4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
13 #include <asm/hardirq.h>
16 #include "perf_event.h"
19 * Intel PerfMon, used on Core and later.
21 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
23 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
24 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
25 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
26 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
27 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
28 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
29 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
32 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
34 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
35 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
36 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
37 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
38 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
39 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
43 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
45 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
46 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
48 * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
49 * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
50 * ratio between these counters.
52 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
53 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
66 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
68 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
71 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
82 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
84 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
88 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
90 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
91 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
92 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
93 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
94 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
95 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
96 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
102 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
103 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
104 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
105 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
106 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
107 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
111 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
113 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
114 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
118 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
123 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
125 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
126 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
127 /* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
131 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
132 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0
, 0x3fffffffffull
, RSP_0
),
133 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1
, 0x3fffffffffull
, RSP_1
),
137 static u64
intel_pmu_event_map(int hw_event
)
139 return intel_perfmon_event_map
[hw_event
];
142 static __initconst
const u64 snb_hw_cache_event_ids
143 [PERF_COUNT_HW_CACHE_MAX
]
144 [PERF_COUNT_HW_CACHE_OP_MAX
]
145 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
149 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
150 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
153 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
154 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
156 [ C(OP_PREFETCH
) ] = {
157 [ C(RESULT_ACCESS
) ] = 0x0,
158 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
163 [ C(RESULT_ACCESS
) ] = 0x0,
164 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
167 [ C(RESULT_ACCESS
) ] = -1,
168 [ C(RESULT_MISS
) ] = -1,
170 [ C(OP_PREFETCH
) ] = {
171 [ C(RESULT_ACCESS
) ] = 0x0,
172 [ C(RESULT_MISS
) ] = 0x0,
177 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
178 [ C(RESULT_ACCESS
) ] = 0x01b7,
179 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
180 [ C(RESULT_MISS
) ] = 0x01b7,
183 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
184 [ C(RESULT_ACCESS
) ] = 0x01b7,
185 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
186 [ C(RESULT_MISS
) ] = 0x01b7,
188 [ C(OP_PREFETCH
) ] = {
189 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
190 [ C(RESULT_ACCESS
) ] = 0x01b7,
191 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
192 [ C(RESULT_MISS
) ] = 0x01b7,
197 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
198 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
201 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
202 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
204 [ C(OP_PREFETCH
) ] = {
205 [ C(RESULT_ACCESS
) ] = 0x0,
206 [ C(RESULT_MISS
) ] = 0x0,
211 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
212 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
215 [ C(RESULT_ACCESS
) ] = -1,
216 [ C(RESULT_MISS
) ] = -1,
218 [ C(OP_PREFETCH
) ] = {
219 [ C(RESULT_ACCESS
) ] = -1,
220 [ C(RESULT_MISS
) ] = -1,
225 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
226 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
229 [ C(RESULT_ACCESS
) ] = -1,
230 [ C(RESULT_MISS
) ] = -1,
232 [ C(OP_PREFETCH
) ] = {
233 [ C(RESULT_ACCESS
) ] = -1,
234 [ C(RESULT_MISS
) ] = -1,
239 [ C(RESULT_ACCESS
) ] = -1,
240 [ C(RESULT_MISS
) ] = -1,
243 [ C(RESULT_ACCESS
) ] = -1,
244 [ C(RESULT_MISS
) ] = -1,
246 [ C(OP_PREFETCH
) ] = {
247 [ C(RESULT_ACCESS
) ] = -1,
248 [ C(RESULT_MISS
) ] = -1,
254 static __initconst
const u64 westmere_hw_cache_event_ids
255 [PERF_COUNT_HW_CACHE_MAX
]
256 [PERF_COUNT_HW_CACHE_OP_MAX
]
257 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
261 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
262 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
265 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
266 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
268 [ C(OP_PREFETCH
) ] = {
269 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
270 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
275 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
276 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
279 [ C(RESULT_ACCESS
) ] = -1,
280 [ C(RESULT_MISS
) ] = -1,
282 [ C(OP_PREFETCH
) ] = {
283 [ C(RESULT_ACCESS
) ] = 0x0,
284 [ C(RESULT_MISS
) ] = 0x0,
289 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
290 [ C(RESULT_ACCESS
) ] = 0x01b7,
291 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
292 [ C(RESULT_MISS
) ] = 0x01b7,
295 * Use RFO, not WRITEBACK, because a write miss would typically occur
299 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
300 [ C(RESULT_ACCESS
) ] = 0x01b7,
301 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
302 [ C(RESULT_MISS
) ] = 0x01b7,
304 [ C(OP_PREFETCH
) ] = {
305 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
306 [ C(RESULT_ACCESS
) ] = 0x01b7,
307 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
308 [ C(RESULT_MISS
) ] = 0x01b7,
313 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
314 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
317 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
318 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
320 [ C(OP_PREFETCH
) ] = {
321 [ C(RESULT_ACCESS
) ] = 0x0,
322 [ C(RESULT_MISS
) ] = 0x0,
327 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
328 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
331 [ C(RESULT_ACCESS
) ] = -1,
332 [ C(RESULT_MISS
) ] = -1,
334 [ C(OP_PREFETCH
) ] = {
335 [ C(RESULT_ACCESS
) ] = -1,
336 [ C(RESULT_MISS
) ] = -1,
341 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
342 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
345 [ C(RESULT_ACCESS
) ] = -1,
346 [ C(RESULT_MISS
) ] = -1,
348 [ C(OP_PREFETCH
) ] = {
349 [ C(RESULT_ACCESS
) ] = -1,
350 [ C(RESULT_MISS
) ] = -1,
355 [ C(RESULT_ACCESS
) ] = 0x01b7,
356 [ C(RESULT_MISS
) ] = 0x01b7,
359 [ C(RESULT_ACCESS
) ] = 0x01b7,
360 [ C(RESULT_MISS
) ] = 0x01b7,
362 [ C(OP_PREFETCH
) ] = {
363 [ C(RESULT_ACCESS
) ] = 0x01b7,
364 [ C(RESULT_MISS
) ] = 0x01b7,
370 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
371 * See IA32 SDM Vol 3B 30.6.1.3
374 #define NHM_DMND_DATA_RD (1 << 0)
375 #define NHM_DMND_RFO (1 << 1)
376 #define NHM_DMND_IFETCH (1 << 2)
377 #define NHM_DMND_WB (1 << 3)
378 #define NHM_PF_DATA_RD (1 << 4)
379 #define NHM_PF_DATA_RFO (1 << 5)
380 #define NHM_PF_IFETCH (1 << 6)
381 #define NHM_OFFCORE_OTHER (1 << 7)
382 #define NHM_UNCORE_HIT (1 << 8)
383 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
384 #define NHM_OTHER_CORE_HITM (1 << 10)
386 #define NHM_REMOTE_CACHE_FWD (1 << 12)
387 #define NHM_REMOTE_DRAM (1 << 13)
388 #define NHM_LOCAL_DRAM (1 << 14)
389 #define NHM_NON_DRAM (1 << 15)
391 #define NHM_ALL_DRAM (NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
393 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
394 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
395 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
397 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
398 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
399 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
401 static __initconst
const u64 nehalem_hw_cache_extra_regs
402 [PERF_COUNT_HW_CACHE_MAX
]
403 [PERF_COUNT_HW_CACHE_OP_MAX
]
404 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
408 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
409 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
412 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
413 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
415 [ C(OP_PREFETCH
) ] = {
416 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
417 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
422 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_ALL_DRAM
,
423 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE_DRAM
,
426 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_ALL_DRAM
,
427 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE_DRAM
,
429 [ C(OP_PREFETCH
) ] = {
430 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_ALL_DRAM
,
431 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE_DRAM
,
436 static __initconst
const u64 nehalem_hw_cache_event_ids
437 [PERF_COUNT_HW_CACHE_MAX
]
438 [PERF_COUNT_HW_CACHE_OP_MAX
]
439 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
443 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
444 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
447 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
448 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
450 [ C(OP_PREFETCH
) ] = {
451 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
452 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
457 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
458 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
461 [ C(RESULT_ACCESS
) ] = -1,
462 [ C(RESULT_MISS
) ] = -1,
464 [ C(OP_PREFETCH
) ] = {
465 [ C(RESULT_ACCESS
) ] = 0x0,
466 [ C(RESULT_MISS
) ] = 0x0,
471 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
472 [ C(RESULT_ACCESS
) ] = 0x01b7,
473 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
474 [ C(RESULT_MISS
) ] = 0x01b7,
477 * Use RFO, not WRITEBACK, because a write miss would typically occur
481 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
482 [ C(RESULT_ACCESS
) ] = 0x01b7,
483 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
484 [ C(RESULT_MISS
) ] = 0x01b7,
486 [ C(OP_PREFETCH
) ] = {
487 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
488 [ C(RESULT_ACCESS
) ] = 0x01b7,
489 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
490 [ C(RESULT_MISS
) ] = 0x01b7,
495 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
496 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
499 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
500 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
502 [ C(OP_PREFETCH
) ] = {
503 [ C(RESULT_ACCESS
) ] = 0x0,
504 [ C(RESULT_MISS
) ] = 0x0,
509 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
510 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
513 [ C(RESULT_ACCESS
) ] = -1,
514 [ C(RESULT_MISS
) ] = -1,
516 [ C(OP_PREFETCH
) ] = {
517 [ C(RESULT_ACCESS
) ] = -1,
518 [ C(RESULT_MISS
) ] = -1,
523 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
524 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
527 [ C(RESULT_ACCESS
) ] = -1,
528 [ C(RESULT_MISS
) ] = -1,
530 [ C(OP_PREFETCH
) ] = {
531 [ C(RESULT_ACCESS
) ] = -1,
532 [ C(RESULT_MISS
) ] = -1,
537 [ C(RESULT_ACCESS
) ] = 0x01b7,
538 [ C(RESULT_MISS
) ] = 0x01b7,
541 [ C(RESULT_ACCESS
) ] = 0x01b7,
542 [ C(RESULT_MISS
) ] = 0x01b7,
544 [ C(OP_PREFETCH
) ] = {
545 [ C(RESULT_ACCESS
) ] = 0x01b7,
546 [ C(RESULT_MISS
) ] = 0x01b7,
551 static __initconst
const u64 core2_hw_cache_event_ids
552 [PERF_COUNT_HW_CACHE_MAX
]
553 [PERF_COUNT_HW_CACHE_OP_MAX
]
554 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
558 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
559 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
562 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
563 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
565 [ C(OP_PREFETCH
) ] = {
566 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
567 [ C(RESULT_MISS
) ] = 0,
572 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
573 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
576 [ C(RESULT_ACCESS
) ] = -1,
577 [ C(RESULT_MISS
) ] = -1,
579 [ C(OP_PREFETCH
) ] = {
580 [ C(RESULT_ACCESS
) ] = 0,
581 [ C(RESULT_MISS
) ] = 0,
586 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
587 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
590 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
591 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
593 [ C(OP_PREFETCH
) ] = {
594 [ C(RESULT_ACCESS
) ] = 0,
595 [ C(RESULT_MISS
) ] = 0,
600 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
601 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
604 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
605 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
607 [ C(OP_PREFETCH
) ] = {
608 [ C(RESULT_ACCESS
) ] = 0,
609 [ C(RESULT_MISS
) ] = 0,
614 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
615 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
618 [ C(RESULT_ACCESS
) ] = -1,
619 [ C(RESULT_MISS
) ] = -1,
621 [ C(OP_PREFETCH
) ] = {
622 [ C(RESULT_ACCESS
) ] = -1,
623 [ C(RESULT_MISS
) ] = -1,
628 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
629 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
632 [ C(RESULT_ACCESS
) ] = -1,
633 [ C(RESULT_MISS
) ] = -1,
635 [ C(OP_PREFETCH
) ] = {
636 [ C(RESULT_ACCESS
) ] = -1,
637 [ C(RESULT_MISS
) ] = -1,
642 static __initconst
const u64 atom_hw_cache_event_ids
643 [PERF_COUNT_HW_CACHE_MAX
]
644 [PERF_COUNT_HW_CACHE_OP_MAX
]
645 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
649 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
650 [ C(RESULT_MISS
) ] = 0,
653 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
654 [ C(RESULT_MISS
) ] = 0,
656 [ C(OP_PREFETCH
) ] = {
657 [ C(RESULT_ACCESS
) ] = 0x0,
658 [ C(RESULT_MISS
) ] = 0,
663 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
664 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
667 [ C(RESULT_ACCESS
) ] = -1,
668 [ C(RESULT_MISS
) ] = -1,
670 [ C(OP_PREFETCH
) ] = {
671 [ C(RESULT_ACCESS
) ] = 0,
672 [ C(RESULT_MISS
) ] = 0,
677 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
678 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
681 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
682 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
684 [ C(OP_PREFETCH
) ] = {
685 [ C(RESULT_ACCESS
) ] = 0,
686 [ C(RESULT_MISS
) ] = 0,
691 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
692 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
695 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
696 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
698 [ C(OP_PREFETCH
) ] = {
699 [ C(RESULT_ACCESS
) ] = 0,
700 [ C(RESULT_MISS
) ] = 0,
705 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
706 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
709 [ C(RESULT_ACCESS
) ] = -1,
710 [ C(RESULT_MISS
) ] = -1,
712 [ C(OP_PREFETCH
) ] = {
713 [ C(RESULT_ACCESS
) ] = -1,
714 [ C(RESULT_MISS
) ] = -1,
719 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
720 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
723 [ C(RESULT_ACCESS
) ] = -1,
724 [ C(RESULT_MISS
) ] = -1,
726 [ C(OP_PREFETCH
) ] = {
727 [ C(RESULT_ACCESS
) ] = -1,
728 [ C(RESULT_MISS
) ] = -1,
733 static void intel_pmu_disable_all(void)
735 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
737 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
739 if (test_bit(X86_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
740 intel_pmu_disable_bts();
742 intel_pmu_pebs_disable_all();
743 intel_pmu_lbr_disable_all();
746 static void intel_pmu_enable_all(int added
)
748 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
750 intel_pmu_pebs_enable_all();
751 intel_pmu_lbr_enable_all();
752 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
753 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
755 if (test_bit(X86_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
756 struct perf_event
*event
=
757 cpuc
->events
[X86_PMC_IDX_FIXED_BTS
];
759 if (WARN_ON_ONCE(!event
))
762 intel_pmu_enable_bts(event
->hw
.config
);
768 * Intel Errata AAK100 (model 26)
769 * Intel Errata AAP53 (model 30)
770 * Intel Errata BD53 (model 44)
772 * The official story:
773 * These chips need to be 'reset' when adding counters by programming the
774 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
775 * in sequence on the same PMC or on different PMCs.
777 * In practise it appears some of these events do in fact count, and
778 * we need to programm all 4 events.
780 static void intel_pmu_nhm_workaround(void)
782 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
783 static const unsigned long nhm_magic
[4] = {
789 struct perf_event
*event
;
793 * The Errata requires below steps:
794 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
795 * 2) Configure 4 PERFEVTSELx with the magic events and clear
796 * the corresponding PMCx;
797 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
798 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
799 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
803 * The real steps we choose are a little different from above.
804 * A) To reduce MSR operations, we don't run step 1) as they
805 * are already cleared before this function is called;
806 * B) Call x86_perf_event_update to save PMCx before configuring
807 * PERFEVTSELx with magic number;
808 * C) With step 5), we do clear only when the PERFEVTSELx is
809 * not used currently.
810 * D) Call x86_perf_event_set_period to restore PMCx;
813 /* We always operate 4 pairs of PERF Counters */
814 for (i
= 0; i
< 4; i
++) {
815 event
= cpuc
->events
[i
];
817 x86_perf_event_update(event
);
820 for (i
= 0; i
< 4; i
++) {
821 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
822 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
825 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
826 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
828 for (i
= 0; i
< 4; i
++) {
829 event
= cpuc
->events
[i
];
832 x86_perf_event_set_period(event
);
833 __x86_pmu_enable_event(&event
->hw
,
834 ARCH_PERFMON_EVENTSEL_ENABLE
);
836 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
840 static void intel_pmu_nhm_enable_all(int added
)
843 intel_pmu_nhm_workaround();
844 intel_pmu_enable_all(added
);
847 static inline u64
intel_pmu_get_status(void)
851 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
856 static inline void intel_pmu_ack_status(u64 ack
)
858 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
861 static void intel_pmu_disable_fixed(struct hw_perf_event
*hwc
)
863 int idx
= hwc
->idx
- X86_PMC_IDX_FIXED
;
866 mask
= 0xfULL
<< (idx
* 4);
868 rdmsrl(hwc
->config_base
, ctrl_val
);
870 wrmsrl(hwc
->config_base
, ctrl_val
);
873 static void intel_pmu_disable_event(struct perf_event
*event
)
875 struct hw_perf_event
*hwc
= &event
->hw
;
876 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
878 if (unlikely(hwc
->idx
== X86_PMC_IDX_FIXED_BTS
)) {
879 intel_pmu_disable_bts();
880 intel_pmu_drain_bts_buffer();
884 cpuc
->intel_ctrl_guest_mask
&= ~(1ull << hwc
->idx
);
885 cpuc
->intel_ctrl_host_mask
&= ~(1ull << hwc
->idx
);
887 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
888 intel_pmu_disable_fixed(hwc
);
892 x86_pmu_disable_event(event
);
894 if (unlikely(event
->attr
.precise_ip
))
895 intel_pmu_pebs_disable(event
);
898 static void intel_pmu_enable_fixed(struct hw_perf_event
*hwc
)
900 int idx
= hwc
->idx
- X86_PMC_IDX_FIXED
;
901 u64 ctrl_val
, bits
, mask
;
904 * Enable IRQ generation (0x8),
905 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
909 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
911 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
915 * ANY bit is supported in v3 and up
917 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
921 mask
= 0xfULL
<< (idx
* 4);
923 rdmsrl(hwc
->config_base
, ctrl_val
);
926 wrmsrl(hwc
->config_base
, ctrl_val
);
929 static void intel_pmu_enable_event(struct perf_event
*event
)
931 struct hw_perf_event
*hwc
= &event
->hw
;
932 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
934 if (unlikely(hwc
->idx
== X86_PMC_IDX_FIXED_BTS
)) {
935 if (!__this_cpu_read(cpu_hw_events
.enabled
))
938 intel_pmu_enable_bts(hwc
->config
);
942 if (event
->attr
.exclude_host
)
943 cpuc
->intel_ctrl_guest_mask
|= (1ull << hwc
->idx
);
944 if (event
->attr
.exclude_guest
)
945 cpuc
->intel_ctrl_host_mask
|= (1ull << hwc
->idx
);
947 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
948 intel_pmu_enable_fixed(hwc
);
952 if (unlikely(event
->attr
.precise_ip
))
953 intel_pmu_pebs_enable(event
);
955 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
959 * Save and restart an expired event. Called by NMI contexts,
960 * so it has to be careful about preempting normal event ops:
962 int intel_pmu_save_and_restart(struct perf_event
*event
)
964 x86_perf_event_update(event
);
965 return x86_perf_event_set_period(event
);
968 static void intel_pmu_reset(void)
970 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
974 if (!x86_pmu
.num_counters
)
977 local_irq_save(flags
);
979 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
981 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
982 checking_wrmsrl(x86_pmu_config_addr(idx
), 0ull);
983 checking_wrmsrl(x86_pmu_event_addr(idx
), 0ull);
985 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
986 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
989 ds
->bts_index
= ds
->bts_buffer_base
;
991 local_irq_restore(flags
);
995 * This handler is triggered by the local APIC, so the APIC IRQ handling
998 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
1000 struct perf_sample_data data
;
1001 struct cpu_hw_events
*cpuc
;
1006 perf_sample_data_init(&data
, 0);
1008 cpuc
= &__get_cpu_var(cpu_hw_events
);
1011 * Some chipsets need to unmask the LVTPC in a particular spot
1012 * inside the nmi handler. As a result, the unmasking was pushed
1013 * into all the nmi handlers.
1015 * This handler doesn't seem to have any issues with the unmasking
1016 * so it was left at the top.
1018 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1020 intel_pmu_disable_all();
1021 handled
= intel_pmu_drain_bts_buffer();
1022 status
= intel_pmu_get_status();
1024 intel_pmu_enable_all(0);
1030 intel_pmu_ack_status(status
);
1031 if (++loops
> 100) {
1032 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1033 perf_event_print_debug();
1038 inc_irq_stat(apic_perf_irqs
);
1040 intel_pmu_lbr_read();
1043 * PEBS overflow sets bit 62 in the global status register
1045 if (__test_and_clear_bit(62, (unsigned long *)&status
)) {
1047 x86_pmu
.drain_pebs(regs
);
1050 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
1051 struct perf_event
*event
= cpuc
->events
[bit
];
1055 if (!test_bit(bit
, cpuc
->active_mask
))
1058 if (!intel_pmu_save_and_restart(event
))
1061 data
.period
= event
->hw
.last_period
;
1063 if (perf_event_overflow(event
, &data
, regs
))
1064 x86_pmu_stop(event
, 0);
1068 * Repeat if there is more work to be done:
1070 status
= intel_pmu_get_status();
1075 intel_pmu_enable_all(0);
1079 static struct event_constraint
*
1080 intel_bts_constraints(struct perf_event
*event
)
1082 struct hw_perf_event
*hwc
= &event
->hw
;
1083 unsigned int hw_event
, bts_event
;
1085 if (event
->attr
.freq
)
1088 hw_event
= hwc
->config
& INTEL_ARCH_EVENT_MASK
;
1089 bts_event
= x86_pmu
.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS
);
1091 if (unlikely(hw_event
== bts_event
&& hwc
->sample_period
== 1))
1092 return &bts_constraint
;
1097 static bool intel_try_alt_er(struct perf_event
*event
, int orig_idx
)
1099 if (!(x86_pmu
.er_flags
& ERF_HAS_RSP_1
))
1102 if (event
->hw
.extra_reg
.idx
== EXTRA_REG_RSP_0
) {
1103 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
1104 event
->hw
.config
|= 0x01bb;
1105 event
->hw
.extra_reg
.idx
= EXTRA_REG_RSP_1
;
1106 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
1107 } else if (event
->hw
.extra_reg
.idx
== EXTRA_REG_RSP_1
) {
1108 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
1109 event
->hw
.config
|= 0x01b7;
1110 event
->hw
.extra_reg
.idx
= EXTRA_REG_RSP_0
;
1111 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
1114 if (event
->hw
.extra_reg
.idx
== orig_idx
)
1121 * manage allocation of shared extra msr for certain events
1124 * per-cpu: to be shared between the various events on a single PMU
1125 * per-core: per-cpu + shared by HT threads
1127 static struct event_constraint
*
1128 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
1129 struct perf_event
*event
)
1131 struct event_constraint
*c
= &emptyconstraint
;
1132 struct hw_perf_event_extra
*reg
= &event
->hw
.extra_reg
;
1133 struct er_account
*era
;
1134 unsigned long flags
;
1135 int orig_idx
= reg
->idx
;
1137 /* already allocated shared msr */
1139 return &unconstrained
;
1142 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
1144 * we use spin_lock_irqsave() to avoid lockdep issues when
1145 * passing a fake cpuc
1147 raw_spin_lock_irqsave(&era
->lock
, flags
);
1149 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
1151 /* lock in msr value */
1152 era
->config
= reg
->config
;
1153 era
->reg
= reg
->reg
;
1156 atomic_inc(&era
->ref
);
1158 /* no need to reallocate during incremental event scheduling */
1162 * All events using extra_reg are unconstrained.
1163 * Avoids calling x86_get_event_constraints()
1165 * Must revisit if extra_reg controlling events
1166 * ever have constraints. Worst case we go through
1167 * the regular event constraint table.
1170 } else if (intel_try_alt_er(event
, orig_idx
)) {
1171 raw_spin_unlock(&era
->lock
);
1174 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
1180 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
1181 struct hw_perf_event_extra
*reg
)
1183 struct er_account
*era
;
1186 * only put constraint if extra reg was actually
1187 * allocated. Also takes care of event which do
1188 * not use an extra shared reg
1193 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
1195 /* one fewer user */
1196 atomic_dec(&era
->ref
);
1198 /* allocate again next time */
1202 static struct event_constraint
*
1203 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
1204 struct perf_event
*event
)
1206 struct event_constraint
*c
= NULL
;
1208 if (event
->hw
.extra_reg
.idx
!= EXTRA_REG_NONE
)
1209 c
= __intel_shared_reg_get_constraints(cpuc
, event
);
1214 struct event_constraint
*
1215 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
1217 struct event_constraint
*c
;
1219 if (x86_pmu
.event_constraints
) {
1220 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1221 if ((event
->hw
.config
& c
->cmask
) == c
->code
)
1226 return &unconstrained
;
1229 static struct event_constraint
*
1230 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
1232 struct event_constraint
*c
;
1234 c
= intel_bts_constraints(event
);
1238 c
= intel_pebs_constraints(event
);
1242 c
= intel_shared_regs_constraints(cpuc
, event
);
1246 return x86_get_event_constraints(cpuc
, event
);
1250 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
1251 struct perf_event
*event
)
1253 struct hw_perf_event_extra
*reg
;
1255 reg
= &event
->hw
.extra_reg
;
1256 if (reg
->idx
!= EXTRA_REG_NONE
)
1257 __intel_shared_reg_put_constraints(cpuc
, reg
);
1260 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
1261 struct perf_event
*event
)
1263 intel_put_shared_regs_event_constraints(cpuc
, event
);
1266 static int intel_pmu_hw_config(struct perf_event
*event
)
1268 int ret
= x86_pmu_hw_config(event
);
1273 if (event
->attr
.precise_ip
&&
1274 (event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
1276 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1277 * (0x003c) so that we can use it with PEBS.
1279 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1280 * PEBS capable. However we can use INST_RETIRED.ANY_P
1281 * (0x00c0), which is a PEBS capable event, to get the same
1284 * INST_RETIRED.ANY_P counts the number of cycles that retires
1285 * CNTMASK instructions. By setting CNTMASK to a value (16)
1286 * larger than the maximum number of instructions that can be
1287 * retired per cycle (4) and then inverting the condition, we
1288 * count all cycles that retire 16 or less instructions, which
1291 * Thereby we gain a PEBS capable cycle counter.
1293 u64 alt_config
= 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
1295 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
1296 event
->hw
.config
= alt_config
;
1299 if (event
->attr
.type
!= PERF_TYPE_RAW
)
1302 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
1305 if (x86_pmu
.version
< 3)
1308 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1311 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
1316 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
1318 if (x86_pmu
.guest_get_msrs
)
1319 return x86_pmu
.guest_get_msrs(nr
);
1323 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
1325 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
1327 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1328 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
1330 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
1331 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
1332 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
1338 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
1340 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1341 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
1344 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1345 struct perf_event
*event
= cpuc
->events
[idx
];
1347 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
1348 arr
[idx
].host
= arr
[idx
].guest
= 0;
1350 if (!test_bit(idx
, cpuc
->active_mask
))
1353 arr
[idx
].host
= arr
[idx
].guest
=
1354 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
1356 if (event
->attr
.exclude_host
)
1357 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
1358 else if (event
->attr
.exclude_guest
)
1359 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
1362 *nr
= x86_pmu
.num_counters
;
1366 static void core_pmu_enable_event(struct perf_event
*event
)
1368 if (!event
->attr
.exclude_host
)
1369 x86_pmu_enable_event(event
);
1372 static void core_pmu_enable_all(int added
)
1374 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1377 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1378 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
1380 if (!test_bit(idx
, cpuc
->active_mask
) ||
1381 cpuc
->events
[idx
]->attr
.exclude_host
)
1384 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
1388 static __initconst
const struct x86_pmu core_pmu
= {
1390 .handle_irq
= x86_pmu_handle_irq
,
1391 .disable_all
= x86_pmu_disable_all
,
1392 .enable_all
= core_pmu_enable_all
,
1393 .enable
= core_pmu_enable_event
,
1394 .disable
= x86_pmu_disable_event
,
1395 .hw_config
= x86_pmu_hw_config
,
1396 .schedule_events
= x86_schedule_events
,
1397 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
1398 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
1399 .event_map
= intel_pmu_event_map
,
1400 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
1403 * Intel PMCs cannot be accessed sanely above 32 bit width,
1404 * so we install an artificial 1<<31 period regardless of
1405 * the generic event period:
1407 .max_period
= (1ULL << 31) - 1,
1408 .get_event_constraints
= intel_get_event_constraints
,
1409 .put_event_constraints
= intel_put_event_constraints
,
1410 .event_constraints
= intel_core_event_constraints
,
1411 .guest_get_msrs
= core_guest_get_msrs
,
1414 struct intel_shared_regs
*allocate_shared_regs(int cpu
)
1416 struct intel_shared_regs
*regs
;
1419 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
1420 GFP_KERNEL
, cpu_to_node(cpu
));
1423 * initialize the locks to keep lockdep happy
1425 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
1426 raw_spin_lock_init(®s
->regs
[i
].lock
);
1433 static int intel_pmu_cpu_prepare(int cpu
)
1435 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1437 if (!x86_pmu
.extra_regs
)
1440 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1441 if (!cpuc
->shared_regs
)
1447 static void intel_pmu_cpu_starting(int cpu
)
1449 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1450 int core_id
= topology_core_id(cpu
);
1453 init_debug_store_on_cpu(cpu
);
1455 * Deal with CPUs that don't clear their LBRs on power-up.
1457 intel_pmu_lbr_reset();
1459 if (!cpuc
->shared_regs
|| (x86_pmu
.er_flags
& ERF_NO_HT_SHARING
))
1462 for_each_cpu(i
, topology_thread_cpumask(cpu
)) {
1463 struct intel_shared_regs
*pc
;
1465 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
1466 if (pc
&& pc
->core_id
== core_id
) {
1467 cpuc
->kfree_on_online
= cpuc
->shared_regs
;
1468 cpuc
->shared_regs
= pc
;
1473 cpuc
->shared_regs
->core_id
= core_id
;
1474 cpuc
->shared_regs
->refcnt
++;
1477 static void intel_pmu_cpu_dying(int cpu
)
1479 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1480 struct intel_shared_regs
*pc
;
1482 pc
= cpuc
->shared_regs
;
1484 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
1486 cpuc
->shared_regs
= NULL
;
1489 fini_debug_store_on_cpu(cpu
);
1492 static __initconst
const struct x86_pmu intel_pmu
= {
1494 .handle_irq
= intel_pmu_handle_irq
,
1495 .disable_all
= intel_pmu_disable_all
,
1496 .enable_all
= intel_pmu_enable_all
,
1497 .enable
= intel_pmu_enable_event
,
1498 .disable
= intel_pmu_disable_event
,
1499 .hw_config
= intel_pmu_hw_config
,
1500 .schedule_events
= x86_schedule_events
,
1501 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
1502 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
1503 .event_map
= intel_pmu_event_map
,
1504 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
1507 * Intel PMCs cannot be accessed sanely above 32 bit width,
1508 * so we install an artificial 1<<31 period regardless of
1509 * the generic event period:
1511 .max_period
= (1ULL << 31) - 1,
1512 .get_event_constraints
= intel_get_event_constraints
,
1513 .put_event_constraints
= intel_put_event_constraints
,
1515 .cpu_prepare
= intel_pmu_cpu_prepare
,
1516 .cpu_starting
= intel_pmu_cpu_starting
,
1517 .cpu_dying
= intel_pmu_cpu_dying
,
1518 .guest_get_msrs
= intel_guest_get_msrs
,
1521 static void intel_clovertown_quirks(void)
1524 * PEBS is unreliable due to:
1526 * AJ67 - PEBS may experience CPL leaks
1527 * AJ68 - PEBS PMI may be delayed by one event
1528 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1529 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1531 * AJ67 could be worked around by restricting the OS/USR flags.
1532 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1534 * AJ106 could possibly be worked around by not allowing LBR
1535 * usage from PEBS, including the fixup.
1536 * AJ68 could possibly be worked around by always programming
1537 * a pebs_event_reset[0] value and coping with the lost events.
1539 * But taken together it might just make sense to not enable PEBS on
1542 printk(KERN_WARNING
"PEBS disabled due to CPU errata.\n");
1544 x86_pmu
.pebs_constraints
= NULL
;
1547 __init
int intel_pmu_init(void)
1549 union cpuid10_edx edx
;
1550 union cpuid10_eax eax
;
1551 unsigned int unused
;
1555 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
1556 switch (boot_cpu_data
.x86
) {
1558 return p6_pmu_init();
1560 return p4_pmu_init();
1566 * Check whether the Architectural PerfMon supports
1567 * Branch Misses Retired hw_event or not.
1569 cpuid(10, &eax
.full
, &ebx
, &unused
, &edx
.full
);
1570 if (eax
.split
.mask_length
<= ARCH_PERFMON_BRANCH_MISSES_RETIRED
)
1573 version
= eax
.split
.version_id
;
1577 x86_pmu
= intel_pmu
;
1579 x86_pmu
.version
= version
;
1580 x86_pmu
.num_counters
= eax
.split
.num_counters
;
1581 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
1582 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
1585 * Quirk: v2 perfmon does not report fixed-purpose events, so
1586 * assume at least 3 events:
1589 x86_pmu
.num_counters_fixed
= max((int)edx
.split
.num_counters_fixed
, 3);
1592 * v2 and above have a perf capabilities MSR
1597 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
1598 x86_pmu
.intel_cap
.capabilities
= capabilities
;
1604 * Install the hw-cache-events table:
1606 switch (boot_cpu_data
.x86_model
) {
1607 case 14: /* 65 nm core solo/duo, "Yonah" */
1608 pr_cont("Core events, ");
1611 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1612 x86_pmu
.quirks
= intel_clovertown_quirks
;
1613 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1614 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1615 case 29: /* six-core 45 nm xeon "Dunnington" */
1616 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
1617 sizeof(hw_cache_event_ids
));
1619 intel_pmu_lbr_init_core();
1621 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
1622 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
1623 pr_cont("Core2 events, ");
1626 case 26: /* 45 nm nehalem, "Bloomfield" */
1627 case 30: /* 45 nm nehalem, "Lynnfield" */
1628 case 46: /* 45 nm nehalem-ex, "Beckton" */
1629 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
1630 sizeof(hw_cache_event_ids
));
1631 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
1632 sizeof(hw_cache_extra_regs
));
1634 intel_pmu_lbr_init_nhm();
1636 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
1637 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
1638 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
1639 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
1641 /* UOPS_ISSUED.STALLED_CYCLES */
1642 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x180010e;
1643 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1644 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x1803fb1;
1648 * Erratum AAJ80 detected, we work it around by using
1649 * the BR_MISP_EXEC.ANY event. This will over-count
1650 * branch-misses, but it's still much better than the
1651 * architectural event which is often completely bogus:
1653 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
1655 pr_cont("erratum AAJ80 worked around, ");
1657 pr_cont("Nehalem events, ");
1661 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
1662 sizeof(hw_cache_event_ids
));
1664 intel_pmu_lbr_init_atom();
1666 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
1667 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
1668 pr_cont("Atom events, ");
1671 case 37: /* 32 nm nehalem, "Clarkdale" */
1672 case 44: /* 32 nm nehalem, "Gulftown" */
1673 case 47: /* 32 nm Xeon E7 */
1674 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
1675 sizeof(hw_cache_event_ids
));
1676 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
1677 sizeof(hw_cache_extra_regs
));
1679 intel_pmu_lbr_init_nhm();
1681 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
1682 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
1683 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
1684 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
1685 x86_pmu
.er_flags
|= ERF_HAS_RSP_1
;
1687 /* UOPS_ISSUED.STALLED_CYCLES */
1688 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x180010e;
1689 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1690 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x1803fb1;
1692 pr_cont("Westmere events, ");
1695 case 42: /* SandyBridge */
1696 case 45: /* SandyBridge, "Romely-EP" */
1697 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
1698 sizeof(hw_cache_event_ids
));
1700 intel_pmu_lbr_init_nhm();
1702 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
1703 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
1704 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
1705 /* all extra regs are per-cpu when HT is on */
1706 x86_pmu
.er_flags
|= ERF_HAS_RSP_1
;
1707 x86_pmu
.er_flags
|= ERF_NO_HT_SHARING
;
1709 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1710 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x180010e;
1711 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1712 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x18001b1;
1714 pr_cont("SandyBridge events, ");
1718 switch (x86_pmu
.version
) {
1720 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
1721 pr_cont("generic architected perfmon v1, ");
1725 * default constraints for v2 and up
1727 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
1728 pr_cont("generic architected perfmon, ");