MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / arch / x86 / kvm / vmx.c
bloba0d6bd9ad442f1746bfa66eaabe86641470b7d0f
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "irq.h"
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
43 #include "trace.h"
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 #define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
52 static int __read_mostly enable_vpid = 1;
53 module_param_named(vpid, enable_vpid, bool, 0444);
55 static int __read_mostly flexpriority_enabled = 1;
56 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58 static int __read_mostly enable_ept = 1;
59 module_param_named(ept, enable_ept, bool, S_IRUGO);
61 static int __read_mostly enable_unrestricted_guest = 1;
62 module_param_named(unrestricted_guest,
63 enable_unrestricted_guest, bool, S_IRUGO);
65 static int __read_mostly emulate_invalid_guest_state = 0;
66 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68 static int __read_mostly vmm_exclusive = 1;
69 module_param(vmm_exclusive, bool, S_IRUGO);
71 static int __read_mostly yield_on_hlt = 1;
72 module_param(yield_on_hlt, bool, S_IRUGO);
74 static int __read_mostly fasteoi = 1;
75 module_param(fasteoi, bool, S_IRUGO);
78 * If nested=1, nested virtualization is supported, i.e., guests may use
79 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80 * use VMX instructions.
82 static int __read_mostly nested = 0;
83 module_param(nested, bool, S_IRUGO);
85 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
86 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87 #define KVM_GUEST_CR0_MASK \
88 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
90 (X86_CR0_WP | X86_CR0_NE)
91 #define KVM_VM_CR0_ALWAYS_ON \
92 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
93 #define KVM_CR4_GUEST_OWNED_BITS \
94 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT)
97 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
100 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
103 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104 * ple_gap: upper bound on the amount of time between two successive
105 * executions of PAUSE in a loop. Also indicate if ple enabled.
106 * According to test, this time is usually smaller than 128 cycles.
107 * ple_window: upper bound on the amount of time a guest is allowed to execute
108 * in a PAUSE loop. Tests indicate that most spinlocks are held for
109 * less than 2^12 cycles
110 * Time is measured based on a counter that runs at the same rate as the TSC,
111 * refer SDM volume 3b section 21.6.13 & 22.1.3.
113 #define KVM_VMX_DEFAULT_PLE_GAP 128
114 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116 module_param(ple_gap, int, S_IRUGO);
118 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119 module_param(ple_window, int, S_IRUGO);
121 #define NR_AUTOLOAD_MSRS 1
122 #define VMCS02_POOL_SIZE 1
124 struct vmcs {
125 u32 revision_id;
126 u32 abort;
127 char data[0];
131 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
132 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
133 * loaded on this CPU (so we can clear them if the CPU goes down).
135 struct loaded_vmcs {
136 struct vmcs *vmcs;
137 int cpu;
138 int launched;
139 struct list_head loaded_vmcss_on_cpu_link;
142 struct shared_msr_entry {
143 unsigned index;
144 u64 data;
145 u64 mask;
149 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
150 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
151 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
152 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
153 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
154 * More than one of these structures may exist, if L1 runs multiple L2 guests.
155 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
156 * underlying hardware which will be used to run L2.
157 * This structure is packed to ensure that its layout is identical across
158 * machines (necessary for live migration).
159 * If there are changes in this struct, VMCS12_REVISION must be changed.
161 typedef u64 natural_width;
162 struct __packed vmcs12 {
163 /* According to the Intel spec, a VMCS region must start with the
164 * following two fields. Then follow implementation-specific data.
166 u32 revision_id;
167 u32 abort;
169 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
170 u32 padding[7]; /* room for future expansion */
172 u64 io_bitmap_a;
173 u64 io_bitmap_b;
174 u64 msr_bitmap;
175 u64 vm_exit_msr_store_addr;
176 u64 vm_exit_msr_load_addr;
177 u64 vm_entry_msr_load_addr;
178 u64 tsc_offset;
179 u64 virtual_apic_page_addr;
180 u64 apic_access_addr;
181 u64 ept_pointer;
182 u64 guest_physical_address;
183 u64 vmcs_link_pointer;
184 u64 guest_ia32_debugctl;
185 u64 guest_ia32_pat;
186 u64 guest_ia32_efer;
187 u64 guest_ia32_perf_global_ctrl;
188 u64 guest_pdptr0;
189 u64 guest_pdptr1;
190 u64 guest_pdptr2;
191 u64 guest_pdptr3;
192 u64 host_ia32_pat;
193 u64 host_ia32_efer;
194 u64 host_ia32_perf_global_ctrl;
195 u64 padding64[8]; /* room for future expansion */
197 * To allow migration of L1 (complete with its L2 guests) between
198 * machines of different natural widths (32 or 64 bit), we cannot have
199 * unsigned long fields with no explict size. We use u64 (aliased
200 * natural_width) instead. Luckily, x86 is little-endian.
202 natural_width cr0_guest_host_mask;
203 natural_width cr4_guest_host_mask;
204 natural_width cr0_read_shadow;
205 natural_width cr4_read_shadow;
206 natural_width cr3_target_value0;
207 natural_width cr3_target_value1;
208 natural_width cr3_target_value2;
209 natural_width cr3_target_value3;
210 natural_width exit_qualification;
211 natural_width guest_linear_address;
212 natural_width guest_cr0;
213 natural_width guest_cr3;
214 natural_width guest_cr4;
215 natural_width guest_es_base;
216 natural_width guest_cs_base;
217 natural_width guest_ss_base;
218 natural_width guest_ds_base;
219 natural_width guest_fs_base;
220 natural_width guest_gs_base;
221 natural_width guest_ldtr_base;
222 natural_width guest_tr_base;
223 natural_width guest_gdtr_base;
224 natural_width guest_idtr_base;
225 natural_width guest_dr7;
226 natural_width guest_rsp;
227 natural_width guest_rip;
228 natural_width guest_rflags;
229 natural_width guest_pending_dbg_exceptions;
230 natural_width guest_sysenter_esp;
231 natural_width guest_sysenter_eip;
232 natural_width host_cr0;
233 natural_width host_cr3;
234 natural_width host_cr4;
235 natural_width host_fs_base;
236 natural_width host_gs_base;
237 natural_width host_tr_base;
238 natural_width host_gdtr_base;
239 natural_width host_idtr_base;
240 natural_width host_ia32_sysenter_esp;
241 natural_width host_ia32_sysenter_eip;
242 natural_width host_rsp;
243 natural_width host_rip;
244 natural_width paddingl[8]; /* room for future expansion */
245 u32 pin_based_vm_exec_control;
246 u32 cpu_based_vm_exec_control;
247 u32 exception_bitmap;
248 u32 page_fault_error_code_mask;
249 u32 page_fault_error_code_match;
250 u32 cr3_target_count;
251 u32 vm_exit_controls;
252 u32 vm_exit_msr_store_count;
253 u32 vm_exit_msr_load_count;
254 u32 vm_entry_controls;
255 u32 vm_entry_msr_load_count;
256 u32 vm_entry_intr_info_field;
257 u32 vm_entry_exception_error_code;
258 u32 vm_entry_instruction_len;
259 u32 tpr_threshold;
260 u32 secondary_vm_exec_control;
261 u32 vm_instruction_error;
262 u32 vm_exit_reason;
263 u32 vm_exit_intr_info;
264 u32 vm_exit_intr_error_code;
265 u32 idt_vectoring_info_field;
266 u32 idt_vectoring_error_code;
267 u32 vm_exit_instruction_len;
268 u32 vmx_instruction_info;
269 u32 guest_es_limit;
270 u32 guest_cs_limit;
271 u32 guest_ss_limit;
272 u32 guest_ds_limit;
273 u32 guest_fs_limit;
274 u32 guest_gs_limit;
275 u32 guest_ldtr_limit;
276 u32 guest_tr_limit;
277 u32 guest_gdtr_limit;
278 u32 guest_idtr_limit;
279 u32 guest_es_ar_bytes;
280 u32 guest_cs_ar_bytes;
281 u32 guest_ss_ar_bytes;
282 u32 guest_ds_ar_bytes;
283 u32 guest_fs_ar_bytes;
284 u32 guest_gs_ar_bytes;
285 u32 guest_ldtr_ar_bytes;
286 u32 guest_tr_ar_bytes;
287 u32 guest_interruptibility_info;
288 u32 guest_activity_state;
289 u32 guest_sysenter_cs;
290 u32 host_ia32_sysenter_cs;
291 u32 padding32[8]; /* room for future expansion */
292 u16 virtual_processor_id;
293 u16 guest_es_selector;
294 u16 guest_cs_selector;
295 u16 guest_ss_selector;
296 u16 guest_ds_selector;
297 u16 guest_fs_selector;
298 u16 guest_gs_selector;
299 u16 guest_ldtr_selector;
300 u16 guest_tr_selector;
301 u16 host_es_selector;
302 u16 host_cs_selector;
303 u16 host_ss_selector;
304 u16 host_ds_selector;
305 u16 host_fs_selector;
306 u16 host_gs_selector;
307 u16 host_tr_selector;
311 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
312 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
313 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
315 #define VMCS12_REVISION 0x11e57ed0
318 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
319 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
320 * current implementation, 4K are reserved to avoid future complications.
322 #define VMCS12_SIZE 0x1000
324 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
325 struct vmcs02_list {
326 struct list_head list;
327 gpa_t vmptr;
328 struct loaded_vmcs vmcs02;
332 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
333 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
335 struct nested_vmx {
336 /* Has the level1 guest done vmxon? */
337 bool vmxon;
339 /* The guest-physical address of the current VMCS L1 keeps for L2 */
340 gpa_t current_vmptr;
341 /* The host-usable pointer to the above */
342 struct page *current_vmcs12_page;
343 struct vmcs12 *current_vmcs12;
345 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
346 struct list_head vmcs02_pool;
347 int vmcs02_num;
348 u64 vmcs01_tsc_offset;
349 /* L2 must run next, and mustn't decide to exit to L1. */
350 bool nested_run_pending;
352 * Guest pages referred to in vmcs02 with host-physical pointers, so
353 * we must keep them pinned while L2 runs.
355 struct page *apic_access_page;
358 struct vcpu_vmx {
359 struct kvm_vcpu vcpu;
360 unsigned long host_rsp;
361 u8 fail;
362 u8 cpl;
363 bool nmi_known_unmasked;
364 u32 exit_intr_info;
365 u32 idt_vectoring_info;
366 ulong rflags;
367 struct shared_msr_entry *guest_msrs;
368 int nmsrs;
369 int save_nmsrs;
370 #ifdef CONFIG_X86_64
371 u64 msr_host_kernel_gs_base;
372 u64 msr_guest_kernel_gs_base;
373 #endif
375 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
376 * non-nested (L1) guest, it always points to vmcs01. For a nested
377 * guest (L2), it points to a different VMCS.
379 struct loaded_vmcs vmcs01;
380 struct loaded_vmcs *loaded_vmcs;
381 bool __launched; /* temporary, used in vmx_vcpu_run */
382 struct msr_autoload {
383 unsigned nr;
384 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
385 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
386 } msr_autoload;
387 struct {
388 int loaded;
389 u16 fs_sel, gs_sel, ldt_sel;
390 int gs_ldt_reload_needed;
391 int fs_reload_needed;
392 } host_state;
393 struct {
394 int vm86_active;
395 ulong save_rflags;
396 struct kvm_save_segment {
397 u16 selector;
398 unsigned long base;
399 u32 limit;
400 u32 ar;
401 } tr, es, ds, fs, gs;
402 } rmode;
403 struct {
404 u32 bitmask; /* 4 bits per segment (1 bit per field) */
405 struct kvm_save_segment seg[8];
406 } segment_cache;
407 int vpid;
408 bool emulation_required;
410 /* Support for vnmi-less CPUs */
411 int soft_vnmi_blocked;
412 ktime_t entry_time;
413 s64 vnmi_blocked_time;
414 u32 exit_reason;
416 bool rdtscp_enabled;
418 /* Support for a guest hypervisor (nested VMX) */
419 struct nested_vmx nested;
422 enum segment_cache_field {
423 SEG_FIELD_SEL = 0,
424 SEG_FIELD_BASE = 1,
425 SEG_FIELD_LIMIT = 2,
426 SEG_FIELD_AR = 3,
428 SEG_FIELD_NR = 4
431 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
433 return container_of(vcpu, struct vcpu_vmx, vcpu);
436 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
437 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
438 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
439 [number##_HIGH] = VMCS12_OFFSET(name)+4
441 static unsigned short vmcs_field_to_offset_table[] = {
442 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
443 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
444 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
445 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
446 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
447 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
448 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
449 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
450 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
451 FIELD(HOST_ES_SELECTOR, host_es_selector),
452 FIELD(HOST_CS_SELECTOR, host_cs_selector),
453 FIELD(HOST_SS_SELECTOR, host_ss_selector),
454 FIELD(HOST_DS_SELECTOR, host_ds_selector),
455 FIELD(HOST_FS_SELECTOR, host_fs_selector),
456 FIELD(HOST_GS_SELECTOR, host_gs_selector),
457 FIELD(HOST_TR_SELECTOR, host_tr_selector),
458 FIELD64(IO_BITMAP_A, io_bitmap_a),
459 FIELD64(IO_BITMAP_B, io_bitmap_b),
460 FIELD64(MSR_BITMAP, msr_bitmap),
461 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
462 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
463 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
464 FIELD64(TSC_OFFSET, tsc_offset),
465 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
466 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
467 FIELD64(EPT_POINTER, ept_pointer),
468 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
469 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
470 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
471 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
472 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
473 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
474 FIELD64(GUEST_PDPTR0, guest_pdptr0),
475 FIELD64(GUEST_PDPTR1, guest_pdptr1),
476 FIELD64(GUEST_PDPTR2, guest_pdptr2),
477 FIELD64(GUEST_PDPTR3, guest_pdptr3),
478 FIELD64(HOST_IA32_PAT, host_ia32_pat),
479 FIELD64(HOST_IA32_EFER, host_ia32_efer),
480 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
481 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
482 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
483 FIELD(EXCEPTION_BITMAP, exception_bitmap),
484 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
485 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
486 FIELD(CR3_TARGET_COUNT, cr3_target_count),
487 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
488 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
489 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
490 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
491 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
492 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
493 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
494 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
495 FIELD(TPR_THRESHOLD, tpr_threshold),
496 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
497 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
498 FIELD(VM_EXIT_REASON, vm_exit_reason),
499 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
500 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
501 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
502 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
503 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
504 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
505 FIELD(GUEST_ES_LIMIT, guest_es_limit),
506 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
507 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
508 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
509 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
510 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
511 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
512 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
513 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
514 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
515 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
516 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
517 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
518 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
519 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
520 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
521 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
522 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
523 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
524 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
525 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
526 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
527 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
528 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
529 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
530 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
531 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
532 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
533 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
534 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
535 FIELD(EXIT_QUALIFICATION, exit_qualification),
536 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
537 FIELD(GUEST_CR0, guest_cr0),
538 FIELD(GUEST_CR3, guest_cr3),
539 FIELD(GUEST_CR4, guest_cr4),
540 FIELD(GUEST_ES_BASE, guest_es_base),
541 FIELD(GUEST_CS_BASE, guest_cs_base),
542 FIELD(GUEST_SS_BASE, guest_ss_base),
543 FIELD(GUEST_DS_BASE, guest_ds_base),
544 FIELD(GUEST_FS_BASE, guest_fs_base),
545 FIELD(GUEST_GS_BASE, guest_gs_base),
546 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
547 FIELD(GUEST_TR_BASE, guest_tr_base),
548 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
549 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
550 FIELD(GUEST_DR7, guest_dr7),
551 FIELD(GUEST_RSP, guest_rsp),
552 FIELD(GUEST_RIP, guest_rip),
553 FIELD(GUEST_RFLAGS, guest_rflags),
554 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
555 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
556 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
557 FIELD(HOST_CR0, host_cr0),
558 FIELD(HOST_CR3, host_cr3),
559 FIELD(HOST_CR4, host_cr4),
560 FIELD(HOST_FS_BASE, host_fs_base),
561 FIELD(HOST_GS_BASE, host_gs_base),
562 FIELD(HOST_TR_BASE, host_tr_base),
563 FIELD(HOST_GDTR_BASE, host_gdtr_base),
564 FIELD(HOST_IDTR_BASE, host_idtr_base),
565 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
566 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
567 FIELD(HOST_RSP, host_rsp),
568 FIELD(HOST_RIP, host_rip),
570 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
572 static inline short vmcs_field_to_offset(unsigned long field)
574 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
575 return -1;
576 return vmcs_field_to_offset_table[field];
579 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
581 return to_vmx(vcpu)->nested.current_vmcs12;
584 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
586 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
587 if (is_error_page(page)) {
588 kvm_release_page_clean(page);
589 return NULL;
591 return page;
594 static void nested_release_page(struct page *page)
596 kvm_release_page_dirty(page);
599 static void nested_release_page_clean(struct page *page)
601 kvm_release_page_clean(page);
604 static u64 construct_eptp(unsigned long root_hpa);
605 static void kvm_cpu_vmxon(u64 addr);
606 static void kvm_cpu_vmxoff(void);
607 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
608 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
610 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
611 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
613 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
614 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
616 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
617 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
619 static unsigned long *vmx_io_bitmap_a;
620 static unsigned long *vmx_io_bitmap_b;
621 static unsigned long *vmx_msr_bitmap_legacy;
622 static unsigned long *vmx_msr_bitmap_longmode;
624 static bool cpu_has_load_ia32_efer;
626 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
627 static DEFINE_SPINLOCK(vmx_vpid_lock);
629 static struct vmcs_config {
630 int size;
631 int order;
632 u32 revision_id;
633 u32 pin_based_exec_ctrl;
634 u32 cpu_based_exec_ctrl;
635 u32 cpu_based_2nd_exec_ctrl;
636 u32 vmexit_ctrl;
637 u32 vmentry_ctrl;
638 } vmcs_config;
640 static struct vmx_capability {
641 u32 ept;
642 u32 vpid;
643 } vmx_capability;
645 #define VMX_SEGMENT_FIELD(seg) \
646 [VCPU_SREG_##seg] = { \
647 .selector = GUEST_##seg##_SELECTOR, \
648 .base = GUEST_##seg##_BASE, \
649 .limit = GUEST_##seg##_LIMIT, \
650 .ar_bytes = GUEST_##seg##_AR_BYTES, \
653 static struct kvm_vmx_segment_field {
654 unsigned selector;
655 unsigned base;
656 unsigned limit;
657 unsigned ar_bytes;
658 } kvm_vmx_segment_fields[] = {
659 VMX_SEGMENT_FIELD(CS),
660 VMX_SEGMENT_FIELD(DS),
661 VMX_SEGMENT_FIELD(ES),
662 VMX_SEGMENT_FIELD(FS),
663 VMX_SEGMENT_FIELD(GS),
664 VMX_SEGMENT_FIELD(SS),
665 VMX_SEGMENT_FIELD(TR),
666 VMX_SEGMENT_FIELD(LDTR),
669 static u64 host_efer;
671 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
674 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
675 * away by decrementing the array size.
677 static const u32 vmx_msr_index[] = {
678 #ifdef CONFIG_X86_64
679 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
680 #endif
681 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
683 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
685 static inline bool is_page_fault(u32 intr_info)
687 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
688 INTR_INFO_VALID_MASK)) ==
689 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
692 static inline bool is_no_device(u32 intr_info)
694 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 INTR_INFO_VALID_MASK)) ==
696 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
699 static inline bool is_invalid_opcode(u32 intr_info)
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
703 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
706 static inline bool is_external_interrupt(u32 intr_info)
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
709 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
712 static inline bool is_machine_check(u32 intr_info)
714 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
715 INTR_INFO_VALID_MASK)) ==
716 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
719 static inline bool cpu_has_vmx_msr_bitmap(void)
721 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
724 static inline bool cpu_has_vmx_tpr_shadow(void)
726 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
729 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
731 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
734 static inline bool cpu_has_secondary_exec_ctrls(void)
736 return vmcs_config.cpu_based_exec_ctrl &
737 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
740 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
742 return vmcs_config.cpu_based_2nd_exec_ctrl &
743 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
746 static inline bool cpu_has_vmx_flexpriority(void)
748 return cpu_has_vmx_tpr_shadow() &&
749 cpu_has_vmx_virtualize_apic_accesses();
752 static inline bool cpu_has_vmx_ept_execute_only(void)
754 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
757 static inline bool cpu_has_vmx_eptp_uncacheable(void)
759 return vmx_capability.ept & VMX_EPTP_UC_BIT;
762 static inline bool cpu_has_vmx_eptp_writeback(void)
764 return vmx_capability.ept & VMX_EPTP_WB_BIT;
767 static inline bool cpu_has_vmx_ept_2m_page(void)
769 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
772 static inline bool cpu_has_vmx_ept_1g_page(void)
774 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
777 static inline bool cpu_has_vmx_ept_4levels(void)
779 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
782 static inline bool cpu_has_vmx_invept_individual_addr(void)
784 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
787 static inline bool cpu_has_vmx_invept_context(void)
789 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
792 static inline bool cpu_has_vmx_invept_global(void)
794 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
797 static inline bool cpu_has_vmx_invvpid_single(void)
799 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
802 static inline bool cpu_has_vmx_invvpid_global(void)
804 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
807 static inline bool cpu_has_vmx_ept(void)
809 return vmcs_config.cpu_based_2nd_exec_ctrl &
810 SECONDARY_EXEC_ENABLE_EPT;
813 static inline bool cpu_has_vmx_unrestricted_guest(void)
815 return vmcs_config.cpu_based_2nd_exec_ctrl &
816 SECONDARY_EXEC_UNRESTRICTED_GUEST;
819 static inline bool cpu_has_vmx_ple(void)
821 return vmcs_config.cpu_based_2nd_exec_ctrl &
822 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
825 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
827 return flexpriority_enabled && irqchip_in_kernel(kvm);
830 static inline bool cpu_has_vmx_vpid(void)
832 return vmcs_config.cpu_based_2nd_exec_ctrl &
833 SECONDARY_EXEC_ENABLE_VPID;
836 static inline bool cpu_has_vmx_rdtscp(void)
838 return vmcs_config.cpu_based_2nd_exec_ctrl &
839 SECONDARY_EXEC_RDTSCP;
842 static inline bool cpu_has_virtual_nmis(void)
844 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
847 static inline bool cpu_has_vmx_wbinvd_exit(void)
849 return vmcs_config.cpu_based_2nd_exec_ctrl &
850 SECONDARY_EXEC_WBINVD_EXITING;
853 static inline bool report_flexpriority(void)
855 return flexpriority_enabled;
858 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
860 return vmcs12->cpu_based_vm_exec_control & bit;
863 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
865 return (vmcs12->cpu_based_vm_exec_control &
866 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
867 (vmcs12->secondary_vm_exec_control & bit);
870 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
871 struct kvm_vcpu *vcpu)
873 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
876 static inline bool is_exception(u32 intr_info)
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
882 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
883 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
884 struct vmcs12 *vmcs12,
885 u32 reason, unsigned long qualification);
887 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
889 int i;
891 for (i = 0; i < vmx->nmsrs; ++i)
892 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
893 return i;
894 return -1;
897 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
899 struct {
900 u64 vpid : 16;
901 u64 rsvd : 48;
902 u64 gva;
903 } operand = { vpid, 0, gva };
905 asm volatile (__ex(ASM_VMX_INVVPID)
906 /* CF==1 or ZF==1 --> rc = -1 */
907 "; ja 1f ; ud2 ; 1:"
908 : : "a"(&operand), "c"(ext) : "cc", "memory");
911 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
913 struct {
914 u64 eptp, gpa;
915 } operand = {eptp, gpa};
917 asm volatile (__ex(ASM_VMX_INVEPT)
918 /* CF==1 or ZF==1 --> rc = -1 */
919 "; ja 1f ; ud2 ; 1:\n"
920 : : "a" (&operand), "c" (ext) : "cc", "memory");
923 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
925 int i;
927 i = __find_msr_index(vmx, msr);
928 if (i >= 0)
929 return &vmx->guest_msrs[i];
930 return NULL;
933 static void vmcs_clear(struct vmcs *vmcs)
935 u64 phys_addr = __pa(vmcs);
936 u8 error;
938 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
939 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
940 : "cc", "memory");
941 if (error)
942 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
943 vmcs, phys_addr);
946 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
948 vmcs_clear(loaded_vmcs->vmcs);
949 loaded_vmcs->cpu = -1;
950 loaded_vmcs->launched = 0;
953 static void vmcs_load(struct vmcs *vmcs)
955 u64 phys_addr = __pa(vmcs);
956 u8 error;
958 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
959 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
960 : "cc", "memory");
961 if (error)
962 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
963 vmcs, phys_addr);
966 static void __loaded_vmcs_clear(void *arg)
968 struct loaded_vmcs *loaded_vmcs = arg;
969 int cpu = raw_smp_processor_id();
971 if (loaded_vmcs->cpu != cpu)
972 return; /* vcpu migration can race with cpu offline */
973 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
974 per_cpu(current_vmcs, cpu) = NULL;
975 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
976 loaded_vmcs_init(loaded_vmcs);
979 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
981 if (loaded_vmcs->cpu != -1)
982 smp_call_function_single(
983 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
986 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
988 if (vmx->vpid == 0)
989 return;
991 if (cpu_has_vmx_invvpid_single())
992 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
995 static inline void vpid_sync_vcpu_global(void)
997 if (cpu_has_vmx_invvpid_global())
998 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1001 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1003 if (cpu_has_vmx_invvpid_single())
1004 vpid_sync_vcpu_single(vmx);
1005 else
1006 vpid_sync_vcpu_global();
1009 static inline void ept_sync_global(void)
1011 if (cpu_has_vmx_invept_global())
1012 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1015 static inline void ept_sync_context(u64 eptp)
1017 if (enable_ept) {
1018 if (cpu_has_vmx_invept_context())
1019 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1020 else
1021 ept_sync_global();
1025 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1027 if (enable_ept) {
1028 if (cpu_has_vmx_invept_individual_addr())
1029 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1030 eptp, gpa);
1031 else
1032 ept_sync_context(eptp);
1036 static __always_inline unsigned long vmcs_readl(unsigned long field)
1038 unsigned long value;
1040 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1041 : "=a"(value) : "d"(field) : "cc");
1042 return value;
1045 static __always_inline u16 vmcs_read16(unsigned long field)
1047 return vmcs_readl(field);
1050 static __always_inline u32 vmcs_read32(unsigned long field)
1052 return vmcs_readl(field);
1055 static __always_inline u64 vmcs_read64(unsigned long field)
1057 #ifdef CONFIG_X86_64
1058 return vmcs_readl(field);
1059 #else
1060 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1061 #endif
1064 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1066 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1067 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1068 dump_stack();
1071 static void vmcs_writel(unsigned long field, unsigned long value)
1073 u8 error;
1075 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1076 : "=q"(error) : "a"(value), "d"(field) : "cc");
1077 if (unlikely(error))
1078 vmwrite_error(field, value);
1081 static void vmcs_write16(unsigned long field, u16 value)
1083 vmcs_writel(field, value);
1086 static void vmcs_write32(unsigned long field, u32 value)
1088 vmcs_writel(field, value);
1091 static void vmcs_write64(unsigned long field, u64 value)
1093 vmcs_writel(field, value);
1094 #ifndef CONFIG_X86_64
1095 asm volatile ("");
1096 vmcs_writel(field+1, value >> 32);
1097 #endif
1100 static void vmcs_clear_bits(unsigned long field, u32 mask)
1102 vmcs_writel(field, vmcs_readl(field) & ~mask);
1105 static void vmcs_set_bits(unsigned long field, u32 mask)
1107 vmcs_writel(field, vmcs_readl(field) | mask);
1110 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1112 vmx->segment_cache.bitmask = 0;
1115 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1116 unsigned field)
1118 bool ret;
1119 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1121 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1122 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1123 vmx->segment_cache.bitmask = 0;
1125 ret = vmx->segment_cache.bitmask & mask;
1126 vmx->segment_cache.bitmask |= mask;
1127 return ret;
1130 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1132 u16 *p = &vmx->segment_cache.seg[seg].selector;
1134 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1135 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1136 return *p;
1139 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1141 ulong *p = &vmx->segment_cache.seg[seg].base;
1143 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1144 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1145 return *p;
1148 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1150 u32 *p = &vmx->segment_cache.seg[seg].limit;
1152 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1153 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1154 return *p;
1157 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1159 u32 *p = &vmx->segment_cache.seg[seg].ar;
1161 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1162 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1163 return *p;
1166 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1168 u32 eb;
1170 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1171 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1172 if ((vcpu->guest_debug &
1173 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1174 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1175 eb |= 1u << BP_VECTOR;
1176 if (to_vmx(vcpu)->rmode.vm86_active)
1177 eb = ~0;
1178 if (enable_ept)
1179 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1180 if (vcpu->fpu_active)
1181 eb &= ~(1u << NM_VECTOR);
1183 /* When we are running a nested L2 guest and L1 specified for it a
1184 * certain exception bitmap, we must trap the same exceptions and pass
1185 * them to L1. When running L2, we will only handle the exceptions
1186 * specified above if L1 did not want them.
1188 if (is_guest_mode(vcpu))
1189 eb |= get_vmcs12(vcpu)->exception_bitmap;
1191 vmcs_write32(EXCEPTION_BITMAP, eb);
1194 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1196 unsigned i;
1197 struct msr_autoload *m = &vmx->msr_autoload;
1199 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1200 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1201 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1202 return;
1205 for (i = 0; i < m->nr; ++i)
1206 if (m->guest[i].index == msr)
1207 break;
1209 if (i == m->nr)
1210 return;
1211 --m->nr;
1212 m->guest[i] = m->guest[m->nr];
1213 m->host[i] = m->host[m->nr];
1214 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1215 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1218 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1219 u64 guest_val, u64 host_val)
1221 unsigned i;
1222 struct msr_autoload *m = &vmx->msr_autoload;
1224 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1225 vmcs_write64(GUEST_IA32_EFER, guest_val);
1226 vmcs_write64(HOST_IA32_EFER, host_val);
1227 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1228 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1229 return;
1232 for (i = 0; i < m->nr; ++i)
1233 if (m->guest[i].index == msr)
1234 break;
1236 if (i == m->nr) {
1237 ++m->nr;
1238 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1239 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1242 m->guest[i].index = msr;
1243 m->guest[i].value = guest_val;
1244 m->host[i].index = msr;
1245 m->host[i].value = host_val;
1248 static void reload_tss(void)
1251 * VT restores TR but not its size. Useless.
1253 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1254 struct desc_struct *descs;
1256 descs = (void *)gdt->address;
1257 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1258 load_TR_desc();
1261 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1263 u64 guest_efer;
1264 u64 ignore_bits;
1266 guest_efer = vmx->vcpu.arch.efer;
1269 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1270 * outside long mode
1272 ignore_bits = EFER_NX | EFER_SCE;
1273 #ifdef CONFIG_X86_64
1274 ignore_bits |= EFER_LMA | EFER_LME;
1275 /* SCE is meaningful only in long mode on Intel */
1276 if (guest_efer & EFER_LMA)
1277 ignore_bits &= ~(u64)EFER_SCE;
1278 #endif
1279 guest_efer &= ~ignore_bits;
1280 guest_efer |= host_efer & ignore_bits;
1281 vmx->guest_msrs[efer_offset].data = guest_efer;
1282 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1284 clear_atomic_switch_msr(vmx, MSR_EFER);
1285 /* On ept, can't emulate nx, and must switch nx atomically */
1286 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1287 guest_efer = vmx->vcpu.arch.efer;
1288 if (!(guest_efer & EFER_LMA))
1289 guest_efer &= ~EFER_LME;
1290 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1291 return false;
1294 return true;
1297 static unsigned long segment_base(u16 selector)
1299 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1300 struct desc_struct *d;
1301 unsigned long table_base;
1302 unsigned long v;
1304 if (!(selector & ~3))
1305 return 0;
1307 table_base = gdt->address;
1309 if (selector & 4) { /* from ldt */
1310 u16 ldt_selector = kvm_read_ldt();
1312 if (!(ldt_selector & ~3))
1313 return 0;
1315 table_base = segment_base(ldt_selector);
1317 d = (struct desc_struct *)(table_base + (selector & ~7));
1318 v = get_desc_base(d);
1319 #ifdef CONFIG_X86_64
1320 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1321 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1322 #endif
1323 return v;
1326 static inline unsigned long kvm_read_tr_base(void)
1328 u16 tr;
1329 asm("str %0" : "=g"(tr));
1330 return segment_base(tr);
1333 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1335 struct vcpu_vmx *vmx = to_vmx(vcpu);
1336 int i;
1338 if (vmx->host_state.loaded)
1339 return;
1341 vmx->host_state.loaded = 1;
1343 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1344 * allow segment selectors with cpl > 0 or ti == 1.
1346 vmx->host_state.ldt_sel = kvm_read_ldt();
1347 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1348 savesegment(fs, vmx->host_state.fs_sel);
1349 if (!(vmx->host_state.fs_sel & 7)) {
1350 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1351 vmx->host_state.fs_reload_needed = 0;
1352 } else {
1353 vmcs_write16(HOST_FS_SELECTOR, 0);
1354 vmx->host_state.fs_reload_needed = 1;
1356 savesegment(gs, vmx->host_state.gs_sel);
1357 if (!(vmx->host_state.gs_sel & 7))
1358 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1359 else {
1360 vmcs_write16(HOST_GS_SELECTOR, 0);
1361 vmx->host_state.gs_ldt_reload_needed = 1;
1364 #ifdef CONFIG_X86_64
1365 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1366 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1367 #else
1368 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1369 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1370 #endif
1372 #ifdef CONFIG_X86_64
1373 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1374 if (is_long_mode(&vmx->vcpu))
1375 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1376 #endif
1377 for (i = 0; i < vmx->save_nmsrs; ++i)
1378 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1379 vmx->guest_msrs[i].data,
1380 vmx->guest_msrs[i].mask);
1383 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1385 if (!vmx->host_state.loaded)
1386 return;
1388 ++vmx->vcpu.stat.host_state_reload;
1389 vmx->host_state.loaded = 0;
1390 #ifdef CONFIG_X86_64
1391 if (is_long_mode(&vmx->vcpu))
1392 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1393 #endif
1394 if (vmx->host_state.gs_ldt_reload_needed) {
1395 kvm_load_ldt(vmx->host_state.ldt_sel);
1396 #ifdef CONFIG_X86_64
1397 load_gs_index(vmx->host_state.gs_sel);
1398 #else
1399 loadsegment(gs, vmx->host_state.gs_sel);
1400 #endif
1402 if (vmx->host_state.fs_reload_needed)
1403 loadsegment(fs, vmx->host_state.fs_sel);
1404 reload_tss();
1405 #ifdef CONFIG_X86_64
1406 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1407 #endif
1408 if (current_thread_info()->status & TS_USEDFPU)
1409 clts();
1410 load_gdt(&__get_cpu_var(host_gdt));
1413 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1415 preempt_disable();
1416 __vmx_load_host_state(vmx);
1417 preempt_enable();
1421 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1422 * vcpu mutex is already taken.
1424 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1426 struct vcpu_vmx *vmx = to_vmx(vcpu);
1427 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1429 if (!vmm_exclusive)
1430 kvm_cpu_vmxon(phys_addr);
1431 else if (vmx->loaded_vmcs->cpu != cpu)
1432 loaded_vmcs_clear(vmx->loaded_vmcs);
1434 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1435 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1436 vmcs_load(vmx->loaded_vmcs->vmcs);
1439 if (vmx->loaded_vmcs->cpu != cpu) {
1440 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1441 unsigned long sysenter_esp;
1443 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1444 local_irq_disable();
1445 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1446 &per_cpu(loaded_vmcss_on_cpu, cpu));
1447 local_irq_enable();
1450 * Linux uses per-cpu TSS and GDT, so set these when switching
1451 * processors.
1453 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1454 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1456 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1457 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1458 vmx->loaded_vmcs->cpu = cpu;
1462 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1464 __vmx_load_host_state(to_vmx(vcpu));
1465 if (!vmm_exclusive) {
1466 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1467 vcpu->cpu = -1;
1468 kvm_cpu_vmxoff();
1472 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1474 ulong cr0;
1476 if (vcpu->fpu_active)
1477 return;
1478 vcpu->fpu_active = 1;
1479 cr0 = vmcs_readl(GUEST_CR0);
1480 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1481 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1482 vmcs_writel(GUEST_CR0, cr0);
1483 update_exception_bitmap(vcpu);
1484 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1485 if (is_guest_mode(vcpu))
1486 vcpu->arch.cr0_guest_owned_bits &=
1487 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1488 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1491 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1494 * Return the cr0 value that a nested guest would read. This is a combination
1495 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1496 * its hypervisor (cr0_read_shadow).
1498 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1500 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1501 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1503 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1505 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1506 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1509 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1511 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1512 * set this *before* calling this function.
1514 vmx_decache_cr0_guest_bits(vcpu);
1515 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1516 update_exception_bitmap(vcpu);
1517 vcpu->arch.cr0_guest_owned_bits = 0;
1518 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1519 if (is_guest_mode(vcpu)) {
1521 * L1's specified read shadow might not contain the TS bit,
1522 * so now that we turned on shadowing of this bit, we need to
1523 * set this bit of the shadow. Like in nested_vmx_run we need
1524 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1525 * up-to-date here because we just decached cr0.TS (and we'll
1526 * only update vmcs12->guest_cr0 on nested exit).
1528 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1529 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1530 (vcpu->arch.cr0 & X86_CR0_TS);
1531 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1532 } else
1533 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1536 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1538 unsigned long rflags, save_rflags;
1540 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1541 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1542 rflags = vmcs_readl(GUEST_RFLAGS);
1543 if (to_vmx(vcpu)->rmode.vm86_active) {
1544 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1545 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1546 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1548 to_vmx(vcpu)->rflags = rflags;
1550 return to_vmx(vcpu)->rflags;
1553 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1555 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1556 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1557 to_vmx(vcpu)->rflags = rflags;
1558 if (to_vmx(vcpu)->rmode.vm86_active) {
1559 to_vmx(vcpu)->rmode.save_rflags = rflags;
1560 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1562 vmcs_writel(GUEST_RFLAGS, rflags);
1565 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1567 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1568 int ret = 0;
1570 if (interruptibility & GUEST_INTR_STATE_STI)
1571 ret |= KVM_X86_SHADOW_INT_STI;
1572 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1573 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1575 return ret & mask;
1578 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1580 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1581 u32 interruptibility = interruptibility_old;
1583 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1585 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1586 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1587 else if (mask & KVM_X86_SHADOW_INT_STI)
1588 interruptibility |= GUEST_INTR_STATE_STI;
1590 if ((interruptibility != interruptibility_old))
1591 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1594 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1596 unsigned long rip;
1598 rip = kvm_rip_read(vcpu);
1599 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1600 kvm_rip_write(vcpu, rip);
1602 /* skipping an emulated instruction also counts */
1603 vmx_set_interrupt_shadow(vcpu, 0);
1606 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1608 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1609 * explicitly skip the instruction because if the HLT state is set, then
1610 * the instruction is already executing and RIP has already been
1611 * advanced. */
1612 if (!yield_on_hlt &&
1613 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1614 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1618 * KVM wants to inject page-faults which it got to the guest. This function
1619 * checks whether in a nested guest, we need to inject them to L1 or L2.
1620 * This function assumes it is called with the exit reason in vmcs02 being
1621 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1622 * is running).
1624 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1626 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1628 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1629 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1630 return 0;
1632 nested_vmx_vmexit(vcpu);
1633 return 1;
1636 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1637 bool has_error_code, u32 error_code,
1638 bool reinject)
1640 struct vcpu_vmx *vmx = to_vmx(vcpu);
1641 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1643 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1644 nested_pf_handled(vcpu))
1645 return;
1647 if (has_error_code) {
1648 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1649 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1652 if (vmx->rmode.vm86_active) {
1653 int inc_eip = 0;
1654 if (kvm_exception_is_soft(nr))
1655 inc_eip = vcpu->arch.event_exit_inst_len;
1656 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1657 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1658 return;
1661 if (kvm_exception_is_soft(nr)) {
1662 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1663 vmx->vcpu.arch.event_exit_inst_len);
1664 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1665 } else
1666 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1668 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1669 vmx_clear_hlt(vcpu);
1672 static bool vmx_rdtscp_supported(void)
1674 return cpu_has_vmx_rdtscp();
1678 * Swap MSR entry in host/guest MSR entry array.
1680 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1682 struct shared_msr_entry tmp;
1684 tmp = vmx->guest_msrs[to];
1685 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1686 vmx->guest_msrs[from] = tmp;
1690 * Set up the vmcs to automatically save and restore system
1691 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1692 * mode, as fiddling with msrs is very expensive.
1694 static void setup_msrs(struct vcpu_vmx *vmx)
1696 int save_nmsrs, index;
1697 unsigned long *msr_bitmap;
1699 vmx_load_host_state(vmx);
1700 save_nmsrs = 0;
1701 #ifdef CONFIG_X86_64
1702 if (is_long_mode(&vmx->vcpu)) {
1703 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1704 if (index >= 0)
1705 move_msr_up(vmx, index, save_nmsrs++);
1706 index = __find_msr_index(vmx, MSR_LSTAR);
1707 if (index >= 0)
1708 move_msr_up(vmx, index, save_nmsrs++);
1709 index = __find_msr_index(vmx, MSR_CSTAR);
1710 if (index >= 0)
1711 move_msr_up(vmx, index, save_nmsrs++);
1712 index = __find_msr_index(vmx, MSR_TSC_AUX);
1713 if (index >= 0 && vmx->rdtscp_enabled)
1714 move_msr_up(vmx, index, save_nmsrs++);
1716 * MSR_STAR is only needed on long mode guests, and only
1717 * if efer.sce is enabled.
1719 index = __find_msr_index(vmx, MSR_STAR);
1720 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1721 move_msr_up(vmx, index, save_nmsrs++);
1723 #endif
1724 index = __find_msr_index(vmx, MSR_EFER);
1725 if (index >= 0 && update_transition_efer(vmx, index))
1726 move_msr_up(vmx, index, save_nmsrs++);
1728 vmx->save_nmsrs = save_nmsrs;
1730 if (cpu_has_vmx_msr_bitmap()) {
1731 if (is_long_mode(&vmx->vcpu))
1732 msr_bitmap = vmx_msr_bitmap_longmode;
1733 else
1734 msr_bitmap = vmx_msr_bitmap_legacy;
1736 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1741 * reads and returns guest's timestamp counter "register"
1742 * guest_tsc = host_tsc + tsc_offset -- 21.3
1744 static u64 guest_read_tsc(void)
1746 u64 host_tsc, tsc_offset;
1748 rdtscll(host_tsc);
1749 tsc_offset = vmcs_read64(TSC_OFFSET);
1750 return host_tsc + tsc_offset;
1754 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1755 * counter, even if a nested guest (L2) is currently running.
1757 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1759 u64 host_tsc, tsc_offset;
1761 rdtscll(host_tsc);
1762 tsc_offset = is_guest_mode(vcpu) ?
1763 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1764 vmcs_read64(TSC_OFFSET);
1765 return host_tsc + tsc_offset;
1769 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1770 * ioctl. In this case the call-back should update internal vmx state to make
1771 * the changes effective.
1773 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1775 /* Nothing to do here */
1779 * writes 'offset' into guest's timestamp counter offset register
1781 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1783 if (is_guest_mode(vcpu)) {
1785 * We're here if L1 chose not to trap WRMSR to TSC. According
1786 * to the spec, this should set L1's TSC; The offset that L1
1787 * set for L2 remains unchanged, and still needs to be added
1788 * to the newly set TSC to get L2's TSC.
1790 struct vmcs12 *vmcs12;
1791 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1792 /* recalculate vmcs02.TSC_OFFSET: */
1793 vmcs12 = get_vmcs12(vcpu);
1794 vmcs_write64(TSC_OFFSET, offset +
1795 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1796 vmcs12->tsc_offset : 0));
1797 } else {
1798 vmcs_write64(TSC_OFFSET, offset);
1802 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1804 u64 offset = vmcs_read64(TSC_OFFSET);
1805 vmcs_write64(TSC_OFFSET, offset + adjustment);
1806 if (is_guest_mode(vcpu)) {
1807 /* Even when running L2, the adjustment needs to apply to L1 */
1808 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1812 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1814 return target_tsc - native_read_tsc();
1817 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1819 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1820 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1824 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1825 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1826 * all guests if the "nested" module option is off, and can also be disabled
1827 * for a single guest by disabling its VMX cpuid bit.
1829 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1831 return nested && guest_cpuid_has_vmx(vcpu);
1835 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1836 * returned for the various VMX controls MSRs when nested VMX is enabled.
1837 * The same values should also be used to verify that vmcs12 control fields are
1838 * valid during nested entry from L1 to L2.
1839 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1840 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1841 * bit in the high half is on if the corresponding bit in the control field
1842 * may be on. See also vmx_control_verify().
1843 * TODO: allow these variables to be modified (downgraded) by module options
1844 * or other means.
1846 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1847 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1848 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1849 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1850 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1851 static __init void nested_vmx_setup_ctls_msrs(void)
1854 * Note that as a general rule, the high half of the MSRs (bits in
1855 * the control fields which may be 1) should be initialized by the
1856 * intersection of the underlying hardware's MSR (i.e., features which
1857 * can be supported) and the list of features we want to expose -
1858 * because they are known to be properly supported in our code.
1859 * Also, usually, the low half of the MSRs (bits which must be 1) can
1860 * be set to 0, meaning that L1 may turn off any of these bits. The
1861 * reason is that if one of these bits is necessary, it will appear
1862 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1863 * fields of vmcs01 and vmcs02, will turn these bits off - and
1864 * nested_vmx_exit_handled() will not pass related exits to L1.
1865 * These rules have exceptions below.
1868 /* pin-based controls */
1870 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1871 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1873 nested_vmx_pinbased_ctls_low = 0x16 ;
1874 nested_vmx_pinbased_ctls_high = 0x16 |
1875 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1876 PIN_BASED_VIRTUAL_NMIS;
1878 /* exit controls */
1879 nested_vmx_exit_ctls_low = 0;
1880 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1881 #ifdef CONFIG_X86_64
1882 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1883 #else
1884 nested_vmx_exit_ctls_high = 0;
1885 #endif
1887 /* entry controls */
1888 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1889 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1890 nested_vmx_entry_ctls_low = 0;
1891 nested_vmx_entry_ctls_high &=
1892 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1894 /* cpu-based controls */
1895 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1896 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1897 nested_vmx_procbased_ctls_low = 0;
1898 nested_vmx_procbased_ctls_high &=
1899 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1900 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1901 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1902 CPU_BASED_CR3_STORE_EXITING |
1903 #ifdef CONFIG_X86_64
1904 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1905 #endif
1906 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1907 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1908 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1910 * We can allow some features even when not supported by the
1911 * hardware. For example, L1 can specify an MSR bitmap - and we
1912 * can use it to avoid exits to L1 - even when L0 runs L2
1913 * without MSR bitmaps.
1915 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1917 /* secondary cpu-based controls */
1918 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1919 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1920 nested_vmx_secondary_ctls_low = 0;
1921 nested_vmx_secondary_ctls_high &=
1922 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1925 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1928 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1930 return ((control & high) | low) == control;
1933 static inline u64 vmx_control_msr(u32 low, u32 high)
1935 return low | ((u64)high << 32);
1939 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1940 * also let it use VMX-specific MSRs.
1941 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1942 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1943 * like all other MSRs).
1945 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1947 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1948 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1950 * According to the spec, processors which do not support VMX
1951 * should throw a #GP(0) when VMX capability MSRs are read.
1953 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1954 return 1;
1957 switch (msr_index) {
1958 case MSR_IA32_FEATURE_CONTROL:
1959 *pdata = 0;
1960 break;
1961 case MSR_IA32_VMX_BASIC:
1963 * This MSR reports some information about VMX support. We
1964 * should return information about the VMX we emulate for the
1965 * guest, and the VMCS structure we give it - not about the
1966 * VMX support of the underlying hardware.
1968 *pdata = VMCS12_REVISION |
1969 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1970 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1971 break;
1972 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1973 case MSR_IA32_VMX_PINBASED_CTLS:
1974 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1975 nested_vmx_pinbased_ctls_high);
1976 break;
1977 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1978 case MSR_IA32_VMX_PROCBASED_CTLS:
1979 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1980 nested_vmx_procbased_ctls_high);
1981 break;
1982 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1983 case MSR_IA32_VMX_EXIT_CTLS:
1984 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1985 nested_vmx_exit_ctls_high);
1986 break;
1987 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1988 case MSR_IA32_VMX_ENTRY_CTLS:
1989 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1990 nested_vmx_entry_ctls_high);
1991 break;
1992 case MSR_IA32_VMX_MISC:
1993 *pdata = 0;
1994 break;
1996 * These MSRs specify bits which the guest must keep fixed (on or off)
1997 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1998 * We picked the standard core2 setting.
2000 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2001 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2002 case MSR_IA32_VMX_CR0_FIXED0:
2003 *pdata = VMXON_CR0_ALWAYSON;
2004 break;
2005 case MSR_IA32_VMX_CR0_FIXED1:
2006 *pdata = -1ULL;
2007 break;
2008 case MSR_IA32_VMX_CR4_FIXED0:
2009 *pdata = VMXON_CR4_ALWAYSON;
2010 break;
2011 case MSR_IA32_VMX_CR4_FIXED1:
2012 *pdata = -1ULL;
2013 break;
2014 case MSR_IA32_VMX_VMCS_ENUM:
2015 *pdata = 0x1f;
2016 break;
2017 case MSR_IA32_VMX_PROCBASED_CTLS2:
2018 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2019 nested_vmx_secondary_ctls_high);
2020 break;
2021 case MSR_IA32_VMX_EPT_VPID_CAP:
2022 /* Currently, no nested ept or nested vpid */
2023 *pdata = 0;
2024 break;
2025 default:
2026 return 0;
2029 return 1;
2032 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2034 if (!nested_vmx_allowed(vcpu))
2035 return 0;
2037 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2038 /* TODO: the right thing. */
2039 return 1;
2041 * No need to treat VMX capability MSRs specially: If we don't handle
2042 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2044 return 0;
2048 * Reads an msr value (of 'msr_index') into 'pdata'.
2049 * Returns 0 on success, non-0 otherwise.
2050 * Assumes vcpu_load() was already called.
2052 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2054 u64 data;
2055 struct shared_msr_entry *msr;
2057 if (!pdata) {
2058 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2059 return -EINVAL;
2062 switch (msr_index) {
2063 #ifdef CONFIG_X86_64
2064 case MSR_FS_BASE:
2065 data = vmcs_readl(GUEST_FS_BASE);
2066 break;
2067 case MSR_GS_BASE:
2068 data = vmcs_readl(GUEST_GS_BASE);
2069 break;
2070 case MSR_KERNEL_GS_BASE:
2071 vmx_load_host_state(to_vmx(vcpu));
2072 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2073 break;
2074 #endif
2075 case MSR_EFER:
2076 return kvm_get_msr_common(vcpu, msr_index, pdata);
2077 case MSR_IA32_TSC:
2078 data = guest_read_tsc();
2079 break;
2080 case MSR_IA32_SYSENTER_CS:
2081 data = vmcs_read32(GUEST_SYSENTER_CS);
2082 break;
2083 case MSR_IA32_SYSENTER_EIP:
2084 data = vmcs_readl(GUEST_SYSENTER_EIP);
2085 break;
2086 case MSR_IA32_SYSENTER_ESP:
2087 data = vmcs_readl(GUEST_SYSENTER_ESP);
2088 break;
2089 case MSR_TSC_AUX:
2090 if (!to_vmx(vcpu)->rdtscp_enabled)
2091 return 1;
2092 /* Otherwise falls through */
2093 default:
2094 vmx_load_host_state(to_vmx(vcpu));
2095 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2096 return 0;
2097 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2098 if (msr) {
2099 vmx_load_host_state(to_vmx(vcpu));
2100 data = msr->data;
2101 break;
2103 return kvm_get_msr_common(vcpu, msr_index, pdata);
2106 *pdata = data;
2107 return 0;
2111 * Writes msr value into into the appropriate "register".
2112 * Returns 0 on success, non-0 otherwise.
2113 * Assumes vcpu_load() was already called.
2115 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2117 struct vcpu_vmx *vmx = to_vmx(vcpu);
2118 struct shared_msr_entry *msr;
2119 int ret = 0;
2121 switch (msr_index) {
2122 case MSR_EFER:
2123 vmx_load_host_state(vmx);
2124 ret = kvm_set_msr_common(vcpu, msr_index, data);
2125 break;
2126 #ifdef CONFIG_X86_64
2127 case MSR_FS_BASE:
2128 vmx_segment_cache_clear(vmx);
2129 vmcs_writel(GUEST_FS_BASE, data);
2130 break;
2131 case MSR_GS_BASE:
2132 vmx_segment_cache_clear(vmx);
2133 vmcs_writel(GUEST_GS_BASE, data);
2134 break;
2135 case MSR_KERNEL_GS_BASE:
2136 vmx_load_host_state(vmx);
2137 vmx->msr_guest_kernel_gs_base = data;
2138 break;
2139 #endif
2140 case MSR_IA32_SYSENTER_CS:
2141 vmcs_write32(GUEST_SYSENTER_CS, data);
2142 break;
2143 case MSR_IA32_SYSENTER_EIP:
2144 vmcs_writel(GUEST_SYSENTER_EIP, data);
2145 break;
2146 case MSR_IA32_SYSENTER_ESP:
2147 vmcs_writel(GUEST_SYSENTER_ESP, data);
2148 break;
2149 case MSR_IA32_TSC:
2150 kvm_write_tsc(vcpu, data);
2151 break;
2152 case MSR_IA32_CR_PAT:
2153 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2154 vmcs_write64(GUEST_IA32_PAT, data);
2155 vcpu->arch.pat = data;
2156 break;
2158 ret = kvm_set_msr_common(vcpu, msr_index, data);
2159 break;
2160 case MSR_TSC_AUX:
2161 if (!vmx->rdtscp_enabled)
2162 return 1;
2163 /* Check reserved bit, higher 32 bits should be zero */
2164 if ((data >> 32) != 0)
2165 return 1;
2166 /* Otherwise falls through */
2167 default:
2168 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2169 break;
2170 msr = find_msr_entry(vmx, msr_index);
2171 if (msr) {
2172 vmx_load_host_state(vmx);
2173 msr->data = data;
2174 break;
2176 ret = kvm_set_msr_common(vcpu, msr_index, data);
2179 return ret;
2182 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2184 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2185 switch (reg) {
2186 case VCPU_REGS_RSP:
2187 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2188 break;
2189 case VCPU_REGS_RIP:
2190 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2191 break;
2192 case VCPU_EXREG_PDPTR:
2193 if (enable_ept)
2194 ept_save_pdptrs(vcpu);
2195 break;
2196 default:
2197 break;
2201 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2203 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2204 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2205 else
2206 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2208 update_exception_bitmap(vcpu);
2211 static __init int cpu_has_kvm_support(void)
2213 return cpu_has_vmx();
2216 static __init int vmx_disabled_by_bios(void)
2218 u64 msr;
2220 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2221 if (msr & FEATURE_CONTROL_LOCKED) {
2222 /* launched w/ TXT and VMX disabled */
2223 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2224 && tboot_enabled())
2225 return 1;
2226 /* launched w/o TXT and VMX only enabled w/ TXT */
2227 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2228 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2229 && !tboot_enabled()) {
2230 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2231 "activate TXT before enabling KVM\n");
2232 return 1;
2234 /* launched w/o TXT and VMX disabled */
2235 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2236 && !tboot_enabled())
2237 return 1;
2240 return 0;
2243 static void kvm_cpu_vmxon(u64 addr)
2245 asm volatile (ASM_VMX_VMXON_RAX
2246 : : "a"(&addr), "m"(addr)
2247 : "memory", "cc");
2250 static int hardware_enable(void *garbage)
2252 int cpu = raw_smp_processor_id();
2253 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2254 u64 old, test_bits;
2256 if (read_cr4() & X86_CR4_VMXE)
2257 return -EBUSY;
2259 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2260 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2262 test_bits = FEATURE_CONTROL_LOCKED;
2263 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2264 if (tboot_enabled())
2265 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2267 if ((old & test_bits) != test_bits) {
2268 /* enable and lock */
2269 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2271 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2273 if (vmm_exclusive) {
2274 kvm_cpu_vmxon(phys_addr);
2275 ept_sync_global();
2278 store_gdt(&__get_cpu_var(host_gdt));
2280 return 0;
2283 static void vmclear_local_loaded_vmcss(void)
2285 int cpu = raw_smp_processor_id();
2286 struct loaded_vmcs *v, *n;
2288 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2289 loaded_vmcss_on_cpu_link)
2290 __loaded_vmcs_clear(v);
2294 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2295 * tricks.
2297 static void kvm_cpu_vmxoff(void)
2299 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2302 static void hardware_disable(void *garbage)
2304 if (vmm_exclusive) {
2305 vmclear_local_loaded_vmcss();
2306 kvm_cpu_vmxoff();
2308 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2311 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2312 u32 msr, u32 *result)
2314 u32 vmx_msr_low, vmx_msr_high;
2315 u32 ctl = ctl_min | ctl_opt;
2317 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2319 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2320 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2322 /* Ensure minimum (required) set of control bits are supported. */
2323 if (ctl_min & ~ctl)
2324 return -EIO;
2326 *result = ctl;
2327 return 0;
2330 static __init bool allow_1_setting(u32 msr, u32 ctl)
2332 u32 vmx_msr_low, vmx_msr_high;
2334 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2335 return vmx_msr_high & ctl;
2338 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2340 u32 vmx_msr_low, vmx_msr_high;
2341 u32 min, opt, min2, opt2;
2342 u32 _pin_based_exec_control = 0;
2343 u32 _cpu_based_exec_control = 0;
2344 u32 _cpu_based_2nd_exec_control = 0;
2345 u32 _vmexit_control = 0;
2346 u32 _vmentry_control = 0;
2348 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2349 opt = PIN_BASED_VIRTUAL_NMIS;
2350 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2351 &_pin_based_exec_control) < 0)
2352 return -EIO;
2354 min =
2355 #ifdef CONFIG_X86_64
2356 CPU_BASED_CR8_LOAD_EXITING |
2357 CPU_BASED_CR8_STORE_EXITING |
2358 #endif
2359 CPU_BASED_CR3_LOAD_EXITING |
2360 CPU_BASED_CR3_STORE_EXITING |
2361 CPU_BASED_USE_IO_BITMAPS |
2362 CPU_BASED_MOV_DR_EXITING |
2363 CPU_BASED_USE_TSC_OFFSETING |
2364 CPU_BASED_MWAIT_EXITING |
2365 CPU_BASED_MONITOR_EXITING |
2366 CPU_BASED_INVLPG_EXITING;
2368 if (yield_on_hlt)
2369 min |= CPU_BASED_HLT_EXITING;
2371 opt = CPU_BASED_TPR_SHADOW |
2372 CPU_BASED_USE_MSR_BITMAPS |
2373 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2374 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2375 &_cpu_based_exec_control) < 0)
2376 return -EIO;
2377 #ifdef CONFIG_X86_64
2378 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2379 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2380 ~CPU_BASED_CR8_STORE_EXITING;
2381 #endif
2382 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2383 min2 = 0;
2384 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2385 SECONDARY_EXEC_WBINVD_EXITING |
2386 SECONDARY_EXEC_ENABLE_VPID |
2387 SECONDARY_EXEC_ENABLE_EPT |
2388 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2389 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2390 SECONDARY_EXEC_RDTSCP;
2391 if (adjust_vmx_controls(min2, opt2,
2392 MSR_IA32_VMX_PROCBASED_CTLS2,
2393 &_cpu_based_2nd_exec_control) < 0)
2394 return -EIO;
2396 #ifndef CONFIG_X86_64
2397 if (!(_cpu_based_2nd_exec_control &
2398 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2399 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2400 #endif
2401 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2402 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2403 enabled */
2404 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2405 CPU_BASED_CR3_STORE_EXITING |
2406 CPU_BASED_INVLPG_EXITING);
2407 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2408 vmx_capability.ept, vmx_capability.vpid);
2411 min = 0;
2412 #ifdef CONFIG_X86_64
2413 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2414 #endif
2415 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2416 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2417 &_vmexit_control) < 0)
2418 return -EIO;
2420 min = 0;
2421 opt = VM_ENTRY_LOAD_IA32_PAT;
2422 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2423 &_vmentry_control) < 0)
2424 return -EIO;
2426 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2428 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2429 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2430 return -EIO;
2432 #ifdef CONFIG_X86_64
2433 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2434 if (vmx_msr_high & (1u<<16))
2435 return -EIO;
2436 #endif
2438 /* Require Write-Back (WB) memory type for VMCS accesses. */
2439 if (((vmx_msr_high >> 18) & 15) != 6)
2440 return -EIO;
2442 vmcs_conf->size = vmx_msr_high & 0x1fff;
2443 vmcs_conf->order = get_order(vmcs_config.size);
2444 vmcs_conf->revision_id = vmx_msr_low;
2446 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2447 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2448 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2449 vmcs_conf->vmexit_ctrl = _vmexit_control;
2450 vmcs_conf->vmentry_ctrl = _vmentry_control;
2452 cpu_has_load_ia32_efer =
2453 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2454 VM_ENTRY_LOAD_IA32_EFER)
2455 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2456 VM_EXIT_LOAD_IA32_EFER);
2458 return 0;
2461 static struct vmcs *alloc_vmcs_cpu(int cpu)
2463 int node = cpu_to_node(cpu);
2464 struct page *pages;
2465 struct vmcs *vmcs;
2467 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2468 if (!pages)
2469 return NULL;
2470 vmcs = page_address(pages);
2471 memset(vmcs, 0, vmcs_config.size);
2472 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2473 return vmcs;
2476 static struct vmcs *alloc_vmcs(void)
2478 return alloc_vmcs_cpu(raw_smp_processor_id());
2481 static void free_vmcs(struct vmcs *vmcs)
2483 free_pages((unsigned long)vmcs, vmcs_config.order);
2487 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2489 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2491 if (!loaded_vmcs->vmcs)
2492 return;
2493 loaded_vmcs_clear(loaded_vmcs);
2494 free_vmcs(loaded_vmcs->vmcs);
2495 loaded_vmcs->vmcs = NULL;
2498 static void free_kvm_area(void)
2500 int cpu;
2502 for_each_possible_cpu(cpu) {
2503 free_vmcs(per_cpu(vmxarea, cpu));
2504 per_cpu(vmxarea, cpu) = NULL;
2508 static __init int alloc_kvm_area(void)
2510 int cpu;
2512 for_each_possible_cpu(cpu) {
2513 struct vmcs *vmcs;
2515 vmcs = alloc_vmcs_cpu(cpu);
2516 if (!vmcs) {
2517 free_kvm_area();
2518 return -ENOMEM;
2521 per_cpu(vmxarea, cpu) = vmcs;
2523 return 0;
2526 static __init int hardware_setup(void)
2528 if (setup_vmcs_config(&vmcs_config) < 0)
2529 return -EIO;
2531 if (boot_cpu_has(X86_FEATURE_NX))
2532 kvm_enable_efer_bits(EFER_NX);
2534 if (!cpu_has_vmx_vpid())
2535 enable_vpid = 0;
2537 if (!cpu_has_vmx_ept() ||
2538 !cpu_has_vmx_ept_4levels()) {
2539 enable_ept = 0;
2540 enable_unrestricted_guest = 0;
2543 if (!cpu_has_vmx_unrestricted_guest())
2544 enable_unrestricted_guest = 0;
2546 if (!cpu_has_vmx_flexpriority())
2547 flexpriority_enabled = 0;
2549 if (!cpu_has_vmx_tpr_shadow())
2550 kvm_x86_ops->update_cr8_intercept = NULL;
2552 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2553 kvm_disable_largepages();
2555 if (!cpu_has_vmx_ple())
2556 ple_gap = 0;
2558 if (nested)
2559 nested_vmx_setup_ctls_msrs();
2561 return alloc_kvm_area();
2564 static __exit void hardware_unsetup(void)
2566 free_kvm_area();
2569 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2571 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2573 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2574 vmcs_write16(sf->selector, save->selector);
2575 vmcs_writel(sf->base, save->base);
2576 vmcs_write32(sf->limit, save->limit);
2577 vmcs_write32(sf->ar_bytes, save->ar);
2578 } else {
2579 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2580 << AR_DPL_SHIFT;
2581 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2585 static void enter_pmode(struct kvm_vcpu *vcpu)
2587 unsigned long flags;
2588 struct vcpu_vmx *vmx = to_vmx(vcpu);
2590 vmx->emulation_required = 1;
2591 vmx->rmode.vm86_active = 0;
2593 vmx_segment_cache_clear(vmx);
2595 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2596 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2597 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2598 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2600 flags = vmcs_readl(GUEST_RFLAGS);
2601 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2602 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2603 vmcs_writel(GUEST_RFLAGS, flags);
2605 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2606 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2608 update_exception_bitmap(vcpu);
2610 if (emulate_invalid_guest_state)
2611 return;
2613 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2614 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2615 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2616 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2618 vmx_segment_cache_clear(vmx);
2620 vmcs_write16(GUEST_SS_SELECTOR, 0);
2621 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2623 vmcs_write16(GUEST_CS_SELECTOR,
2624 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2625 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2628 static gva_t rmode_tss_base(struct kvm *kvm)
2630 if (!kvm->arch.tss_addr) {
2631 struct kvm_memslots *slots;
2632 gfn_t base_gfn;
2634 slots = kvm_memslots(kvm);
2635 base_gfn = slots->memslots[0].base_gfn +
2636 kvm->memslots->memslots[0].npages - 3;
2637 return base_gfn << PAGE_SHIFT;
2639 return kvm->arch.tss_addr;
2642 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2644 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2646 save->selector = vmcs_read16(sf->selector);
2647 save->base = vmcs_readl(sf->base);
2648 save->limit = vmcs_read32(sf->limit);
2649 save->ar = vmcs_read32(sf->ar_bytes);
2650 vmcs_write16(sf->selector, save->base >> 4);
2651 vmcs_write32(sf->base, save->base & 0xffff0);
2652 vmcs_write32(sf->limit, 0xffff);
2653 vmcs_write32(sf->ar_bytes, 0xf3);
2654 if (save->base & 0xf)
2655 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2656 " aligned when entering protected mode (seg=%d)",
2657 seg);
2660 static void enter_rmode(struct kvm_vcpu *vcpu)
2662 unsigned long flags;
2663 struct vcpu_vmx *vmx = to_vmx(vcpu);
2665 if (enable_unrestricted_guest)
2666 return;
2668 vmx->emulation_required = 1;
2669 vmx->rmode.vm86_active = 1;
2672 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2673 * vcpu. Call it here with phys address pointing 16M below 4G.
2675 if (!vcpu->kvm->arch.tss_addr) {
2676 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2677 "called before entering vcpu\n");
2678 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2679 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2680 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2683 vmx_segment_cache_clear(vmx);
2685 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2686 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2687 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2689 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2690 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2692 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2693 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2695 flags = vmcs_readl(GUEST_RFLAGS);
2696 vmx->rmode.save_rflags = flags;
2698 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2700 vmcs_writel(GUEST_RFLAGS, flags);
2701 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2702 update_exception_bitmap(vcpu);
2704 if (emulate_invalid_guest_state)
2705 goto continue_rmode;
2707 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2708 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2709 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2711 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2712 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2713 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2714 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2715 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2717 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2718 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2719 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2720 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2722 continue_rmode:
2723 kvm_mmu_reset_context(vcpu);
2726 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2728 struct vcpu_vmx *vmx = to_vmx(vcpu);
2729 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2731 if (!msr)
2732 return;
2735 * Force kernel_gs_base reloading before EFER changes, as control
2736 * of this msr depends on is_long_mode().
2738 vmx_load_host_state(to_vmx(vcpu));
2739 vcpu->arch.efer = efer;
2740 if (efer & EFER_LMA) {
2741 vmcs_write32(VM_ENTRY_CONTROLS,
2742 vmcs_read32(VM_ENTRY_CONTROLS) |
2743 VM_ENTRY_IA32E_MODE);
2744 msr->data = efer;
2745 } else {
2746 vmcs_write32(VM_ENTRY_CONTROLS,
2747 vmcs_read32(VM_ENTRY_CONTROLS) &
2748 ~VM_ENTRY_IA32E_MODE);
2750 msr->data = efer & ~EFER_LME;
2752 setup_msrs(vmx);
2755 #ifdef CONFIG_X86_64
2757 static void enter_lmode(struct kvm_vcpu *vcpu)
2759 u32 guest_tr_ar;
2761 vmx_segment_cache_clear(to_vmx(vcpu));
2763 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2764 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2765 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2766 __func__);
2767 vmcs_write32(GUEST_TR_AR_BYTES,
2768 (guest_tr_ar & ~AR_TYPE_MASK)
2769 | AR_TYPE_BUSY_64_TSS);
2771 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2774 static void exit_lmode(struct kvm_vcpu *vcpu)
2776 vmcs_write32(VM_ENTRY_CONTROLS,
2777 vmcs_read32(VM_ENTRY_CONTROLS)
2778 & ~VM_ENTRY_IA32E_MODE);
2779 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2782 #endif
2784 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2786 vpid_sync_context(to_vmx(vcpu));
2787 if (enable_ept) {
2788 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2789 return;
2790 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2794 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2796 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2798 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2799 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2802 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2804 if (enable_ept && is_paging(vcpu))
2805 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2806 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2809 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2811 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2813 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2814 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2817 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2819 if (!test_bit(VCPU_EXREG_PDPTR,
2820 (unsigned long *)&vcpu->arch.regs_dirty))
2821 return;
2823 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2824 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2825 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2826 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2827 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2831 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2833 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2834 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2835 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2836 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2837 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2840 __set_bit(VCPU_EXREG_PDPTR,
2841 (unsigned long *)&vcpu->arch.regs_avail);
2842 __set_bit(VCPU_EXREG_PDPTR,
2843 (unsigned long *)&vcpu->arch.regs_dirty);
2846 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2848 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2849 unsigned long cr0,
2850 struct kvm_vcpu *vcpu)
2852 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2853 vmx_decache_cr3(vcpu);
2854 if (!(cr0 & X86_CR0_PG)) {
2855 /* From paging/starting to nonpaging */
2856 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2857 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2858 (CPU_BASED_CR3_LOAD_EXITING |
2859 CPU_BASED_CR3_STORE_EXITING));
2860 vcpu->arch.cr0 = cr0;
2861 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2862 } else if (!is_paging(vcpu)) {
2863 /* From nonpaging to paging */
2864 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2865 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2866 ~(CPU_BASED_CR3_LOAD_EXITING |
2867 CPU_BASED_CR3_STORE_EXITING));
2868 vcpu->arch.cr0 = cr0;
2869 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2872 if (!(cr0 & X86_CR0_WP))
2873 *hw_cr0 &= ~X86_CR0_WP;
2876 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2878 struct vcpu_vmx *vmx = to_vmx(vcpu);
2879 unsigned long hw_cr0;
2881 if (enable_unrestricted_guest)
2882 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2883 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2884 else
2885 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2887 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2888 enter_pmode(vcpu);
2890 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2891 enter_rmode(vcpu);
2893 #ifdef CONFIG_X86_64
2894 if (vcpu->arch.efer & EFER_LME) {
2895 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2896 enter_lmode(vcpu);
2897 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2898 exit_lmode(vcpu);
2900 #endif
2902 if (enable_ept)
2903 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2905 if (!vcpu->fpu_active)
2906 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2908 vmcs_writel(CR0_READ_SHADOW, cr0);
2909 vmcs_writel(GUEST_CR0, hw_cr0);
2910 vcpu->arch.cr0 = cr0;
2911 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2914 static u64 construct_eptp(unsigned long root_hpa)
2916 u64 eptp;
2918 /* TODO write the value reading from MSR */
2919 eptp = VMX_EPT_DEFAULT_MT |
2920 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2921 eptp |= (root_hpa & PAGE_MASK);
2923 return eptp;
2926 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2928 unsigned long guest_cr3;
2929 u64 eptp;
2931 guest_cr3 = cr3;
2932 if (enable_ept) {
2933 eptp = construct_eptp(cr3);
2934 vmcs_write64(EPT_POINTER, eptp);
2935 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2936 vcpu->kvm->arch.ept_identity_map_addr;
2937 ept_load_pdptrs(vcpu);
2940 vmx_flush_tlb(vcpu);
2941 vmcs_writel(GUEST_CR3, guest_cr3);
2944 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2946 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2947 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2949 if (cr4 & X86_CR4_VMXE) {
2951 * To use VMXON (and later other VMX instructions), a guest
2952 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2953 * So basically the check on whether to allow nested VMX
2954 * is here.
2956 if (!nested_vmx_allowed(vcpu))
2957 return 1;
2958 } else if (to_vmx(vcpu)->nested.vmxon)
2959 return 1;
2961 vcpu->arch.cr4 = cr4;
2962 if (enable_ept) {
2963 if (!is_paging(vcpu)) {
2964 hw_cr4 &= ~X86_CR4_PAE;
2965 hw_cr4 |= X86_CR4_PSE;
2966 } else if (!(cr4 & X86_CR4_PAE)) {
2967 hw_cr4 &= ~X86_CR4_PAE;
2971 vmcs_writel(CR4_READ_SHADOW, cr4);
2972 vmcs_writel(GUEST_CR4, hw_cr4);
2973 return 0;
2976 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2977 struct kvm_segment *var, int seg)
2979 struct vcpu_vmx *vmx = to_vmx(vcpu);
2980 struct kvm_save_segment *save;
2981 u32 ar;
2983 if (vmx->rmode.vm86_active
2984 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2985 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2986 || seg == VCPU_SREG_GS)
2987 && !emulate_invalid_guest_state) {
2988 switch (seg) {
2989 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2990 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2991 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2992 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2993 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2994 default: BUG();
2996 var->selector = save->selector;
2997 var->base = save->base;
2998 var->limit = save->limit;
2999 ar = save->ar;
3000 if (seg == VCPU_SREG_TR
3001 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3002 goto use_saved_rmode_seg;
3004 var->base = vmx_read_guest_seg_base(vmx, seg);
3005 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3006 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3007 ar = vmx_read_guest_seg_ar(vmx, seg);
3008 use_saved_rmode_seg:
3009 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3010 ar = 0;
3011 var->type = ar & 15;
3012 var->s = (ar >> 4) & 1;
3013 var->dpl = (ar >> 5) & 3;
3014 var->present = (ar >> 7) & 1;
3015 var->avl = (ar >> 12) & 1;
3016 var->l = (ar >> 13) & 1;
3017 var->db = (ar >> 14) & 1;
3018 var->g = (ar >> 15) & 1;
3019 var->unusable = (ar >> 16) & 1;
3022 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3024 struct kvm_segment s;
3026 if (to_vmx(vcpu)->rmode.vm86_active) {
3027 vmx_get_segment(vcpu, &s, seg);
3028 return s.base;
3030 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3033 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3035 if (!is_protmode(vcpu))
3036 return 0;
3038 if (!is_long_mode(vcpu)
3039 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3040 return 3;
3042 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3045 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3047 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3048 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3049 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3051 return to_vmx(vcpu)->cpl;
3055 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3057 u32 ar;
3059 if (var->unusable)
3060 ar = 1 << 16;
3061 else {
3062 ar = var->type & 15;
3063 ar |= (var->s & 1) << 4;
3064 ar |= (var->dpl & 3) << 5;
3065 ar |= (var->present & 1) << 7;
3066 ar |= (var->avl & 1) << 12;
3067 ar |= (var->l & 1) << 13;
3068 ar |= (var->db & 1) << 14;
3069 ar |= (var->g & 1) << 15;
3071 if (ar == 0) /* a 0 value means unusable */
3072 ar = AR_UNUSABLE_MASK;
3074 return ar;
3077 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3078 struct kvm_segment *var, int seg)
3080 struct vcpu_vmx *vmx = to_vmx(vcpu);
3081 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3082 u32 ar;
3084 vmx_segment_cache_clear(vmx);
3086 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3087 vmcs_write16(sf->selector, var->selector);
3088 vmx->rmode.tr.selector = var->selector;
3089 vmx->rmode.tr.base = var->base;
3090 vmx->rmode.tr.limit = var->limit;
3091 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3092 return;
3094 vmcs_writel(sf->base, var->base);
3095 vmcs_write32(sf->limit, var->limit);
3096 vmcs_write16(sf->selector, var->selector);
3097 if (vmx->rmode.vm86_active && var->s) {
3099 * Hack real-mode segments into vm86 compatibility.
3101 if (var->base == 0xffff0000 && var->selector == 0xf000)
3102 vmcs_writel(sf->base, 0xf0000);
3103 ar = 0xf3;
3104 } else
3105 ar = vmx_segment_access_rights(var);
3108 * Fix the "Accessed" bit in AR field of segment registers for older
3109 * qemu binaries.
3110 * IA32 arch specifies that at the time of processor reset the
3111 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3112 * is setting it to 0 in the usedland code. This causes invalid guest
3113 * state vmexit when "unrestricted guest" mode is turned on.
3114 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3115 * tree. Newer qemu binaries with that qemu fix would not need this
3116 * kvm hack.
3118 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3119 ar |= 0x1; /* Accessed */
3121 vmcs_write32(sf->ar_bytes, ar);
3122 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3125 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3127 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3129 *db = (ar >> 14) & 1;
3130 *l = (ar >> 13) & 1;
3133 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3135 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3136 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3139 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3141 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3142 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3145 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3147 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3148 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3151 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3153 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3154 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3157 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3159 struct kvm_segment var;
3160 u32 ar;
3162 vmx_get_segment(vcpu, &var, seg);
3163 ar = vmx_segment_access_rights(&var);
3165 if (var.base != (var.selector << 4))
3166 return false;
3167 if (var.limit != 0xffff)
3168 return false;
3169 if (ar != 0xf3)
3170 return false;
3172 return true;
3175 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3177 struct kvm_segment cs;
3178 unsigned int cs_rpl;
3180 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3181 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3183 if (cs.unusable)
3184 return false;
3185 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3186 return false;
3187 if (!cs.s)
3188 return false;
3189 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3190 if (cs.dpl > cs_rpl)
3191 return false;
3192 } else {
3193 if (cs.dpl != cs_rpl)
3194 return false;
3196 if (!cs.present)
3197 return false;
3199 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3200 return true;
3203 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3205 struct kvm_segment ss;
3206 unsigned int ss_rpl;
3208 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3209 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3211 if (ss.unusable)
3212 return true;
3213 if (ss.type != 3 && ss.type != 7)
3214 return false;
3215 if (!ss.s)
3216 return false;
3217 if (ss.dpl != ss_rpl) /* DPL != RPL */
3218 return false;
3219 if (!ss.present)
3220 return false;
3222 return true;
3225 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3227 struct kvm_segment var;
3228 unsigned int rpl;
3230 vmx_get_segment(vcpu, &var, seg);
3231 rpl = var.selector & SELECTOR_RPL_MASK;
3233 if (var.unusable)
3234 return true;
3235 if (!var.s)
3236 return false;
3237 if (!var.present)
3238 return false;
3239 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3240 if (var.dpl < rpl) /* DPL < RPL */
3241 return false;
3244 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3245 * rights flags
3247 return true;
3250 static bool tr_valid(struct kvm_vcpu *vcpu)
3252 struct kvm_segment tr;
3254 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3256 if (tr.unusable)
3257 return false;
3258 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3259 return false;
3260 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3261 return false;
3262 if (!tr.present)
3263 return false;
3265 return true;
3268 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3270 struct kvm_segment ldtr;
3272 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3274 if (ldtr.unusable)
3275 return true;
3276 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3277 return false;
3278 if (ldtr.type != 2)
3279 return false;
3280 if (!ldtr.present)
3281 return false;
3283 return true;
3286 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3288 struct kvm_segment cs, ss;
3290 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3291 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3293 return ((cs.selector & SELECTOR_RPL_MASK) ==
3294 (ss.selector & SELECTOR_RPL_MASK));
3298 * Check if guest state is valid. Returns true if valid, false if
3299 * not.
3300 * We assume that registers are always usable
3302 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3304 /* real mode guest state checks */
3305 if (!is_protmode(vcpu)) {
3306 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3307 return false;
3308 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3309 return false;
3310 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3311 return false;
3312 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3313 return false;
3314 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3315 return false;
3316 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3317 return false;
3318 } else {
3319 /* protected mode guest state checks */
3320 if (!cs_ss_rpl_check(vcpu))
3321 return false;
3322 if (!code_segment_valid(vcpu))
3323 return false;
3324 if (!stack_segment_valid(vcpu))
3325 return false;
3326 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3327 return false;
3328 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3329 return false;
3330 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3331 return false;
3332 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3333 return false;
3334 if (!tr_valid(vcpu))
3335 return false;
3336 if (!ldtr_valid(vcpu))
3337 return false;
3339 /* TODO:
3340 * - Add checks on RIP
3341 * - Add checks on RFLAGS
3344 return true;
3347 static int init_rmode_tss(struct kvm *kvm)
3349 gfn_t fn;
3350 u16 data = 0;
3351 int r, idx, ret = 0;
3353 idx = srcu_read_lock(&kvm->srcu);
3354 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3355 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3356 if (r < 0)
3357 goto out;
3358 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3359 r = kvm_write_guest_page(kvm, fn++, &data,
3360 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3361 if (r < 0)
3362 goto out;
3363 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3364 if (r < 0)
3365 goto out;
3366 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3367 if (r < 0)
3368 goto out;
3369 data = ~0;
3370 r = kvm_write_guest_page(kvm, fn, &data,
3371 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3372 sizeof(u8));
3373 if (r < 0)
3374 goto out;
3376 ret = 1;
3377 out:
3378 srcu_read_unlock(&kvm->srcu, idx);
3379 return ret;
3382 static int init_rmode_identity_map(struct kvm *kvm)
3384 int i, idx, r, ret;
3385 pfn_t identity_map_pfn;
3386 u32 tmp;
3388 if (!enable_ept)
3389 return 1;
3390 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3391 printk(KERN_ERR "EPT: identity-mapping pagetable "
3392 "haven't been allocated!\n");
3393 return 0;
3395 if (likely(kvm->arch.ept_identity_pagetable_done))
3396 return 1;
3397 ret = 0;
3398 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3399 idx = srcu_read_lock(&kvm->srcu);
3400 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3401 if (r < 0)
3402 goto out;
3403 /* Set up identity-mapping pagetable for EPT in real mode */
3404 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3405 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3406 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3407 r = kvm_write_guest_page(kvm, identity_map_pfn,
3408 &tmp, i * sizeof(tmp), sizeof(tmp));
3409 if (r < 0)
3410 goto out;
3412 kvm->arch.ept_identity_pagetable_done = true;
3413 ret = 1;
3414 out:
3415 srcu_read_unlock(&kvm->srcu, idx);
3416 return ret;
3419 static void seg_setup(int seg)
3421 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3422 unsigned int ar;
3424 vmcs_write16(sf->selector, 0);
3425 vmcs_writel(sf->base, 0);
3426 vmcs_write32(sf->limit, 0xffff);
3427 if (enable_unrestricted_guest) {
3428 ar = 0x93;
3429 if (seg == VCPU_SREG_CS)
3430 ar |= 0x08; /* code segment */
3431 } else
3432 ar = 0xf3;
3434 vmcs_write32(sf->ar_bytes, ar);
3437 static int alloc_apic_access_page(struct kvm *kvm)
3439 struct kvm_userspace_memory_region kvm_userspace_mem;
3440 int r = 0;
3442 mutex_lock(&kvm->slots_lock);
3443 if (kvm->arch.apic_access_page)
3444 goto out;
3445 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3446 kvm_userspace_mem.flags = 0;
3447 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3448 kvm_userspace_mem.memory_size = PAGE_SIZE;
3449 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3450 if (r)
3451 goto out;
3453 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3454 out:
3455 mutex_unlock(&kvm->slots_lock);
3456 return r;
3459 static int alloc_identity_pagetable(struct kvm *kvm)
3461 struct kvm_userspace_memory_region kvm_userspace_mem;
3462 int r = 0;
3464 mutex_lock(&kvm->slots_lock);
3465 if (kvm->arch.ept_identity_pagetable)
3466 goto out;
3467 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3468 kvm_userspace_mem.flags = 0;
3469 kvm_userspace_mem.guest_phys_addr =
3470 kvm->arch.ept_identity_map_addr;
3471 kvm_userspace_mem.memory_size = PAGE_SIZE;
3472 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3473 if (r)
3474 goto out;
3476 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3477 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3478 out:
3479 mutex_unlock(&kvm->slots_lock);
3480 return r;
3483 static void allocate_vpid(struct vcpu_vmx *vmx)
3485 int vpid;
3487 vmx->vpid = 0;
3488 if (!enable_vpid)
3489 return;
3490 spin_lock(&vmx_vpid_lock);
3491 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3492 if (vpid < VMX_NR_VPIDS) {
3493 vmx->vpid = vpid;
3494 __set_bit(vpid, vmx_vpid_bitmap);
3496 spin_unlock(&vmx_vpid_lock);
3499 static void free_vpid(struct vcpu_vmx *vmx)
3501 if (!enable_vpid)
3502 return;
3503 spin_lock(&vmx_vpid_lock);
3504 if (vmx->vpid != 0)
3505 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3506 spin_unlock(&vmx_vpid_lock);
3509 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3511 int f = sizeof(unsigned long);
3513 if (!cpu_has_vmx_msr_bitmap())
3514 return;
3517 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3518 * have the write-low and read-high bitmap offsets the wrong way round.
3519 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3521 if (msr <= 0x1fff) {
3522 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3523 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3524 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3525 msr &= 0x1fff;
3526 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3527 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3531 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3533 if (!longmode_only)
3534 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3535 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3539 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3540 * will not change in the lifetime of the guest.
3541 * Note that host-state that does change is set elsewhere. E.g., host-state
3542 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3544 static void vmx_set_constant_host_state(void)
3546 u32 low32, high32;
3547 unsigned long tmpl;
3548 struct desc_ptr dt;
3550 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3551 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3552 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3554 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3555 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3556 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3557 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3558 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3560 native_store_idt(&dt);
3561 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3563 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3564 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3566 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3567 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3568 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3569 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3571 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3572 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3573 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3577 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3579 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3580 if (enable_ept)
3581 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3582 if (is_guest_mode(&vmx->vcpu))
3583 vmx->vcpu.arch.cr4_guest_owned_bits &=
3584 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3585 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3588 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3590 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3591 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3592 exec_control &= ~CPU_BASED_TPR_SHADOW;
3593 #ifdef CONFIG_X86_64
3594 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3595 CPU_BASED_CR8_LOAD_EXITING;
3596 #endif
3598 if (!enable_ept)
3599 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3600 CPU_BASED_CR3_LOAD_EXITING |
3601 CPU_BASED_INVLPG_EXITING;
3602 return exec_control;
3605 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3607 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3608 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3609 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3610 if (vmx->vpid == 0)
3611 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3612 if (!enable_ept) {
3613 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3614 enable_unrestricted_guest = 0;
3616 if (!enable_unrestricted_guest)
3617 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3618 if (!ple_gap)
3619 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3620 return exec_control;
3623 static void ept_set_mmio_spte_mask(void)
3626 * EPT Misconfigurations can be generated if the value of bits 2:0
3627 * of an EPT paging-structure entry is 110b (write/execute).
3628 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3629 * spte.
3631 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3635 * Sets up the vmcs for emulated real mode.
3637 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3639 #ifdef CONFIG_X86_64
3640 unsigned long a;
3641 #endif
3642 int i;
3644 /* I/O */
3645 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3646 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3648 if (cpu_has_vmx_msr_bitmap())
3649 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3651 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3653 /* Control */
3654 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3655 vmcs_config.pin_based_exec_ctrl);
3657 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3659 if (cpu_has_secondary_exec_ctrls()) {
3660 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3661 vmx_secondary_exec_control(vmx));
3664 if (ple_gap) {
3665 vmcs_write32(PLE_GAP, ple_gap);
3666 vmcs_write32(PLE_WINDOW, ple_window);
3669 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3670 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3671 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3673 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3674 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3675 vmx_set_constant_host_state();
3676 #ifdef CONFIG_X86_64
3677 rdmsrl(MSR_FS_BASE, a);
3678 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3679 rdmsrl(MSR_GS_BASE, a);
3680 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3681 #else
3682 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3683 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3684 #endif
3686 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3687 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3688 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3689 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3690 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3692 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3693 u32 msr_low, msr_high;
3694 u64 host_pat;
3695 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3696 host_pat = msr_low | ((u64) msr_high << 32);
3697 /* Write the default value follow host pat */
3698 vmcs_write64(GUEST_IA32_PAT, host_pat);
3699 /* Keep arch.pat sync with GUEST_IA32_PAT */
3700 vmx->vcpu.arch.pat = host_pat;
3703 for (i = 0; i < NR_VMX_MSR; ++i) {
3704 u32 index = vmx_msr_index[i];
3705 u32 data_low, data_high;
3706 int j = vmx->nmsrs;
3708 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3709 continue;
3710 if (wrmsr_safe(index, data_low, data_high) < 0)
3711 continue;
3712 vmx->guest_msrs[j].index = i;
3713 vmx->guest_msrs[j].data = 0;
3714 vmx->guest_msrs[j].mask = -1ull;
3715 ++vmx->nmsrs;
3718 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3720 /* 22.2.1, 20.8.1 */
3721 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3723 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3724 set_cr4_guest_host_mask(vmx);
3726 kvm_write_tsc(&vmx->vcpu, 0);
3728 return 0;
3731 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3733 struct vcpu_vmx *vmx = to_vmx(vcpu);
3734 u64 msr;
3735 int ret;
3737 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3739 vmx->rmode.vm86_active = 0;
3741 vmx->soft_vnmi_blocked = 0;
3743 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3744 kvm_set_cr8(&vmx->vcpu, 0);
3745 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3746 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3747 msr |= MSR_IA32_APICBASE_BSP;
3748 kvm_set_apic_base(&vmx->vcpu, msr);
3750 ret = fx_init(&vmx->vcpu);
3751 if (ret != 0)
3752 goto out;
3754 vmx_segment_cache_clear(vmx);
3756 seg_setup(VCPU_SREG_CS);
3758 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3759 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3761 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3762 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3763 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3764 } else {
3765 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3766 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3769 seg_setup(VCPU_SREG_DS);
3770 seg_setup(VCPU_SREG_ES);
3771 seg_setup(VCPU_SREG_FS);
3772 seg_setup(VCPU_SREG_GS);
3773 seg_setup(VCPU_SREG_SS);
3775 vmcs_write16(GUEST_TR_SELECTOR, 0);
3776 vmcs_writel(GUEST_TR_BASE, 0);
3777 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3778 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3780 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3781 vmcs_writel(GUEST_LDTR_BASE, 0);
3782 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3783 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3785 vmcs_write32(GUEST_SYSENTER_CS, 0);
3786 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3787 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3789 vmcs_writel(GUEST_RFLAGS, 0x02);
3790 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3791 kvm_rip_write(vcpu, 0xfff0);
3792 else
3793 kvm_rip_write(vcpu, 0);
3794 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3796 vmcs_writel(GUEST_DR7, 0x400);
3798 vmcs_writel(GUEST_GDTR_BASE, 0);
3799 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3801 vmcs_writel(GUEST_IDTR_BASE, 0);
3802 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3804 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3805 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3806 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3808 /* Special registers */
3809 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3811 setup_msrs(vmx);
3813 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3815 if (cpu_has_vmx_tpr_shadow()) {
3816 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3817 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3818 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3819 __pa(vmx->vcpu.arch.apic->regs));
3820 vmcs_write32(TPR_THRESHOLD, 0);
3823 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3824 vmcs_write64(APIC_ACCESS_ADDR,
3825 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3827 if (vmx->vpid != 0)
3828 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3830 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3831 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3832 vmx_set_cr4(&vmx->vcpu, 0);
3833 vmx_set_efer(&vmx->vcpu, 0);
3834 vmx_fpu_activate(&vmx->vcpu);
3835 update_exception_bitmap(&vmx->vcpu);
3837 vpid_sync_context(vmx);
3839 ret = 0;
3841 /* HACK: Don't enable emulation on guest boot/reset */
3842 vmx->emulation_required = 0;
3844 out:
3845 return ret;
3849 * In nested virtualization, check if L1 asked to exit on external interrupts.
3850 * For most existing hypervisors, this will always return true.
3852 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3854 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3855 PIN_BASED_EXT_INTR_MASK;
3858 static void enable_irq_window(struct kvm_vcpu *vcpu)
3860 u32 cpu_based_vm_exec_control;
3861 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
3862 /* We can get here when nested_run_pending caused
3863 * vmx_interrupt_allowed() to return false. In this case, do
3864 * nothing - the interrupt will be injected later.
3866 return;
3868 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3869 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3870 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3873 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3875 u32 cpu_based_vm_exec_control;
3877 if (!cpu_has_virtual_nmis()) {
3878 enable_irq_window(vcpu);
3879 return;
3882 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3883 enable_irq_window(vcpu);
3884 return;
3886 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3887 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3888 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3891 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3893 struct vcpu_vmx *vmx = to_vmx(vcpu);
3894 uint32_t intr;
3895 int irq = vcpu->arch.interrupt.nr;
3897 trace_kvm_inj_virq(irq);
3899 ++vcpu->stat.irq_injections;
3900 if (vmx->rmode.vm86_active) {
3901 int inc_eip = 0;
3902 if (vcpu->arch.interrupt.soft)
3903 inc_eip = vcpu->arch.event_exit_inst_len;
3904 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3905 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3906 return;
3908 intr = irq | INTR_INFO_VALID_MASK;
3909 if (vcpu->arch.interrupt.soft) {
3910 intr |= INTR_TYPE_SOFT_INTR;
3911 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3912 vmx->vcpu.arch.event_exit_inst_len);
3913 } else
3914 intr |= INTR_TYPE_EXT_INTR;
3915 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3916 vmx_clear_hlt(vcpu);
3919 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3921 struct vcpu_vmx *vmx = to_vmx(vcpu);
3923 if (is_guest_mode(vcpu))
3924 return;
3926 if (!cpu_has_virtual_nmis()) {
3928 * Tracking the NMI-blocked state in software is built upon
3929 * finding the next open IRQ window. This, in turn, depends on
3930 * well-behaving guests: They have to keep IRQs disabled at
3931 * least as long as the NMI handler runs. Otherwise we may
3932 * cause NMI nesting, maybe breaking the guest. But as this is
3933 * highly unlikely, we can live with the residual risk.
3935 vmx->soft_vnmi_blocked = 1;
3936 vmx->vnmi_blocked_time = 0;
3939 ++vcpu->stat.nmi_injections;
3940 vmx->nmi_known_unmasked = false;
3941 if (vmx->rmode.vm86_active) {
3942 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
3943 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3944 return;
3946 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3947 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
3948 vmx_clear_hlt(vcpu);
3951 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
3953 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
3954 return 0;
3956 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3957 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3958 | GUEST_INTR_STATE_NMI));
3961 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3963 if (!cpu_has_virtual_nmis())
3964 return to_vmx(vcpu)->soft_vnmi_blocked;
3965 if (to_vmx(vcpu)->nmi_known_unmasked)
3966 return false;
3967 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3970 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3972 struct vcpu_vmx *vmx = to_vmx(vcpu);
3974 if (!cpu_has_virtual_nmis()) {
3975 if (vmx->soft_vnmi_blocked != masked) {
3976 vmx->soft_vnmi_blocked = masked;
3977 vmx->vnmi_blocked_time = 0;
3979 } else {
3980 vmx->nmi_known_unmasked = !masked;
3981 if (masked)
3982 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3983 GUEST_INTR_STATE_NMI);
3984 else
3985 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3986 GUEST_INTR_STATE_NMI);
3990 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3992 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3993 struct vmcs12 *vmcs12;
3994 if (to_vmx(vcpu)->nested.nested_run_pending)
3995 return 0;
3996 nested_vmx_vmexit(vcpu);
3997 vmcs12 = get_vmcs12(vcpu);
3998 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
3999 vmcs12->vm_exit_intr_info = 0;
4000 /* fall through to normal code, but now in L1, not L2 */
4003 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4004 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4005 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4008 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4010 int ret;
4011 struct kvm_userspace_memory_region tss_mem = {
4012 .slot = TSS_PRIVATE_MEMSLOT,
4013 .guest_phys_addr = addr,
4014 .memory_size = PAGE_SIZE * 3,
4015 .flags = 0,
4018 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4019 if (ret)
4020 return ret;
4021 kvm->arch.tss_addr = addr;
4022 if (!init_rmode_tss(kvm))
4023 return -ENOMEM;
4025 return 0;
4028 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4029 int vec, u32 err_code)
4032 * Instruction with address size override prefix opcode 0x67
4033 * Cause the #SS fault with 0 error code in VM86 mode.
4035 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4036 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4037 return 1;
4039 * Forward all other exceptions that are valid in real mode.
4040 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4041 * the required debugging infrastructure rework.
4043 switch (vec) {
4044 case DB_VECTOR:
4045 if (vcpu->guest_debug &
4046 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4047 return 0;
4048 kvm_queue_exception(vcpu, vec);
4049 return 1;
4050 case BP_VECTOR:
4052 * Update instruction length as we may reinject the exception
4053 * from user space while in guest debugging mode.
4055 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4056 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4057 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4058 return 0;
4059 /* fall through */
4060 case DE_VECTOR:
4061 case OF_VECTOR:
4062 case BR_VECTOR:
4063 case UD_VECTOR:
4064 case DF_VECTOR:
4065 case SS_VECTOR:
4066 case GP_VECTOR:
4067 case MF_VECTOR:
4068 kvm_queue_exception(vcpu, vec);
4069 return 1;
4071 return 0;
4075 * Trigger machine check on the host. We assume all the MSRs are already set up
4076 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4077 * We pass a fake environment to the machine check handler because we want
4078 * the guest to be always treated like user space, no matter what context
4079 * it used internally.
4081 static void kvm_machine_check(void)
4083 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4084 struct pt_regs regs = {
4085 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4086 .flags = X86_EFLAGS_IF,
4089 do_machine_check(&regs, 0);
4090 #endif
4093 static int handle_machine_check(struct kvm_vcpu *vcpu)
4095 /* already handled by vcpu_run */
4096 return 1;
4099 static int handle_exception(struct kvm_vcpu *vcpu)
4101 struct vcpu_vmx *vmx = to_vmx(vcpu);
4102 struct kvm_run *kvm_run = vcpu->run;
4103 u32 intr_info, ex_no, error_code;
4104 unsigned long cr2, rip, dr6;
4105 u32 vect_info;
4106 enum emulation_result er;
4108 vect_info = vmx->idt_vectoring_info;
4109 intr_info = vmx->exit_intr_info;
4111 if (is_machine_check(intr_info))
4112 return handle_machine_check(vcpu);
4114 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4115 !is_page_fault(intr_info)) {
4116 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4117 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4118 vcpu->run->internal.ndata = 2;
4119 vcpu->run->internal.data[0] = vect_info;
4120 vcpu->run->internal.data[1] = intr_info;
4121 return 0;
4124 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4125 return 1; /* already handled by vmx_vcpu_run() */
4127 if (is_no_device(intr_info)) {
4128 vmx_fpu_activate(vcpu);
4129 return 1;
4132 if (is_invalid_opcode(intr_info)) {
4133 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4134 if (er != EMULATE_DONE)
4135 kvm_queue_exception(vcpu, UD_VECTOR);
4136 return 1;
4139 error_code = 0;
4140 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4141 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4142 if (is_page_fault(intr_info)) {
4143 /* EPT won't cause page fault directly */
4144 BUG_ON(enable_ept);
4145 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4146 trace_kvm_page_fault(cr2, error_code);
4148 if (kvm_event_needs_reinjection(vcpu))
4149 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4150 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4153 if (vmx->rmode.vm86_active &&
4154 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4155 error_code)) {
4156 if (vcpu->arch.halt_request) {
4157 vcpu->arch.halt_request = 0;
4158 return kvm_emulate_halt(vcpu);
4160 return 1;
4163 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4164 switch (ex_no) {
4165 case DB_VECTOR:
4166 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4167 if (!(vcpu->guest_debug &
4168 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4169 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4170 kvm_queue_exception(vcpu, DB_VECTOR);
4171 return 1;
4173 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4174 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4175 /* fall through */
4176 case BP_VECTOR:
4178 * Update instruction length as we may reinject #BP from
4179 * user space while in guest debugging mode. Reading it for
4180 * #DB as well causes no harm, it is not used in that case.
4182 vmx->vcpu.arch.event_exit_inst_len =
4183 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4184 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4185 rip = kvm_rip_read(vcpu);
4186 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4187 kvm_run->debug.arch.exception = ex_no;
4188 break;
4189 default:
4190 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4191 kvm_run->ex.exception = ex_no;
4192 kvm_run->ex.error_code = error_code;
4193 break;
4195 return 0;
4198 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4200 ++vcpu->stat.irq_exits;
4201 return 1;
4204 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4206 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4207 return 0;
4210 static int handle_io(struct kvm_vcpu *vcpu)
4212 unsigned long exit_qualification;
4213 int size, in, string;
4214 unsigned port;
4216 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4217 string = (exit_qualification & 16) != 0;
4218 in = (exit_qualification & 8) != 0;
4220 ++vcpu->stat.io_exits;
4222 if (string || in)
4223 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4225 port = exit_qualification >> 16;
4226 size = (exit_qualification & 7) + 1;
4227 skip_emulated_instruction(vcpu);
4229 return kvm_fast_pio_out(vcpu, size, port);
4232 static void
4233 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4236 * Patch in the VMCALL instruction:
4238 hypercall[0] = 0x0f;
4239 hypercall[1] = 0x01;
4240 hypercall[2] = 0xc1;
4243 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4244 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4246 if (to_vmx(vcpu)->nested.vmxon &&
4247 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4248 return 1;
4250 if (is_guest_mode(vcpu)) {
4252 * We get here when L2 changed cr0 in a way that did not change
4253 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4254 * but did change L0 shadowed bits. This can currently happen
4255 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4256 * loading) while pretending to allow the guest to change it.
4258 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4259 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4260 return 1;
4261 vmcs_writel(CR0_READ_SHADOW, val);
4262 return 0;
4263 } else
4264 return kvm_set_cr0(vcpu, val);
4267 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4269 if (is_guest_mode(vcpu)) {
4270 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4271 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4272 return 1;
4273 vmcs_writel(CR4_READ_SHADOW, val);
4274 return 0;
4275 } else
4276 return kvm_set_cr4(vcpu, val);
4279 /* called to set cr0 as approriate for clts instruction exit. */
4280 static void handle_clts(struct kvm_vcpu *vcpu)
4282 if (is_guest_mode(vcpu)) {
4284 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4285 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4286 * just pretend it's off (also in arch.cr0 for fpu_activate).
4288 vmcs_writel(CR0_READ_SHADOW,
4289 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4290 vcpu->arch.cr0 &= ~X86_CR0_TS;
4291 } else
4292 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4295 static int handle_cr(struct kvm_vcpu *vcpu)
4297 unsigned long exit_qualification, val;
4298 int cr;
4299 int reg;
4300 int err;
4302 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4303 cr = exit_qualification & 15;
4304 reg = (exit_qualification >> 8) & 15;
4305 switch ((exit_qualification >> 4) & 3) {
4306 case 0: /* mov to cr */
4307 val = kvm_register_read(vcpu, reg);
4308 trace_kvm_cr_write(cr, val);
4309 switch (cr) {
4310 case 0:
4311 err = handle_set_cr0(vcpu, val);
4312 kvm_complete_insn_gp(vcpu, err);
4313 return 1;
4314 case 3:
4315 err = kvm_set_cr3(vcpu, val);
4316 kvm_complete_insn_gp(vcpu, err);
4317 return 1;
4318 case 4:
4319 err = handle_set_cr4(vcpu, val);
4320 kvm_complete_insn_gp(vcpu, err);
4321 return 1;
4322 case 8: {
4323 u8 cr8_prev = kvm_get_cr8(vcpu);
4324 u8 cr8 = kvm_register_read(vcpu, reg);
4325 err = kvm_set_cr8(vcpu, cr8);
4326 kvm_complete_insn_gp(vcpu, err);
4327 if (irqchip_in_kernel(vcpu->kvm))
4328 return 1;
4329 if (cr8_prev <= cr8)
4330 return 1;
4331 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4332 return 0;
4335 break;
4336 case 2: /* clts */
4337 handle_clts(vcpu);
4338 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4339 skip_emulated_instruction(vcpu);
4340 vmx_fpu_activate(vcpu);
4341 return 1;
4342 case 1: /*mov from cr*/
4343 switch (cr) {
4344 case 3:
4345 val = kvm_read_cr3(vcpu);
4346 kvm_register_write(vcpu, reg, val);
4347 trace_kvm_cr_read(cr, val);
4348 skip_emulated_instruction(vcpu);
4349 return 1;
4350 case 8:
4351 val = kvm_get_cr8(vcpu);
4352 kvm_register_write(vcpu, reg, val);
4353 trace_kvm_cr_read(cr, val);
4354 skip_emulated_instruction(vcpu);
4355 return 1;
4357 break;
4358 case 3: /* lmsw */
4359 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4360 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4361 kvm_lmsw(vcpu, val);
4363 skip_emulated_instruction(vcpu);
4364 return 1;
4365 default:
4366 break;
4368 vcpu->run->exit_reason = 0;
4369 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4370 (int)(exit_qualification >> 4) & 3, cr);
4371 return 0;
4374 static int handle_dr(struct kvm_vcpu *vcpu)
4376 unsigned long exit_qualification;
4377 int dr, reg;
4379 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4380 if (!kvm_require_cpl(vcpu, 0))
4381 return 1;
4382 dr = vmcs_readl(GUEST_DR7);
4383 if (dr & DR7_GD) {
4385 * As the vm-exit takes precedence over the debug trap, we
4386 * need to emulate the latter, either for the host or the
4387 * guest debugging itself.
4389 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4390 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4391 vcpu->run->debug.arch.dr7 = dr;
4392 vcpu->run->debug.arch.pc =
4393 vmcs_readl(GUEST_CS_BASE) +
4394 vmcs_readl(GUEST_RIP);
4395 vcpu->run->debug.arch.exception = DB_VECTOR;
4396 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4397 return 0;
4398 } else {
4399 vcpu->arch.dr7 &= ~DR7_GD;
4400 vcpu->arch.dr6 |= DR6_BD;
4401 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4402 kvm_queue_exception(vcpu, DB_VECTOR);
4403 return 1;
4407 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4408 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4409 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4410 if (exit_qualification & TYPE_MOV_FROM_DR) {
4411 unsigned long val;
4412 if (!kvm_get_dr(vcpu, dr, &val))
4413 kvm_register_write(vcpu, reg, val);
4414 } else
4415 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4416 skip_emulated_instruction(vcpu);
4417 return 1;
4420 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4422 vmcs_writel(GUEST_DR7, val);
4425 static int handle_cpuid(struct kvm_vcpu *vcpu)
4427 kvm_emulate_cpuid(vcpu);
4428 return 1;
4431 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4433 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4434 u64 data;
4436 if (vmx_get_msr(vcpu, ecx, &data)) {
4437 trace_kvm_msr_read_ex(ecx);
4438 kvm_inject_gp(vcpu, 0);
4439 return 1;
4442 trace_kvm_msr_read(ecx, data);
4444 /* FIXME: handling of bits 32:63 of rax, rdx */
4445 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4446 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4447 skip_emulated_instruction(vcpu);
4448 return 1;
4451 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4453 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4454 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4455 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4457 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4458 trace_kvm_msr_write_ex(ecx, data);
4459 kvm_inject_gp(vcpu, 0);
4460 return 1;
4463 trace_kvm_msr_write(ecx, data);
4464 skip_emulated_instruction(vcpu);
4465 return 1;
4468 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4470 kvm_make_request(KVM_REQ_EVENT, vcpu);
4471 return 1;
4474 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4476 u32 cpu_based_vm_exec_control;
4478 /* clear pending irq */
4479 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4480 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4481 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4483 kvm_make_request(KVM_REQ_EVENT, vcpu);
4485 ++vcpu->stat.irq_window_exits;
4488 * If the user space waits to inject interrupts, exit as soon as
4489 * possible
4491 if (!irqchip_in_kernel(vcpu->kvm) &&
4492 vcpu->run->request_interrupt_window &&
4493 !kvm_cpu_has_interrupt(vcpu)) {
4494 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4495 return 0;
4497 return 1;
4500 static int handle_halt(struct kvm_vcpu *vcpu)
4502 skip_emulated_instruction(vcpu);
4503 return kvm_emulate_halt(vcpu);
4506 static int handle_vmcall(struct kvm_vcpu *vcpu)
4508 skip_emulated_instruction(vcpu);
4509 kvm_emulate_hypercall(vcpu);
4510 return 1;
4513 static int handle_invd(struct kvm_vcpu *vcpu)
4515 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4518 static int handle_invlpg(struct kvm_vcpu *vcpu)
4520 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4522 kvm_mmu_invlpg(vcpu, exit_qualification);
4523 skip_emulated_instruction(vcpu);
4524 return 1;
4527 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4529 skip_emulated_instruction(vcpu);
4530 kvm_emulate_wbinvd(vcpu);
4531 return 1;
4534 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4536 u64 new_bv = kvm_read_edx_eax(vcpu);
4537 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4539 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4540 skip_emulated_instruction(vcpu);
4541 return 1;
4544 static int handle_apic_access(struct kvm_vcpu *vcpu)
4546 if (likely(fasteoi)) {
4547 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4548 int access_type, offset;
4550 access_type = exit_qualification & APIC_ACCESS_TYPE;
4551 offset = exit_qualification & APIC_ACCESS_OFFSET;
4553 * Sane guest uses MOV to write EOI, with written value
4554 * not cared. So make a short-circuit here by avoiding
4555 * heavy instruction emulation.
4557 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4558 (offset == APIC_EOI)) {
4559 kvm_lapic_set_eoi(vcpu);
4560 skip_emulated_instruction(vcpu);
4561 return 1;
4564 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4567 static int handle_task_switch(struct kvm_vcpu *vcpu)
4569 struct vcpu_vmx *vmx = to_vmx(vcpu);
4570 unsigned long exit_qualification;
4571 bool has_error_code = false;
4572 u32 error_code = 0;
4573 u16 tss_selector;
4574 int reason, type, idt_v;
4576 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4577 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4579 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4581 reason = (u32)exit_qualification >> 30;
4582 if (reason == TASK_SWITCH_GATE && idt_v) {
4583 switch (type) {
4584 case INTR_TYPE_NMI_INTR:
4585 vcpu->arch.nmi_injected = false;
4586 vmx_set_nmi_mask(vcpu, true);
4587 break;
4588 case INTR_TYPE_EXT_INTR:
4589 case INTR_TYPE_SOFT_INTR:
4590 kvm_clear_interrupt_queue(vcpu);
4591 break;
4592 case INTR_TYPE_HARD_EXCEPTION:
4593 if (vmx->idt_vectoring_info &
4594 VECTORING_INFO_DELIVER_CODE_MASK) {
4595 has_error_code = true;
4596 error_code =
4597 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4599 /* fall through */
4600 case INTR_TYPE_SOFT_EXCEPTION:
4601 kvm_clear_exception_queue(vcpu);
4602 break;
4603 default:
4604 break;
4607 tss_selector = exit_qualification;
4609 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4610 type != INTR_TYPE_EXT_INTR &&
4611 type != INTR_TYPE_NMI_INTR))
4612 skip_emulated_instruction(vcpu);
4614 if (kvm_task_switch(vcpu, tss_selector, reason,
4615 has_error_code, error_code) == EMULATE_FAIL) {
4616 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4617 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4618 vcpu->run->internal.ndata = 0;
4619 return 0;
4622 /* clear all local breakpoint enable flags */
4623 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4626 * TODO: What about debug traps on tss switch?
4627 * Are we supposed to inject them and update dr6?
4630 return 1;
4633 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4635 unsigned long exit_qualification;
4636 gpa_t gpa;
4637 int gla_validity;
4639 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4641 if (exit_qualification & (1 << 6)) {
4642 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4643 return -EINVAL;
4646 gla_validity = (exit_qualification >> 7) & 0x3;
4647 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4648 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4649 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4650 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4651 vmcs_readl(GUEST_LINEAR_ADDRESS));
4652 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4653 (long unsigned int)exit_qualification);
4654 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4655 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4656 return 0;
4659 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4660 trace_kvm_page_fault(gpa, exit_qualification);
4661 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4664 static u64 ept_rsvd_mask(u64 spte, int level)
4666 int i;
4667 u64 mask = 0;
4669 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4670 mask |= (1ULL << i);
4672 if (level > 2)
4673 /* bits 7:3 reserved */
4674 mask |= 0xf8;
4675 else if (level == 2) {
4676 if (spte & (1ULL << 7))
4677 /* 2MB ref, bits 20:12 reserved */
4678 mask |= 0x1ff000;
4679 else
4680 /* bits 6:3 reserved */
4681 mask |= 0x78;
4684 return mask;
4687 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4688 int level)
4690 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4692 /* 010b (write-only) */
4693 WARN_ON((spte & 0x7) == 0x2);
4695 /* 110b (write/execute) */
4696 WARN_ON((spte & 0x7) == 0x6);
4698 /* 100b (execute-only) and value not supported by logical processor */
4699 if (!cpu_has_vmx_ept_execute_only())
4700 WARN_ON((spte & 0x7) == 0x4);
4702 /* not 000b */
4703 if ((spte & 0x7)) {
4704 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4706 if (rsvd_bits != 0) {
4707 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4708 __func__, rsvd_bits);
4709 WARN_ON(1);
4712 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4713 u64 ept_mem_type = (spte & 0x38) >> 3;
4715 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4716 ept_mem_type == 7) {
4717 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4718 __func__, ept_mem_type);
4719 WARN_ON(1);
4725 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4727 u64 sptes[4];
4728 int nr_sptes, i, ret;
4729 gpa_t gpa;
4731 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4733 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4734 if (likely(ret == 1))
4735 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4736 EMULATE_DONE;
4737 if (unlikely(!ret))
4738 return 1;
4740 /* It is the real ept misconfig */
4741 printk(KERN_ERR "EPT: Misconfiguration.\n");
4742 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4744 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4746 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4747 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4749 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4750 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4752 return 0;
4755 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4757 u32 cpu_based_vm_exec_control;
4759 /* clear pending NMI */
4760 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4761 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4762 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4763 ++vcpu->stat.nmi_window_exits;
4764 kvm_make_request(KVM_REQ_EVENT, vcpu);
4766 return 1;
4769 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4771 struct vcpu_vmx *vmx = to_vmx(vcpu);
4772 enum emulation_result err = EMULATE_DONE;
4773 int ret = 1;
4774 u32 cpu_exec_ctrl;
4775 bool intr_window_requested;
4777 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4778 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4780 while (!guest_state_valid(vcpu)) {
4781 if (intr_window_requested
4782 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4783 return handle_interrupt_window(&vmx->vcpu);
4785 err = emulate_instruction(vcpu, 0);
4787 if (err == EMULATE_DO_MMIO) {
4788 ret = 0;
4789 goto out;
4792 if (err != EMULATE_DONE)
4793 return 0;
4795 if (signal_pending(current))
4796 goto out;
4797 if (need_resched())
4798 schedule();
4801 vmx->emulation_required = 0;
4802 out:
4803 return ret;
4807 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4808 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4810 static int handle_pause(struct kvm_vcpu *vcpu)
4812 skip_emulated_instruction(vcpu);
4813 kvm_vcpu_on_spin(vcpu);
4815 return 1;
4818 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4820 kvm_queue_exception(vcpu, UD_VECTOR);
4821 return 1;
4825 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4826 * We could reuse a single VMCS for all the L2 guests, but we also want the
4827 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4828 * allows keeping them loaded on the processor, and in the future will allow
4829 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4830 * every entry if they never change.
4831 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4832 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4834 * The following functions allocate and free a vmcs02 in this pool.
4837 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4838 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4840 struct vmcs02_list *item;
4841 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4842 if (item->vmptr == vmx->nested.current_vmptr) {
4843 list_move(&item->list, &vmx->nested.vmcs02_pool);
4844 return &item->vmcs02;
4847 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4848 /* Recycle the least recently used VMCS. */
4849 item = list_entry(vmx->nested.vmcs02_pool.prev,
4850 struct vmcs02_list, list);
4851 item->vmptr = vmx->nested.current_vmptr;
4852 list_move(&item->list, &vmx->nested.vmcs02_pool);
4853 return &item->vmcs02;
4856 /* Create a new VMCS */
4857 item = (struct vmcs02_list *)
4858 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4859 if (!item)
4860 return NULL;
4861 item->vmcs02.vmcs = alloc_vmcs();
4862 if (!item->vmcs02.vmcs) {
4863 kfree(item);
4864 return NULL;
4866 loaded_vmcs_init(&item->vmcs02);
4867 item->vmptr = vmx->nested.current_vmptr;
4868 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4869 vmx->nested.vmcs02_num++;
4870 return &item->vmcs02;
4873 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4874 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4876 struct vmcs02_list *item;
4877 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4878 if (item->vmptr == vmptr) {
4879 free_loaded_vmcs(&item->vmcs02);
4880 list_del(&item->list);
4881 kfree(item);
4882 vmx->nested.vmcs02_num--;
4883 return;
4888 * Free all VMCSs saved for this vcpu, except the one pointed by
4889 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4890 * currently used, if running L2), and vmcs01 when running L2.
4892 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4894 struct vmcs02_list *item, *n;
4895 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4896 if (vmx->loaded_vmcs != &item->vmcs02)
4897 free_loaded_vmcs(&item->vmcs02);
4898 list_del(&item->list);
4899 kfree(item);
4901 vmx->nested.vmcs02_num = 0;
4903 if (vmx->loaded_vmcs != &vmx->vmcs01)
4904 free_loaded_vmcs(&vmx->vmcs01);
4908 * Emulate the VMXON instruction.
4909 * Currently, we just remember that VMX is active, and do not save or even
4910 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4911 * do not currently need to store anything in that guest-allocated memory
4912 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4913 * argument is different from the VMXON pointer (which the spec says they do).
4915 static int handle_vmon(struct kvm_vcpu *vcpu)
4917 struct kvm_segment cs;
4918 struct vcpu_vmx *vmx = to_vmx(vcpu);
4920 /* The Intel VMX Instruction Reference lists a bunch of bits that
4921 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4922 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4923 * Otherwise, we should fail with #UD. We test these now:
4925 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4926 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4927 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4928 kvm_queue_exception(vcpu, UD_VECTOR);
4929 return 1;
4932 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4933 if (is_long_mode(vcpu) && !cs.l) {
4934 kvm_queue_exception(vcpu, UD_VECTOR);
4935 return 1;
4938 if (vmx_get_cpl(vcpu)) {
4939 kvm_inject_gp(vcpu, 0);
4940 return 1;
4943 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
4944 vmx->nested.vmcs02_num = 0;
4946 vmx->nested.vmxon = true;
4948 skip_emulated_instruction(vcpu);
4949 return 1;
4953 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4954 * for running VMX instructions (except VMXON, whose prerequisites are
4955 * slightly different). It also specifies what exception to inject otherwise.
4957 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4959 struct kvm_segment cs;
4960 struct vcpu_vmx *vmx = to_vmx(vcpu);
4962 if (!vmx->nested.vmxon) {
4963 kvm_queue_exception(vcpu, UD_VECTOR);
4964 return 0;
4967 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4968 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4969 (is_long_mode(vcpu) && !cs.l)) {
4970 kvm_queue_exception(vcpu, UD_VECTOR);
4971 return 0;
4974 if (vmx_get_cpl(vcpu)) {
4975 kvm_inject_gp(vcpu, 0);
4976 return 0;
4979 return 1;
4983 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4984 * just stops using VMX.
4986 static void free_nested(struct vcpu_vmx *vmx)
4988 if (!vmx->nested.vmxon)
4989 return;
4990 vmx->nested.vmxon = false;
4991 if (vmx->nested.current_vmptr != -1ull) {
4992 kunmap(vmx->nested.current_vmcs12_page);
4993 nested_release_page(vmx->nested.current_vmcs12_page);
4994 vmx->nested.current_vmptr = -1ull;
4995 vmx->nested.current_vmcs12 = NULL;
4997 /* Unpin physical memory we referred to in current vmcs02 */
4998 if (vmx->nested.apic_access_page) {
4999 nested_release_page(vmx->nested.apic_access_page);
5000 vmx->nested.apic_access_page = 0;
5003 nested_free_all_saved_vmcss(vmx);
5006 /* Emulate the VMXOFF instruction */
5007 static int handle_vmoff(struct kvm_vcpu *vcpu)
5009 if (!nested_vmx_check_permission(vcpu))
5010 return 1;
5011 free_nested(to_vmx(vcpu));
5012 skip_emulated_instruction(vcpu);
5013 return 1;
5017 * Decode the memory-address operand of a vmx instruction, as recorded on an
5018 * exit caused by such an instruction (run by a guest hypervisor).
5019 * On success, returns 0. When the operand is invalid, returns 1 and throws
5020 * #UD or #GP.
5022 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5023 unsigned long exit_qualification,
5024 u32 vmx_instruction_info, gva_t *ret)
5027 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5028 * Execution", on an exit, vmx_instruction_info holds most of the
5029 * addressing components of the operand. Only the displacement part
5030 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5031 * For how an actual address is calculated from all these components,
5032 * refer to Vol. 1, "Operand Addressing".
5034 int scaling = vmx_instruction_info & 3;
5035 int addr_size = (vmx_instruction_info >> 7) & 7;
5036 bool is_reg = vmx_instruction_info & (1u << 10);
5037 int seg_reg = (vmx_instruction_info >> 15) & 7;
5038 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5039 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5040 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5041 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5043 if (is_reg) {
5044 kvm_queue_exception(vcpu, UD_VECTOR);
5045 return 1;
5048 /* Addr = segment_base + offset */
5049 /* offset = base + [index * scale] + displacement */
5050 *ret = vmx_get_segment_base(vcpu, seg_reg);
5051 if (base_is_valid)
5052 *ret += kvm_register_read(vcpu, base_reg);
5053 if (index_is_valid)
5054 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5055 *ret += exit_qualification; /* holds the displacement */
5057 if (addr_size == 1) /* 32 bit */
5058 *ret &= 0xffffffff;
5061 * TODO: throw #GP (and return 1) in various cases that the VM*
5062 * instructions require it - e.g., offset beyond segment limit,
5063 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5064 * address, and so on. Currently these are not checked.
5066 return 0;
5070 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5071 * set the success or error code of an emulated VMX instruction, as specified
5072 * by Vol 2B, VMX Instruction Reference, "Conventions".
5074 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5076 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5077 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5078 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5081 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5083 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5084 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5085 X86_EFLAGS_SF | X86_EFLAGS_OF))
5086 | X86_EFLAGS_CF);
5089 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5090 u32 vm_instruction_error)
5092 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5094 * failValid writes the error number to the current VMCS, which
5095 * can't be done there isn't a current VMCS.
5097 nested_vmx_failInvalid(vcpu);
5098 return;
5100 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5101 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5102 X86_EFLAGS_SF | X86_EFLAGS_OF))
5103 | X86_EFLAGS_ZF);
5104 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5107 /* Emulate the VMCLEAR instruction */
5108 static int handle_vmclear(struct kvm_vcpu *vcpu)
5110 struct vcpu_vmx *vmx = to_vmx(vcpu);
5111 gva_t gva;
5112 gpa_t vmptr;
5113 struct vmcs12 *vmcs12;
5114 struct page *page;
5115 struct x86_exception e;
5117 if (!nested_vmx_check_permission(vcpu))
5118 return 1;
5120 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5121 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5122 return 1;
5124 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5125 sizeof(vmptr), &e)) {
5126 kvm_inject_page_fault(vcpu, &e);
5127 return 1;
5130 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5131 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5132 skip_emulated_instruction(vcpu);
5133 return 1;
5136 if (vmptr == vmx->nested.current_vmptr) {
5137 kunmap(vmx->nested.current_vmcs12_page);
5138 nested_release_page(vmx->nested.current_vmcs12_page);
5139 vmx->nested.current_vmptr = -1ull;
5140 vmx->nested.current_vmcs12 = NULL;
5143 page = nested_get_page(vcpu, vmptr);
5144 if (page == NULL) {
5146 * For accurate processor emulation, VMCLEAR beyond available
5147 * physical memory should do nothing at all. However, it is
5148 * possible that a nested vmx bug, not a guest hypervisor bug,
5149 * resulted in this case, so let's shut down before doing any
5150 * more damage:
5152 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5153 return 1;
5155 vmcs12 = kmap(page);
5156 vmcs12->launch_state = 0;
5157 kunmap(page);
5158 nested_release_page(page);
5160 nested_free_vmcs02(vmx, vmptr);
5162 skip_emulated_instruction(vcpu);
5163 nested_vmx_succeed(vcpu);
5164 return 1;
5167 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5169 /* Emulate the VMLAUNCH instruction */
5170 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5172 return nested_vmx_run(vcpu, true);
5175 /* Emulate the VMRESUME instruction */
5176 static int handle_vmresume(struct kvm_vcpu *vcpu)
5179 return nested_vmx_run(vcpu, false);
5182 enum vmcs_field_type {
5183 VMCS_FIELD_TYPE_U16 = 0,
5184 VMCS_FIELD_TYPE_U64 = 1,
5185 VMCS_FIELD_TYPE_U32 = 2,
5186 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5189 static inline int vmcs_field_type(unsigned long field)
5191 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5192 return VMCS_FIELD_TYPE_U32;
5193 return (field >> 13) & 0x3 ;
5196 static inline int vmcs_field_readonly(unsigned long field)
5198 return (((field >> 10) & 0x3) == 1);
5202 * Read a vmcs12 field. Since these can have varying lengths and we return
5203 * one type, we chose the biggest type (u64) and zero-extend the return value
5204 * to that size. Note that the caller, handle_vmread, might need to use only
5205 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5206 * 64-bit fields are to be returned).
5208 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5209 unsigned long field, u64 *ret)
5211 short offset = vmcs_field_to_offset(field);
5212 char *p;
5214 if (offset < 0)
5215 return 0;
5217 p = ((char *)(get_vmcs12(vcpu))) + offset;
5219 switch (vmcs_field_type(field)) {
5220 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5221 *ret = *((natural_width *)p);
5222 return 1;
5223 case VMCS_FIELD_TYPE_U16:
5224 *ret = *((u16 *)p);
5225 return 1;
5226 case VMCS_FIELD_TYPE_U32:
5227 *ret = *((u32 *)p);
5228 return 1;
5229 case VMCS_FIELD_TYPE_U64:
5230 *ret = *((u64 *)p);
5231 return 1;
5232 default:
5233 return 0; /* can never happen. */
5238 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5239 * used before) all generate the same failure when it is missing.
5241 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5243 struct vcpu_vmx *vmx = to_vmx(vcpu);
5244 if (vmx->nested.current_vmptr == -1ull) {
5245 nested_vmx_failInvalid(vcpu);
5246 skip_emulated_instruction(vcpu);
5247 return 0;
5249 return 1;
5252 static int handle_vmread(struct kvm_vcpu *vcpu)
5254 unsigned long field;
5255 u64 field_value;
5256 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5257 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5258 gva_t gva = 0;
5260 if (!nested_vmx_check_permission(vcpu) ||
5261 !nested_vmx_check_vmcs12(vcpu))
5262 return 1;
5264 /* Decode instruction info and find the field to read */
5265 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5266 /* Read the field, zero-extended to a u64 field_value */
5267 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5268 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5269 skip_emulated_instruction(vcpu);
5270 return 1;
5273 * Now copy part of this value to register or memory, as requested.
5274 * Note that the number of bits actually copied is 32 or 64 depending
5275 * on the guest's mode (32 or 64 bit), not on the given field's length.
5277 if (vmx_instruction_info & (1u << 10)) {
5278 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5279 field_value);
5280 } else {
5281 if (get_vmx_mem_address(vcpu, exit_qualification,
5282 vmx_instruction_info, &gva))
5283 return 1;
5284 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5285 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5286 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5289 nested_vmx_succeed(vcpu);
5290 skip_emulated_instruction(vcpu);
5291 return 1;
5295 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5297 unsigned long field;
5298 gva_t gva;
5299 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5300 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5301 char *p;
5302 short offset;
5303 /* The value to write might be 32 or 64 bits, depending on L1's long
5304 * mode, and eventually we need to write that into a field of several
5305 * possible lengths. The code below first zero-extends the value to 64
5306 * bit (field_value), and then copies only the approriate number of
5307 * bits into the vmcs12 field.
5309 u64 field_value = 0;
5310 struct x86_exception e;
5312 if (!nested_vmx_check_permission(vcpu) ||
5313 !nested_vmx_check_vmcs12(vcpu))
5314 return 1;
5316 if (vmx_instruction_info & (1u << 10))
5317 field_value = kvm_register_read(vcpu,
5318 (((vmx_instruction_info) >> 3) & 0xf));
5319 else {
5320 if (get_vmx_mem_address(vcpu, exit_qualification,
5321 vmx_instruction_info, &gva))
5322 return 1;
5323 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5324 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5325 kvm_inject_page_fault(vcpu, &e);
5326 return 1;
5331 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5332 if (vmcs_field_readonly(field)) {
5333 nested_vmx_failValid(vcpu,
5334 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5335 skip_emulated_instruction(vcpu);
5336 return 1;
5339 offset = vmcs_field_to_offset(field);
5340 if (offset < 0) {
5341 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5342 skip_emulated_instruction(vcpu);
5343 return 1;
5345 p = ((char *) get_vmcs12(vcpu)) + offset;
5347 switch (vmcs_field_type(field)) {
5348 case VMCS_FIELD_TYPE_U16:
5349 *(u16 *)p = field_value;
5350 break;
5351 case VMCS_FIELD_TYPE_U32:
5352 *(u32 *)p = field_value;
5353 break;
5354 case VMCS_FIELD_TYPE_U64:
5355 *(u64 *)p = field_value;
5356 break;
5357 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5358 *(natural_width *)p = field_value;
5359 break;
5360 default:
5361 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5362 skip_emulated_instruction(vcpu);
5363 return 1;
5366 nested_vmx_succeed(vcpu);
5367 skip_emulated_instruction(vcpu);
5368 return 1;
5371 /* Emulate the VMPTRLD instruction */
5372 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5374 struct vcpu_vmx *vmx = to_vmx(vcpu);
5375 gva_t gva;
5376 gpa_t vmptr;
5377 struct x86_exception e;
5379 if (!nested_vmx_check_permission(vcpu))
5380 return 1;
5382 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5383 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5384 return 1;
5386 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5387 sizeof(vmptr), &e)) {
5388 kvm_inject_page_fault(vcpu, &e);
5389 return 1;
5392 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5393 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5394 skip_emulated_instruction(vcpu);
5395 return 1;
5398 if (vmx->nested.current_vmptr != vmptr) {
5399 struct vmcs12 *new_vmcs12;
5400 struct page *page;
5401 page = nested_get_page(vcpu, vmptr);
5402 if (page == NULL) {
5403 nested_vmx_failInvalid(vcpu);
5404 skip_emulated_instruction(vcpu);
5405 return 1;
5407 new_vmcs12 = kmap(page);
5408 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5409 kunmap(page);
5410 nested_release_page_clean(page);
5411 nested_vmx_failValid(vcpu,
5412 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5413 skip_emulated_instruction(vcpu);
5414 return 1;
5416 if (vmx->nested.current_vmptr != -1ull) {
5417 kunmap(vmx->nested.current_vmcs12_page);
5418 nested_release_page(vmx->nested.current_vmcs12_page);
5421 vmx->nested.current_vmptr = vmptr;
5422 vmx->nested.current_vmcs12 = new_vmcs12;
5423 vmx->nested.current_vmcs12_page = page;
5426 nested_vmx_succeed(vcpu);
5427 skip_emulated_instruction(vcpu);
5428 return 1;
5431 /* Emulate the VMPTRST instruction */
5432 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5434 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5435 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5436 gva_t vmcs_gva;
5437 struct x86_exception e;
5439 if (!nested_vmx_check_permission(vcpu))
5440 return 1;
5442 if (get_vmx_mem_address(vcpu, exit_qualification,
5443 vmx_instruction_info, &vmcs_gva))
5444 return 1;
5445 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5446 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5447 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5448 sizeof(u64), &e)) {
5449 kvm_inject_page_fault(vcpu, &e);
5450 return 1;
5452 nested_vmx_succeed(vcpu);
5453 skip_emulated_instruction(vcpu);
5454 return 1;
5458 * The exit handlers return 1 if the exit was handled fully and guest execution
5459 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5460 * to be done to userspace and return 0.
5462 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5463 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5464 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5465 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5466 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5467 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5468 [EXIT_REASON_CR_ACCESS] = handle_cr,
5469 [EXIT_REASON_DR_ACCESS] = handle_dr,
5470 [EXIT_REASON_CPUID] = handle_cpuid,
5471 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5472 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5473 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5474 [EXIT_REASON_HLT] = handle_halt,
5475 [EXIT_REASON_INVD] = handle_invd,
5476 [EXIT_REASON_INVLPG] = handle_invlpg,
5477 [EXIT_REASON_VMCALL] = handle_vmcall,
5478 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5479 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5480 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5481 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5482 [EXIT_REASON_VMREAD] = handle_vmread,
5483 [EXIT_REASON_VMRESUME] = handle_vmresume,
5484 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5485 [EXIT_REASON_VMOFF] = handle_vmoff,
5486 [EXIT_REASON_VMON] = handle_vmon,
5487 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5488 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5489 [EXIT_REASON_WBINVD] = handle_wbinvd,
5490 [EXIT_REASON_XSETBV] = handle_xsetbv,
5491 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5492 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5493 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5494 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5495 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5496 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5497 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5500 static const int kvm_vmx_max_exit_handlers =
5501 ARRAY_SIZE(kvm_vmx_exit_handlers);
5504 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5505 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5506 * disinterest in the current event (read or write a specific MSR) by using an
5507 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5509 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5510 struct vmcs12 *vmcs12, u32 exit_reason)
5512 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5513 gpa_t bitmap;
5515 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5516 return 1;
5519 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5520 * for the four combinations of read/write and low/high MSR numbers.
5521 * First we need to figure out which of the four to use:
5523 bitmap = vmcs12->msr_bitmap;
5524 if (exit_reason == EXIT_REASON_MSR_WRITE)
5525 bitmap += 2048;
5526 if (msr_index >= 0xc0000000) {
5527 msr_index -= 0xc0000000;
5528 bitmap += 1024;
5531 /* Then read the msr_index'th bit from this bitmap: */
5532 if (msr_index < 1024*8) {
5533 unsigned char b;
5534 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5535 return 1 & (b >> (msr_index & 7));
5536 } else
5537 return 1; /* let L1 handle the wrong parameter */
5541 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5542 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5543 * intercept (via guest_host_mask etc.) the current event.
5545 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5546 struct vmcs12 *vmcs12)
5548 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5549 int cr = exit_qualification & 15;
5550 int reg = (exit_qualification >> 8) & 15;
5551 unsigned long val = kvm_register_read(vcpu, reg);
5553 switch ((exit_qualification >> 4) & 3) {
5554 case 0: /* mov to cr */
5555 switch (cr) {
5556 case 0:
5557 if (vmcs12->cr0_guest_host_mask &
5558 (val ^ vmcs12->cr0_read_shadow))
5559 return 1;
5560 break;
5561 case 3:
5562 if ((vmcs12->cr3_target_count >= 1 &&
5563 vmcs12->cr3_target_value0 == val) ||
5564 (vmcs12->cr3_target_count >= 2 &&
5565 vmcs12->cr3_target_value1 == val) ||
5566 (vmcs12->cr3_target_count >= 3 &&
5567 vmcs12->cr3_target_value2 == val) ||
5568 (vmcs12->cr3_target_count >= 4 &&
5569 vmcs12->cr3_target_value3 == val))
5570 return 0;
5571 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5572 return 1;
5573 break;
5574 case 4:
5575 if (vmcs12->cr4_guest_host_mask &
5576 (vmcs12->cr4_read_shadow ^ val))
5577 return 1;
5578 break;
5579 case 8:
5580 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5581 return 1;
5582 break;
5584 break;
5585 case 2: /* clts */
5586 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5587 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5588 return 1;
5589 break;
5590 case 1: /* mov from cr */
5591 switch (cr) {
5592 case 3:
5593 if (vmcs12->cpu_based_vm_exec_control &
5594 CPU_BASED_CR3_STORE_EXITING)
5595 return 1;
5596 break;
5597 case 8:
5598 if (vmcs12->cpu_based_vm_exec_control &
5599 CPU_BASED_CR8_STORE_EXITING)
5600 return 1;
5601 break;
5603 break;
5604 case 3: /* lmsw */
5606 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5607 * cr0. Other attempted changes are ignored, with no exit.
5609 if (vmcs12->cr0_guest_host_mask & 0xe &
5610 (val ^ vmcs12->cr0_read_shadow))
5611 return 1;
5612 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5613 !(vmcs12->cr0_read_shadow & 0x1) &&
5614 (val & 0x1))
5615 return 1;
5616 break;
5618 return 0;
5622 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5623 * should handle it ourselves in L0 (and then continue L2). Only call this
5624 * when in is_guest_mode (L2).
5626 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5628 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5629 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5630 struct vcpu_vmx *vmx = to_vmx(vcpu);
5631 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5633 if (vmx->nested.nested_run_pending)
5634 return 0;
5636 if (unlikely(vmx->fail)) {
5637 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5638 vmcs_read32(VM_INSTRUCTION_ERROR));
5639 return 1;
5642 switch (exit_reason) {
5643 case EXIT_REASON_EXCEPTION_NMI:
5644 if (!is_exception(intr_info))
5645 return 0;
5646 else if (is_page_fault(intr_info))
5647 return enable_ept;
5648 return vmcs12->exception_bitmap &
5649 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5650 case EXIT_REASON_EXTERNAL_INTERRUPT:
5651 return 0;
5652 case EXIT_REASON_TRIPLE_FAULT:
5653 return 1;
5654 case EXIT_REASON_PENDING_INTERRUPT:
5655 case EXIT_REASON_NMI_WINDOW:
5657 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5658 * (aka Interrupt Window Exiting) only when L1 turned it on,
5659 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5660 * Same for NMI Window Exiting.
5662 return 1;
5663 case EXIT_REASON_TASK_SWITCH:
5664 return 1;
5665 case EXIT_REASON_CPUID:
5666 return 1;
5667 case EXIT_REASON_HLT:
5668 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5669 case EXIT_REASON_INVD:
5670 return 1;
5671 case EXIT_REASON_INVLPG:
5672 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5673 case EXIT_REASON_RDPMC:
5674 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5675 case EXIT_REASON_RDTSC:
5676 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5677 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5678 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5679 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5680 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5681 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5683 * VMX instructions trap unconditionally. This allows L1 to
5684 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5686 return 1;
5687 case EXIT_REASON_CR_ACCESS:
5688 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5689 case EXIT_REASON_DR_ACCESS:
5690 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5691 case EXIT_REASON_IO_INSTRUCTION:
5692 /* TODO: support IO bitmaps */
5693 return 1;
5694 case EXIT_REASON_MSR_READ:
5695 case EXIT_REASON_MSR_WRITE:
5696 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5697 case EXIT_REASON_INVALID_STATE:
5698 return 1;
5699 case EXIT_REASON_MWAIT_INSTRUCTION:
5700 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5701 case EXIT_REASON_MONITOR_INSTRUCTION:
5702 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5703 case EXIT_REASON_PAUSE_INSTRUCTION:
5704 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5705 nested_cpu_has2(vmcs12,
5706 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5707 case EXIT_REASON_MCE_DURING_VMENTRY:
5708 return 0;
5709 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5710 return 1;
5711 case EXIT_REASON_APIC_ACCESS:
5712 return nested_cpu_has2(vmcs12,
5713 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5714 case EXIT_REASON_EPT_VIOLATION:
5715 case EXIT_REASON_EPT_MISCONFIG:
5716 return 0;
5717 case EXIT_REASON_WBINVD:
5718 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5719 case EXIT_REASON_XSETBV:
5720 return 1;
5721 default:
5722 return 1;
5726 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5728 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5729 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5733 * The guest has exited. See if we can fix it or if we need userspace
5734 * assistance.
5736 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5738 struct vcpu_vmx *vmx = to_vmx(vcpu);
5739 u32 exit_reason = vmx->exit_reason;
5740 u32 vectoring_info = vmx->idt_vectoring_info;
5742 /* If guest state is invalid, start emulating */
5743 if (vmx->emulation_required && emulate_invalid_guest_state)
5744 return handle_invalid_guest_state(vcpu);
5747 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5748 * we did not inject a still-pending event to L1 now because of
5749 * nested_run_pending, we need to re-enable this bit.
5751 if (vmx->nested.nested_run_pending)
5752 kvm_make_request(KVM_REQ_EVENT, vcpu);
5754 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5755 exit_reason == EXIT_REASON_VMRESUME))
5756 vmx->nested.nested_run_pending = 1;
5757 else
5758 vmx->nested.nested_run_pending = 0;
5760 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5761 nested_vmx_vmexit(vcpu);
5762 return 1;
5765 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5766 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5767 vcpu->run->fail_entry.hardware_entry_failure_reason
5768 = exit_reason;
5769 return 0;
5772 if (unlikely(vmx->fail)) {
5773 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5774 vcpu->run->fail_entry.hardware_entry_failure_reason
5775 = vmcs_read32(VM_INSTRUCTION_ERROR);
5776 return 0;
5779 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5780 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5781 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5782 exit_reason != EXIT_REASON_TASK_SWITCH))
5783 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5784 "(0x%x) and exit reason is 0x%x\n",
5785 __func__, vectoring_info, exit_reason);
5787 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5788 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5789 get_vmcs12(vcpu), vcpu)))) {
5790 if (vmx_interrupt_allowed(vcpu)) {
5791 vmx->soft_vnmi_blocked = 0;
5792 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5793 vcpu->arch.nmi_pending) {
5795 * This CPU don't support us in finding the end of an
5796 * NMI-blocked window if the guest runs with IRQs
5797 * disabled. So we pull the trigger after 1 s of
5798 * futile waiting, but inform the user about this.
5800 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5801 "state on VCPU %d after 1 s timeout\n",
5802 __func__, vcpu->vcpu_id);
5803 vmx->soft_vnmi_blocked = 0;
5807 if (exit_reason < kvm_vmx_max_exit_handlers
5808 && kvm_vmx_exit_handlers[exit_reason])
5809 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5810 else {
5811 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5812 vcpu->run->hw.hardware_exit_reason = exit_reason;
5814 return 0;
5817 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5819 if (irr == -1 || tpr < irr) {
5820 vmcs_write32(TPR_THRESHOLD, 0);
5821 return;
5824 vmcs_write32(TPR_THRESHOLD, irr);
5827 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5829 u32 exit_intr_info;
5831 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5832 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5833 return;
5835 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5836 exit_intr_info = vmx->exit_intr_info;
5838 /* Handle machine checks before interrupts are enabled */
5839 if (is_machine_check(exit_intr_info))
5840 kvm_machine_check();
5842 /* We need to handle NMIs before interrupts are enabled */
5843 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5844 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5845 kvm_before_handle_nmi(&vmx->vcpu);
5846 asm("int $2");
5847 kvm_after_handle_nmi(&vmx->vcpu);
5851 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5853 u32 exit_intr_info;
5854 bool unblock_nmi;
5855 u8 vector;
5856 bool idtv_info_valid;
5858 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5860 if (cpu_has_virtual_nmis()) {
5861 if (vmx->nmi_known_unmasked)
5862 return;
5864 * Can't use vmx->exit_intr_info since we're not sure what
5865 * the exit reason is.
5867 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5868 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5869 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5871 * SDM 3: 27.7.1.2 (September 2008)
5872 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5873 * a guest IRET fault.
5874 * SDM 3: 23.2.2 (September 2008)
5875 * Bit 12 is undefined in any of the following cases:
5876 * If the VM exit sets the valid bit in the IDT-vectoring
5877 * information field.
5878 * If the VM exit is due to a double fault.
5880 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5881 vector != DF_VECTOR && !idtv_info_valid)
5882 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5883 GUEST_INTR_STATE_NMI);
5884 else
5885 vmx->nmi_known_unmasked =
5886 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5887 & GUEST_INTR_STATE_NMI);
5888 } else if (unlikely(vmx->soft_vnmi_blocked))
5889 vmx->vnmi_blocked_time +=
5890 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5893 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5894 u32 idt_vectoring_info,
5895 int instr_len_field,
5896 int error_code_field)
5898 u8 vector;
5899 int type;
5900 bool idtv_info_valid;
5902 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5904 vmx->vcpu.arch.nmi_injected = false;
5905 kvm_clear_exception_queue(&vmx->vcpu);
5906 kvm_clear_interrupt_queue(&vmx->vcpu);
5908 if (!idtv_info_valid)
5909 return;
5911 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5913 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5914 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
5916 switch (type) {
5917 case INTR_TYPE_NMI_INTR:
5918 vmx->vcpu.arch.nmi_injected = true;
5920 * SDM 3: 27.7.1.2 (September 2008)
5921 * Clear bit "block by NMI" before VM entry if a NMI
5922 * delivery faulted.
5924 vmx_set_nmi_mask(&vmx->vcpu, false);
5925 break;
5926 case INTR_TYPE_SOFT_EXCEPTION:
5927 vmx->vcpu.arch.event_exit_inst_len =
5928 vmcs_read32(instr_len_field);
5929 /* fall through */
5930 case INTR_TYPE_HARD_EXCEPTION:
5931 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
5932 u32 err = vmcs_read32(error_code_field);
5933 kvm_queue_exception_e(&vmx->vcpu, vector, err);
5934 } else
5935 kvm_queue_exception(&vmx->vcpu, vector);
5936 break;
5937 case INTR_TYPE_SOFT_INTR:
5938 vmx->vcpu.arch.event_exit_inst_len =
5939 vmcs_read32(instr_len_field);
5940 /* fall through */
5941 case INTR_TYPE_EXT_INTR:
5942 kvm_queue_interrupt(&vmx->vcpu, vector,
5943 type == INTR_TYPE_SOFT_INTR);
5944 break;
5945 default:
5946 break;
5950 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
5952 if (is_guest_mode(&vmx->vcpu))
5953 return;
5954 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
5955 VM_EXIT_INSTRUCTION_LEN,
5956 IDT_VECTORING_ERROR_CODE);
5959 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
5961 if (is_guest_mode(vcpu))
5962 return;
5963 __vmx_complete_interrupts(to_vmx(vcpu),
5964 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5965 VM_ENTRY_INSTRUCTION_LEN,
5966 VM_ENTRY_EXCEPTION_ERROR_CODE);
5968 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
5971 #ifdef CONFIG_X86_64
5972 #define R "r"
5973 #define Q "q"
5974 #else
5975 #define R "e"
5976 #define Q "l"
5977 #endif
5979 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
5981 struct vcpu_vmx *vmx = to_vmx(vcpu);
5983 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
5984 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5985 if (vmcs12->idt_vectoring_info_field &
5986 VECTORING_INFO_VALID_MASK) {
5987 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5988 vmcs12->idt_vectoring_info_field);
5989 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5990 vmcs12->vm_exit_instruction_len);
5991 if (vmcs12->idt_vectoring_info_field &
5992 VECTORING_INFO_DELIVER_CODE_MASK)
5993 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
5994 vmcs12->idt_vectoring_error_code);
5998 /* Record the guest's net vcpu time for enforced NMI injections. */
5999 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6000 vmx->entry_time = ktime_get();
6002 /* Don't enter VMX if guest state is invalid, let the exit handler
6003 start emulation until we arrive back to a valid state */
6004 if (vmx->emulation_required && emulate_invalid_guest_state)
6005 return;
6007 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6008 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6009 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6010 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6012 /* When single-stepping over STI and MOV SS, we must clear the
6013 * corresponding interruptibility bits in the guest state. Otherwise
6014 * vmentry fails as it then expects bit 14 (BS) in pending debug
6015 * exceptions being set, but that's not correct for the guest debugging
6016 * case. */
6017 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6018 vmx_set_interrupt_shadow(vcpu, 0);
6020 vmx->__launched = vmx->loaded_vmcs->launched;
6021 asm(
6022 /* Store host registers */
6023 "push %%"R"dx; push %%"R"bp;"
6024 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6025 "push %%"R"cx \n\t"
6026 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6027 "je 1f \n\t"
6028 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6029 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6030 "1: \n\t"
6031 /* Reload cr2 if changed */
6032 "mov %c[cr2](%0), %%"R"ax \n\t"
6033 "mov %%cr2, %%"R"dx \n\t"
6034 "cmp %%"R"ax, %%"R"dx \n\t"
6035 "je 2f \n\t"
6036 "mov %%"R"ax, %%cr2 \n\t"
6037 "2: \n\t"
6038 /* Check if vmlaunch of vmresume is needed */
6039 "cmpl $0, %c[launched](%0) \n\t"
6040 /* Load guest registers. Don't clobber flags. */
6041 "mov %c[rax](%0), %%"R"ax \n\t"
6042 "mov %c[rbx](%0), %%"R"bx \n\t"
6043 "mov %c[rdx](%0), %%"R"dx \n\t"
6044 "mov %c[rsi](%0), %%"R"si \n\t"
6045 "mov %c[rdi](%0), %%"R"di \n\t"
6046 "mov %c[rbp](%0), %%"R"bp \n\t"
6047 #ifdef CONFIG_X86_64
6048 "mov %c[r8](%0), %%r8 \n\t"
6049 "mov %c[r9](%0), %%r9 \n\t"
6050 "mov %c[r10](%0), %%r10 \n\t"
6051 "mov %c[r11](%0), %%r11 \n\t"
6052 "mov %c[r12](%0), %%r12 \n\t"
6053 "mov %c[r13](%0), %%r13 \n\t"
6054 "mov %c[r14](%0), %%r14 \n\t"
6055 "mov %c[r15](%0), %%r15 \n\t"
6056 #endif
6057 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6059 /* Enter guest mode */
6060 "jne .Llaunched \n\t"
6061 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6062 "jmp .Lkvm_vmx_return \n\t"
6063 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6064 ".Lkvm_vmx_return: "
6065 /* Save guest registers, load host registers, keep flags */
6066 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6067 "pop %0 \n\t"
6068 "mov %%"R"ax, %c[rax](%0) \n\t"
6069 "mov %%"R"bx, %c[rbx](%0) \n\t"
6070 "pop"Q" %c[rcx](%0) \n\t"
6071 "mov %%"R"dx, %c[rdx](%0) \n\t"
6072 "mov %%"R"si, %c[rsi](%0) \n\t"
6073 "mov %%"R"di, %c[rdi](%0) \n\t"
6074 "mov %%"R"bp, %c[rbp](%0) \n\t"
6075 #ifdef CONFIG_X86_64
6076 "mov %%r8, %c[r8](%0) \n\t"
6077 "mov %%r9, %c[r9](%0) \n\t"
6078 "mov %%r10, %c[r10](%0) \n\t"
6079 "mov %%r11, %c[r11](%0) \n\t"
6080 "mov %%r12, %c[r12](%0) \n\t"
6081 "mov %%r13, %c[r13](%0) \n\t"
6082 "mov %%r14, %c[r14](%0) \n\t"
6083 "mov %%r15, %c[r15](%0) \n\t"
6084 #endif
6085 "mov %%cr2, %%"R"ax \n\t"
6086 "mov %%"R"ax, %c[cr2](%0) \n\t"
6088 "pop %%"R"bp; pop %%"R"dx \n\t"
6089 "setbe %c[fail](%0) \n\t"
6090 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6091 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6092 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6093 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6094 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6095 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6096 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6097 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6098 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6099 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6100 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6101 #ifdef CONFIG_X86_64
6102 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6103 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6104 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6105 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6106 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6107 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6108 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6109 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6110 #endif
6111 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6112 [wordsize]"i"(sizeof(ulong))
6113 : "cc", "memory"
6114 , R"ax", R"bx", R"di", R"si"
6115 #ifdef CONFIG_X86_64
6116 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6117 #endif
6120 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6121 | (1 << VCPU_EXREG_RFLAGS)
6122 | (1 << VCPU_EXREG_CPL)
6123 | (1 << VCPU_EXREG_PDPTR)
6124 | (1 << VCPU_EXREG_SEGMENTS)
6125 | (1 << VCPU_EXREG_CR3));
6126 vcpu->arch.regs_dirty = 0;
6128 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6130 if (is_guest_mode(vcpu)) {
6131 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6132 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6133 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6134 vmcs12->idt_vectoring_error_code =
6135 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6136 vmcs12->vm_exit_instruction_len =
6137 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6141 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6142 vmx->loaded_vmcs->launched = 1;
6144 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6145 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6147 vmx_complete_atomic_exit(vmx);
6148 vmx_recover_nmi_blocking(vmx);
6149 vmx_complete_interrupts(vmx);
6152 #undef R
6153 #undef Q
6155 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6157 struct vcpu_vmx *vmx = to_vmx(vcpu);
6159 free_vpid(vmx);
6160 free_nested(vmx);
6161 free_loaded_vmcs(vmx->loaded_vmcs);
6162 kfree(vmx->guest_msrs);
6163 kvm_vcpu_uninit(vcpu);
6164 kmem_cache_free(kvm_vcpu_cache, vmx);
6167 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6169 int err;
6170 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6171 int cpu;
6173 if (!vmx)
6174 return ERR_PTR(-ENOMEM);
6176 allocate_vpid(vmx);
6178 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6179 if (err)
6180 goto free_vcpu;
6182 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6183 err = -ENOMEM;
6184 if (!vmx->guest_msrs) {
6185 goto uninit_vcpu;
6188 vmx->loaded_vmcs = &vmx->vmcs01;
6189 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6190 if (!vmx->loaded_vmcs->vmcs)
6191 goto free_msrs;
6192 if (!vmm_exclusive)
6193 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6194 loaded_vmcs_init(vmx->loaded_vmcs);
6195 if (!vmm_exclusive)
6196 kvm_cpu_vmxoff();
6198 cpu = get_cpu();
6199 vmx_vcpu_load(&vmx->vcpu, cpu);
6200 vmx->vcpu.cpu = cpu;
6201 err = vmx_vcpu_setup(vmx);
6202 vmx_vcpu_put(&vmx->vcpu);
6203 put_cpu();
6204 if (err)
6205 goto free_vmcs;
6206 if (vm_need_virtualize_apic_accesses(kvm))
6207 err = alloc_apic_access_page(kvm);
6208 if (err)
6209 goto free_vmcs;
6211 if (enable_ept) {
6212 if (!kvm->arch.ept_identity_map_addr)
6213 kvm->arch.ept_identity_map_addr =
6214 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6215 err = -ENOMEM;
6216 if (alloc_identity_pagetable(kvm) != 0)
6217 goto free_vmcs;
6218 if (!init_rmode_identity_map(kvm))
6219 goto free_vmcs;
6222 vmx->nested.current_vmptr = -1ull;
6223 vmx->nested.current_vmcs12 = NULL;
6225 return &vmx->vcpu;
6227 free_vmcs:
6228 free_vmcs(vmx->loaded_vmcs->vmcs);
6229 free_msrs:
6230 kfree(vmx->guest_msrs);
6231 uninit_vcpu:
6232 kvm_vcpu_uninit(&vmx->vcpu);
6233 free_vcpu:
6234 free_vpid(vmx);
6235 kmem_cache_free(kvm_vcpu_cache, vmx);
6236 return ERR_PTR(err);
6239 static void __init vmx_check_processor_compat(void *rtn)
6241 struct vmcs_config vmcs_conf;
6243 *(int *)rtn = 0;
6244 if (setup_vmcs_config(&vmcs_conf) < 0)
6245 *(int *)rtn = -EIO;
6246 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6247 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6248 smp_processor_id());
6249 *(int *)rtn = -EIO;
6253 static int get_ept_level(void)
6255 return VMX_EPT_DEFAULT_GAW + 1;
6258 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6260 u64 ret;
6262 /* For VT-d and EPT combination
6263 * 1. MMIO: always map as UC
6264 * 2. EPT with VT-d:
6265 * a. VT-d without snooping control feature: can't guarantee the
6266 * result, try to trust guest.
6267 * b. VT-d with snooping control feature: snooping control feature of
6268 * VT-d engine can guarantee the cache correctness. Just set it
6269 * to WB to keep consistent with host. So the same as item 3.
6270 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6271 * consistent with host MTRR
6273 if (is_mmio)
6274 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6275 else if (vcpu->kvm->arch.iommu_domain &&
6276 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6277 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6278 VMX_EPT_MT_EPTE_SHIFT;
6279 else
6280 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6281 | VMX_EPT_IPAT_BIT;
6283 return ret;
6286 static int vmx_get_lpage_level(void)
6288 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6289 return PT_DIRECTORY_LEVEL;
6290 else
6291 /* For shadow and EPT supported 1GB page */
6292 return PT_PDPE_LEVEL;
6295 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6297 struct kvm_cpuid_entry2 *best;
6298 struct vcpu_vmx *vmx = to_vmx(vcpu);
6299 u32 exec_control;
6301 vmx->rdtscp_enabled = false;
6302 if (vmx_rdtscp_supported()) {
6303 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6304 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6305 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6306 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6307 vmx->rdtscp_enabled = true;
6308 else {
6309 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6310 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6311 exec_control);
6317 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6319 if (func == 1 && nested)
6320 entry->ecx |= bit(X86_FEATURE_VMX);
6324 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6325 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6326 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6327 * guest in a way that will both be appropriate to L1's requests, and our
6328 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6329 * function also has additional necessary side-effects, like setting various
6330 * vcpu->arch fields.
6332 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6334 struct vcpu_vmx *vmx = to_vmx(vcpu);
6335 u32 exec_control;
6337 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6338 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6339 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6340 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6341 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6342 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6343 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6344 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6345 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6346 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6347 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6348 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6349 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6350 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6351 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6352 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6353 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6354 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6355 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6356 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6357 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6358 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6359 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6360 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6361 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6362 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6363 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6364 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6365 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6366 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6367 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6368 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6369 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6370 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6371 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6372 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6374 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6375 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6376 vmcs12->vm_entry_intr_info_field);
6377 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6378 vmcs12->vm_entry_exception_error_code);
6379 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6380 vmcs12->vm_entry_instruction_len);
6381 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6382 vmcs12->guest_interruptibility_info);
6383 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6384 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6385 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6386 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6387 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6388 vmcs12->guest_pending_dbg_exceptions);
6389 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6390 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6392 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6394 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6395 (vmcs_config.pin_based_exec_ctrl |
6396 vmcs12->pin_based_vm_exec_control));
6399 * Whether page-faults are trapped is determined by a combination of
6400 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6401 * If enable_ept, L0 doesn't care about page faults and we should
6402 * set all of these to L1's desires. However, if !enable_ept, L0 does
6403 * care about (at least some) page faults, and because it is not easy
6404 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6405 * to exit on each and every L2 page fault. This is done by setting
6406 * MASK=MATCH=0 and (see below) EB.PF=1.
6407 * Note that below we don't need special code to set EB.PF beyond the
6408 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6409 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6410 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6412 * A problem with this approach (when !enable_ept) is that L1 may be
6413 * injected with more page faults than it asked for. This could have
6414 * caused problems, but in practice existing hypervisors don't care.
6415 * To fix this, we will need to emulate the PFEC checking (on the L1
6416 * page tables), using walk_addr(), when injecting PFs to L1.
6418 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6419 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6420 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6421 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6423 if (cpu_has_secondary_exec_ctrls()) {
6424 u32 exec_control = vmx_secondary_exec_control(vmx);
6425 if (!vmx->rdtscp_enabled)
6426 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6427 /* Take the following fields only from vmcs12 */
6428 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6429 if (nested_cpu_has(vmcs12,
6430 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6431 exec_control |= vmcs12->secondary_vm_exec_control;
6433 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6435 * Translate L1 physical address to host physical
6436 * address for vmcs02. Keep the page pinned, so this
6437 * physical address remains valid. We keep a reference
6438 * to it so we can release it later.
6440 if (vmx->nested.apic_access_page) /* shouldn't happen */
6441 nested_release_page(vmx->nested.apic_access_page);
6442 vmx->nested.apic_access_page =
6443 nested_get_page(vcpu, vmcs12->apic_access_addr);
6445 * If translation failed, no matter: This feature asks
6446 * to exit when accessing the given address, and if it
6447 * can never be accessed, this feature won't do
6448 * anything anyway.
6450 if (!vmx->nested.apic_access_page)
6451 exec_control &=
6452 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6453 else
6454 vmcs_write64(APIC_ACCESS_ADDR,
6455 page_to_phys(vmx->nested.apic_access_page));
6458 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6463 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6464 * Some constant fields are set here by vmx_set_constant_host_state().
6465 * Other fields are different per CPU, and will be set later when
6466 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6468 vmx_set_constant_host_state();
6471 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6472 * entry, but only if the current (host) sp changed from the value
6473 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6474 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6475 * here we just force the write to happen on entry.
6477 vmx->host_rsp = 0;
6479 exec_control = vmx_exec_control(vmx); /* L0's desires */
6480 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6481 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6482 exec_control &= ~CPU_BASED_TPR_SHADOW;
6483 exec_control |= vmcs12->cpu_based_vm_exec_control;
6485 * Merging of IO and MSR bitmaps not currently supported.
6486 * Rather, exit every time.
6488 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6489 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6490 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6492 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6494 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6495 * bitwise-or of what L1 wants to trap for L2, and what we want to
6496 * trap. Note that CR0.TS also needs updating - we do this later.
6498 update_exception_bitmap(vcpu);
6499 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6500 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6502 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6503 vmcs_write32(VM_EXIT_CONTROLS,
6504 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6505 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6506 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6508 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6509 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6510 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6511 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6514 set_cr4_guest_host_mask(vmx);
6516 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6517 vmcs_write64(TSC_OFFSET,
6518 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6519 else
6520 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6522 if (enable_vpid) {
6524 * Trivially support vpid by letting L2s share their parent
6525 * L1's vpid. TODO: move to a more elaborate solution, giving
6526 * each L2 its own vpid and exposing the vpid feature to L1.
6528 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6529 vmx_flush_tlb(vcpu);
6532 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6533 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6534 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6535 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6536 else
6537 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6538 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6539 vmx_set_efer(vcpu, vcpu->arch.efer);
6542 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6543 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6544 * The CR0_READ_SHADOW is what L2 should have expected to read given
6545 * the specifications by L1; It's not enough to take
6546 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6547 * have more bits than L1 expected.
6549 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6550 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6552 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6553 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6555 /* shadow page tables on either EPT or shadow page tables */
6556 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6557 kvm_mmu_reset_context(vcpu);
6559 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6560 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6564 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6565 * for running an L2 nested guest.
6567 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6569 struct vmcs12 *vmcs12;
6570 struct vcpu_vmx *vmx = to_vmx(vcpu);
6571 int cpu;
6572 struct loaded_vmcs *vmcs02;
6574 if (!nested_vmx_check_permission(vcpu) ||
6575 !nested_vmx_check_vmcs12(vcpu))
6576 return 1;
6578 skip_emulated_instruction(vcpu);
6579 vmcs12 = get_vmcs12(vcpu);
6582 * The nested entry process starts with enforcing various prerequisites
6583 * on vmcs12 as required by the Intel SDM, and act appropriately when
6584 * they fail: As the SDM explains, some conditions should cause the
6585 * instruction to fail, while others will cause the instruction to seem
6586 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6587 * To speed up the normal (success) code path, we should avoid checking
6588 * for misconfigurations which will anyway be caught by the processor
6589 * when using the merged vmcs02.
6591 if (vmcs12->launch_state == launch) {
6592 nested_vmx_failValid(vcpu,
6593 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6594 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6595 return 1;
6598 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6599 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6600 /*TODO: Also verify bits beyond physical address width are 0*/
6601 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6602 return 1;
6605 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6606 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6607 /*TODO: Also verify bits beyond physical address width are 0*/
6608 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6609 return 1;
6612 if (vmcs12->vm_entry_msr_load_count > 0 ||
6613 vmcs12->vm_exit_msr_load_count > 0 ||
6614 vmcs12->vm_exit_msr_store_count > 0) {
6615 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6616 __func__);
6617 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6618 return 1;
6621 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6622 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6623 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6624 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6625 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6626 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6627 !vmx_control_verify(vmcs12->vm_exit_controls,
6628 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6629 !vmx_control_verify(vmcs12->vm_entry_controls,
6630 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6632 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6633 return 1;
6636 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6637 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6638 nested_vmx_failValid(vcpu,
6639 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6640 return 1;
6643 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6644 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6645 nested_vmx_entry_failure(vcpu, vmcs12,
6646 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6647 return 1;
6649 if (vmcs12->vmcs_link_pointer != -1ull) {
6650 nested_vmx_entry_failure(vcpu, vmcs12,
6651 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6652 return 1;
6656 * We're finally done with prerequisite checking, and can start with
6657 * the nested entry.
6660 vmcs02 = nested_get_current_vmcs02(vmx);
6661 if (!vmcs02)
6662 return -ENOMEM;
6664 enter_guest_mode(vcpu);
6666 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6668 cpu = get_cpu();
6669 vmx->loaded_vmcs = vmcs02;
6670 vmx_vcpu_put(vcpu);
6671 vmx_vcpu_load(vcpu, cpu);
6672 vcpu->cpu = cpu;
6673 put_cpu();
6675 vmcs12->launch_state = 1;
6677 prepare_vmcs02(vcpu, vmcs12);
6680 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6681 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6682 * returned as far as L1 is concerned. It will only return (and set
6683 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6685 return 1;
6689 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6690 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6691 * This function returns the new value we should put in vmcs12.guest_cr0.
6692 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6693 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6694 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6695 * didn't trap the bit, because if L1 did, so would L0).
6696 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6697 * been modified by L2, and L1 knows it. So just leave the old value of
6698 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6699 * isn't relevant, because if L0 traps this bit it can set it to anything.
6700 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6701 * changed these bits, and therefore they need to be updated, but L0
6702 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6703 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6705 static inline unsigned long
6706 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6708 return
6709 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6710 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6711 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6712 vcpu->arch.cr0_guest_owned_bits));
6715 static inline unsigned long
6716 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6718 return
6719 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6720 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6721 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6722 vcpu->arch.cr4_guest_owned_bits));
6726 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6727 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6728 * and this function updates it to reflect the changes to the guest state while
6729 * L2 was running (and perhaps made some exits which were handled directly by L0
6730 * without going back to L1), and to reflect the exit reason.
6731 * Note that we do not have to copy here all VMCS fields, just those that
6732 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6733 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6734 * which already writes to vmcs12 directly.
6736 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6738 /* update guest state fields: */
6739 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6740 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6742 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6743 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6744 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6745 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6747 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6748 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6749 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6750 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6751 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6752 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6753 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6754 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6755 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6756 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6757 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6758 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6759 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6760 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6761 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6762 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6763 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6764 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6765 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6766 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6767 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6768 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6769 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6770 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6771 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6772 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6773 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6774 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6775 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6776 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6777 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6778 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6779 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6780 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6781 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6782 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6784 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6785 vmcs12->guest_interruptibility_info =
6786 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6787 vmcs12->guest_pending_dbg_exceptions =
6788 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6790 /* TODO: These cannot have changed unless we have MSR bitmaps and
6791 * the relevant bit asks not to trap the change */
6792 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6793 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6794 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6795 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6796 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6797 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6799 /* update exit information fields: */
6801 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6802 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6804 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6805 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6806 vmcs12->idt_vectoring_info_field =
6807 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6808 vmcs12->idt_vectoring_error_code =
6809 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6810 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6811 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6813 /* clear vm-entry fields which are to be cleared on exit */
6814 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6815 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6819 * A part of what we need to when the nested L2 guest exits and we want to
6820 * run its L1 parent, is to reset L1's guest state to the host state specified
6821 * in vmcs12.
6822 * This function is to be called not only on normal nested exit, but also on
6823 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6824 * Failures During or After Loading Guest State").
6825 * This function should be called when the active VMCS is L1's (vmcs01).
6827 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6829 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6830 vcpu->arch.efer = vmcs12->host_ia32_efer;
6831 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6832 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6833 else
6834 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6835 vmx_set_efer(vcpu, vcpu->arch.efer);
6837 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6838 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6840 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6841 * actually changed, because it depends on the current state of
6842 * fpu_active (which may have changed).
6843 * Note that vmx_set_cr0 refers to efer set above.
6845 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6847 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6848 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6849 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6851 update_exception_bitmap(vcpu);
6852 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6853 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6856 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6857 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6859 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6860 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6862 /* shadow page tables on either EPT or shadow page tables */
6863 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6864 kvm_mmu_reset_context(vcpu);
6866 if (enable_vpid) {
6868 * Trivially support vpid by letting L2s share their parent
6869 * L1's vpid. TODO: move to a more elaborate solution, giving
6870 * each L2 its own vpid and exposing the vpid feature to L1.
6872 vmx_flush_tlb(vcpu);
6876 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6877 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6878 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6879 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6880 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6881 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6882 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6883 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6884 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6885 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6886 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6887 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6888 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6889 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6890 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6892 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6893 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6894 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6895 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6896 vmcs12->host_ia32_perf_global_ctrl);
6900 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
6901 * and modify vmcs12 to make it see what it would expect to see there if
6902 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
6904 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
6906 struct vcpu_vmx *vmx = to_vmx(vcpu);
6907 int cpu;
6908 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6910 leave_guest_mode(vcpu);
6911 prepare_vmcs12(vcpu, vmcs12);
6913 cpu = get_cpu();
6914 vmx->loaded_vmcs = &vmx->vmcs01;
6915 vmx_vcpu_put(vcpu);
6916 vmx_vcpu_load(vcpu, cpu);
6917 vcpu->cpu = cpu;
6918 put_cpu();
6920 /* if no vmcs02 cache requested, remove the one we used */
6921 if (VMCS02_POOL_SIZE == 0)
6922 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
6924 load_vmcs12_host_state(vcpu, vmcs12);
6926 /* Update TSC_OFFSET if TSC was changed while L2 ran */
6927 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6929 /* This is needed for same reason as it was needed in prepare_vmcs02 */
6930 vmx->host_rsp = 0;
6932 /* Unpin physical memory we referred to in vmcs02 */
6933 if (vmx->nested.apic_access_page) {
6934 nested_release_page(vmx->nested.apic_access_page);
6935 vmx->nested.apic_access_page = 0;
6939 * Exiting from L2 to L1, we're now back to L1 which thinks it just
6940 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
6941 * success or failure flag accordingly.
6943 if (unlikely(vmx->fail)) {
6944 vmx->fail = 0;
6945 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
6946 } else
6947 nested_vmx_succeed(vcpu);
6951 * L1's failure to enter L2 is a subset of a normal exit, as explained in
6952 * 23.7 "VM-entry failures during or after loading guest state" (this also
6953 * lists the acceptable exit-reason and exit-qualification parameters).
6954 * It should only be called before L2 actually succeeded to run, and when
6955 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
6957 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
6958 struct vmcs12 *vmcs12,
6959 u32 reason, unsigned long qualification)
6961 load_vmcs12_host_state(vcpu, vmcs12);
6962 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
6963 vmcs12->exit_qualification = qualification;
6964 nested_vmx_succeed(vcpu);
6967 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6968 struct x86_instruction_info *info,
6969 enum x86_intercept_stage stage)
6971 return X86EMUL_CONTINUE;
6974 static struct kvm_x86_ops vmx_x86_ops = {
6975 .cpu_has_kvm_support = cpu_has_kvm_support,
6976 .disabled_by_bios = vmx_disabled_by_bios,
6977 .hardware_setup = hardware_setup,
6978 .hardware_unsetup = hardware_unsetup,
6979 .check_processor_compatibility = vmx_check_processor_compat,
6980 .hardware_enable = hardware_enable,
6981 .hardware_disable = hardware_disable,
6982 .cpu_has_accelerated_tpr = report_flexpriority,
6984 .vcpu_create = vmx_create_vcpu,
6985 .vcpu_free = vmx_free_vcpu,
6986 .vcpu_reset = vmx_vcpu_reset,
6988 .prepare_guest_switch = vmx_save_host_state,
6989 .vcpu_load = vmx_vcpu_load,
6990 .vcpu_put = vmx_vcpu_put,
6992 .set_guest_debug = set_guest_debug,
6993 .get_msr = vmx_get_msr,
6994 .set_msr = vmx_set_msr,
6995 .get_segment_base = vmx_get_segment_base,
6996 .get_segment = vmx_get_segment,
6997 .set_segment = vmx_set_segment,
6998 .get_cpl = vmx_get_cpl,
6999 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7000 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7001 .decache_cr3 = vmx_decache_cr3,
7002 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7003 .set_cr0 = vmx_set_cr0,
7004 .set_cr3 = vmx_set_cr3,
7005 .set_cr4 = vmx_set_cr4,
7006 .set_efer = vmx_set_efer,
7007 .get_idt = vmx_get_idt,
7008 .set_idt = vmx_set_idt,
7009 .get_gdt = vmx_get_gdt,
7010 .set_gdt = vmx_set_gdt,
7011 .set_dr7 = vmx_set_dr7,
7012 .cache_reg = vmx_cache_reg,
7013 .get_rflags = vmx_get_rflags,
7014 .set_rflags = vmx_set_rflags,
7015 .fpu_activate = vmx_fpu_activate,
7016 .fpu_deactivate = vmx_fpu_deactivate,
7018 .tlb_flush = vmx_flush_tlb,
7020 .run = vmx_vcpu_run,
7021 .handle_exit = vmx_handle_exit,
7022 .skip_emulated_instruction = skip_emulated_instruction,
7023 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7024 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7025 .patch_hypercall = vmx_patch_hypercall,
7026 .set_irq = vmx_inject_irq,
7027 .set_nmi = vmx_inject_nmi,
7028 .queue_exception = vmx_queue_exception,
7029 .cancel_injection = vmx_cancel_injection,
7030 .interrupt_allowed = vmx_interrupt_allowed,
7031 .nmi_allowed = vmx_nmi_allowed,
7032 .get_nmi_mask = vmx_get_nmi_mask,
7033 .set_nmi_mask = vmx_set_nmi_mask,
7034 .enable_nmi_window = enable_nmi_window,
7035 .enable_irq_window = enable_irq_window,
7036 .update_cr8_intercept = update_cr8_intercept,
7038 .set_tss_addr = vmx_set_tss_addr,
7039 .get_tdp_level = get_ept_level,
7040 .get_mt_mask = vmx_get_mt_mask,
7042 .get_exit_info = vmx_get_exit_info,
7044 .get_lpage_level = vmx_get_lpage_level,
7046 .cpuid_update = vmx_cpuid_update,
7048 .rdtscp_supported = vmx_rdtscp_supported,
7050 .set_supported_cpuid = vmx_set_supported_cpuid,
7052 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7054 .set_tsc_khz = vmx_set_tsc_khz,
7055 .write_tsc_offset = vmx_write_tsc_offset,
7056 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7057 .compute_tsc_offset = vmx_compute_tsc_offset,
7058 .read_l1_tsc = vmx_read_l1_tsc,
7060 .set_tdp_cr3 = vmx_set_cr3,
7062 .check_intercept = vmx_check_intercept,
7065 static int __init vmx_init(void)
7067 int r, i;
7069 rdmsrl_safe(MSR_EFER, &host_efer);
7071 for (i = 0; i < NR_VMX_MSR; ++i)
7072 kvm_define_shared_msr(i, vmx_msr_index[i]);
7074 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7075 if (!vmx_io_bitmap_a)
7076 return -ENOMEM;
7078 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7079 if (!vmx_io_bitmap_b) {
7080 r = -ENOMEM;
7081 goto out;
7084 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7085 if (!vmx_msr_bitmap_legacy) {
7086 r = -ENOMEM;
7087 goto out1;
7090 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7091 if (!vmx_msr_bitmap_longmode) {
7092 r = -ENOMEM;
7093 goto out2;
7097 * Allow direct access to the PC debug port (it is often used for I/O
7098 * delays, but the vmexits simply slow things down).
7100 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7101 clear_bit(0x80, vmx_io_bitmap_a);
7103 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7105 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7106 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7108 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7110 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7111 __alignof__(struct vcpu_vmx), THIS_MODULE);
7112 if (r)
7113 goto out3;
7115 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7116 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7117 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7118 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7119 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7120 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7122 if (enable_ept) {
7123 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7124 VMX_EPT_EXECUTABLE_MASK);
7125 ept_set_mmio_spte_mask();
7126 kvm_enable_tdp();
7127 } else
7128 kvm_disable_tdp();
7130 return 0;
7132 out3:
7133 free_page((unsigned long)vmx_msr_bitmap_longmode);
7134 out2:
7135 free_page((unsigned long)vmx_msr_bitmap_legacy);
7136 out1:
7137 free_page((unsigned long)vmx_io_bitmap_b);
7138 out:
7139 free_page((unsigned long)vmx_io_bitmap_a);
7140 return r;
7143 static void __exit vmx_exit(void)
7145 free_page((unsigned long)vmx_msr_bitmap_legacy);
7146 free_page((unsigned long)vmx_msr_bitmap_longmode);
7147 free_page((unsigned long)vmx_io_bitmap_b);
7148 free_page((unsigned long)vmx_io_bitmap_a);
7150 kvm_exit();
7153 module_init(vmx_init)
7154 module_exit(vmx_exit)