MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / arch / x86 / kvm / svm.c
blobe32243eac2f48874ac494f5f8a27ed7fb605ebc4
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
36 #include <asm/virtext.h>
37 #include "trace.h"
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_TSC_RATE (1 << 4)
55 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
56 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
57 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
58 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
60 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
61 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
62 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
64 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
66 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
67 #define TSC_RATIO_MIN 0x0000000000000001ULL
68 #define TSC_RATIO_MAX 0x000000ffffffffffULL
70 static bool erratum_383_found __read_mostly;
72 static const u32 host_save_user_msrs[] = {
73 #ifdef CONFIG_X86_64
74 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
75 MSR_FS_BASE,
76 #endif
77 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
80 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
82 struct kvm_vcpu;
84 struct nested_state {
85 struct vmcb *hsave;
86 u64 hsave_msr;
87 u64 vm_cr_msr;
88 u64 vmcb;
90 /* These are the merged vectors */
91 u32 *msrpm;
93 /* gpa pointers to the real vectors */
94 u64 vmcb_msrpm;
95 u64 vmcb_iopm;
97 /* A VMEXIT is required but not yet emulated */
98 bool exit_required;
100 /* cache for intercepts of the guest */
101 u32 intercept_cr;
102 u32 intercept_dr;
103 u32 intercept_exceptions;
104 u64 intercept;
106 /* Nested Paging related state */
107 u64 nested_cr3;
110 #define MSRPM_OFFSETS 16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
113 struct vcpu_svm {
114 struct kvm_vcpu vcpu;
115 struct vmcb *vmcb;
116 unsigned long vmcb_pa;
117 struct svm_cpu_data *svm_data;
118 uint64_t asid_generation;
119 uint64_t sysenter_esp;
120 uint64_t sysenter_eip;
122 u64 next_rip;
124 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125 struct {
126 u16 fs;
127 u16 gs;
128 u16 ldt;
129 u64 gs_base;
130 } host;
132 u32 *msrpm;
134 ulong nmi_iret_rip;
136 struct nested_state nested;
138 bool nmi_singlestep;
140 unsigned int3_injected;
141 unsigned long int3_rip;
142 u32 apf_reason;
144 u64 tsc_ratio;
147 static DEFINE_PER_CPU(u64, current_tsc_ratio);
148 #define TSC_RATIO_DEFAULT 0x0100000000ULL
150 #define MSR_INVALID 0xffffffffU
152 static struct svm_direct_access_msrs {
153 u32 index; /* Index of the MSR */
154 bool always; /* True if intercept is always on */
155 } direct_access_msrs[] = {
156 { .index = MSR_STAR, .always = true },
157 { .index = MSR_IA32_SYSENTER_CS, .always = true },
158 #ifdef CONFIG_X86_64
159 { .index = MSR_GS_BASE, .always = true },
160 { .index = MSR_FS_BASE, .always = true },
161 { .index = MSR_KERNEL_GS_BASE, .always = true },
162 { .index = MSR_LSTAR, .always = true },
163 { .index = MSR_CSTAR, .always = true },
164 { .index = MSR_SYSCALL_MASK, .always = true },
165 #endif
166 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
167 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
168 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
169 { .index = MSR_IA32_LASTINTTOIP, .always = false },
170 { .index = MSR_INVALID, .always = false },
173 /* enable NPT for AMD64 and X86 with PAE */
174 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
175 static bool npt_enabled = true;
176 #else
177 static bool npt_enabled;
178 #endif
179 static int npt = 1;
181 module_param(npt, int, S_IRUGO);
183 static int nested = 1;
184 module_param(nested, int, S_IRUGO);
186 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
187 static void svm_complete_interrupts(struct vcpu_svm *svm);
189 static int nested_svm_exit_handled(struct vcpu_svm *svm);
190 static int nested_svm_intercept(struct vcpu_svm *svm);
191 static int nested_svm_vmexit(struct vcpu_svm *svm);
192 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
193 bool has_error_code, u32 error_code);
194 static u64 __scale_tsc(u64 ratio, u64 tsc);
196 enum {
197 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
198 pause filter count */
199 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
200 VMCB_ASID, /* ASID */
201 VMCB_INTR, /* int_ctl, int_vector */
202 VMCB_NPT, /* npt_en, nCR3, gPAT */
203 VMCB_CR, /* CR0, CR3, CR4, EFER */
204 VMCB_DR, /* DR6, DR7 */
205 VMCB_DT, /* GDT, IDT */
206 VMCB_SEG, /* CS, DS, SS, ES, CPL */
207 VMCB_CR2, /* CR2 only */
208 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
209 VMCB_DIRTY_MAX,
212 /* TPR and CR2 are always written before VMRUN */
213 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
215 static inline void mark_all_dirty(struct vmcb *vmcb)
217 vmcb->control.clean = 0;
220 static inline void mark_all_clean(struct vmcb *vmcb)
222 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
223 & ~VMCB_ALWAYS_DIRTY_MASK;
226 static inline void mark_dirty(struct vmcb *vmcb, int bit)
228 vmcb->control.clean &= ~(1 << bit);
231 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
233 return container_of(vcpu, struct vcpu_svm, vcpu);
236 static void recalc_intercepts(struct vcpu_svm *svm)
238 struct vmcb_control_area *c, *h;
239 struct nested_state *g;
241 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
243 if (!is_guest_mode(&svm->vcpu))
244 return;
246 c = &svm->vmcb->control;
247 h = &svm->nested.hsave->control;
248 g = &svm->nested;
250 c->intercept_cr = h->intercept_cr | g->intercept_cr;
251 c->intercept_dr = h->intercept_dr | g->intercept_dr;
252 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
253 c->intercept = h->intercept | g->intercept;
256 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
258 if (is_guest_mode(&svm->vcpu))
259 return svm->nested.hsave;
260 else
261 return svm->vmcb;
264 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
266 struct vmcb *vmcb = get_host_vmcb(svm);
268 vmcb->control.intercept_cr |= (1U << bit);
270 recalc_intercepts(svm);
273 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
275 struct vmcb *vmcb = get_host_vmcb(svm);
277 vmcb->control.intercept_cr &= ~(1U << bit);
279 recalc_intercepts(svm);
282 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
284 struct vmcb *vmcb = get_host_vmcb(svm);
286 return vmcb->control.intercept_cr & (1U << bit);
289 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
291 struct vmcb *vmcb = get_host_vmcb(svm);
293 vmcb->control.intercept_dr |= (1U << bit);
295 recalc_intercepts(svm);
298 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
300 struct vmcb *vmcb = get_host_vmcb(svm);
302 vmcb->control.intercept_dr &= ~(1U << bit);
304 recalc_intercepts(svm);
307 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
309 struct vmcb *vmcb = get_host_vmcb(svm);
311 vmcb->control.intercept_exceptions |= (1U << bit);
313 recalc_intercepts(svm);
316 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
318 struct vmcb *vmcb = get_host_vmcb(svm);
320 vmcb->control.intercept_exceptions &= ~(1U << bit);
322 recalc_intercepts(svm);
325 static inline void set_intercept(struct vcpu_svm *svm, int bit)
327 struct vmcb *vmcb = get_host_vmcb(svm);
329 vmcb->control.intercept |= (1ULL << bit);
331 recalc_intercepts(svm);
334 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
336 struct vmcb *vmcb = get_host_vmcb(svm);
338 vmcb->control.intercept &= ~(1ULL << bit);
340 recalc_intercepts(svm);
343 static inline void enable_gif(struct vcpu_svm *svm)
345 svm->vcpu.arch.hflags |= HF_GIF_MASK;
348 static inline void disable_gif(struct vcpu_svm *svm)
350 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
353 static inline bool gif_set(struct vcpu_svm *svm)
355 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
358 static unsigned long iopm_base;
360 struct kvm_ldttss_desc {
361 u16 limit0;
362 u16 base0;
363 unsigned base1:8, type:5, dpl:2, p:1;
364 unsigned limit1:4, zero0:3, g:1, base2:8;
365 u32 base3;
366 u32 zero1;
367 } __attribute__((packed));
369 struct svm_cpu_data {
370 int cpu;
372 u64 asid_generation;
373 u32 max_asid;
374 u32 next_asid;
375 struct kvm_ldttss_desc *tss_desc;
377 struct page *save_area;
380 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
382 struct svm_init_data {
383 int cpu;
384 int r;
387 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
389 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
390 #define MSRS_RANGE_SIZE 2048
391 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
393 static u32 svm_msrpm_offset(u32 msr)
395 u32 offset;
396 int i;
398 for (i = 0; i < NUM_MSR_MAPS; i++) {
399 if (msr < msrpm_ranges[i] ||
400 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
401 continue;
403 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
404 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
406 /* Now we have the u8 offset - but need the u32 offset */
407 return offset / 4;
410 /* MSR not in any range */
411 return MSR_INVALID;
414 #define MAX_INST_SIZE 15
416 static inline void clgi(void)
418 asm volatile (__ex(SVM_CLGI));
421 static inline void stgi(void)
423 asm volatile (__ex(SVM_STGI));
426 static inline void invlpga(unsigned long addr, u32 asid)
428 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
431 static int get_npt_level(void)
433 #ifdef CONFIG_X86_64
434 return PT64_ROOT_LEVEL;
435 #else
436 return PT32E_ROOT_LEVEL;
437 #endif
440 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
442 vcpu->arch.efer = efer;
443 if (!npt_enabled && !(efer & EFER_LMA))
444 efer &= ~EFER_LME;
446 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
447 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
450 static int is_external_interrupt(u32 info)
452 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
453 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
456 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
458 struct vcpu_svm *svm = to_svm(vcpu);
459 u32 ret = 0;
461 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
462 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
463 return ret & mask;
466 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
468 struct vcpu_svm *svm = to_svm(vcpu);
470 if (mask == 0)
471 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
472 else
473 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
477 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
479 struct vcpu_svm *svm = to_svm(vcpu);
481 if (svm->vmcb->control.next_rip != 0)
482 svm->next_rip = svm->vmcb->control.next_rip;
484 if (!svm->next_rip) {
485 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
486 EMULATE_DONE)
487 printk(KERN_DEBUG "%s: NOP\n", __func__);
488 return;
490 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
491 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
492 __func__, kvm_rip_read(vcpu), svm->next_rip);
494 kvm_rip_write(vcpu, svm->next_rip);
495 svm_set_interrupt_shadow(vcpu, 0);
498 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
499 bool has_error_code, u32 error_code,
500 bool reinject)
502 struct vcpu_svm *svm = to_svm(vcpu);
505 * If we are within a nested VM we'd better #VMEXIT and let the guest
506 * handle the exception
508 if (!reinject &&
509 nested_svm_check_exception(svm, nr, has_error_code, error_code))
510 return;
512 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
513 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
516 * For guest debugging where we have to reinject #BP if some
517 * INT3 is guest-owned:
518 * Emulate nRIP by moving RIP forward. Will fail if injection
519 * raises a fault that is not intercepted. Still better than
520 * failing in all cases.
522 skip_emulated_instruction(&svm->vcpu);
523 rip = kvm_rip_read(&svm->vcpu);
524 svm->int3_rip = rip + svm->vmcb->save.cs.base;
525 svm->int3_injected = rip - old_rip;
528 svm->vmcb->control.event_inj = nr
529 | SVM_EVTINJ_VALID
530 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
531 | SVM_EVTINJ_TYPE_EXEPT;
532 svm->vmcb->control.event_inj_err = error_code;
535 static void svm_init_erratum_383(void)
537 u32 low, high;
538 int err;
539 u64 val;
541 if (!cpu_has_amd_erratum(amd_erratum_383))
542 return;
544 /* Use _safe variants to not break nested virtualization */
545 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
546 if (err)
547 return;
549 val |= (1ULL << 47);
551 low = lower_32_bits(val);
552 high = upper_32_bits(val);
554 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
556 erratum_383_found = true;
559 static int has_svm(void)
561 const char *msg;
563 if (!cpu_has_svm(&msg)) {
564 printk(KERN_INFO "has_svm: %s\n", msg);
565 return 0;
568 return 1;
571 static void svm_hardware_disable(void *garbage)
573 /* Make sure we clean up behind us */
574 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
575 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
577 cpu_svm_disable();
580 static int svm_hardware_enable(void *garbage)
583 struct svm_cpu_data *sd;
584 uint64_t efer;
585 struct desc_ptr gdt_descr;
586 struct desc_struct *gdt;
587 int me = raw_smp_processor_id();
589 rdmsrl(MSR_EFER, efer);
590 if (efer & EFER_SVME)
591 return -EBUSY;
593 if (!has_svm()) {
594 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
595 me);
596 return -EINVAL;
598 sd = per_cpu(svm_data, me);
600 if (!sd) {
601 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
602 me);
603 return -EINVAL;
606 sd->asid_generation = 1;
607 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
608 sd->next_asid = sd->max_asid + 1;
610 native_store_gdt(&gdt_descr);
611 gdt = (struct desc_struct *)gdt_descr.address;
612 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
614 wrmsrl(MSR_EFER, efer | EFER_SVME);
616 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
618 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
619 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
620 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
623 svm_init_erratum_383();
625 return 0;
628 static void svm_cpu_uninit(int cpu)
630 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
632 if (!sd)
633 return;
635 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
636 __free_page(sd->save_area);
637 kfree(sd);
640 static int svm_cpu_init(int cpu)
642 struct svm_cpu_data *sd;
643 int r;
645 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
646 if (!sd)
647 return -ENOMEM;
648 sd->cpu = cpu;
649 sd->save_area = alloc_page(GFP_KERNEL);
650 r = -ENOMEM;
651 if (!sd->save_area)
652 goto err_1;
654 per_cpu(svm_data, cpu) = sd;
656 return 0;
658 err_1:
659 kfree(sd);
660 return r;
664 static bool valid_msr_intercept(u32 index)
666 int i;
668 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
669 if (direct_access_msrs[i].index == index)
670 return true;
672 return false;
675 static void set_msr_interception(u32 *msrpm, unsigned msr,
676 int read, int write)
678 u8 bit_read, bit_write;
679 unsigned long tmp;
680 u32 offset;
683 * If this warning triggers extend the direct_access_msrs list at the
684 * beginning of the file
686 WARN_ON(!valid_msr_intercept(msr));
688 offset = svm_msrpm_offset(msr);
689 bit_read = 2 * (msr & 0x0f);
690 bit_write = 2 * (msr & 0x0f) + 1;
691 tmp = msrpm[offset];
693 BUG_ON(offset == MSR_INVALID);
695 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
696 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
698 msrpm[offset] = tmp;
701 static void svm_vcpu_init_msrpm(u32 *msrpm)
703 int i;
705 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
707 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
708 if (!direct_access_msrs[i].always)
709 continue;
711 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
715 static void add_msr_offset(u32 offset)
717 int i;
719 for (i = 0; i < MSRPM_OFFSETS; ++i) {
721 /* Offset already in list? */
722 if (msrpm_offsets[i] == offset)
723 return;
725 /* Slot used by another offset? */
726 if (msrpm_offsets[i] != MSR_INVALID)
727 continue;
729 /* Add offset to list */
730 msrpm_offsets[i] = offset;
732 return;
736 * If this BUG triggers the msrpm_offsets table has an overflow. Just
737 * increase MSRPM_OFFSETS in this case.
739 BUG();
742 static void init_msrpm_offsets(void)
744 int i;
746 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
748 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
749 u32 offset;
751 offset = svm_msrpm_offset(direct_access_msrs[i].index);
752 BUG_ON(offset == MSR_INVALID);
754 add_msr_offset(offset);
758 static void svm_enable_lbrv(struct vcpu_svm *svm)
760 u32 *msrpm = svm->msrpm;
762 svm->vmcb->control.lbr_ctl = 1;
763 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
764 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
765 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
766 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
769 static void svm_disable_lbrv(struct vcpu_svm *svm)
771 u32 *msrpm = svm->msrpm;
773 svm->vmcb->control.lbr_ctl = 0;
774 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
775 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
776 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
777 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
780 static __init int svm_hardware_setup(void)
782 int cpu;
783 struct page *iopm_pages;
784 void *iopm_va;
785 int r;
787 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
789 if (!iopm_pages)
790 return -ENOMEM;
792 iopm_va = page_address(iopm_pages);
793 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
794 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
796 init_msrpm_offsets();
798 if (boot_cpu_has(X86_FEATURE_NX))
799 kvm_enable_efer_bits(EFER_NX);
801 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
802 kvm_enable_efer_bits(EFER_FFXSR);
804 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
805 u64 max;
807 kvm_has_tsc_control = true;
810 * Make sure the user can only configure tsc_khz values that
811 * fit into a signed integer.
812 * A min value is not calculated needed because it will always
813 * be 1 on all machines and a value of 0 is used to disable
814 * tsc-scaling for the vcpu.
816 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
818 kvm_max_guest_tsc_khz = max;
821 if (nested) {
822 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
823 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
826 for_each_possible_cpu(cpu) {
827 r = svm_cpu_init(cpu);
828 if (r)
829 goto err;
832 if (!boot_cpu_has(X86_FEATURE_NPT))
833 npt_enabled = false;
835 if (npt_enabled && !npt) {
836 printk(KERN_INFO "kvm: Nested Paging disabled\n");
837 npt_enabled = false;
840 if (npt_enabled) {
841 printk(KERN_INFO "kvm: Nested Paging enabled\n");
842 kvm_enable_tdp();
843 } else
844 kvm_disable_tdp();
846 return 0;
848 err:
849 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
850 iopm_base = 0;
851 return r;
854 static __exit void svm_hardware_unsetup(void)
856 int cpu;
858 for_each_possible_cpu(cpu)
859 svm_cpu_uninit(cpu);
861 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
862 iopm_base = 0;
865 static void init_seg(struct vmcb_seg *seg)
867 seg->selector = 0;
868 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
869 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
870 seg->limit = 0xffff;
871 seg->base = 0;
874 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
876 seg->selector = 0;
877 seg->attrib = SVM_SELECTOR_P_MASK | type;
878 seg->limit = 0xffff;
879 seg->base = 0;
882 static u64 __scale_tsc(u64 ratio, u64 tsc)
884 u64 mult, frac, _tsc;
886 mult = ratio >> 32;
887 frac = ratio & ((1ULL << 32) - 1);
889 _tsc = tsc;
890 _tsc *= mult;
891 _tsc += (tsc >> 32) * frac;
892 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
894 return _tsc;
897 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
899 struct vcpu_svm *svm = to_svm(vcpu);
900 u64 _tsc = tsc;
902 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
903 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
905 return _tsc;
908 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
910 struct vcpu_svm *svm = to_svm(vcpu);
911 u64 ratio;
912 u64 khz;
914 /* TSC scaling supported? */
915 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR))
916 return;
918 /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
919 if (user_tsc_khz == 0) {
920 vcpu->arch.virtual_tsc_khz = 0;
921 svm->tsc_ratio = TSC_RATIO_DEFAULT;
922 return;
925 khz = user_tsc_khz;
927 /* TSC scaling required - calculate ratio */
928 ratio = khz << 32;
929 do_div(ratio, tsc_khz);
931 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
932 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
933 user_tsc_khz);
934 return;
936 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
937 svm->tsc_ratio = ratio;
940 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
942 struct vcpu_svm *svm = to_svm(vcpu);
943 u64 g_tsc_offset = 0;
945 if (is_guest_mode(vcpu)) {
946 g_tsc_offset = svm->vmcb->control.tsc_offset -
947 svm->nested.hsave->control.tsc_offset;
948 svm->nested.hsave->control.tsc_offset = offset;
951 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
953 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
956 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
958 struct vcpu_svm *svm = to_svm(vcpu);
960 svm->vmcb->control.tsc_offset += adjustment;
961 if (is_guest_mode(vcpu))
962 svm->nested.hsave->control.tsc_offset += adjustment;
963 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
966 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
968 u64 tsc;
970 tsc = svm_scale_tsc(vcpu, native_read_tsc());
972 return target_tsc - tsc;
975 static void init_vmcb(struct vcpu_svm *svm)
977 struct vmcb_control_area *control = &svm->vmcb->control;
978 struct vmcb_save_area *save = &svm->vmcb->save;
980 svm->vcpu.fpu_active = 1;
981 svm->vcpu.arch.hflags = 0;
983 set_cr_intercept(svm, INTERCEPT_CR0_READ);
984 set_cr_intercept(svm, INTERCEPT_CR3_READ);
985 set_cr_intercept(svm, INTERCEPT_CR4_READ);
986 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
987 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
988 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
989 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
991 set_dr_intercept(svm, INTERCEPT_DR0_READ);
992 set_dr_intercept(svm, INTERCEPT_DR1_READ);
993 set_dr_intercept(svm, INTERCEPT_DR2_READ);
994 set_dr_intercept(svm, INTERCEPT_DR3_READ);
995 set_dr_intercept(svm, INTERCEPT_DR4_READ);
996 set_dr_intercept(svm, INTERCEPT_DR5_READ);
997 set_dr_intercept(svm, INTERCEPT_DR6_READ);
998 set_dr_intercept(svm, INTERCEPT_DR7_READ);
1000 set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1001 set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1002 set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1003 set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1004 set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1005 set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1006 set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1007 set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1009 set_exception_intercept(svm, PF_VECTOR);
1010 set_exception_intercept(svm, UD_VECTOR);
1011 set_exception_intercept(svm, MC_VECTOR);
1013 set_intercept(svm, INTERCEPT_INTR);
1014 set_intercept(svm, INTERCEPT_NMI);
1015 set_intercept(svm, INTERCEPT_SMI);
1016 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1017 set_intercept(svm, INTERCEPT_CPUID);
1018 set_intercept(svm, INTERCEPT_INVD);
1019 set_intercept(svm, INTERCEPT_HLT);
1020 set_intercept(svm, INTERCEPT_INVLPG);
1021 set_intercept(svm, INTERCEPT_INVLPGA);
1022 set_intercept(svm, INTERCEPT_IOIO_PROT);
1023 set_intercept(svm, INTERCEPT_MSR_PROT);
1024 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1025 set_intercept(svm, INTERCEPT_SHUTDOWN);
1026 set_intercept(svm, INTERCEPT_VMRUN);
1027 set_intercept(svm, INTERCEPT_VMMCALL);
1028 set_intercept(svm, INTERCEPT_VMLOAD);
1029 set_intercept(svm, INTERCEPT_VMSAVE);
1030 set_intercept(svm, INTERCEPT_STGI);
1031 set_intercept(svm, INTERCEPT_CLGI);
1032 set_intercept(svm, INTERCEPT_SKINIT);
1033 set_intercept(svm, INTERCEPT_WBINVD);
1034 set_intercept(svm, INTERCEPT_MONITOR);
1035 set_intercept(svm, INTERCEPT_MWAIT);
1036 set_intercept(svm, INTERCEPT_XSETBV);
1038 control->iopm_base_pa = iopm_base;
1039 control->msrpm_base_pa = __pa(svm->msrpm);
1040 control->int_ctl = V_INTR_MASKING_MASK;
1042 init_seg(&save->es);
1043 init_seg(&save->ss);
1044 init_seg(&save->ds);
1045 init_seg(&save->fs);
1046 init_seg(&save->gs);
1048 save->cs.selector = 0xf000;
1049 /* Executable/Readable Code Segment */
1050 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1051 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1052 save->cs.limit = 0xffff;
1054 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1055 * be consistent with it.
1057 * Replace when we have real mode working for vmx.
1059 save->cs.base = 0xf0000;
1061 save->gdtr.limit = 0xffff;
1062 save->idtr.limit = 0xffff;
1064 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1065 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1067 svm_set_efer(&svm->vcpu, 0);
1068 save->dr6 = 0xffff0ff0;
1069 save->dr7 = 0x400;
1070 kvm_set_rflags(&svm->vcpu, 2);
1071 save->rip = 0x0000fff0;
1072 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1075 * This is the guest-visible cr0 value.
1076 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1078 svm->vcpu.arch.cr0 = 0;
1079 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1081 save->cr4 = X86_CR4_PAE;
1082 /* rdx = ?? */
1084 if (npt_enabled) {
1085 /* Setup VMCB for Nested Paging */
1086 control->nested_ctl = 1;
1087 clr_intercept(svm, INTERCEPT_INVLPG);
1088 clr_exception_intercept(svm, PF_VECTOR);
1089 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1090 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1091 save->g_pat = 0x0007040600070406ULL;
1092 save->cr3 = 0;
1093 save->cr4 = 0;
1095 svm->asid_generation = 0;
1097 svm->nested.vmcb = 0;
1098 svm->vcpu.arch.hflags = 0;
1100 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1101 control->pause_filter_count = 3000;
1102 set_intercept(svm, INTERCEPT_PAUSE);
1105 mark_all_dirty(svm->vmcb);
1107 enable_gif(svm);
1110 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1112 struct vcpu_svm *svm = to_svm(vcpu);
1114 init_vmcb(svm);
1116 if (!kvm_vcpu_is_bsp(vcpu)) {
1117 kvm_rip_write(vcpu, 0);
1118 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1119 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1121 vcpu->arch.regs_avail = ~0;
1122 vcpu->arch.regs_dirty = ~0;
1124 return 0;
1127 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1129 struct vcpu_svm *svm;
1130 struct page *page;
1131 struct page *msrpm_pages;
1132 struct page *hsave_page;
1133 struct page *nested_msrpm_pages;
1134 int err;
1136 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1137 if (!svm) {
1138 err = -ENOMEM;
1139 goto out;
1142 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1144 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1145 if (err)
1146 goto free_svm;
1148 err = -ENOMEM;
1149 page = alloc_page(GFP_KERNEL);
1150 if (!page)
1151 goto uninit;
1153 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1154 if (!msrpm_pages)
1155 goto free_page1;
1157 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1158 if (!nested_msrpm_pages)
1159 goto free_page2;
1161 hsave_page = alloc_page(GFP_KERNEL);
1162 if (!hsave_page)
1163 goto free_page3;
1165 svm->nested.hsave = page_address(hsave_page);
1167 svm->msrpm = page_address(msrpm_pages);
1168 svm_vcpu_init_msrpm(svm->msrpm);
1170 svm->nested.msrpm = page_address(nested_msrpm_pages);
1171 svm_vcpu_init_msrpm(svm->nested.msrpm);
1173 svm->vmcb = page_address(page);
1174 clear_page(svm->vmcb);
1175 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1176 svm->asid_generation = 0;
1177 init_vmcb(svm);
1178 kvm_write_tsc(&svm->vcpu, 0);
1180 err = fx_init(&svm->vcpu);
1181 if (err)
1182 goto free_page4;
1184 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1185 if (kvm_vcpu_is_bsp(&svm->vcpu))
1186 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1188 return &svm->vcpu;
1190 free_page4:
1191 __free_page(hsave_page);
1192 free_page3:
1193 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1194 free_page2:
1195 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1196 free_page1:
1197 __free_page(page);
1198 uninit:
1199 kvm_vcpu_uninit(&svm->vcpu);
1200 free_svm:
1201 kmem_cache_free(kvm_vcpu_cache, svm);
1202 out:
1203 return ERR_PTR(err);
1206 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1208 struct vcpu_svm *svm = to_svm(vcpu);
1210 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1211 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1212 __free_page(virt_to_page(svm->nested.hsave));
1213 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1214 kvm_vcpu_uninit(vcpu);
1215 kmem_cache_free(kvm_vcpu_cache, svm);
1218 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1220 struct vcpu_svm *svm = to_svm(vcpu);
1221 int i;
1223 if (unlikely(cpu != vcpu->cpu)) {
1224 svm->asid_generation = 0;
1225 mark_all_dirty(svm->vmcb);
1228 #ifdef CONFIG_X86_64
1229 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1230 #endif
1231 savesegment(fs, svm->host.fs);
1232 savesegment(gs, svm->host.gs);
1233 svm->host.ldt = kvm_read_ldt();
1235 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1236 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1238 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1239 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1240 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1241 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1245 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1247 struct vcpu_svm *svm = to_svm(vcpu);
1248 int i;
1250 ++vcpu->stat.host_state_reload;
1251 kvm_load_ldt(svm->host.ldt);
1252 #ifdef CONFIG_X86_64
1253 loadsegment(fs, svm->host.fs);
1254 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1255 load_gs_index(svm->host.gs);
1256 #else
1257 #ifdef CONFIG_X86_32_LAZY_GS
1258 loadsegment(gs, svm->host.gs);
1259 #endif
1260 #endif
1261 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1262 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1265 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1267 return to_svm(vcpu)->vmcb->save.rflags;
1270 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1272 to_svm(vcpu)->vmcb->save.rflags = rflags;
1275 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1277 switch (reg) {
1278 case VCPU_EXREG_PDPTR:
1279 BUG_ON(!npt_enabled);
1280 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1281 break;
1282 default:
1283 BUG();
1287 static void svm_set_vintr(struct vcpu_svm *svm)
1289 set_intercept(svm, INTERCEPT_VINTR);
1292 static void svm_clear_vintr(struct vcpu_svm *svm)
1294 clr_intercept(svm, INTERCEPT_VINTR);
1297 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1299 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1301 switch (seg) {
1302 case VCPU_SREG_CS: return &save->cs;
1303 case VCPU_SREG_DS: return &save->ds;
1304 case VCPU_SREG_ES: return &save->es;
1305 case VCPU_SREG_FS: return &save->fs;
1306 case VCPU_SREG_GS: return &save->gs;
1307 case VCPU_SREG_SS: return &save->ss;
1308 case VCPU_SREG_TR: return &save->tr;
1309 case VCPU_SREG_LDTR: return &save->ldtr;
1311 BUG();
1312 return NULL;
1315 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1317 struct vmcb_seg *s = svm_seg(vcpu, seg);
1319 return s->base;
1322 static void svm_get_segment(struct kvm_vcpu *vcpu,
1323 struct kvm_segment *var, int seg)
1325 struct vmcb_seg *s = svm_seg(vcpu, seg);
1327 var->base = s->base;
1328 var->limit = s->limit;
1329 var->selector = s->selector;
1330 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1331 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1332 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1333 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1334 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1335 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1336 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1337 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1340 * AMD's VMCB does not have an explicit unusable field, so emulate it
1341 * for cross vendor migration purposes by "not present"
1343 var->unusable = !var->present || (var->type == 0);
1345 switch (seg) {
1346 case VCPU_SREG_CS:
1348 * SVM always stores 0 for the 'G' bit in the CS selector in
1349 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1350 * Intel's VMENTRY has a check on the 'G' bit.
1352 var->g = s->limit > 0xfffff;
1353 break;
1354 case VCPU_SREG_TR:
1356 * Work around a bug where the busy flag in the tr selector
1357 * isn't exposed
1359 var->type |= 0x2;
1360 break;
1361 case VCPU_SREG_DS:
1362 case VCPU_SREG_ES:
1363 case VCPU_SREG_FS:
1364 case VCPU_SREG_GS:
1366 * The accessed bit must always be set in the segment
1367 * descriptor cache, although it can be cleared in the
1368 * descriptor, the cached bit always remains at 1. Since
1369 * Intel has a check on this, set it here to support
1370 * cross-vendor migration.
1372 if (!var->unusable)
1373 var->type |= 0x1;
1374 break;
1375 case VCPU_SREG_SS:
1377 * On AMD CPUs sometimes the DB bit in the segment
1378 * descriptor is left as 1, although the whole segment has
1379 * been made unusable. Clear it here to pass an Intel VMX
1380 * entry check when cross vendor migrating.
1382 if (var->unusable)
1383 var->db = 0;
1384 break;
1388 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1390 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1392 return save->cpl;
1395 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1397 struct vcpu_svm *svm = to_svm(vcpu);
1399 dt->size = svm->vmcb->save.idtr.limit;
1400 dt->address = svm->vmcb->save.idtr.base;
1403 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1405 struct vcpu_svm *svm = to_svm(vcpu);
1407 svm->vmcb->save.idtr.limit = dt->size;
1408 svm->vmcb->save.idtr.base = dt->address ;
1409 mark_dirty(svm->vmcb, VMCB_DT);
1412 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1414 struct vcpu_svm *svm = to_svm(vcpu);
1416 dt->size = svm->vmcb->save.gdtr.limit;
1417 dt->address = svm->vmcb->save.gdtr.base;
1420 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1422 struct vcpu_svm *svm = to_svm(vcpu);
1424 svm->vmcb->save.gdtr.limit = dt->size;
1425 svm->vmcb->save.gdtr.base = dt->address ;
1426 mark_dirty(svm->vmcb, VMCB_DT);
1429 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1433 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1437 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1441 static void update_cr0_intercept(struct vcpu_svm *svm)
1443 ulong gcr0 = svm->vcpu.arch.cr0;
1444 u64 *hcr0 = &svm->vmcb->save.cr0;
1446 if (!svm->vcpu.fpu_active)
1447 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1448 else
1449 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1450 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1452 mark_dirty(svm->vmcb, VMCB_CR);
1454 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1455 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1456 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1457 } else {
1458 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1459 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1463 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1465 struct vcpu_svm *svm = to_svm(vcpu);
1467 #ifdef CONFIG_X86_64
1468 if (vcpu->arch.efer & EFER_LME) {
1469 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1470 vcpu->arch.efer |= EFER_LMA;
1471 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1474 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1475 vcpu->arch.efer &= ~EFER_LMA;
1476 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1479 #endif
1480 vcpu->arch.cr0 = cr0;
1482 if (!npt_enabled)
1483 cr0 |= X86_CR0_PG | X86_CR0_WP;
1485 if (!vcpu->fpu_active)
1486 cr0 |= X86_CR0_TS;
1488 * re-enable caching here because the QEMU bios
1489 * does not do it - this results in some delay at
1490 * reboot
1492 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1493 svm->vmcb->save.cr0 = cr0;
1494 mark_dirty(svm->vmcb, VMCB_CR);
1495 update_cr0_intercept(svm);
1498 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1500 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1501 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1503 if (cr4 & X86_CR4_VMXE)
1504 return 1;
1506 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1507 svm_flush_tlb(vcpu);
1509 vcpu->arch.cr4 = cr4;
1510 if (!npt_enabled)
1511 cr4 |= X86_CR4_PAE;
1512 cr4 |= host_cr4_mce;
1513 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1514 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1515 return 0;
1518 static void svm_set_segment(struct kvm_vcpu *vcpu,
1519 struct kvm_segment *var, int seg)
1521 struct vcpu_svm *svm = to_svm(vcpu);
1522 struct vmcb_seg *s = svm_seg(vcpu, seg);
1524 s->base = var->base;
1525 s->limit = var->limit;
1526 s->selector = var->selector;
1527 if (var->unusable)
1528 s->attrib = 0;
1529 else {
1530 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1531 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1532 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1533 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1534 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1535 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1536 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1537 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1539 if (seg == VCPU_SREG_CS)
1540 svm->vmcb->save.cpl
1541 = (svm->vmcb->save.cs.attrib
1542 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1544 mark_dirty(svm->vmcb, VMCB_SEG);
1547 static void update_db_intercept(struct kvm_vcpu *vcpu)
1549 struct vcpu_svm *svm = to_svm(vcpu);
1551 clr_exception_intercept(svm, DB_VECTOR);
1552 clr_exception_intercept(svm, BP_VECTOR);
1554 if (svm->nmi_singlestep)
1555 set_exception_intercept(svm, DB_VECTOR);
1557 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1558 if (vcpu->guest_debug &
1559 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1560 set_exception_intercept(svm, DB_VECTOR);
1561 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1562 set_exception_intercept(svm, BP_VECTOR);
1563 } else
1564 vcpu->guest_debug = 0;
1567 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1569 struct vcpu_svm *svm = to_svm(vcpu);
1571 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1572 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1573 else
1574 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1576 mark_dirty(svm->vmcb, VMCB_DR);
1578 update_db_intercept(vcpu);
1581 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1583 if (sd->next_asid > sd->max_asid) {
1584 ++sd->asid_generation;
1585 sd->next_asid = 1;
1586 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1589 svm->asid_generation = sd->asid_generation;
1590 svm->vmcb->control.asid = sd->next_asid++;
1592 mark_dirty(svm->vmcb, VMCB_ASID);
1595 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1597 struct vcpu_svm *svm = to_svm(vcpu);
1599 svm->vmcb->save.dr7 = value;
1600 mark_dirty(svm->vmcb, VMCB_DR);
1603 static int pf_interception(struct vcpu_svm *svm)
1605 u64 fault_address = svm->vmcb->control.exit_info_2;
1606 u32 error_code;
1607 int r = 1;
1609 switch (svm->apf_reason) {
1610 default:
1611 error_code = svm->vmcb->control.exit_info_1;
1613 trace_kvm_page_fault(fault_address, error_code);
1614 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1615 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1616 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1617 svm->vmcb->control.insn_bytes,
1618 svm->vmcb->control.insn_len);
1619 break;
1620 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1621 svm->apf_reason = 0;
1622 local_irq_disable();
1623 kvm_async_pf_task_wait(fault_address);
1624 local_irq_enable();
1625 break;
1626 case KVM_PV_REASON_PAGE_READY:
1627 svm->apf_reason = 0;
1628 local_irq_disable();
1629 kvm_async_pf_task_wake(fault_address);
1630 local_irq_enable();
1631 break;
1633 return r;
1636 static int db_interception(struct vcpu_svm *svm)
1638 struct kvm_run *kvm_run = svm->vcpu.run;
1640 if (!(svm->vcpu.guest_debug &
1641 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1642 !svm->nmi_singlestep) {
1643 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1644 return 1;
1647 if (svm->nmi_singlestep) {
1648 svm->nmi_singlestep = false;
1649 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1650 svm->vmcb->save.rflags &=
1651 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1652 update_db_intercept(&svm->vcpu);
1655 if (svm->vcpu.guest_debug &
1656 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1657 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1658 kvm_run->debug.arch.pc =
1659 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1660 kvm_run->debug.arch.exception = DB_VECTOR;
1661 return 0;
1664 return 1;
1667 static int bp_interception(struct vcpu_svm *svm)
1669 struct kvm_run *kvm_run = svm->vcpu.run;
1671 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1672 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1673 kvm_run->debug.arch.exception = BP_VECTOR;
1674 return 0;
1677 static int ud_interception(struct vcpu_svm *svm)
1679 int er;
1681 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1682 if (er != EMULATE_DONE)
1683 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1684 return 1;
1687 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1689 struct vcpu_svm *svm = to_svm(vcpu);
1691 clr_exception_intercept(svm, NM_VECTOR);
1693 svm->vcpu.fpu_active = 1;
1694 update_cr0_intercept(svm);
1697 static int nm_interception(struct vcpu_svm *svm)
1699 svm_fpu_activate(&svm->vcpu);
1700 return 1;
1703 static bool is_erratum_383(void)
1705 int err, i;
1706 u64 value;
1708 if (!erratum_383_found)
1709 return false;
1711 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1712 if (err)
1713 return false;
1715 /* Bit 62 may or may not be set for this mce */
1716 value &= ~(1ULL << 62);
1718 if (value != 0xb600000000010015ULL)
1719 return false;
1721 /* Clear MCi_STATUS registers */
1722 for (i = 0; i < 6; ++i)
1723 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1725 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1726 if (!err) {
1727 u32 low, high;
1729 value &= ~(1ULL << 2);
1730 low = lower_32_bits(value);
1731 high = upper_32_bits(value);
1733 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1736 /* Flush tlb to evict multi-match entries */
1737 __flush_tlb_all();
1739 return true;
1742 static void svm_handle_mce(struct vcpu_svm *svm)
1744 if (is_erratum_383()) {
1746 * Erratum 383 triggered. Guest state is corrupt so kill the
1747 * guest.
1749 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1751 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1753 return;
1757 * On an #MC intercept the MCE handler is not called automatically in
1758 * the host. So do it by hand here.
1760 asm volatile (
1761 "int $0x12\n");
1762 /* not sure if we ever come back to this point */
1764 return;
1767 static int mc_interception(struct vcpu_svm *svm)
1769 return 1;
1772 static int shutdown_interception(struct vcpu_svm *svm)
1774 struct kvm_run *kvm_run = svm->vcpu.run;
1777 * VMCB is undefined after a SHUTDOWN intercept
1778 * so reinitialize it.
1780 clear_page(svm->vmcb);
1781 init_vmcb(svm);
1783 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1784 return 0;
1787 static int io_interception(struct vcpu_svm *svm)
1789 struct kvm_vcpu *vcpu = &svm->vcpu;
1790 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1791 int size, in, string;
1792 unsigned port;
1794 ++svm->vcpu.stat.io_exits;
1795 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1796 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1797 if (string || in)
1798 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1800 port = io_info >> 16;
1801 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1802 svm->next_rip = svm->vmcb->control.exit_info_2;
1803 skip_emulated_instruction(&svm->vcpu);
1805 return kvm_fast_pio_out(vcpu, size, port);
1808 static int nmi_interception(struct vcpu_svm *svm)
1810 return 1;
1813 static int intr_interception(struct vcpu_svm *svm)
1815 ++svm->vcpu.stat.irq_exits;
1816 return 1;
1819 static int nop_on_interception(struct vcpu_svm *svm)
1821 return 1;
1824 static int halt_interception(struct vcpu_svm *svm)
1826 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1827 skip_emulated_instruction(&svm->vcpu);
1828 return kvm_emulate_halt(&svm->vcpu);
1831 static int vmmcall_interception(struct vcpu_svm *svm)
1833 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1834 skip_emulated_instruction(&svm->vcpu);
1835 kvm_emulate_hypercall(&svm->vcpu);
1836 return 1;
1839 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1841 struct vcpu_svm *svm = to_svm(vcpu);
1843 return svm->nested.nested_cr3;
1846 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1848 struct vcpu_svm *svm = to_svm(vcpu);
1849 u64 cr3 = svm->nested.nested_cr3;
1850 u64 pdpte;
1851 int ret;
1853 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1854 offset_in_page(cr3) + index * 8, 8);
1855 if (ret)
1856 return 0;
1857 return pdpte;
1860 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1861 unsigned long root)
1863 struct vcpu_svm *svm = to_svm(vcpu);
1865 svm->vmcb->control.nested_cr3 = root;
1866 mark_dirty(svm->vmcb, VMCB_NPT);
1867 svm_flush_tlb(vcpu);
1870 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1871 struct x86_exception *fault)
1873 struct vcpu_svm *svm = to_svm(vcpu);
1875 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1876 svm->vmcb->control.exit_code_hi = 0;
1877 svm->vmcb->control.exit_info_1 = fault->error_code;
1878 svm->vmcb->control.exit_info_2 = fault->address;
1880 nested_svm_vmexit(svm);
1883 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1885 int r;
1887 r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1889 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1890 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1891 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1892 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1893 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1894 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1896 return r;
1899 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1901 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1904 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1906 if (!(svm->vcpu.arch.efer & EFER_SVME)
1907 || !is_paging(&svm->vcpu)) {
1908 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1909 return 1;
1912 if (svm->vmcb->save.cpl) {
1913 kvm_inject_gp(&svm->vcpu, 0);
1914 return 1;
1917 return 0;
1920 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1921 bool has_error_code, u32 error_code)
1923 int vmexit;
1925 if (!is_guest_mode(&svm->vcpu))
1926 return 0;
1928 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1929 svm->vmcb->control.exit_code_hi = 0;
1930 svm->vmcb->control.exit_info_1 = error_code;
1931 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1933 vmexit = nested_svm_intercept(svm);
1934 if (vmexit == NESTED_EXIT_DONE)
1935 svm->nested.exit_required = true;
1937 return vmexit;
1940 /* This function returns true if it is save to enable the irq window */
1941 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1943 if (!is_guest_mode(&svm->vcpu))
1944 return true;
1946 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1947 return true;
1949 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1950 return false;
1953 * if vmexit was already requested (by intercepted exception
1954 * for instance) do not overwrite it with "external interrupt"
1955 * vmexit.
1957 if (svm->nested.exit_required)
1958 return false;
1960 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1961 svm->vmcb->control.exit_info_1 = 0;
1962 svm->vmcb->control.exit_info_2 = 0;
1964 if (svm->nested.intercept & 1ULL) {
1966 * The #vmexit can't be emulated here directly because this
1967 * code path runs with irqs and preemtion disabled. A
1968 * #vmexit emulation might sleep. Only signal request for
1969 * the #vmexit here.
1971 svm->nested.exit_required = true;
1972 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1973 return false;
1976 return true;
1979 /* This function returns true if it is save to enable the nmi window */
1980 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1982 if (!is_guest_mode(&svm->vcpu))
1983 return true;
1985 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1986 return true;
1988 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1989 svm->nested.exit_required = true;
1991 return false;
1994 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1996 struct page *page;
1998 might_sleep();
2000 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2001 if (is_error_page(page))
2002 goto error;
2004 *_page = page;
2006 return kmap(page);
2008 error:
2009 kvm_release_page_clean(page);
2010 kvm_inject_gp(&svm->vcpu, 0);
2012 return NULL;
2015 static void nested_svm_unmap(struct page *page)
2017 kunmap(page);
2018 kvm_release_page_dirty(page);
2021 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2023 unsigned port;
2024 u8 val, bit;
2025 u64 gpa;
2027 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2028 return NESTED_EXIT_HOST;
2030 port = svm->vmcb->control.exit_info_1 >> 16;
2031 gpa = svm->nested.vmcb_iopm + (port / 8);
2032 bit = port % 8;
2033 val = 0;
2035 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2036 val &= (1 << bit);
2038 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2041 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2043 u32 offset, msr, value;
2044 int write, mask;
2046 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2047 return NESTED_EXIT_HOST;
2049 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2050 offset = svm_msrpm_offset(msr);
2051 write = svm->vmcb->control.exit_info_1 & 1;
2052 mask = 1 << ((2 * (msr & 0xf)) + write);
2054 if (offset == MSR_INVALID)
2055 return NESTED_EXIT_DONE;
2057 /* Offset is in 32 bit units but need in 8 bit units */
2058 offset *= 4;
2060 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2061 return NESTED_EXIT_DONE;
2063 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2066 static int nested_svm_exit_special(struct vcpu_svm *svm)
2068 u32 exit_code = svm->vmcb->control.exit_code;
2070 switch (exit_code) {
2071 case SVM_EXIT_INTR:
2072 case SVM_EXIT_NMI:
2073 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2074 return NESTED_EXIT_HOST;
2075 case SVM_EXIT_NPF:
2076 /* For now we are always handling NPFs when using them */
2077 if (npt_enabled)
2078 return NESTED_EXIT_HOST;
2079 break;
2080 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2081 /* When we're shadowing, trap PFs, but not async PF */
2082 if (!npt_enabled && svm->apf_reason == 0)
2083 return NESTED_EXIT_HOST;
2084 break;
2085 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2086 nm_interception(svm);
2087 break;
2088 default:
2089 break;
2092 return NESTED_EXIT_CONTINUE;
2096 * If this function returns true, this #vmexit was already handled
2098 static int nested_svm_intercept(struct vcpu_svm *svm)
2100 u32 exit_code = svm->vmcb->control.exit_code;
2101 int vmexit = NESTED_EXIT_HOST;
2103 switch (exit_code) {
2104 case SVM_EXIT_MSR:
2105 vmexit = nested_svm_exit_handled_msr(svm);
2106 break;
2107 case SVM_EXIT_IOIO:
2108 vmexit = nested_svm_intercept_ioio(svm);
2109 break;
2110 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2111 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2112 if (svm->nested.intercept_cr & bit)
2113 vmexit = NESTED_EXIT_DONE;
2114 break;
2116 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2117 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2118 if (svm->nested.intercept_dr & bit)
2119 vmexit = NESTED_EXIT_DONE;
2120 break;
2122 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2123 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2124 if (svm->nested.intercept_exceptions & excp_bits)
2125 vmexit = NESTED_EXIT_DONE;
2126 /* async page fault always cause vmexit */
2127 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2128 svm->apf_reason != 0)
2129 vmexit = NESTED_EXIT_DONE;
2130 break;
2132 case SVM_EXIT_ERR: {
2133 vmexit = NESTED_EXIT_DONE;
2134 break;
2136 default: {
2137 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2138 if (svm->nested.intercept & exit_bits)
2139 vmexit = NESTED_EXIT_DONE;
2143 return vmexit;
2146 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2148 int vmexit;
2150 vmexit = nested_svm_intercept(svm);
2152 if (vmexit == NESTED_EXIT_DONE)
2153 nested_svm_vmexit(svm);
2155 return vmexit;
2158 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2160 struct vmcb_control_area *dst = &dst_vmcb->control;
2161 struct vmcb_control_area *from = &from_vmcb->control;
2163 dst->intercept_cr = from->intercept_cr;
2164 dst->intercept_dr = from->intercept_dr;
2165 dst->intercept_exceptions = from->intercept_exceptions;
2166 dst->intercept = from->intercept;
2167 dst->iopm_base_pa = from->iopm_base_pa;
2168 dst->msrpm_base_pa = from->msrpm_base_pa;
2169 dst->tsc_offset = from->tsc_offset;
2170 dst->asid = from->asid;
2171 dst->tlb_ctl = from->tlb_ctl;
2172 dst->int_ctl = from->int_ctl;
2173 dst->int_vector = from->int_vector;
2174 dst->int_state = from->int_state;
2175 dst->exit_code = from->exit_code;
2176 dst->exit_code_hi = from->exit_code_hi;
2177 dst->exit_info_1 = from->exit_info_1;
2178 dst->exit_info_2 = from->exit_info_2;
2179 dst->exit_int_info = from->exit_int_info;
2180 dst->exit_int_info_err = from->exit_int_info_err;
2181 dst->nested_ctl = from->nested_ctl;
2182 dst->event_inj = from->event_inj;
2183 dst->event_inj_err = from->event_inj_err;
2184 dst->nested_cr3 = from->nested_cr3;
2185 dst->lbr_ctl = from->lbr_ctl;
2188 static int nested_svm_vmexit(struct vcpu_svm *svm)
2190 struct vmcb *nested_vmcb;
2191 struct vmcb *hsave = svm->nested.hsave;
2192 struct vmcb *vmcb = svm->vmcb;
2193 struct page *page;
2195 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2196 vmcb->control.exit_info_1,
2197 vmcb->control.exit_info_2,
2198 vmcb->control.exit_int_info,
2199 vmcb->control.exit_int_info_err,
2200 KVM_ISA_SVM);
2202 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2203 if (!nested_vmcb)
2204 return 1;
2206 /* Exit Guest-Mode */
2207 leave_guest_mode(&svm->vcpu);
2208 svm->nested.vmcb = 0;
2210 /* Give the current vmcb to the guest */
2211 disable_gif(svm);
2213 nested_vmcb->save.es = vmcb->save.es;
2214 nested_vmcb->save.cs = vmcb->save.cs;
2215 nested_vmcb->save.ss = vmcb->save.ss;
2216 nested_vmcb->save.ds = vmcb->save.ds;
2217 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2218 nested_vmcb->save.idtr = vmcb->save.idtr;
2219 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2220 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2221 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2222 nested_vmcb->save.cr2 = vmcb->save.cr2;
2223 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2224 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2225 nested_vmcb->save.rip = vmcb->save.rip;
2226 nested_vmcb->save.rsp = vmcb->save.rsp;
2227 nested_vmcb->save.rax = vmcb->save.rax;
2228 nested_vmcb->save.dr7 = vmcb->save.dr7;
2229 nested_vmcb->save.dr6 = vmcb->save.dr6;
2230 nested_vmcb->save.cpl = vmcb->save.cpl;
2232 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2233 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2234 nested_vmcb->control.int_state = vmcb->control.int_state;
2235 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2236 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2237 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2238 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2239 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2240 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2241 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2244 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2245 * to make sure that we do not lose injected events. So check event_inj
2246 * here and copy it to exit_int_info if it is valid.
2247 * Exit_int_info and event_inj can't be both valid because the case
2248 * below only happens on a VMRUN instruction intercept which has
2249 * no valid exit_int_info set.
2251 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2252 struct vmcb_control_area *nc = &nested_vmcb->control;
2254 nc->exit_int_info = vmcb->control.event_inj;
2255 nc->exit_int_info_err = vmcb->control.event_inj_err;
2258 nested_vmcb->control.tlb_ctl = 0;
2259 nested_vmcb->control.event_inj = 0;
2260 nested_vmcb->control.event_inj_err = 0;
2262 /* We always set V_INTR_MASKING and remember the old value in hflags */
2263 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2264 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2266 /* Restore the original control entries */
2267 copy_vmcb_control_area(vmcb, hsave);
2269 kvm_clear_exception_queue(&svm->vcpu);
2270 kvm_clear_interrupt_queue(&svm->vcpu);
2272 svm->nested.nested_cr3 = 0;
2274 /* Restore selected save entries */
2275 svm->vmcb->save.es = hsave->save.es;
2276 svm->vmcb->save.cs = hsave->save.cs;
2277 svm->vmcb->save.ss = hsave->save.ss;
2278 svm->vmcb->save.ds = hsave->save.ds;
2279 svm->vmcb->save.gdtr = hsave->save.gdtr;
2280 svm->vmcb->save.idtr = hsave->save.idtr;
2281 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2282 svm_set_efer(&svm->vcpu, hsave->save.efer);
2283 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2284 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2285 if (npt_enabled) {
2286 svm->vmcb->save.cr3 = hsave->save.cr3;
2287 svm->vcpu.arch.cr3 = hsave->save.cr3;
2288 } else {
2289 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2291 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2292 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2293 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2294 svm->vmcb->save.dr7 = 0;
2295 svm->vmcb->save.cpl = 0;
2296 svm->vmcb->control.exit_int_info = 0;
2298 mark_all_dirty(svm->vmcb);
2300 nested_svm_unmap(page);
2302 nested_svm_uninit_mmu_context(&svm->vcpu);
2303 kvm_mmu_reset_context(&svm->vcpu);
2304 kvm_mmu_load(&svm->vcpu);
2306 return 0;
2309 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2312 * This function merges the msr permission bitmaps of kvm and the
2313 * nested vmcb. It is omptimized in that it only merges the parts where
2314 * the kvm msr permission bitmap may contain zero bits
2316 int i;
2318 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2319 return true;
2321 for (i = 0; i < MSRPM_OFFSETS; i++) {
2322 u32 value, p;
2323 u64 offset;
2325 if (msrpm_offsets[i] == 0xffffffff)
2326 break;
2328 p = msrpm_offsets[i];
2329 offset = svm->nested.vmcb_msrpm + (p * 4);
2331 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2332 return false;
2334 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2337 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2339 return true;
2342 static bool nested_vmcb_checks(struct vmcb *vmcb)
2344 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2345 return false;
2347 if (vmcb->control.asid == 0)
2348 return false;
2350 if (vmcb->control.nested_ctl && !npt_enabled)
2351 return false;
2353 return true;
2356 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2358 struct vmcb *nested_vmcb;
2359 struct vmcb *hsave = svm->nested.hsave;
2360 struct vmcb *vmcb = svm->vmcb;
2361 struct page *page;
2362 u64 vmcb_gpa;
2364 vmcb_gpa = svm->vmcb->save.rax;
2366 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2367 if (!nested_vmcb)
2368 return false;
2370 if (!nested_vmcb_checks(nested_vmcb)) {
2371 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2372 nested_vmcb->control.exit_code_hi = 0;
2373 nested_vmcb->control.exit_info_1 = 0;
2374 nested_vmcb->control.exit_info_2 = 0;
2376 nested_svm_unmap(page);
2378 return false;
2381 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2382 nested_vmcb->save.rip,
2383 nested_vmcb->control.int_ctl,
2384 nested_vmcb->control.event_inj,
2385 nested_vmcb->control.nested_ctl);
2387 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2388 nested_vmcb->control.intercept_cr >> 16,
2389 nested_vmcb->control.intercept_exceptions,
2390 nested_vmcb->control.intercept);
2392 /* Clear internal status */
2393 kvm_clear_exception_queue(&svm->vcpu);
2394 kvm_clear_interrupt_queue(&svm->vcpu);
2397 * Save the old vmcb, so we don't need to pick what we save, but can
2398 * restore everything when a VMEXIT occurs
2400 hsave->save.es = vmcb->save.es;
2401 hsave->save.cs = vmcb->save.cs;
2402 hsave->save.ss = vmcb->save.ss;
2403 hsave->save.ds = vmcb->save.ds;
2404 hsave->save.gdtr = vmcb->save.gdtr;
2405 hsave->save.idtr = vmcb->save.idtr;
2406 hsave->save.efer = svm->vcpu.arch.efer;
2407 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2408 hsave->save.cr4 = svm->vcpu.arch.cr4;
2409 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2410 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2411 hsave->save.rsp = vmcb->save.rsp;
2412 hsave->save.rax = vmcb->save.rax;
2413 if (npt_enabled)
2414 hsave->save.cr3 = vmcb->save.cr3;
2415 else
2416 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2418 copy_vmcb_control_area(hsave, vmcb);
2420 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2421 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2422 else
2423 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2425 if (nested_vmcb->control.nested_ctl) {
2426 kvm_mmu_unload(&svm->vcpu);
2427 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2428 nested_svm_init_mmu_context(&svm->vcpu);
2431 /* Load the nested guest state */
2432 svm->vmcb->save.es = nested_vmcb->save.es;
2433 svm->vmcb->save.cs = nested_vmcb->save.cs;
2434 svm->vmcb->save.ss = nested_vmcb->save.ss;
2435 svm->vmcb->save.ds = nested_vmcb->save.ds;
2436 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2437 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2438 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2439 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2440 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2441 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2442 if (npt_enabled) {
2443 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2444 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2445 } else
2446 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2448 /* Guest paging mode is active - reset mmu */
2449 kvm_mmu_reset_context(&svm->vcpu);
2451 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2452 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2453 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2454 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2456 /* In case we don't even reach vcpu_run, the fields are not updated */
2457 svm->vmcb->save.rax = nested_vmcb->save.rax;
2458 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2459 svm->vmcb->save.rip = nested_vmcb->save.rip;
2460 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2461 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2462 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2464 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2465 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2467 /* cache intercepts */
2468 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2469 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2470 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2471 svm->nested.intercept = nested_vmcb->control.intercept;
2473 svm_flush_tlb(&svm->vcpu);
2474 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2475 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2476 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2477 else
2478 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2480 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2481 /* We only want the cr8 intercept bits of the guest */
2482 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2483 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2486 /* We don't want to see VMMCALLs from a nested guest */
2487 clr_intercept(svm, INTERCEPT_VMMCALL);
2489 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2490 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2491 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2492 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2493 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2494 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2496 nested_svm_unmap(page);
2498 /* Enter Guest-Mode */
2499 enter_guest_mode(&svm->vcpu);
2502 * Merge guest and host intercepts - must be called with vcpu in
2503 * guest-mode to take affect here
2505 recalc_intercepts(svm);
2507 svm->nested.vmcb = vmcb_gpa;
2509 enable_gif(svm);
2511 mark_all_dirty(svm->vmcb);
2513 return true;
2516 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2518 to_vmcb->save.fs = from_vmcb->save.fs;
2519 to_vmcb->save.gs = from_vmcb->save.gs;
2520 to_vmcb->save.tr = from_vmcb->save.tr;
2521 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2522 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2523 to_vmcb->save.star = from_vmcb->save.star;
2524 to_vmcb->save.lstar = from_vmcb->save.lstar;
2525 to_vmcb->save.cstar = from_vmcb->save.cstar;
2526 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2527 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2528 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2529 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2532 static int vmload_interception(struct vcpu_svm *svm)
2534 struct vmcb *nested_vmcb;
2535 struct page *page;
2537 if (nested_svm_check_permissions(svm))
2538 return 1;
2540 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2541 if (!nested_vmcb)
2542 return 1;
2544 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2545 skip_emulated_instruction(&svm->vcpu);
2547 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2548 nested_svm_unmap(page);
2550 return 1;
2553 static int vmsave_interception(struct vcpu_svm *svm)
2555 struct vmcb *nested_vmcb;
2556 struct page *page;
2558 if (nested_svm_check_permissions(svm))
2559 return 1;
2561 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2562 if (!nested_vmcb)
2563 return 1;
2565 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2566 skip_emulated_instruction(&svm->vcpu);
2568 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2569 nested_svm_unmap(page);
2571 return 1;
2574 static int vmrun_interception(struct vcpu_svm *svm)
2576 if (nested_svm_check_permissions(svm))
2577 return 1;
2579 /* Save rip after vmrun instruction */
2580 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2582 if (!nested_svm_vmrun(svm))
2583 return 1;
2585 if (!nested_svm_vmrun_msrpm(svm))
2586 goto failed;
2588 return 1;
2590 failed:
2592 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2593 svm->vmcb->control.exit_code_hi = 0;
2594 svm->vmcb->control.exit_info_1 = 0;
2595 svm->vmcb->control.exit_info_2 = 0;
2597 nested_svm_vmexit(svm);
2599 return 1;
2602 static int stgi_interception(struct vcpu_svm *svm)
2604 if (nested_svm_check_permissions(svm))
2605 return 1;
2607 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2608 skip_emulated_instruction(&svm->vcpu);
2609 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2611 enable_gif(svm);
2613 return 1;
2616 static int clgi_interception(struct vcpu_svm *svm)
2618 if (nested_svm_check_permissions(svm))
2619 return 1;
2621 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2622 skip_emulated_instruction(&svm->vcpu);
2624 disable_gif(svm);
2626 /* After a CLGI no interrupts should come */
2627 svm_clear_vintr(svm);
2628 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2630 mark_dirty(svm->vmcb, VMCB_INTR);
2632 return 1;
2635 static int invlpga_interception(struct vcpu_svm *svm)
2637 struct kvm_vcpu *vcpu = &svm->vcpu;
2639 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2640 vcpu->arch.regs[VCPU_REGS_RAX]);
2642 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2643 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2645 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2646 skip_emulated_instruction(&svm->vcpu);
2647 return 1;
2650 static int skinit_interception(struct vcpu_svm *svm)
2652 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2654 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2655 return 1;
2658 static int xsetbv_interception(struct vcpu_svm *svm)
2660 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2661 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2663 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2664 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2665 skip_emulated_instruction(&svm->vcpu);
2668 return 1;
2671 static int invalid_op_interception(struct vcpu_svm *svm)
2673 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2674 return 1;
2677 static int task_switch_interception(struct vcpu_svm *svm)
2679 u16 tss_selector;
2680 int reason;
2681 int int_type = svm->vmcb->control.exit_int_info &
2682 SVM_EXITINTINFO_TYPE_MASK;
2683 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2684 uint32_t type =
2685 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2686 uint32_t idt_v =
2687 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2688 bool has_error_code = false;
2689 u32 error_code = 0;
2691 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2693 if (svm->vmcb->control.exit_info_2 &
2694 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2695 reason = TASK_SWITCH_IRET;
2696 else if (svm->vmcb->control.exit_info_2 &
2697 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2698 reason = TASK_SWITCH_JMP;
2699 else if (idt_v)
2700 reason = TASK_SWITCH_GATE;
2701 else
2702 reason = TASK_SWITCH_CALL;
2704 if (reason == TASK_SWITCH_GATE) {
2705 switch (type) {
2706 case SVM_EXITINTINFO_TYPE_NMI:
2707 svm->vcpu.arch.nmi_injected = false;
2708 break;
2709 case SVM_EXITINTINFO_TYPE_EXEPT:
2710 if (svm->vmcb->control.exit_info_2 &
2711 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2712 has_error_code = true;
2713 error_code =
2714 (u32)svm->vmcb->control.exit_info_2;
2716 kvm_clear_exception_queue(&svm->vcpu);
2717 break;
2718 case SVM_EXITINTINFO_TYPE_INTR:
2719 kvm_clear_interrupt_queue(&svm->vcpu);
2720 break;
2721 default:
2722 break;
2726 if (reason != TASK_SWITCH_GATE ||
2727 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2728 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2729 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2730 skip_emulated_instruction(&svm->vcpu);
2732 if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2733 has_error_code, error_code) == EMULATE_FAIL) {
2734 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2735 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2736 svm->vcpu.run->internal.ndata = 0;
2737 return 0;
2739 return 1;
2742 static int cpuid_interception(struct vcpu_svm *svm)
2744 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2745 kvm_emulate_cpuid(&svm->vcpu);
2746 return 1;
2749 static int iret_interception(struct vcpu_svm *svm)
2751 ++svm->vcpu.stat.nmi_window_exits;
2752 clr_intercept(svm, INTERCEPT_IRET);
2753 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2754 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2755 return 1;
2758 static int invlpg_interception(struct vcpu_svm *svm)
2760 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2761 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2763 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2764 skip_emulated_instruction(&svm->vcpu);
2765 return 1;
2768 static int emulate_on_interception(struct vcpu_svm *svm)
2770 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2773 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2775 unsigned long cr0 = svm->vcpu.arch.cr0;
2776 bool ret = false;
2777 u64 intercept;
2779 intercept = svm->nested.intercept;
2781 if (!is_guest_mode(&svm->vcpu) ||
2782 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2783 return false;
2785 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2786 val &= ~SVM_CR0_SELECTIVE_MASK;
2788 if (cr0 ^ val) {
2789 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2790 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2793 return ret;
2796 #define CR_VALID (1ULL << 63)
2798 static int cr_interception(struct vcpu_svm *svm)
2800 int reg, cr;
2801 unsigned long val;
2802 int err;
2804 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2805 return emulate_on_interception(svm);
2807 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2808 return emulate_on_interception(svm);
2810 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2811 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2813 err = 0;
2814 if (cr >= 16) { /* mov to cr */
2815 cr -= 16;
2816 val = kvm_register_read(&svm->vcpu, reg);
2817 switch (cr) {
2818 case 0:
2819 if (!check_selective_cr0_intercepted(svm, val))
2820 err = kvm_set_cr0(&svm->vcpu, val);
2821 else
2822 return 1;
2824 break;
2825 case 3:
2826 err = kvm_set_cr3(&svm->vcpu, val);
2827 break;
2828 case 4:
2829 err = kvm_set_cr4(&svm->vcpu, val);
2830 break;
2831 case 8:
2832 err = kvm_set_cr8(&svm->vcpu, val);
2833 break;
2834 default:
2835 WARN(1, "unhandled write to CR%d", cr);
2836 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2837 return 1;
2839 } else { /* mov from cr */
2840 switch (cr) {
2841 case 0:
2842 val = kvm_read_cr0(&svm->vcpu);
2843 break;
2844 case 2:
2845 val = svm->vcpu.arch.cr2;
2846 break;
2847 case 3:
2848 val = kvm_read_cr3(&svm->vcpu);
2849 break;
2850 case 4:
2851 val = kvm_read_cr4(&svm->vcpu);
2852 break;
2853 case 8:
2854 val = kvm_get_cr8(&svm->vcpu);
2855 break;
2856 default:
2857 WARN(1, "unhandled read from CR%d", cr);
2858 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2859 return 1;
2861 kvm_register_write(&svm->vcpu, reg, val);
2863 kvm_complete_insn_gp(&svm->vcpu, err);
2865 return 1;
2868 static int dr_interception(struct vcpu_svm *svm)
2870 int reg, dr;
2871 unsigned long val;
2872 int err;
2874 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2875 return emulate_on_interception(svm);
2877 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2878 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2880 if (dr >= 16) { /* mov to DRn */
2881 val = kvm_register_read(&svm->vcpu, reg);
2882 kvm_set_dr(&svm->vcpu, dr - 16, val);
2883 } else {
2884 err = kvm_get_dr(&svm->vcpu, dr, &val);
2885 if (!err)
2886 kvm_register_write(&svm->vcpu, reg, val);
2889 skip_emulated_instruction(&svm->vcpu);
2891 return 1;
2894 static int cr8_write_interception(struct vcpu_svm *svm)
2896 struct kvm_run *kvm_run = svm->vcpu.run;
2897 int r;
2899 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2900 /* instruction emulation calls kvm_set_cr8() */
2901 r = cr_interception(svm);
2902 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2903 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2904 return r;
2906 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2907 return r;
2908 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2909 return 0;
2912 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
2914 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2915 return vmcb->control.tsc_offset +
2916 svm_scale_tsc(vcpu, native_read_tsc());
2919 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2921 struct vcpu_svm *svm = to_svm(vcpu);
2923 switch (ecx) {
2924 case MSR_IA32_TSC: {
2925 *data = svm->vmcb->control.tsc_offset +
2926 svm_scale_tsc(vcpu, native_read_tsc());
2928 break;
2930 case MSR_STAR:
2931 *data = svm->vmcb->save.star;
2932 break;
2933 #ifdef CONFIG_X86_64
2934 case MSR_LSTAR:
2935 *data = svm->vmcb->save.lstar;
2936 break;
2937 case MSR_CSTAR:
2938 *data = svm->vmcb->save.cstar;
2939 break;
2940 case MSR_KERNEL_GS_BASE:
2941 *data = svm->vmcb->save.kernel_gs_base;
2942 break;
2943 case MSR_SYSCALL_MASK:
2944 *data = svm->vmcb->save.sfmask;
2945 break;
2946 #endif
2947 case MSR_IA32_SYSENTER_CS:
2948 *data = svm->vmcb->save.sysenter_cs;
2949 break;
2950 case MSR_IA32_SYSENTER_EIP:
2951 *data = svm->sysenter_eip;
2952 break;
2953 case MSR_IA32_SYSENTER_ESP:
2954 *data = svm->sysenter_esp;
2955 break;
2957 * Nobody will change the following 5 values in the VMCB so we can
2958 * safely return them on rdmsr. They will always be 0 until LBRV is
2959 * implemented.
2961 case MSR_IA32_DEBUGCTLMSR:
2962 *data = svm->vmcb->save.dbgctl;
2963 break;
2964 case MSR_IA32_LASTBRANCHFROMIP:
2965 *data = svm->vmcb->save.br_from;
2966 break;
2967 case MSR_IA32_LASTBRANCHTOIP:
2968 *data = svm->vmcb->save.br_to;
2969 break;
2970 case MSR_IA32_LASTINTFROMIP:
2971 *data = svm->vmcb->save.last_excp_from;
2972 break;
2973 case MSR_IA32_LASTINTTOIP:
2974 *data = svm->vmcb->save.last_excp_to;
2975 break;
2976 case MSR_VM_HSAVE_PA:
2977 *data = svm->nested.hsave_msr;
2978 break;
2979 case MSR_VM_CR:
2980 *data = svm->nested.vm_cr_msr;
2981 break;
2982 case MSR_IA32_UCODE_REV:
2983 *data = 0x01000065;
2984 break;
2985 default:
2986 return kvm_get_msr_common(vcpu, ecx, data);
2988 return 0;
2991 static int rdmsr_interception(struct vcpu_svm *svm)
2993 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2994 u64 data;
2996 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2997 trace_kvm_msr_read_ex(ecx);
2998 kvm_inject_gp(&svm->vcpu, 0);
2999 } else {
3000 trace_kvm_msr_read(ecx, data);
3002 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3003 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3004 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3005 skip_emulated_instruction(&svm->vcpu);
3007 return 1;
3010 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3012 struct vcpu_svm *svm = to_svm(vcpu);
3013 int svm_dis, chg_mask;
3015 if (data & ~SVM_VM_CR_VALID_MASK)
3016 return 1;
3018 chg_mask = SVM_VM_CR_VALID_MASK;
3020 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3021 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3023 svm->nested.vm_cr_msr &= ~chg_mask;
3024 svm->nested.vm_cr_msr |= (data & chg_mask);
3026 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3028 /* check for svm_disable while efer.svme is set */
3029 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3030 return 1;
3032 return 0;
3035 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3037 struct vcpu_svm *svm = to_svm(vcpu);
3039 switch (ecx) {
3040 case MSR_IA32_TSC:
3041 kvm_write_tsc(vcpu, data);
3042 break;
3043 case MSR_STAR:
3044 svm->vmcb->save.star = data;
3045 break;
3046 #ifdef CONFIG_X86_64
3047 case MSR_LSTAR:
3048 svm->vmcb->save.lstar = data;
3049 break;
3050 case MSR_CSTAR:
3051 svm->vmcb->save.cstar = data;
3052 break;
3053 case MSR_KERNEL_GS_BASE:
3054 svm->vmcb->save.kernel_gs_base = data;
3055 break;
3056 case MSR_SYSCALL_MASK:
3057 svm->vmcb->save.sfmask = data;
3058 break;
3059 #endif
3060 case MSR_IA32_SYSENTER_CS:
3061 svm->vmcb->save.sysenter_cs = data;
3062 break;
3063 case MSR_IA32_SYSENTER_EIP:
3064 svm->sysenter_eip = data;
3065 svm->vmcb->save.sysenter_eip = data;
3066 break;
3067 case MSR_IA32_SYSENTER_ESP:
3068 svm->sysenter_esp = data;
3069 svm->vmcb->save.sysenter_esp = data;
3070 break;
3071 case MSR_IA32_DEBUGCTLMSR:
3072 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3073 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3074 __func__, data);
3075 break;
3077 if (data & DEBUGCTL_RESERVED_BITS)
3078 return 1;
3080 svm->vmcb->save.dbgctl = data;
3081 mark_dirty(svm->vmcb, VMCB_LBR);
3082 if (data & (1ULL<<0))
3083 svm_enable_lbrv(svm);
3084 else
3085 svm_disable_lbrv(svm);
3086 break;
3087 case MSR_VM_HSAVE_PA:
3088 svm->nested.hsave_msr = data;
3089 break;
3090 case MSR_VM_CR:
3091 return svm_set_vm_cr(vcpu, data);
3092 case MSR_VM_IGNNE:
3093 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3094 break;
3095 default:
3096 return kvm_set_msr_common(vcpu, ecx, data);
3098 return 0;
3101 static int wrmsr_interception(struct vcpu_svm *svm)
3103 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3104 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3105 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3108 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3109 if (svm_set_msr(&svm->vcpu, ecx, data)) {
3110 trace_kvm_msr_write_ex(ecx, data);
3111 kvm_inject_gp(&svm->vcpu, 0);
3112 } else {
3113 trace_kvm_msr_write(ecx, data);
3114 skip_emulated_instruction(&svm->vcpu);
3116 return 1;
3119 static int msr_interception(struct vcpu_svm *svm)
3121 if (svm->vmcb->control.exit_info_1)
3122 return wrmsr_interception(svm);
3123 else
3124 return rdmsr_interception(svm);
3127 static int interrupt_window_interception(struct vcpu_svm *svm)
3129 struct kvm_run *kvm_run = svm->vcpu.run;
3131 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3132 svm_clear_vintr(svm);
3133 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3134 mark_dirty(svm->vmcb, VMCB_INTR);
3136 * If the user space waits to inject interrupts, exit as soon as
3137 * possible
3139 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3140 kvm_run->request_interrupt_window &&
3141 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3142 ++svm->vcpu.stat.irq_window_exits;
3143 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3144 return 0;
3147 return 1;
3150 static int pause_interception(struct vcpu_svm *svm)
3152 kvm_vcpu_on_spin(&(svm->vcpu));
3153 return 1;
3156 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3157 [SVM_EXIT_READ_CR0] = cr_interception,
3158 [SVM_EXIT_READ_CR3] = cr_interception,
3159 [SVM_EXIT_READ_CR4] = cr_interception,
3160 [SVM_EXIT_READ_CR8] = cr_interception,
3161 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3162 [SVM_EXIT_WRITE_CR0] = cr_interception,
3163 [SVM_EXIT_WRITE_CR3] = cr_interception,
3164 [SVM_EXIT_WRITE_CR4] = cr_interception,
3165 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3166 [SVM_EXIT_READ_DR0] = dr_interception,
3167 [SVM_EXIT_READ_DR1] = dr_interception,
3168 [SVM_EXIT_READ_DR2] = dr_interception,
3169 [SVM_EXIT_READ_DR3] = dr_interception,
3170 [SVM_EXIT_READ_DR4] = dr_interception,
3171 [SVM_EXIT_READ_DR5] = dr_interception,
3172 [SVM_EXIT_READ_DR6] = dr_interception,
3173 [SVM_EXIT_READ_DR7] = dr_interception,
3174 [SVM_EXIT_WRITE_DR0] = dr_interception,
3175 [SVM_EXIT_WRITE_DR1] = dr_interception,
3176 [SVM_EXIT_WRITE_DR2] = dr_interception,
3177 [SVM_EXIT_WRITE_DR3] = dr_interception,
3178 [SVM_EXIT_WRITE_DR4] = dr_interception,
3179 [SVM_EXIT_WRITE_DR5] = dr_interception,
3180 [SVM_EXIT_WRITE_DR6] = dr_interception,
3181 [SVM_EXIT_WRITE_DR7] = dr_interception,
3182 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3183 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3184 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3185 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3186 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3187 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3188 [SVM_EXIT_INTR] = intr_interception,
3189 [SVM_EXIT_NMI] = nmi_interception,
3190 [SVM_EXIT_SMI] = nop_on_interception,
3191 [SVM_EXIT_INIT] = nop_on_interception,
3192 [SVM_EXIT_VINTR] = interrupt_window_interception,
3193 [SVM_EXIT_CPUID] = cpuid_interception,
3194 [SVM_EXIT_IRET] = iret_interception,
3195 [SVM_EXIT_INVD] = emulate_on_interception,
3196 [SVM_EXIT_PAUSE] = pause_interception,
3197 [SVM_EXIT_HLT] = halt_interception,
3198 [SVM_EXIT_INVLPG] = invlpg_interception,
3199 [SVM_EXIT_INVLPGA] = invlpga_interception,
3200 [SVM_EXIT_IOIO] = io_interception,
3201 [SVM_EXIT_MSR] = msr_interception,
3202 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3203 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3204 [SVM_EXIT_VMRUN] = vmrun_interception,
3205 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3206 [SVM_EXIT_VMLOAD] = vmload_interception,
3207 [SVM_EXIT_VMSAVE] = vmsave_interception,
3208 [SVM_EXIT_STGI] = stgi_interception,
3209 [SVM_EXIT_CLGI] = clgi_interception,
3210 [SVM_EXIT_SKINIT] = skinit_interception,
3211 [SVM_EXIT_WBINVD] = emulate_on_interception,
3212 [SVM_EXIT_MONITOR] = invalid_op_interception,
3213 [SVM_EXIT_MWAIT] = invalid_op_interception,
3214 [SVM_EXIT_XSETBV] = xsetbv_interception,
3215 [SVM_EXIT_NPF] = pf_interception,
3218 static void dump_vmcb(struct kvm_vcpu *vcpu)
3220 struct vcpu_svm *svm = to_svm(vcpu);
3221 struct vmcb_control_area *control = &svm->vmcb->control;
3222 struct vmcb_save_area *save = &svm->vmcb->save;
3224 pr_err("VMCB Control Area:\n");
3225 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3226 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3227 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3228 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3229 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3230 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3231 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3232 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3233 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3234 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3235 pr_err("%-20s%d\n", "asid:", control->asid);
3236 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3237 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3238 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3239 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3240 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3241 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3242 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3243 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3244 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3245 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3246 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3247 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3248 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3249 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3250 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3251 pr_err("VMCB State Save Area:\n");
3252 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3253 "es:",
3254 save->es.selector, save->es.attrib,
3255 save->es.limit, save->es.base);
3256 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3257 "cs:",
3258 save->cs.selector, save->cs.attrib,
3259 save->cs.limit, save->cs.base);
3260 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3261 "ss:",
3262 save->ss.selector, save->ss.attrib,
3263 save->ss.limit, save->ss.base);
3264 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3265 "ds:",
3266 save->ds.selector, save->ds.attrib,
3267 save->ds.limit, save->ds.base);
3268 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3269 "fs:",
3270 save->fs.selector, save->fs.attrib,
3271 save->fs.limit, save->fs.base);
3272 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3273 "gs:",
3274 save->gs.selector, save->gs.attrib,
3275 save->gs.limit, save->gs.base);
3276 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3277 "gdtr:",
3278 save->gdtr.selector, save->gdtr.attrib,
3279 save->gdtr.limit, save->gdtr.base);
3280 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3281 "ldtr:",
3282 save->ldtr.selector, save->ldtr.attrib,
3283 save->ldtr.limit, save->ldtr.base);
3284 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3285 "idtr:",
3286 save->idtr.selector, save->idtr.attrib,
3287 save->idtr.limit, save->idtr.base);
3288 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3289 "tr:",
3290 save->tr.selector, save->tr.attrib,
3291 save->tr.limit, save->tr.base);
3292 pr_err("cpl: %d efer: %016llx\n",
3293 save->cpl, save->efer);
3294 pr_err("%-15s %016llx %-13s %016llx\n",
3295 "cr0:", save->cr0, "cr2:", save->cr2);
3296 pr_err("%-15s %016llx %-13s %016llx\n",
3297 "cr3:", save->cr3, "cr4:", save->cr4);
3298 pr_err("%-15s %016llx %-13s %016llx\n",
3299 "dr6:", save->dr6, "dr7:", save->dr7);
3300 pr_err("%-15s %016llx %-13s %016llx\n",
3301 "rip:", save->rip, "rflags:", save->rflags);
3302 pr_err("%-15s %016llx %-13s %016llx\n",
3303 "rsp:", save->rsp, "rax:", save->rax);
3304 pr_err("%-15s %016llx %-13s %016llx\n",
3305 "star:", save->star, "lstar:", save->lstar);
3306 pr_err("%-15s %016llx %-13s %016llx\n",
3307 "cstar:", save->cstar, "sfmask:", save->sfmask);
3308 pr_err("%-15s %016llx %-13s %016llx\n",
3309 "kernel_gs_base:", save->kernel_gs_base,
3310 "sysenter_cs:", save->sysenter_cs);
3311 pr_err("%-15s %016llx %-13s %016llx\n",
3312 "sysenter_esp:", save->sysenter_esp,
3313 "sysenter_eip:", save->sysenter_eip);
3314 pr_err("%-15s %016llx %-13s %016llx\n",
3315 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3316 pr_err("%-15s %016llx %-13s %016llx\n",
3317 "br_from:", save->br_from, "br_to:", save->br_to);
3318 pr_err("%-15s %016llx %-13s %016llx\n",
3319 "excp_from:", save->last_excp_from,
3320 "excp_to:", save->last_excp_to);
3323 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3325 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3327 *info1 = control->exit_info_1;
3328 *info2 = control->exit_info_2;
3331 static int handle_exit(struct kvm_vcpu *vcpu)
3333 struct vcpu_svm *svm = to_svm(vcpu);
3334 struct kvm_run *kvm_run = vcpu->run;
3335 u32 exit_code = svm->vmcb->control.exit_code;
3337 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3338 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3339 if (npt_enabled)
3340 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3342 if (unlikely(svm->nested.exit_required)) {
3343 nested_svm_vmexit(svm);
3344 svm->nested.exit_required = false;
3346 return 1;
3349 if (is_guest_mode(vcpu)) {
3350 int vmexit;
3352 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3353 svm->vmcb->control.exit_info_1,
3354 svm->vmcb->control.exit_info_2,
3355 svm->vmcb->control.exit_int_info,
3356 svm->vmcb->control.exit_int_info_err,
3357 KVM_ISA_SVM);
3359 vmexit = nested_svm_exit_special(svm);
3361 if (vmexit == NESTED_EXIT_CONTINUE)
3362 vmexit = nested_svm_exit_handled(svm);
3364 if (vmexit == NESTED_EXIT_DONE)
3365 return 1;
3368 svm_complete_interrupts(svm);
3370 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3371 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3372 kvm_run->fail_entry.hardware_entry_failure_reason
3373 = svm->vmcb->control.exit_code;
3374 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3375 dump_vmcb(vcpu);
3376 return 0;
3379 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3380 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3381 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3382 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3383 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3384 "exit_code 0x%x\n",
3385 __func__, svm->vmcb->control.exit_int_info,
3386 exit_code);
3388 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3389 || !svm_exit_handlers[exit_code]) {
3390 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3391 kvm_run->hw.hardware_exit_reason = exit_code;
3392 return 0;
3395 return svm_exit_handlers[exit_code](svm);
3398 static void reload_tss(struct kvm_vcpu *vcpu)
3400 int cpu = raw_smp_processor_id();
3402 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3403 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3404 load_TR_desc();
3407 static void pre_svm_run(struct vcpu_svm *svm)
3409 int cpu = raw_smp_processor_id();
3411 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3413 /* FIXME: handle wraparound of asid_generation */
3414 if (svm->asid_generation != sd->asid_generation)
3415 new_asid(svm, sd);
3418 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3420 struct vcpu_svm *svm = to_svm(vcpu);
3422 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3423 vcpu->arch.hflags |= HF_NMI_MASK;
3424 set_intercept(svm, INTERCEPT_IRET);
3425 ++vcpu->stat.nmi_injections;
3428 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3430 struct vmcb_control_area *control;
3432 control = &svm->vmcb->control;
3433 control->int_vector = irq;
3434 control->int_ctl &= ~V_INTR_PRIO_MASK;
3435 control->int_ctl |= V_IRQ_MASK |
3436 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3437 mark_dirty(svm->vmcb, VMCB_INTR);
3440 static void svm_set_irq(struct kvm_vcpu *vcpu)
3442 struct vcpu_svm *svm = to_svm(vcpu);
3444 BUG_ON(!(gif_set(svm)));
3446 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3447 ++vcpu->stat.irq_injections;
3449 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3450 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3453 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3455 struct vcpu_svm *svm = to_svm(vcpu);
3457 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3458 return;
3460 if (irr == -1)
3461 return;
3463 if (tpr >= irr)
3464 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3467 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3469 struct vcpu_svm *svm = to_svm(vcpu);
3470 struct vmcb *vmcb = svm->vmcb;
3471 int ret;
3472 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3473 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3474 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3476 return ret;
3479 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3481 struct vcpu_svm *svm = to_svm(vcpu);
3483 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3486 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3488 struct vcpu_svm *svm = to_svm(vcpu);
3490 if (masked) {
3491 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3492 set_intercept(svm, INTERCEPT_IRET);
3493 } else {
3494 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3495 clr_intercept(svm, INTERCEPT_IRET);
3499 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3501 struct vcpu_svm *svm = to_svm(vcpu);
3502 struct vmcb *vmcb = svm->vmcb;
3503 int ret;
3505 if (!gif_set(svm) ||
3506 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3507 return 0;
3509 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3511 if (is_guest_mode(vcpu))
3512 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3514 return ret;
3517 static void enable_irq_window(struct kvm_vcpu *vcpu)
3519 struct vcpu_svm *svm = to_svm(vcpu);
3522 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3523 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3524 * get that intercept, this function will be called again though and
3525 * we'll get the vintr intercept.
3527 if (gif_set(svm) && nested_svm_intr(svm)) {
3528 svm_set_vintr(svm);
3529 svm_inject_irq(svm, 0x0);
3533 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3535 struct vcpu_svm *svm = to_svm(vcpu);
3537 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3538 == HF_NMI_MASK)
3539 return; /* IRET will cause a vm exit */
3542 * Something prevents NMI from been injected. Single step over possible
3543 * problem (IRET or exception injection or interrupt shadow)
3545 svm->nmi_singlestep = true;
3546 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3547 update_db_intercept(vcpu);
3550 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3552 return 0;
3555 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3557 struct vcpu_svm *svm = to_svm(vcpu);
3559 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3560 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3561 else
3562 svm->asid_generation--;
3565 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3569 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3571 struct vcpu_svm *svm = to_svm(vcpu);
3573 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3574 return;
3576 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3577 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3578 kvm_set_cr8(vcpu, cr8);
3582 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3584 struct vcpu_svm *svm = to_svm(vcpu);
3585 u64 cr8;
3587 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3588 return;
3590 cr8 = kvm_get_cr8(vcpu);
3591 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3592 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3595 static void svm_complete_interrupts(struct vcpu_svm *svm)
3597 u8 vector;
3598 int type;
3599 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3600 unsigned int3_injected = svm->int3_injected;
3602 svm->int3_injected = 0;
3605 * If we've made progress since setting HF_IRET_MASK, we've
3606 * executed an IRET and can allow NMI injection.
3608 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3609 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3610 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3611 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3614 svm->vcpu.arch.nmi_injected = false;
3615 kvm_clear_exception_queue(&svm->vcpu);
3616 kvm_clear_interrupt_queue(&svm->vcpu);
3618 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3619 return;
3621 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3623 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3624 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3626 switch (type) {
3627 case SVM_EXITINTINFO_TYPE_NMI:
3628 svm->vcpu.arch.nmi_injected = true;
3629 break;
3630 case SVM_EXITINTINFO_TYPE_EXEPT:
3632 * In case of software exceptions, do not reinject the vector,
3633 * but re-execute the instruction instead. Rewind RIP first
3634 * if we emulated INT3 before.
3636 if (kvm_exception_is_soft(vector)) {
3637 if (vector == BP_VECTOR && int3_injected &&
3638 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3639 kvm_rip_write(&svm->vcpu,
3640 kvm_rip_read(&svm->vcpu) -
3641 int3_injected);
3642 break;
3644 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3645 u32 err = svm->vmcb->control.exit_int_info_err;
3646 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3648 } else
3649 kvm_requeue_exception(&svm->vcpu, vector);
3650 break;
3651 case SVM_EXITINTINFO_TYPE_INTR:
3652 kvm_queue_interrupt(&svm->vcpu, vector, false);
3653 break;
3654 default:
3655 break;
3659 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3661 struct vcpu_svm *svm = to_svm(vcpu);
3662 struct vmcb_control_area *control = &svm->vmcb->control;
3664 control->exit_int_info = control->event_inj;
3665 control->exit_int_info_err = control->event_inj_err;
3666 control->event_inj = 0;
3667 svm_complete_interrupts(svm);
3670 #ifdef CONFIG_X86_64
3671 #define R "r"
3672 #else
3673 #define R "e"
3674 #endif
3676 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3678 struct vcpu_svm *svm = to_svm(vcpu);
3680 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3681 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3682 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3685 * A vmexit emulation is required before the vcpu can be executed
3686 * again.
3688 if (unlikely(svm->nested.exit_required))
3689 return;
3691 pre_svm_run(svm);
3693 sync_lapic_to_cr8(vcpu);
3695 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3697 clgi();
3699 local_irq_enable();
3701 asm volatile (
3702 "push %%"R"bp; \n\t"
3703 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3704 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3705 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3706 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3707 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3708 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3709 #ifdef CONFIG_X86_64
3710 "mov %c[r8](%[svm]), %%r8 \n\t"
3711 "mov %c[r9](%[svm]), %%r9 \n\t"
3712 "mov %c[r10](%[svm]), %%r10 \n\t"
3713 "mov %c[r11](%[svm]), %%r11 \n\t"
3714 "mov %c[r12](%[svm]), %%r12 \n\t"
3715 "mov %c[r13](%[svm]), %%r13 \n\t"
3716 "mov %c[r14](%[svm]), %%r14 \n\t"
3717 "mov %c[r15](%[svm]), %%r15 \n\t"
3718 #endif
3720 /* Enter guest mode */
3721 "push %%"R"ax \n\t"
3722 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3723 __ex(SVM_VMLOAD) "\n\t"
3724 __ex(SVM_VMRUN) "\n\t"
3725 __ex(SVM_VMSAVE) "\n\t"
3726 "pop %%"R"ax \n\t"
3728 /* Save guest registers, load host registers */
3729 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3730 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3731 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3732 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3733 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3734 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3735 #ifdef CONFIG_X86_64
3736 "mov %%r8, %c[r8](%[svm]) \n\t"
3737 "mov %%r9, %c[r9](%[svm]) \n\t"
3738 "mov %%r10, %c[r10](%[svm]) \n\t"
3739 "mov %%r11, %c[r11](%[svm]) \n\t"
3740 "mov %%r12, %c[r12](%[svm]) \n\t"
3741 "mov %%r13, %c[r13](%[svm]) \n\t"
3742 "mov %%r14, %c[r14](%[svm]) \n\t"
3743 "mov %%r15, %c[r15](%[svm]) \n\t"
3744 #endif
3745 "pop %%"R"bp"
3747 : [svm]"a"(svm),
3748 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3749 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3750 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3751 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3752 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3753 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3754 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3755 #ifdef CONFIG_X86_64
3756 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3757 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3758 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3759 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3760 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3761 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3762 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3763 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3764 #endif
3765 : "cc", "memory"
3766 , R"bx", R"cx", R"dx", R"si", R"di"
3767 #ifdef CONFIG_X86_64
3768 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3769 #endif
3772 #ifdef CONFIG_X86_64
3773 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3774 #else
3775 loadsegment(fs, svm->host.fs);
3776 #ifndef CONFIG_X86_32_LAZY_GS
3777 loadsegment(gs, svm->host.gs);
3778 #endif
3779 #endif
3781 reload_tss(vcpu);
3783 local_irq_disable();
3785 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3786 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3787 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3788 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3790 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3792 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3793 kvm_before_handle_nmi(&svm->vcpu);
3795 stgi();
3797 /* Any pending NMI will happen here */
3799 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3800 kvm_after_handle_nmi(&svm->vcpu);
3802 sync_cr8_to_lapic(vcpu);
3804 svm->next_rip = 0;
3806 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3808 /* if exit due to PF check for async PF */
3809 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3810 svm->apf_reason = kvm_read_and_reset_pf_reason();
3812 if (npt_enabled) {
3813 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3814 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3818 * We need to handle MC intercepts here before the vcpu has a chance to
3819 * change the physical cpu
3821 if (unlikely(svm->vmcb->control.exit_code ==
3822 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3823 svm_handle_mce(svm);
3825 mark_all_clean(svm->vmcb);
3828 #undef R
3830 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3832 struct vcpu_svm *svm = to_svm(vcpu);
3834 svm->vmcb->save.cr3 = root;
3835 mark_dirty(svm->vmcb, VMCB_CR);
3836 svm_flush_tlb(vcpu);
3839 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3841 struct vcpu_svm *svm = to_svm(vcpu);
3843 svm->vmcb->control.nested_cr3 = root;
3844 mark_dirty(svm->vmcb, VMCB_NPT);
3846 /* Also sync guest cr3 here in case we live migrate */
3847 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3848 mark_dirty(svm->vmcb, VMCB_CR);
3850 svm_flush_tlb(vcpu);
3853 static int is_disabled(void)
3855 u64 vm_cr;
3857 rdmsrl(MSR_VM_CR, vm_cr);
3858 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3859 return 1;
3861 return 0;
3864 static void
3865 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3868 * Patch in the VMMCALL instruction:
3870 hypercall[0] = 0x0f;
3871 hypercall[1] = 0x01;
3872 hypercall[2] = 0xd9;
3875 static void svm_check_processor_compat(void *rtn)
3877 *(int *)rtn = 0;
3880 static bool svm_cpu_has_accelerated_tpr(void)
3882 return false;
3885 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3887 return 0;
3890 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3894 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3896 switch (func) {
3897 case 0x80000001:
3898 if (nested)
3899 entry->ecx |= (1 << 2); /* Set SVM bit */
3900 break;
3901 case 0x8000000A:
3902 entry->eax = 1; /* SVM revision 1 */
3903 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3904 ASID emulation to nested SVM */
3905 entry->ecx = 0; /* Reserved */
3906 entry->edx = 0; /* Per default do not support any
3907 additional features */
3909 /* Support next_rip if host supports it */
3910 if (boot_cpu_has(X86_FEATURE_NRIPS))
3911 entry->edx |= SVM_FEATURE_NRIP;
3913 /* Support NPT for the guest if enabled */
3914 if (npt_enabled)
3915 entry->edx |= SVM_FEATURE_NPT;
3917 break;
3921 static int svm_get_lpage_level(void)
3923 return PT_PDPE_LEVEL;
3926 static bool svm_rdtscp_supported(void)
3928 return false;
3931 static bool svm_has_wbinvd_exit(void)
3933 return true;
3936 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3938 struct vcpu_svm *svm = to_svm(vcpu);
3940 set_exception_intercept(svm, NM_VECTOR);
3941 update_cr0_intercept(svm);
3944 #define PRE_EX(exit) { .exit_code = (exit), \
3945 .stage = X86_ICPT_PRE_EXCEPT, }
3946 #define POST_EX(exit) { .exit_code = (exit), \
3947 .stage = X86_ICPT_POST_EXCEPT, }
3948 #define POST_MEM(exit) { .exit_code = (exit), \
3949 .stage = X86_ICPT_POST_MEMACCESS, }
3951 static struct __x86_intercept {
3952 u32 exit_code;
3953 enum x86_intercept_stage stage;
3954 } x86_intercept_map[] = {
3955 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3956 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3957 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3958 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3959 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3960 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3961 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3962 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3963 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3964 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3965 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3966 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3967 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3968 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3969 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3970 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3971 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3972 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3973 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3974 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3975 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3976 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3977 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3978 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3979 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
3980 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
3981 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
3982 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
3983 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
3984 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
3985 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
3986 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
3987 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
3988 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
3989 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
3990 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
3991 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
3992 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
3993 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
3994 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
3995 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
3996 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
3997 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
3998 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
3999 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4000 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4003 #undef PRE_EX
4004 #undef POST_EX
4005 #undef POST_MEM
4007 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4008 struct x86_instruction_info *info,
4009 enum x86_intercept_stage stage)
4011 struct vcpu_svm *svm = to_svm(vcpu);
4012 int vmexit, ret = X86EMUL_CONTINUE;
4013 struct __x86_intercept icpt_info;
4014 struct vmcb *vmcb = svm->vmcb;
4016 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4017 goto out;
4019 icpt_info = x86_intercept_map[info->intercept];
4021 if (stage != icpt_info.stage)
4022 goto out;
4024 switch (icpt_info.exit_code) {
4025 case SVM_EXIT_READ_CR0:
4026 if (info->intercept == x86_intercept_cr_read)
4027 icpt_info.exit_code += info->modrm_reg;
4028 break;
4029 case SVM_EXIT_WRITE_CR0: {
4030 unsigned long cr0, val;
4031 u64 intercept;
4033 if (info->intercept == x86_intercept_cr_write)
4034 icpt_info.exit_code += info->modrm_reg;
4036 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4037 break;
4039 intercept = svm->nested.intercept;
4041 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4042 break;
4044 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4045 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4047 if (info->intercept == x86_intercept_lmsw) {
4048 cr0 &= 0xfUL;
4049 val &= 0xfUL;
4050 /* lmsw can't clear PE - catch this here */
4051 if (cr0 & X86_CR0_PE)
4052 val |= X86_CR0_PE;
4055 if (cr0 ^ val)
4056 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4058 break;
4060 case SVM_EXIT_READ_DR0:
4061 case SVM_EXIT_WRITE_DR0:
4062 icpt_info.exit_code += info->modrm_reg;
4063 break;
4064 case SVM_EXIT_MSR:
4065 if (info->intercept == x86_intercept_wrmsr)
4066 vmcb->control.exit_info_1 = 1;
4067 else
4068 vmcb->control.exit_info_1 = 0;
4069 break;
4070 case SVM_EXIT_PAUSE:
4072 * We get this for NOP only, but pause
4073 * is rep not, check this here
4075 if (info->rep_prefix != REPE_PREFIX)
4076 goto out;
4077 case SVM_EXIT_IOIO: {
4078 u64 exit_info;
4079 u32 bytes;
4081 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4083 if (info->intercept == x86_intercept_in ||
4084 info->intercept == x86_intercept_ins) {
4085 exit_info |= SVM_IOIO_TYPE_MASK;
4086 bytes = info->src_bytes;
4087 } else {
4088 bytes = info->dst_bytes;
4091 if (info->intercept == x86_intercept_outs ||
4092 info->intercept == x86_intercept_ins)
4093 exit_info |= SVM_IOIO_STR_MASK;
4095 if (info->rep_prefix)
4096 exit_info |= SVM_IOIO_REP_MASK;
4098 bytes = min(bytes, 4u);
4100 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4102 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4104 vmcb->control.exit_info_1 = exit_info;
4105 vmcb->control.exit_info_2 = info->next_rip;
4107 break;
4109 default:
4110 break;
4113 vmcb->control.next_rip = info->next_rip;
4114 vmcb->control.exit_code = icpt_info.exit_code;
4115 vmexit = nested_svm_exit_handled(svm);
4117 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4118 : X86EMUL_CONTINUE;
4120 out:
4121 return ret;
4124 static struct kvm_x86_ops svm_x86_ops = {
4125 .cpu_has_kvm_support = has_svm,
4126 .disabled_by_bios = is_disabled,
4127 .hardware_setup = svm_hardware_setup,
4128 .hardware_unsetup = svm_hardware_unsetup,
4129 .check_processor_compatibility = svm_check_processor_compat,
4130 .hardware_enable = svm_hardware_enable,
4131 .hardware_disable = svm_hardware_disable,
4132 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4134 .vcpu_create = svm_create_vcpu,
4135 .vcpu_free = svm_free_vcpu,
4136 .vcpu_reset = svm_vcpu_reset,
4138 .prepare_guest_switch = svm_prepare_guest_switch,
4139 .vcpu_load = svm_vcpu_load,
4140 .vcpu_put = svm_vcpu_put,
4142 .set_guest_debug = svm_guest_debug,
4143 .get_msr = svm_get_msr,
4144 .set_msr = svm_set_msr,
4145 .get_segment_base = svm_get_segment_base,
4146 .get_segment = svm_get_segment,
4147 .set_segment = svm_set_segment,
4148 .get_cpl = svm_get_cpl,
4149 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4150 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4151 .decache_cr3 = svm_decache_cr3,
4152 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4153 .set_cr0 = svm_set_cr0,
4154 .set_cr3 = svm_set_cr3,
4155 .set_cr4 = svm_set_cr4,
4156 .set_efer = svm_set_efer,
4157 .get_idt = svm_get_idt,
4158 .set_idt = svm_set_idt,
4159 .get_gdt = svm_get_gdt,
4160 .set_gdt = svm_set_gdt,
4161 .set_dr7 = svm_set_dr7,
4162 .cache_reg = svm_cache_reg,
4163 .get_rflags = svm_get_rflags,
4164 .set_rflags = svm_set_rflags,
4165 .fpu_activate = svm_fpu_activate,
4166 .fpu_deactivate = svm_fpu_deactivate,
4168 .tlb_flush = svm_flush_tlb,
4170 .run = svm_vcpu_run,
4171 .handle_exit = handle_exit,
4172 .skip_emulated_instruction = skip_emulated_instruction,
4173 .set_interrupt_shadow = svm_set_interrupt_shadow,
4174 .get_interrupt_shadow = svm_get_interrupt_shadow,
4175 .patch_hypercall = svm_patch_hypercall,
4176 .set_irq = svm_set_irq,
4177 .set_nmi = svm_inject_nmi,
4178 .queue_exception = svm_queue_exception,
4179 .cancel_injection = svm_cancel_injection,
4180 .interrupt_allowed = svm_interrupt_allowed,
4181 .nmi_allowed = svm_nmi_allowed,
4182 .get_nmi_mask = svm_get_nmi_mask,
4183 .set_nmi_mask = svm_set_nmi_mask,
4184 .enable_nmi_window = enable_nmi_window,
4185 .enable_irq_window = enable_irq_window,
4186 .update_cr8_intercept = update_cr8_intercept,
4188 .set_tss_addr = svm_set_tss_addr,
4189 .get_tdp_level = get_npt_level,
4190 .get_mt_mask = svm_get_mt_mask,
4192 .get_exit_info = svm_get_exit_info,
4194 .get_lpage_level = svm_get_lpage_level,
4196 .cpuid_update = svm_cpuid_update,
4198 .rdtscp_supported = svm_rdtscp_supported,
4200 .set_supported_cpuid = svm_set_supported_cpuid,
4202 .has_wbinvd_exit = svm_has_wbinvd_exit,
4204 .set_tsc_khz = svm_set_tsc_khz,
4205 .write_tsc_offset = svm_write_tsc_offset,
4206 .adjust_tsc_offset = svm_adjust_tsc_offset,
4207 .compute_tsc_offset = svm_compute_tsc_offset,
4208 .read_l1_tsc = svm_read_l1_tsc,
4210 .set_tdp_cr3 = set_tdp_cr3,
4212 .check_intercept = svm_check_intercept,
4215 static int __init svm_init(void)
4217 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4218 __alignof__(struct vcpu_svm), THIS_MODULE);
4221 static void __exit svm_exit(void)
4223 kvm_exit();
4226 module_init(svm_init)
4227 module_exit(svm_exit)