct iovec
*iov
,
1863 unsigned long nr_segs
, loff_t pos
)
1867 read
= cifs_iovec_read(iocb
->ki_filp
, iov
, nr_segs
, &pos
);
1874 ssize_t
cifs_strict_readv(struct kiocb
*iocb
, const struct iovec
*iov
,
1875 unsigned long nr_segs
, loff_t pos
)
1877 struct inode
*inode
;
1879 inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
1881 if (CIFS_I(inode
)->clientCanCacheRead
)
1882 return generic_file_aio_read(iocb
, iov
, nr_segs
, pos
);
1885 * In strict cache mode we need to read from the server all the time
1886 * if we don't have level II oplock because the server can delay mtime
1887 * change - so we can't make a decision about inode invalidating.
1888 * And we can also fail with pagereading if there are mandatory locks
1889 * on pages affected by this read but not on the region from pos to
1893 return cifs_user_readv(iocb
, iov
, nr_segs
, pos
);
1896 static ssize_t
cifs_read(struct file
*file
, char *read_data
, size_t read_size
,
1900 unsigned int bytes_read
= 0;
1901 unsigned int total_read
;
1902 unsigned int current_read_size
;
1903 struct cifs_sb_info
*cifs_sb
;
1904 struct cifsTconInfo
*pTcon
;
1906 char *current_offset
;
1907 struct cifsFileInfo
*open_file
;
1908 int buf_type
= CIFS_NO_BUFFER
;
1911 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1913 if (file
->private_data
== NULL
) {
1918 open_file
= file
->private_data
;
1919 pTcon
= tlink_tcon(open_file
->tlink
);
1921 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
)
1922 cFYI(1, "attempting read on write only file instance");
1924 for (total_read
= 0, current_offset
= read_data
;
1925 read_size
> total_read
;
1926 total_read
+= bytes_read
, current_offset
+= bytes_read
) {
1927 current_read_size
= min_t(const int, read_size
- total_read
,
1929 /* For windows me and 9x we do not want to request more
1930 than it negotiated since it will refuse the read then */
1932 !(pTcon
->ses
->capabilities
& CAP_LARGE_FILES
)) {
1933 current_read_size
= min_t(const int, current_read_size
,
1934 pTcon
->ses
->server
->maxBuf
- 128);
1937 while (rc
== -EAGAIN
) {
1938 if (open_file
->invalidHandle
) {
1939 rc
= cifs_reopen_file(open_file
, true);
1943 rc
= CIFSSMBRead(xid
, pTcon
,
1945 current_read_size
, *poffset
,
1946 &bytes_read
, ¤t_offset
,
1949 if (rc
|| (bytes_read
== 0)) {
1957 cifs_stats_bytes_read(pTcon
, total_read
);
1958 *poffset
+= bytes_read
;
1966 * If the page is mmap'ed into a process' page tables, then we need to make
1967 * sure that it doesn't change while being written back.
1970 cifs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1972 struct page
*page
= vmf
->page
;
1975 return VM_FAULT_LOCKED
;
1978 static struct vm_operations_struct cifs_file_vm_ops
= {
1979 .fault
= filemap_fault
,
1980 .page_mkwrite
= cifs_page_mkwrite
,
1983 int cifs_file_strict_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1986 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1990 if (!CIFS_I(inode
)->clientCanCacheRead
)
1991 cifs_invalidate_mapping(inode
);
1993 rc
= generic_file_mmap(file
, vma
);
1995 vma
->vm_ops
= &cifs_file_vm_ops
;
2000 int cifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2005 rc
= cifs_revalidate_file(file
);
2007 cFYI(1, "Validation prior to mmap failed, error=%d", rc
);
2011 rc
= generic_file_mmap(file
, vma
);
2013 vma
->vm_ops
= &cifs_file_vm_ops
;
2019 static void cifs_copy_cache_pages(struct address_space
*mapping
,
2020 struct list_head
*pages
, int bytes_read
, char *data
)
2025 while (bytes_read
> 0) {
2026 if (list_empty(pages
))
2029 page
= list_entry(pages
->prev
, struct page
, lru
);
2030 list_del(&page
->lru
);
2032 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
2034 page_cache_release(page
);
2035 cFYI(1, "Add page cache failed");
2036 data
+= PAGE_CACHE_SIZE
;
2037 bytes_read
-= PAGE_CACHE_SIZE
;
2040 page_cache_release(page
);
2042 target
= kmap_atomic(page
, KM_USER0
);
2044 if (PAGE_CACHE_SIZE
> bytes_read
) {
2045 memcpy(target
, data
, bytes_read
);
2046 /* zero the tail end of this partial page */
2047 memset(target
+ bytes_read
, 0,
2048 PAGE_CACHE_SIZE
- bytes_read
);
2051 memcpy(target
, data
, PAGE_CACHE_SIZE
);
2052 bytes_read
-= PAGE_CACHE_SIZE
;
2054 kunmap_atomic(target
, KM_USER0
);
2056 flush_dcache_page(page
);
2057 SetPageUptodate(page
);
2059 data
+= PAGE_CACHE_SIZE
;
2061 /* add page to FS-Cache */
2062 cifs_readpage_to_fscache(mapping
->host
, page
);
2067 static int cifs_readpages(struct file
*file
, struct address_space
*mapping
,
2068 struct list_head
*page_list
, unsigned num_pages
)
2074 struct cifs_sb_info
*cifs_sb
;
2075 struct cifsTconInfo
*pTcon
;
2076 unsigned int bytes_read
= 0;
2077 unsigned int read_size
, i
;
2078 char *smb_read_data
= NULL
;
2079 struct smb_com_read_rsp
*pSMBr
;
2080 struct cifsFileInfo
*open_file
;
2081 int buf_type
= CIFS_NO_BUFFER
;
2084 if (file
->private_data
== NULL
) {
2089 open_file
= file
->private_data
;
2090 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
2091 pTcon
= tlink_tcon(open_file
->tlink
);
2094 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2095 * immediately if the cookie is negative
2097 rc
= cifs_readpages_from_fscache(mapping
->host
, mapping
, page_list
,
2102 cFYI(DBG2
, "rpages: num pages %d", num_pages
);
2103 for (i
= 0; i
< num_pages
; ) {
2104 unsigned contig_pages
;
2105 struct page
*tmp_page
;
2106 unsigned long expected_index
;
2108 if (list_empty(page_list
))
2111 page
= list_entry(page_list
->prev
, struct page
, lru
);
2112 offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2114 /* count adjacent pages that we will read into */
2117 list_entry(page_list
->prev
, struct page
, lru
)->index
;
2118 list_for_each_entry_reverse(tmp_page
, page_list
, lru
) {
2119 if (tmp_page
->index
== expected_index
) {
2125 if (contig_pages
+ i
> num_pages
)
2126 contig_pages
= num_pages
- i
;
2128 /* for reads over a certain size could initiate async
2131 read_size
= contig_pages
* PAGE_CACHE_SIZE
;
2132 /* Read size needs to be in multiples of one page */
2133 read_size
= min_t(const unsigned int, read_size
,
2134 cifs_sb
->rsize
& PAGE_CACHE_MASK
);
2135 cFYI(DBG2
, "rpages: read size 0x%x contiguous pages %d",
2136 read_size
, contig_pages
);
2138 while (rc
== -EAGAIN
) {
2139 if (open_file
->invalidHandle
) {
2140 rc
= cifs_reopen_file(open_file
, true);
2145 rc
= CIFSSMBRead(xid
, pTcon
,
2148 &bytes_read
, &smb_read_data
,
2150 /* BB more RC checks ? */
2151 if (rc
== -EAGAIN
) {
2152 if (smb_read_data
) {
2153 if (buf_type
== CIFS_SMALL_BUFFER
)
2154 cifs_small_buf_release(smb_read_data
);
2155 else if (buf_type
== CIFS_LARGE_BUFFER
)
2156 cifs_buf_release(smb_read_data
);
2157 smb_read_data
= NULL
;
2161 if ((rc
< 0) || (smb_read_data
== NULL
)) {
2162 cFYI(1, "Read error in readpages: %d", rc
);
2164 } else if (bytes_read
> 0) {
2165 task_io_account_read(bytes_read
);
2166 pSMBr
= (struct smb_com_read_rsp
*)smb_read_data
;
2167 cifs_copy_cache_pages(mapping
, page_list
, bytes_read
,
2168 smb_read_data
+ 4 /* RFC1001 hdr */ +
2169 le16_to_cpu(pSMBr
->DataOffset
));
2171 i
+= bytes_read
>> PAGE_CACHE_SHIFT
;
2172 cifs_stats_bytes_read(pTcon
, bytes_read
);
2173 if ((bytes_read
& PAGE_CACHE_MASK
) != bytes_read
) {
2174 i
++; /* account for partial page */
2176 /* server copy of file can have smaller size
2178 /* BB do we need to verify this common case ?
2179 this case is ok - if we are at server EOF
2180 we will hit it on next read */
2185 cFYI(1, "No bytes read (%d) at offset %lld . "
2186 "Cleaning remaining pages from readahead list",
2187 bytes_read
, offset
);
2188 /* BB turn off caching and do new lookup on
2189 file size at server? */
2192 if (smb_read_data
) {
2193 if (buf_type
== CIFS_SMALL_BUFFER
)
2194 cifs_small_buf_release(smb_read_data
);
2195 else if (buf_type
== CIFS_LARGE_BUFFER
)
2196 cifs_buf_release(smb_read_data
);
2197 smb_read_data
= NULL
;
2202 /* need to free smb_read_data buf before exit */
2203 if (smb_read_data
) {
2204 if (buf_type
== CIFS_SMALL_BUFFER
)
2205 cifs_small_buf_release(smb_read_data
);
2206 else if (buf_type
== CIFS_LARGE_BUFFER
)
2207 cifs_buf_release(smb_read_data
);
2208 smb_read_data
= NULL
;
2216 static int cifs_readpage_worker(struct file
*file
, struct page
*page
,
2222 /* Is the page cached? */
2223 rc
= cifs_readpage_from_fscache(file
->f_path
.dentry
->d_inode
, page
);
2227 page_cache_get(page
);
2228 read_data
= kmap(page
);
2229 /* for reads over a certain size could initiate async read ahead */
2231 rc
= cifs_read(file
, read_data
, PAGE_CACHE_SIZE
, poffset
);
2236 cFYI(1, "Bytes read %d", rc
);
2238 file
->f_path
.dentry
->d_inode
->i_atime
=
2239 current_fs_time(file
->f_path
.dentry
->d_inode
->i_sb
);
2241 if (PAGE_CACHE_SIZE
> rc
)
2242 memset(read_data
+ rc
, 0, PAGE_CACHE_SIZE
- rc
);
2244 flush_dcache_page(page
);
2245 SetPageUptodate(page
);
2247 /* send this page to the cache */
2248 cifs_readpage_to_fscache(file
->f_path
.dentry
->d_inode
, page
);
2254 page_cache_release(page
);
2260 static int cifs_readpage(struct file
*file
, struct page
*page
)
2262 loff_t offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2268 if (file
->private_data
== NULL
) {
2274 cFYI(1, "readpage %p at offset %d 0x%x\n",
2275 page
, (int)offset
, (int)offset
);
2277 rc
= cifs_readpage_worker(file
, page
, &offset
);
2285 static int is_inode_writable(struct cifsInodeInfo
*cifs_inode
)
2287 struct cifsFileInfo
*open_file
;
2289 spin_lock(&cifs_file_list_lock
);
2290 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
2291 if (OPEN_FMODE(open_file
->f_flags
) & FMODE_WRITE
) {
2292 spin_unlock(&cifs_file_list_lock
);
2296 spin_unlock(&cifs_file_list_lock
);
2300 /* We do not want to update the file size from server for inodes
2301 open for write - to avoid races with writepage extending
2302 the file - in the future we could consider allowing
2303 refreshing the inode only on increases in the file size
2304 but this is tricky to do without racing with writebehind
2305 page caching in the current Linux kernel design */
2306 bool is_size_safe_to_change(struct cifsInodeInfo
*cifsInode
, __u64 end_of_file
)
2311 if (is_inode_writable(cifsInode
)) {
2312 /* This inode is open for write at least once */
2313 struct cifs_sb_info
*cifs_sb
;
2315 cifs_sb
= CIFS_SB(cifsInode
->vfs_inode
.i_sb
);
2316 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_DIRECT_IO
) {
2317 /* since no page cache to corrupt on directio
2318 we can change size safely */
2322 if (i_size_read(&cifsInode
->vfs_inode
) < end_of_file
)
2330 static int cifs_write_begin(struct file
*file
, struct address_space
*mapping
,
2331 loff_t pos
, unsigned len
, unsigned flags
,
2332 struct page
**pagep
, void **fsdata
)
2334 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2335 loff_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
2336 loff_t page_start
= pos
& PAGE_MASK
;
2341 cFYI(1, "write_begin from %lld len %d", (long long)pos
, len
);
2343 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2349 if (PageUptodate(page
))
2353 * If we write a full page it will be up to date, no need to read from
2354 * the server. If the write is short, we'll end up doing a sync write
2357 if (len
== PAGE_CACHE_SIZE
)
2361 * optimize away the read when we have an oplock, and we're not
2362 * expecting to use any of the data we'd be reading in. That
2363 * is, when the page lies beyond the EOF, or straddles the EOF
2364 * and the write will cover all of the existing data.
2366 if (CIFS_I(mapping
->host
)->clientCanCacheRead
) {
2367 i_size
= i_size_read(mapping
->host
);
2368 if (page_start
>= i_size
||
2369 (offset
== 0 && (pos
+ len
) >= i_size
)) {
2370 zero_user_segments(page
, 0, offset
,
2374 * PageChecked means that the parts of the page
2375 * to which we're not writing are considered up
2376 * to date. Once the data is copied to the
2377 * page, it can be set uptodate.
2379 SetPageChecked(page
);
2384 if ((file
->f_flags
& O_ACCMODE
) != O_WRONLY
) {
2386 * might as well read a page, it is fast enough. If we get
2387 * an error, we don't need to return it. cifs_write_end will
2388 * do a sync write instead since PG_uptodate isn't set.
2390 cifs_readpage_worker(file
, page
, &page_start
);
2392 /* we could try using another file handle if there is one -
2393 but how would we lock it to prevent close of that handle
2394 racing with this read? In any case
2395 this will be written out by write_end so is fine */
2402 static int cifs_release_page(struct page
*page
, gfp_t gfp
)
2404 if (PagePrivate(page
))
2407 return cifs_fscache_release_page(page
, gfp
);
2410 static void cifs_invalidate_page(struct page
*page
, unsigned long offset
)
2412 struct cifsInodeInfo
*cifsi
= CIFS_I(page
->mapping
->host
);
2415 cifs_fscache_invalidate_page(page
, &cifsi
->vfs_inode
);
2418 void cifs_oplock_break(struct work_struct
*work
)
2420 struct cifsFileInfo
*cfile
= container_of(work
, struct cifsFileInfo
,
2422 struct inode
*inode
= cfile
->dentry
->d_inode
;
2423 struct cifsInodeInfo
*cinode
= CIFS_I(inode
);
2426 if (inode
&& S_ISREG(inode
->i_mode
)) {
2427 if (cinode
->clientCanCacheRead
)
2428 break_lease(inode
, O_RDONLY
);
2430 break_lease(inode
, O_WRONLY
);
2431 rc
= filemap_fdatawrite(inode
->i_mapping
);
2432 if (cinode
->clientCanCacheRead
== 0) {
2433 rc
= filemap_fdatawait(inode
->i_mapping
);
2434 mapping_set_error(inode
->i_mapping
, rc
);
2435 invalidate_remote_inode(inode
);
2437 cFYI(1, "Oplock flush inode %p rc %d", inode
, rc
);
2441 * releasing stale oplock after recent reconnect of smb session using
2442 * a now incorrect file handle is not a data integrity issue but do
2443 * not bother sending an oplock release if session to server still is
2444 * disconnected since oplock already released by the server
2446 if (!cfile
->oplock_break_cancelled
) {
2447 rc
= CIFSSMBLock(0, tlink_tcon(cfile
->tlink
), cfile
->netfid
, 0,
2448 0, 0, 0, LOCKING_ANDX_OPLOCK_RELEASE
, false,
2449 cinode
->clientCanCacheRead
? 1 : 0);
2450 cFYI(1, "Oplock release rc = %d", rc
);
2454 * We might have kicked in before is_valid_oplock_break()
2455 * finished grabbing reference for us. Make sure it's done by
2456 * waiting for cifs_file_list_lock.
2458 spin_lock(&cifs_file_list_lock
);
2459 spin_unlock(&cifs_file_list_lock
);
2461 cifs_oplock_break_put(cfile
);
2464 /* must be called while holding cifs_file_list_lock */
2465 void cifs_oplock_break_get(struct cifsFileInfo
*cfile
)
2467 cifs_sb_active(cfile
->dentry
->d_sb
);
2468 cifsFileInfo_get(cfile
);
2471 void cifs_oplock_break_put(struct cifsFileInfo
*cfile
)
2473 struct super_block
*sb
= cfile
->dentry
->d_sb
;
2475 cifsFileInfo_put(cfile
);
2476 cifs_sb_deactive(sb
);
2479 const struct address_space_operations cifs_addr_ops
= {
2480 .readpage
= cifs_readpage
,
2481 .readpages
= cifs_readpages
,
2482 .writepage
= cifs_writepage
,
2483 .writepages
= cifs_writepages
,
2484 .write_begin
= cifs_write_begin
,
2485 .write_end
= cifs_write_end
,
2486 .set_page_dirty
= __set_page_dirty_nobuffers
,
2487 .releasepage
= cifs_release_page
,
2488 .invalidatepage
= cifs_invalidate_page
,
2493 * cifs_readpages requires the server to support a buffer large enough to
2494 * contain the header plus one complete page of data. Otherwise, we need
2495 * to leave cifs_readpages out of the address space operations.
2497 const struct address_space_operations cifs_addr_ops_smallbuf
= {
2498 .readpage
= cifs_readpage
,
2499 .writepage
= cifs_writepage
,
2500 .writepages
= cifs_writepages
,
2501 .write_begin
= cifs_write_begin
,
2502 .write_end
= cifs_write_end
,
2503 .set_page_dirty
= __set_page_dirty_nobuffers
,
2504 .releasepage
= cifs_release_page
,
2505 .invalidatepage
= cifs_invalidate_page
,