MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / arch / hexagon / kernel / time.c
blob6bee15c9c113d7854991597fa0d2f0b7af4f9b91
1 /*
2 * Time related functions for Hexagon architecture
4 * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
21 #include <linux/init.h>
22 #include <linux/clockchips.h>
23 #include <linux/clocksource.h>
24 #include <linux/interrupt.h>
25 #include <linux/err.h>
26 #include <linux/platform_device.h>
27 #include <linux/ioport.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
32 #include <asm/timer-regs.h>
33 #include <asm/hexagon_vm.h>
36 * For the clocksource we need:
37 * pcycle frequency (600MHz)
38 * For the loops_per_jiffy we need:
39 * thread/cpu frequency (100MHz)
40 * And for the timer, we need:
41 * sleep clock rate
44 cycles_t pcycle_freq_mhz;
45 cycles_t thread_freq_mhz;
46 cycles_t sleep_clk_freq;
48 static struct resource rtos_timer_resources[] = {
50 .start = RTOS_TIMER_REGS_ADDR,
51 .end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
52 .flags = IORESOURCE_MEM,
56 static struct platform_device rtos_timer_device = {
57 .name = "rtos_timer",
58 .id = -1,
59 .num_resources = ARRAY_SIZE(rtos_timer_resources),
60 .resource = rtos_timer_resources,
63 /* A lot of this stuff should move into a platform specific section. */
64 struct adsp_hw_timer_struct {
65 u32 match; /* Match value */
66 u32 count;
67 u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */
68 u32 clear; /* one-shot register that clears the count */
71 /* Look for "TCX0" for related constants. */
72 static __iomem struct adsp_hw_timer_struct *rtos_timer;
74 static cycle_t timer_get_cycles(struct clocksource *cs)
76 return (cycle_t) __vmgettime();
79 static struct clocksource hexagon_clocksource = {
80 .name = "pcycles",
81 .rating = 250,
82 .read = timer_get_cycles,
83 .mask = CLOCKSOURCE_MASK(64),
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
89 /* Assuming the timer will be disabled when we enter here. */
91 iowrite32(1, &rtos_timer->clear);
92 iowrite32(0, &rtos_timer->clear);
94 iowrite32(delta, &rtos_timer->match);
95 iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
96 return 0;
100 * Sets the mode (periodic, shutdown, oneshot, etc) of a timer.
102 static void set_mode(enum clock_event_mode mode,
103 struct clock_event_device *evt)
105 switch (mode) {
106 case CLOCK_EVT_MODE_SHUTDOWN:
107 /* XXX implement me */
108 default:
109 break;
113 #ifdef CONFIG_SMP
114 /* Broadcast mechanism */
115 static void broadcast(const struct cpumask *mask)
117 send_ipi(mask, IPI_TIMER);
119 #endif
121 static struct clock_event_device hexagon_clockevent_dev = {
122 .name = "clockevent",
123 .features = CLOCK_EVT_FEAT_ONESHOT,
124 .rating = 400,
125 .irq = RTOS_TIMER_INT,
126 .set_next_event = set_next_event,
127 .set_mode = set_mode,
128 #ifdef CONFIG_SMP
129 .broadcast = broadcast,
130 #endif
133 #ifdef CONFIG_SMP
134 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
136 void setup_percpu_clockdev(void)
138 int cpu = smp_processor_id();
139 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
140 struct clock_event_device *dummy_clock_dev =
141 &per_cpu(clock_events, cpu);
143 memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
144 INIT_LIST_HEAD(&dummy_clock_dev->list);
146 dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
147 dummy_clock_dev->cpumask = cpumask_of(cpu);
148 dummy_clock_dev->mode = CLOCK_EVT_MODE_UNUSED;
150 clockevents_register_device(dummy_clock_dev);
153 /* Called from smp.c for each CPU's timer ipi call */
154 void ipi_timer(void)
156 int cpu = smp_processor_id();
157 struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
159 ce_dev->event_handler(ce_dev);
161 #endif /* CONFIG_SMP */
163 static irqreturn_t timer_interrupt(int irq, void *devid)
165 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
167 iowrite32(0, &rtos_timer->enable);
168 ce_dev->event_handler(ce_dev);
170 return IRQ_HANDLED;
173 /* This should also be pulled from devtree */
174 static struct irqaction rtos_timer_intdesc = {
175 .handler = timer_interrupt,
176 .flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
177 .name = "rtos_timer"
181 * time_init_deferred - called by start_kernel to set up timer/clock source
183 * Install the IRQ handler for the clock, setup timers.
184 * This is done late, as that way, we can use ioremap().
186 * This runs just before the delay loop is calibrated, and
187 * is used for delay calibration.
189 void __init time_init_deferred(void)
191 struct resource *resource = NULL;
192 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
193 struct device_node *dn;
194 struct resource r;
195 int err;
197 ce_dev->cpumask = cpu_all_mask;
199 if (!resource)
200 resource = rtos_timer_device.resource;
202 /* ioremap here means this has to run later, after paging init */
203 rtos_timer = ioremap(resource->start, resource->end
204 - resource->start + 1);
206 if (!rtos_timer) {
207 release_mem_region(resource->start, resource->end
208 - resource->start + 1);
210 clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
212 /* Note: the sim generic RTOS clock is apparently really 18750Hz */
215 * Last arg is some guaranteed seconds for which the conversion will
216 * work without overflow.
218 clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
220 ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
221 ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
223 #ifdef CONFIG_SMP
224 setup_percpu_clockdev();
225 #endif
227 clockevents_register_device(ce_dev);
228 setup_irq(ce_dev->irq, &rtos_timer_intdesc);
231 void __init time_init(void)
233 late_time_init = time_init_deferred;
237 * This could become parametric or perhaps even computed at run-time,
238 * but for now we take the observed simulator jitter.
240 static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */
242 void __udelay(unsigned long usecs)
244 unsigned long long start = __vmgettime();
245 unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
247 while ((__vmgettime() - start) < finish)
248 cpu_relax(); /* not sure how this improves readability */
250 EXPORT_SYMBOL(__udelay);